JPH07116546B2 - High strength magnesium base alloy - Google Patents

High strength magnesium base alloy

Info

Publication number
JPH07116546B2
JPH07116546B2 JP1177974A JP17797489A JPH07116546B2 JP H07116546 B2 JPH07116546 B2 JP H07116546B2 JP 1177974 A JP1177974 A JP 1177974A JP 17797489 A JP17797489 A JP 17797489A JP H07116546 B2 JPH07116546 B2 JP H07116546B2
Authority
JP
Japan
Prior art keywords
amorphous
elements
based alloy
magnesium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1177974A
Other languages
Japanese (ja)
Other versions
JPH0310041A (en
Inventor
健 増本
明久 井上
克昌 大寺
Original Assignee
健 増本
ワイケイケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健 増本, ワイケイケイ株式会社 filed Critical 健 増本
Priority to NZ230311A priority Critical patent/NZ230311A/en
Priority to AU40046/89A priority patent/AU608171C/en
Priority to CA000609157A priority patent/CA1334896C/en
Priority to US07/398,993 priority patent/US4990198A/en
Priority to DE198989116318T priority patent/DE361136T1/en
Priority to EP89116318A priority patent/EP0361136B1/en
Priority to KR1019890012757A priority patent/KR930000846B1/en
Priority to NO893533A priority patent/NO170988C/en
Priority to DE89116318T priority patent/DE68907837T2/en
Priority to BR898904537A priority patent/BR8904537A/en
Publication of JPH0310041A publication Critical patent/JPH0310041A/en
Publication of JPH07116546B2 publication Critical patent/JPH07116546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、硬度および強度に優れ、かつ、耐食性に優れ
たマグネシウム基合金に関する。
TECHNICAL FIELD The present invention relates to a magnesium-based alloy having excellent hardness and strength and excellent corrosion resistance.

[従来の技術] 従来のマグネシウム基合金には、Mg−Al系、Mg−Al−Zn
系、Mg−Th−Zr系、Mg−Th−Zn−Zr系、Mg−Zn−Zr系、
Mg−Zn−Zr−RE(希土類元素)系等の成分系の合金が知
られており、その材料特性に応じて、例えば、航空機、
車輛等の軽量構造部材として、あるいは電池用材料、犠
牲電極等として広範囲の用途に供されている。
[Prior Art] Conventional magnesium-based alloys include Mg-Al-based, Mg-Al-Zn
System, Mg-Th-Zr system, Mg-Th-Zn-Zr system, Mg-Zn-Zr system,
Component-based alloys such as Mg-Zn-Zr-RE (rare earth elements) -based are known, and depending on the material properties thereof, for example, aircraft,
It is used for a wide range of applications as a lightweight structural member for vehicles, battery materials, sacrificial electrodes, and the like.

[発明が解決しようとする課題] 従来のマグネシウム基合金は、一般に硬度及び強度が低
く、耐食性も悪いのが現状である。
[Problems to be Solved by the Invention] Conventional magnesium-based alloys generally have low hardness and strength and poor corrosion resistance.

本発明は上記に鑑み、高硬度および高強度、高耐食性を
有し、かつ押出し加工やプレス加工等が可能であり、ま
た大きな曲げ加工にも耐える高力かつ耐食性に優れた新
規なマグネシウム基合金を比較的安価に提供するもので
ある。
In view of the above, the present invention is a novel magnesium-based alloy having high hardness and high strength, high corrosion resistance, capable of extrusion processing, press processing, etc., and having high strength and corrosion resistance capable of withstanding large bending. Is provided at a relatively low cost.

[問題点を解決するための手段] 本発明は一般式:MgaXb [但し、X:Cu、Ni、Sn、Znから選ばれる2種以上の元
素、 a、bは原子パーセントで 40≦a≦90 10≦b≦60] で示される組成を有し、少なくとも50%(体積比)の非
晶質からなる高力マグネシウム基合金。
[Means for Solving the Problems] The present invention provides a compound represented by the general formula: Mg a X b [wherein X: two or more kinds of elements selected from Cu, Ni, Sn and Zn, and a and b are 40% in atomic percentage]. a ≤ 90 10 ≤ b ≤ 60], and a high-strength magnesium-based alloy composed of at least 50% (volume ratio) amorphous.

