JP4602210B2 - Magnesium-based metallic glass alloy-metal particle composite with ductility - Google Patents

Magnesium-based metallic glass alloy-metal particle composite with ductility Download PDF

Info

Publication number
JP4602210B2
JP4602210B2 JP2005280839A JP2005280839A JP4602210B2 JP 4602210 B2 JP4602210 B2 JP 4602210B2 JP 2005280839 A JP2005280839 A JP 2005280839A JP 2005280839 A JP2005280839 A JP 2005280839A JP 4602210 B2 JP4602210 B2 JP 4602210B2
Authority
JP
Japan
Prior art keywords
metal
magnesium
glass alloy
metallic glass
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005280839A
Other languages
Japanese (ja)
Other versions
JP2007092103A (en
Inventor
明久 井上
健児 網谷
誠 喜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005280839A priority Critical patent/JP4602210B2/en
Publication of JP2007092103A publication Critical patent/JP2007092103A/en
Application granted granted Critical
Publication of JP4602210B2 publication Critical patent/JP4602210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、マグネシウム基金属ガラス合金−金属粒体複合材に関する。さらに詳しく
は、この発明は、溶湯から急冷凝固したままで延性を有するマグネシウム基金属ガラス合
金−金属粒体複合材に関する。
The present invention relates to a magnesium-based metallic glass alloy-metal particle composite material. More specifically, the present invention relates to a magnesium-based metallic glass alloy-metal particle composite material having ductility while being rapidly solidified from a molten metal.

溶融状態の合金を急冷凝固することにより、特定の組成において「金属ガラス合金」が
得られることが知られている。これまでに、パラジウム基合金、ランタノイド基合金、ジ
ルコニウム基合金、鉄族元素基合金、あるいはマグネシウム基合金について数多くの金属
ガラス合金が得られている。
It is known that a “metallic glass alloy” can be obtained in a specific composition by rapidly solidifying a molten alloy. To date, many metallic glass alloys have been obtained for palladium-based alloys, lanthanoid-based alloys, zirconium-based alloys, iron group element-based alloys, or magnesium-based alloys.

Zr基金属ガラス合金等においてはZrC等の100μm程度以下の粒子を分散させて
複合化することにより塑性伸びがない金属ガラス合金の欠点を解消し延性を向上する試み
が行なわれている(特許文献1、2)。特許文献1、2に記載されているように、母相の
金属ガラス合金に分散させる物質はいずれも硬度の高い酸化物や炭化物である。また、非
晶質合金粉末と銅などの延性の大きい金属粉末との混合粉末を非晶質合金の過冷却液体領
域で圧縮加工により一体化して常温での延伸率と破壊靭性を向上させることが知られてい
る(特許文献3)。
In Zr-based metallic glass alloys, etc., attempts have been made to eliminate the defects of metallic glass alloys without plastic elongation and improve ductility by dispersing and compounding particles of about 100 μm or less such as ZrC (Patent Literature). 1, 2). As described in Patent Documents 1 and 2, the substances dispersed in the metallic glass alloy of the parent phase are oxides and carbides having high hardness. In addition, a mixed powder of amorphous alloy powder and metal powder having high ductility such as copper can be integrated by compression in the supercooled liquid region of the amorphous alloy to improve the stretch rate and fracture toughness at room temperature. Known (Patent Document 3).

一方、厚さが数十μm程度の非晶質合金薄帯は、引張試験において延びは示さないもの
の、密着曲げなどの特殊な応力下においては靭性を有することが知られており、この非晶
質合金薄帯をその靭性を維持したまま高強度にする方法として、大きさ1〜5μm程度のW
Cなどの炭化物粒子やFe、Wなどの微粉体を分散させる方法が知られている(特許文献
4)。
On the other hand, an amorphous alloy ribbon having a thickness of several tens of μm does not show elongation in a tensile test, but is known to have toughness under special stresses such as adhesion bending. As a method of making a high-strength alloy ribbon with high strength while maintaining its toughness, W of 1-5μm in size
A method of dispersing carbide particles such as C and fine powders such as Fe and W is known (Patent Document 4).