または一般式:MgaXcMd [但し、X:Cu、Ni、Sn、Znから選ばれる1種または2種
以上の元素、M:Al、Si、Caから選ばれる1種または2種
以上の元素、 a、c、dは原子パーセントで 40≦a≦90 4≦c≦35 2≦d≦25] で示される組成を有し、少くとも50%(体積比)の非晶
質からなる高力マグネシウム基合金。
Or a general formula: Mg a X c M d [wherein, X: Cu, Ni, Sn, Zn, one or more elements selected, and M: Al, Si, Ca, one or more elements selected from Elements, a, c, and d have atomic percentages of 40 ≦ a ≦ 90 4 ≦ c ≦ 35 2 ≦ d ≦ 25], and are composed of at least 50% (volume ratio) amorphous. High strength magnesium based alloy.

または一般式:MgaXcLne [但し、X:Cu、Ni、Sn、Znから選ばれる1種または2種
以上の元素、Ln:Y、La、Ce、Nd、Smから選ばれる1種ま
たは2種以上の元素、または希土類元素の集合体である
ミッシュメタル(Mm)、 a、c、eは原子パーセントで 40≦a≦90 4≦c≦35 4≦e≦25] で示される組成を有し、少なくとも50%(体積比)の非
晶質からなる高力マグネシウム基合金。
Or general formula: Mg a X c Ln e [however, one or more elements selected from X: Cu, Ni, Sn and Zn, one element selected from Ln: Y, La, Ce, Nd and Sm Or misch metal (Mm), which is an aggregate of two or more elements or rare earth elements, a, c, and e are atomic percentages, 40 ≦ a ≦ 90 4 ≦ c ≦ 35 4 ≦ e ≦ 25] And a high-strength magnesium-based alloy consisting of at least 50% (volume ratio) amorphous.

さらには一般式:MgaXcMdLne [但し、X:Cu、Ni、Sn、Znから選ばれる1種または2種
以上の元素、M:Al、Si、Caから選ばれる1種または2種
以上の元素、Ln:Y、La、Ce、Nd、Smから選ばれる1種ま
たは2種以上の元素または希土類元素の集合体であるミ
ッシュメタル(Mm)、 40≦a≦90 4≦c≦35 2≦d≦25 4≦e≦25≦] で示される組成を有し、少なくとも50%(体積比)の非
晶質からなる高力マグネシウム基合金である。
Furthermore, the general formula: Mg a X c M d Ln e [however, one or more elements selected from X: Cu, Ni, Sn, and Zn, or one element selected from M: Al, Si, and Ca, or Misch metal (Mm), which is an aggregate of two or more elements, one or more elements selected from Ln: Y, La, Ce, Nd, and Sm, or a rare earth element, 40 ≦ a ≦ 90 4 ≦ c ≤35 2 ≤d ≤25 4 ≤e ≤25 ≤], and is a high-strength magnesium-based alloy composed of at least 50% (volume ratio) amorphous.

なお、上記のMmはCe40〜50%、La20〜25%、残部は他の
希土類元素からなり、許容範囲の不純物(Mg、Al、Si、
Fe等)を含む複合体である。Mmはアモルファス形成能上
は他のLn元素の一元素とほぼ1対1(原子%)の割合で
置き換えることができるとともに、安価であり実際の合
金元素Lnの供給源として経済的効果が大きい。
The above Mm is Ce40 to 50%, La20 to 25%, and the balance is other rare earth elements, and impurities within the allowable range (Mg, Al, Si,
Fe and the like). Mm can be replaced with one element of the other Ln element at a ratio of about 1: 1 (atomic%) in terms of amorphous forming ability, and it is inexpensive and has a large economic effect as a source of the actual alloying element Ln.

本発明のマグネシウム基合金は、上記組成を有する合金
の溶湯を液体急冷法で急冷凝固することにより得ること
ができる。この液体急冷法とは、溶融した合金を急速に
冷却させる方法をいい、例えば単ロール法、双ロール
法、回転液中紡糸法などが特に有効であり、これらの方
法では104〜106K/sec程度の冷却速度が得られる。この
単ロール法、双ロール法等により薄帯材料を製造するに
は、ノズル孔を通して約300〜10000rpmの範囲の一定速
度で回転している直径30〜3000mmの例えば銅あるいは鋼
製のロールに溶湯を噴出する。これにより幅が約1〜30
0mmで厚さが約5〜500μmの各種薄帯材料を容易に得る
ことができる。また、回転液中紡糸法により細線材料を
製造するには、ノズル孔を通じ、アルゴンガス背圧に
て、約50〜500rpmで回転するドラム内に遠心力により保
持された深さ約1〜10cmの溶液冷媒層中に溶湯を噴出し
て、細線材料を容易に得ることができる。この際のノズ
ルからの噴出溶湯と溶液冷媒面とのなす角度は、約60〜
90度、噴出溶湯と溶液冷媒面の相対速度比は約0.7〜0.9
であることが好ましい。
The magnesium-based alloy of the present invention can be obtained by rapidly solidifying a melt of the alloy having the above composition by a liquid quenching method. This liquid quenching method refers to a method of rapidly cooling a molten alloy, for example, a single roll method, a twin roll method, a rotating submerged spinning method, etc. are particularly effective, and in these methods 10 4 to 10 6 K A cooling rate of about / sec can be obtained. In order to produce a ribbon material by the single roll method, the twin roll method, etc., the molten metal is applied to a roll made of, for example, copper or steel with a diameter of 30 to 3000 mm rotating at a constant speed in the range of about 300 to 10,000 rpm through a nozzle hole Gush out. This gives a width of about 1-30
Various ribbon materials having a thickness of 0 mm and a thickness of about 5 to 500 μm can be easily obtained. Further, in order to produce a fine wire material by a spinning liquid spinning method, a depth of about 1 to 10 cm held by a centrifugal force in a drum rotating at about 50 to 500 rpm through a nozzle hole at a back pressure of argon gas. A fine wire material can be easily obtained by ejecting the molten metal into the solution refrigerant layer. At this time, the angle formed by the molten metal ejected from the nozzle and the surface of the solution refrigerant is about 60-
90 degrees, the relative velocity ratio of the molten metal and the solution refrigerant surface is about 0.7-0.9
Is preferred.

なお、上記方法によらずスパッタリング法によって薄膜
を、また高圧ガス噴霧法などの各種アトマイズ法やスプ
レー法により急冷粉末を得ることができる。
Note that a thin film can be obtained by a sputtering method instead of the above method, and a quenching powder can be obtained by various atomizing methods such as a high pressure gas atomizing method and a spraying method.

得られた急冷マグネシウム基合金が非晶質であるかどう
かは通常のX線回折法によって知ることができる。すな
わち非晶質の場合は非晶質特有のハローパターンを示
す。この非晶質体は、前述の単ロール法、双ロール法、
回転液中紡糸法、スパッタリング、各種アトマイズ法、
スプレー法、メカニカルアロイ法等により得ることがで
きる。更に、この非晶質組織は加熱すると特定の温度以
上で結晶に分解する(この温度を結晶化温度Txと呼
ぶ)。
Whether or not the obtained quenched magnesium-based alloy is amorphous can be known by a usual X-ray diffraction method. That is, in the case of amorphous, a halo pattern peculiar to amorphous is shown. This amorphous material is the above-mentioned single roll method, twin roll method,
Spinning liquid spinning method, sputtering, various atomizing method,
It can be obtained by a spray method, a mechanical alloy method, or the like. Furthermore, when this amorphous structure is heated, it decomposes into crystals above a specific temperature (this temperature is referred to as crystallization temperature Tx).

上記請求項(1)の一般式で示される本発明のマグネシ
ウム基合金において、原子パーセントでaを40〜90%の
範囲に、また、bを10〜60%の範囲にそれぞれ限定した
のは、その範囲から外れると非晶質化しにくくなったり
脆くなり、前記液体急冷等を利用した工業的な急冷手段
では本発明の特性をもった非晶質の合金を得ることがで
きなくなるからである。
In the magnesium-based alloy of the present invention represented by the general formula of the above claim (1), a is limited to 40 to 90% and b to 10 to 60% in atomic percent. If it is out of the range, it becomes difficult to become amorphous or becomes brittle, and it is impossible to obtain an amorphous alloy having the characteristics of the present invention by the industrial rapid cooling means utilizing the liquid quenching or the like.

上記請求項(2)の一般式で示される本発明のマグネシ
ウム基合金において、原子%でaを40〜90%の範囲に、
また、cを4〜35%、dを2〜25%の範囲にそれぞれ限
定したのは、その範囲から外れると非晶質化し難くなっ
たり、脆くなり、前記液体急冷等を利用した工業的な急
冷手段では、本発明の特性を持った非晶質の合金を得る
ことができなくなるからである。
In the magnesium-based alloy of the present invention represented by the general formula of the above claim (2), a is in the range of 40 to 90% in atomic%,
Further, c is limited to the range of 4 to 35% and d is limited to the range of 2 to 25%, respectively, because if it is out of the range, it becomes difficult to amorphize or becomes brittle. This is because it is impossible to obtain an amorphous alloy having the characteristics of the present invention by the quenching means.

また、上記請求項(3)の一般式で示される本発明のマ
グネシウム基合金において、原子%でaを40〜90%、c
を4〜35%、eを4〜25%の範囲にそれぞれ限定したの
は、その範囲から外れると非晶質化し難くなったり、脆
くなり、前記液体急冷などを利用した工業的な急冷手段
では、本発明の特性を持った非晶質の合金を得ることが
できなくなるからである。
Further, in the magnesium-based alloy of the present invention represented by the general formula of claim (3), a is 40 to 90% in atomic% and c
Is limited to the range of 4 to 35% and e to the range of 4 to 25%, respectively, and if it is out of the range, it becomes difficult to amorphize or becomes brittle. This is because an amorphous alloy having the characteristics of the present invention cannot be obtained.

また、上記請求項(4)の一般式で示される本発明のマ
グネシウム基合金において、原子%でaを40〜90%、c
を4〜35%、eを4〜25%、eを4〜25%の範囲にそれ
ぞれ限定したのは、その範囲から外れると非晶質化し難
くなったり、脆くなり、前記液体急冷などを利用した工
業的な急冷手段では、本発明の特性を持った非晶質の合
金を得ることができなくなるからである。
Further, in the magnesium-based alloy of the present invention represented by the general formula of the above claim (4), a is 40 to 90% in atomic% and c
Is limited to 4 to 35%, e to 4 to 25%, and e to 4 to 25%, respectively, and if it is out of these ranges, it becomes difficult to amorphize or becomes brittle. This is because it is not possible to obtain an amorphous alloy having the characteristics of the present invention by such industrial quenching means.

X元素はCu、Ni、Sn、Znより選ばれる元素であり、より
優れた非晶質形成能を向上させる効果と共に展延性を保
ったまま強度を向上させる効果を併せ持つ。
The X element is an element selected from Cu, Ni, Sn, and Zn, and has the effect of improving the amorphous forming ability, which is more excellent, and the effect of improving the strength while maintaining the ductility.

また、M元素は、Al、Si、Caから選ばれる元素であり、
展延性を保ったまま強度を向上させる効果を持ち、上記
元素のうちAl、Ca元素は耐食性を向上させる効果を持
ち、またSi元素においては結晶化温度Txを向上させ、比
較的高温における非晶質の安定性を付与するとともに、
合金溶湯の湯流れ性を向上させる効果を持つ。
Further, the M element is an element selected from Al, Si and Ca,
Has the effect of improving the strength while maintaining the ductility, Al and Ca elements among the above elements have the effect of improving the corrosion resistance, and Si element improves the crystallization temperature Tx and is amorphous at relatively high temperatures. While giving quality stability,
It has the effect of improving the flowability of molten alloy.

Ln元素はY、La、Ce、Nd、Smから選ばれる元素又は希土
類元素の集合体であるMmであり、非晶質形成能を向上さ
せる効果を持つが、前記X元素と共存させることによ
り、より優れた非晶質形成能を向上させる効果を発揮す
る。
The Ln element is Mm, which is an aggregate of elements selected from Y, La, Ce, Nd, and Sm, or an aggregate of rare earth elements, and has the effect of improving the amorphous forming ability, but by coexisting with the X element, It exerts an effect of improving a more excellent amorphous forming ability.

本発明のマグネシウム基合金は、結晶化温度近傍(Tx±
100℃)において、超塑性現象を示すので、容易に押出
し加工やプレス加工、熱間鍛造等の加工を行うことがで
きる。したがって、薄帯、線、板状あるいは粉末状の形
態で得られた本発明のマグネシウム基合金をTx±100℃
の温度範囲で押出し加工、プレス加工、熱間鍛造等に付
することにより、バルク材を製造することができる。さ
らに、本発明のマグネシウム基合金は高度の粘さを有
し、180゜密着曲げ可能なものもある。
The magnesium-based alloy of the present invention has a temperature near the crystallization temperature (Tx ±
At 100 ° C), it exhibits a superplasticity phenomenon, so that it is possible to easily carry out processing such as extrusion processing, press processing and hot forging. Therefore, the magnesium-based alloy of the present invention obtained in the form of ribbon, wire, plate or powder has a Tx ± 100 ° C.
The bulk material can be manufactured by subjecting the material to extrusion processing, press processing, hot forging, etc. in the temperature range of. Further, some of the magnesium-based alloys of the present invention have a high degree of viscosity and can be bent by 180 ° in close contact.

[実施例] 高周波溶解炉により所定の成分組成を有する溶融合金3
をつくり、これを第1図に示す先端に小孔5(孔径:0.5
mm)を有する石英管1に装入し、加熱溶解した後、その
石英管1を銅製ロール2の直上に設置し、回転数5000rp
mの高速回転下、石英管1内の溶融合金3をアルゴンガ
スの加圧下(0.7kg/cm2)により石英管1の小孔5から
噴射し、銅製ロール2の表面と接触させることにより急
冷凝固させて合金薄帯4を得る。
[Example] Molten alloy 3 having a predetermined composition by a high frequency melting furnace
Make a small hole 5 (hole diameter: 0.5
mm), and after heating and melting, the quartz tube 1 is placed directly on the copper roll 2 and the rotation speed is 5000 rp.
Under high speed rotation of m, the molten alloy 3 in the quartz tube 1 is jetted from the small holes 5 of the quartz tube 1 under pressure of argon gas (0.7 kg / cm 2 ) and brought into contact with the surface of the copper roll 2 to be rapidly cooled. The alloy ribbon 4 is obtained by solidifying.

上記製造条件により表に示す組成(原子%)を有する71
種の合金薄帯(幅:1mm、厚さ:20μm)を得て、それぞ
れX線回折に付した結果、表に示すように非晶質が得ら
れていることが確認された。
It has the composition (atomic%) shown in the table according to the above manufacturing conditions.
As a result of obtaining alloy thin ribbons (width: 1 mm, thickness: 20 μm) and subjecting each to an X-ray diffraction, it was confirmed that amorphous was obtained as shown in the table.

又、各供試薄帯につき、結晶化温度(Tx)、硬度(Hv)
を測定し、表の右欄に示す結果を得た。硬度(Hv)は、
25g荷重の微小ビッカース硬度計による測定値(DPN)で
あり、結晶化温度(Tx)は、40k/minで加熱した走査示
差熱曲線における最初の発熱ピーク開始温度(K)であ
る。なお、表中の“Amo"は非晶質であることを示し、
“Amo+Cry"は非晶質と結晶質の複合体であることを示
す。又、“Bri"は脆性を示し、“Duc"は展延性を示す。
In addition, for each ribbon tested, crystallization temperature (Tx), hardness (Hv)
Was measured and the results shown in the right column of the table were obtained. The hardness (Hv) is
It is a measured value (DPN) by a micro Vickers hardness tester with a load of 25 g, and the crystallization temperature (Tx) is the first exothermic peak start temperature (K) in the scanning differential heating curve heated at 40 k / min. In addition, "A mo " in the table indicates that it is amorphous,
"A mo + C ry " indicates that it is a composite of amorphous and crystalline. Also, "B ri" indicates brittle, "D uc" indicates the ductility.

表に示す通り、いずれの試料も結晶化温度Txが420K以上
と高く、特に、硬度Hv(DPN)はいずれの試料も160以上
を示し、従来のマグネシウム基合金の硬度Hv(DPN)60
〜90の2〜3倍であることが判る。また、Mg−Ni−Ln
系、及びMg−Cu−Ln系の3元系にSi元素を添加すること
により結晶化温度Txが上昇し非晶質の安定性が改善され
ることが判る。
As shown in the table, each sample has a high crystallization temperature Tx of 420 K or higher, and in particular, the hardness Hv (DPN) of each sample is 160 or higher, and the hardness Hv (DPN) of the conventional magnesium-based alloy is 60%.
It turns out that it is two to three times 90. In addition, Mg-Ni-Ln
It is understood that the crystallization temperature Tx is increased and the stability of the amorphous is improved by adding the Si element to the ternary system of Mg system and Mg-Cu-Ln system.

上記の例は非晶質構造のものの例を示したが、例えばMg
70Ni10Ce20、 Mg90Ni5Ce5、Mg65Ni30Ce5、Mg75Ni5Ce20、Mg60Cu20C
e20、Mg90Ni5La5、Mg50Cu20Si8Ce22等に50%以上の非晶
質を有するものもある。
The above example shows an example of an amorphous structure.
70 Ni 10 Ce 20 , Mg 90 Ni 5 Ce 5 , Mg 65 Ni 30 Ce 5 , Mg 75 Ni 5 Ce 20 , Mg 60 Cu 20 C
Some of e 20 , Mg 90 Ni 5 La 5 , Mg 50 Cu 20 Si 8 Ce 22 and the like have 50% or more of amorphous.

次に上記試料No.4の耐食性試験を行った。供試薄帯を常
温の0.01N HCl水溶液、及び0.25N NaOH水溶液に浸漬
し、溶解減量より腐食速度を求めた結果、それぞれ89.2
mm/year、及び0.45mm/yearであった。これより、HCl水
溶液には全く抵抗を示さないが、NaOH水溶液には高い耐
食性を示すことが判る。かかる高い耐食性は他の試料に
ついても同様であった。
Next, the corrosion resistance test of the above sample No. 4 was performed. The test strip was immersed in 0.01N HCl aqueous solution and 0.25N NaOH aqueous solution at room temperature and the corrosion rate was calculated from the loss on dissolution.
mm / year and 0.45 mm / year. From this, it can be seen that although it shows no resistance to the HCl aqueous solution, it exhibits high corrosion resistance to the NaOH aqueous solution. The high corrosion resistance was the same for the other samples.

[発明の効果] 本発明のマグネシウム基合金は、高硬度材料、高強度材
料、高耐食性材料として有用である。さらに押出し加工
やプレス加工等の加工ができ、又大きな曲げ加工にも耐
える高力かつ耐食性に優れた材料として種々の用途に供
することができる。
[Effects of the Invention] The magnesium-based alloy of the present invention is useful as a high hardness material, a high strength material, and a high corrosion resistance material. Further, it can be used for various applications as a material that can be subjected to processing such as extrusion processing and press processing, and has high strength and excellent corrosion resistance that can withstand large bending processing.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明合金を急冷凝固して薄帯を作る時に使用
した単ロール装置の説明図である。 1……石英管、2……銅製ロール、3……溶融合金、4
……急冷薄帯、5……小孔。
FIG. 1 is an explanatory view of a single roll device used when a ribbon is produced by rapidly solidifying the alloy of the present invention. 1 ... Quartz tube, 2 ... Copper roll, 3 ... Molten alloy, 4
…… Quenched ribbon, 5 …… Small holes.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式:MgaXb [但し、X:Cu、Ni、Sn、Znから選ばれる2種以上の元
素、 a、bは原子パーセントで 40≦a≦90 10≦b≦60] で示される組成を有し、少なくとも50%(体積比)の非
晶質からなる高力マグネシウム基合金。
1. A general formula: Mg a X b [wherein X: two or more elements selected from Cu, Ni, Sn and Zn, and a and b are atomic percentages 40 ≦ a ≦ 90 10 ≦ b ≦ 60. ] A high-strength magnesium-based alloy having a composition represented by: and consisting of at least 50% (volume ratio) of amorphous.
【請求項2】一般式:MgaXcMd [但し、X:Cu、Ni、Sn、Znから選ばれる1種または2種
以上の元素、M:Al、Si、Caから選ばれる1種または2種
以上の元素、 a、c、dは原子パーセントで 40≦a≦90 4≦c≦35 2≦d≦25] で示される組成を有し、少くとも50%(体積比)の非晶
質からなる高力マグネシウム基合金。
2. A general formula: Mg a X c M d [wherein one or more elements selected from X: Cu, Ni, Sn and Zn and one element selected from M: Al, Si and Ca] Or two or more kinds of elements, a, c, and d have an atomic percentage of 40 ≤ a ≤ 90 4 ≤ c ≤ 35 2 ≤ d ≤ 25], and at least 50% (volume ratio) of non- A high-strength magnesium-based alloy composed of crystalloids.
【請求項3】一般式:MgaXcLne [但し、X:Cu、Ni、Sn、Znから選ばれる1種または2種
以上の元素、Ln:Y、La、Ce、Nd、Smから選ばれる1種ま
たは2種以上の元素、または希土類元素の集合体である
ミッシュメタル(Mm)、 a、c、eは原子パーセントで 40≦a≦90 4≦c≦35 4≦e≦25] で示される組成を有し、少なくとも50%(体積比)の非
晶質からなる高力マグネシウム基合金。
3. A general formula: Mg a X c Ln e [wherein X: Cu, Ni, Sn, Zn is selected from one or more elements, Ln: Y, La, Ce, Nd, Sm Misch metal (Mm), which is an aggregate of one or more selected elements or rare earth elements, a, c, and e are atomic percentages 40 ≤ a ≤ 90 4 ≤ c ≤ 354 ≤ e ≤ 25] A high-strength magnesium-based alloy having the composition shown in and consisting of at least 50% (volume ratio) amorphous.
【請求項4】一般式:MgaXcMdLne [但し、X:Cu、Ni、Sn、Znから選ばれる1種または2種
以上の元素、M:Al、Si、Caから選ばれる1種または2種
以上の元素、Ln:Y、La、Ce、Nd、Smから選ばれる1種ま
たは2種以上の元素または希土類元素の集合体であるミ
ッシュメタル(Mm)、 40≦a≦90 4≦c≦35 4≦d≦25 4≦e≦25≦] で示される組成を有し、少くとも50%(体積比)の非晶
質からなる高力マグネシウム基合金。
4. A general formula: Mg a X c M d Ln e [wherein, X: Cu, Ni, Sn, Zn is selected from one or more elements selected from M: Al, Si and Ca. Misch metal (Mm), which is an aggregate of one or more elements, one or more elements selected from Ln: Y, La, Ce, Nd, and Sm, or a rare earth element, 40 ≦ a ≦ 90 4 ≤ c ≤ 35 4 ≤ d ≤ 25 4 ≤ e ≤ 25 ≤], which is a high-strength magnesium-based alloy composed of at least 50% (volume ratio) of amorphous.
JP1177974A 1988-09-05 1989-07-12 High strength magnesium base alloy Expired - Lifetime JPH07116546B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
NZ230311A NZ230311A (en) 1988-09-05 1989-08-15 High strength magnesium based alloy
AU40046/89A AU608171C (en) 1988-09-05 1989-08-18 High strength magnesium-based alloys
CA000609157A CA1334896C (en) 1988-09-05 1989-08-23 High strength magnesium-based alloys
US07/398,993 US4990198A (en) 1988-09-05 1989-08-28 High strength magnesium-based amorphous alloy
DE198989116318T DE361136T1 (en) 1988-09-05 1989-09-04 HIGH-STRENGTH MAGNESIUM-BASED ALLOYS.
EP89116318A EP0361136B1 (en) 1988-09-05 1989-09-04 High strength magnesium-based alloys
KR1019890012757A KR930000846B1 (en) 1988-09-05 1989-09-04 High strength magnesium-based amorphous alloy
NO893533A NO170988C (en) 1988-09-05 1989-09-04 PARTY AMORF MAGNESIUM-BASED ALLOY
DE89116318T DE68907837T2 (en) 1988-09-05 1989-09-04 High-strength magnesium-based alloys.
BR898904537A BR8904537A (en) 1988-09-05 1989-09-05 HIGH RESISTANCE ALLOYS BASED ON MAGNESIUM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP22042788 1988-09-05
JP63-220427 1988-09-05
JP5388589 1989-03-08
JP1-53885 1989-03-08

Publications (2)

Publication Number Publication Date
JPH0310041A JPH0310041A (en) 1991-01-17
JPH07116546B2 true JPH07116546B2 (en) 1995-12-13

Family

ID=26394608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1177974A Expired - Lifetime JPH07116546B2 (en) 1988-09-05 1989-07-12 High strength magnesium base alloy

Country Status (2)

Country Link
JP (1) JPH07116546B2 (en)
KR (1) KR930000846B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058504A3 (en) * 2011-10-20 2013-05-23 포항공과대학교 산학협력단 Non-heat treated magnesium alloy sheet with excellent formability at room temperature in which segregation is minimized

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2937518B2 (en) * 1991-03-07 1999-08-23 健 増本 Materials for sacrificial electrodes for corrosion protection with excellent corrosion resistance
EP0503880B1 (en) * 1991-03-14 1997-10-01 Tsuyoshi Masumoto Amorphous magnesium alloy and method for producing the same
JP3110117B2 (en) * 1991-12-26 2000-11-20 健 増本 High strength magnesium based alloy
CA2144421A1 (en) 1992-09-11 1994-03-31 Tadayoshi Nakamura Refined magnesium material and method for producing the same
KR100343124B1 (en) * 1999-12-02 2002-07-05 임수근 High Strength Mn-Zn-Ca based alloys
KR100382885B1 (en) * 2000-01-20 2003-05-09 학교법인연세대학교 Magnesium-based alloy for forming amorphous phase
US8016955B2 (en) * 2004-06-14 2011-09-13 Yonsei University Magnesium based amorphous alloy having improved glass forming ability and ductility
KR100671195B1 (en) * 2005-03-08 2007-01-25 주식회사 지알로이테크놀로지 High temperature structural Mg alloys containing misch metal
JP2008536005A (en) * 2005-03-08 2008-09-04 ペ,ドン−ヒョン Magnesium alloy added with misch metal, magnesium alloy processed material added with misch metal, and magnesium alloy processed material manufactured thereby
KR100701029B1 (en) * 2005-06-14 2007-03-29 연세대학교 산학협력단 Magnesium Based Metallic Glasses with Enhanced Ductility
JP4602210B2 (en) * 2005-09-27 2010-12-22 独立行政法人科学技術振興機構 Magnesium-based metallic glass alloy-metal particle composite with ductility
JP5119465B2 (en) * 2006-07-19 2013-01-16 新日鐵住金株式会社 Alloy having high amorphous forming ability and alloy plating metal material using the same
JP6031219B2 (en) 2007-03-15 2016-11-24 新日鐵住金株式会社 Molten Mg-Zn alloy-plated steel material and method for producing the same
JP5548578B2 (en) 2010-10-15 2014-07-16 日本発條株式会社 High strength magnesium alloy wire and manufacturing method thereof, high strength magnesium alloy component, and high strength magnesium alloy spring
CN103492108B (en) 2011-04-28 2015-09-09 国立大学法人东北大学 The manufacture method of glassy metal nano wire, the glassy metal nano wire manufactured by this manufacture method and the catalyst containing glassy metal nano wire
EP3323658B1 (en) 2011-05-13 2021-11-24 Litens Automotive Partnership Intelligent belt drive system and method
JP5948124B2 (en) 2012-04-18 2016-07-06 日本発條株式会社 Magnesium alloy member and manufacturing method thereof
WO2015072035A1 (en) 2013-11-18 2015-05-21 川崎重工業株式会社 Supercharger for engine
KR101642803B1 (en) * 2014-11-10 2016-07-26 윤용수 Pile cap structure body
CN105779908B (en) * 2016-01-14 2017-12-19 沈阳工业大学 Efficient organic wastewater degraded non-crystaline amorphous metal and application thereof and preparation method
JP6800482B2 (en) * 2017-04-19 2020-12-16 地方独立行政法人東京都立産業技術研究センター Magnesium alloy manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058504A3 (en) * 2011-10-20 2013-05-23 포항공과대학교 산학협력단 Non-heat treated magnesium alloy sheet with excellent formability at room temperature in which segregation is minimized
CN103781928A (en) * 2011-10-20 2014-05-07 浦项工科大学校产学协力团 Non-heat treated magnesium alloy sheet with excellent formability at room temperature in which segregation is minimized

Also Published As

Publication number Publication date
KR930000846B1 (en) 1993-02-06
KR900004953A (en) 1990-04-13
JPH0310041A (en) 1991-01-17

Similar Documents

Publication Publication Date Title
JP2511526B2 (en) High strength magnesium base alloy
US4990198A (en) High strength magnesium-based amorphous alloy
JPH07116546B2 (en) High strength magnesium base alloy
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
KR930006295B1 (en) Aluminium alloy and making process for this alloys
JP2538692B2 (en) High strength, heat resistant aluminum base alloy
KR930006296B1 (en) Aluminium alloys having high strenth and heat-resisted property
KR910008147B1 (en) High strength heat resistant aluminium alloys
JPH0499244A (en) High strength magnesium base alloy
JP2705996B2 (en) High strength magnesium based alloy
KR910009971B1 (en) Corrosion-resistant aluminum-based alloys
US5221376A (en) High strength magnesium-based alloys
JPH06256875A (en) High strength and high rigidity aluminum base alloy
US4402745A (en) New iron-aluminum-copper alloys which contain boron and have been processed by rapid solidification process and method
JP2583718B2 (en) High strength corrosion resistant aluminum base alloy
US4404028A (en) Nickel base alloys which contain boron and have been processed by rapid solidification process
JP2703480B2 (en) High strength and high corrosion resistance aluminum base alloy
JPH0693394A (en) Aluminum-base alloy with high strength and corrosion resistance
JPH06256878A (en) High tensile strength and heat resistant aluminum base alloy
JPH0790516A (en) Aluminum-base alloy having low coefficient of thermal expansion and high strength and its production
JPH051346A (en) High strength aluminum-base alloy
JPH09111425A (en) High strength aluminum base alloy

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 14