マグネシウム基金属ガラス合金は低比重で軽量であり、従来のジルコニウム系金属ガラ
ス合金とは異なった新しいタイプの金属ガラス合金として種々の分野への応用が期待され
ている。中でも、マグネシウムに希土類金属を添加した合金系においては、特許文献5及
び6に開示されているような高強度を有するMg基金属ガラス合金が開発されており、構
造材への応用が期待されている。
Magnesium-based metallic glass alloys have low specific gravity and light weight, and are expected to be applied to various fields as new types of metallic glass alloys different from conventional zirconium-based metallic glass alloys. Among them, in an alloy system in which a rare earth metal is added to magnesium, a high-strength Mg-based metallic glass alloy as disclosed in Patent Documents 5 and 6 has been developed and is expected to be applied to structural materials. Yes.

WO02/27055 A1WO02 / 27055 A1 WO96/04134(JP2000/509098T)WO96 / 04134 (JP2000 / 509098T) 特開2003-221657号公報Japanese Patent Laid-Open No. 2003-221657 特開昭59-47352号公報JP 59-47352 A 特開平3-10041号公報Japanese Patent Laid-Open No. 3-10041 特開2001-254157号公報JP 2001-254157 A

マグネシウム基金属ガラス合金は、圧縮荷重下で耐力(σ0.2)が700MPa以上もの高
い強度を有し、薄帯状の試料においては密着曲げができる靭性があるものの、圧縮試験等
の機械的材料試験において塑性変形に応じた伸びを見せず、室温破断伸びがほぼ0%であ
り、脆性材料と同様な破壊を起こすことが問題であった。そのため、部材の設計の際に安
全率を大きく取らなければならず、急冷凝固のままで高強度を生かすような部材や塑性加
工用素材を実用上は作製することができなかった。
Magnesium-based metallic glass alloy has a high strength also proof stress (sigma 0.2) is more than 700MPa under compressive load, although the thin strip of the sample is toughness can contact bending in mechanical materials testing compression test, etc. The elongation at room temperature did not show an elongation corresponding to plastic deformation, and the room temperature breaking elongation was almost 0%, which caused the same failure as brittle materials. Therefore, a large safety factor has to be taken when designing the member, and it has been impossible to practically produce a member or a material for plastic working that makes use of high strength while being rapidly solidified.

そこで、本発明は、溶湯から急冷凝固したままで延性を有する高強度のマグネシウム基
金属ガラス合金鋳造材やこのような鋳造材からなる塑性加工用素材を提供することを目的
とする。
Accordingly, an object of the present invention is to provide a high-strength magnesium-based metal glass alloy cast material having ductility while rapidly solidified from a molten metal, and a material for plastic working made of such a cast material.

従来から、結晶合金については、強度向上の一つの方法として数μmから数十μmの大き
さの酸化物や介在物を合金中に分散させて転位の運動を妨げて材料を強化した粒子分散型
合金が知られている。しかし、この方法では、通常、強度は向上するが、分散前の合金に
比べて延性は向上しないか却って低下する。金属ガラス合金には転位がないので、通常の
結晶合金とは同一視できず、ナノメートルサイズの粒子が分散している場合に強度の向上
が期待できるものの、通常、強度や延性は簡単には向上しない。
Conventionally, with regard to crystalline alloys, a particle dispersion type in which oxides and inclusions with a size of several μm to several tens of μm are dispersed in the alloy as a method for improving the strength to prevent dislocation movement and strengthen the material. Alloys are known. However, this method usually improves the strength, but the ductility does not improve or decreases compared to the alloy before dispersion. Metallic glass alloys do not have dislocations, so they cannot be equated with ordinary crystal alloys and can be expected to improve strength when nanometer-sized particles are dispersed. Does not improve.

本発明者らは、マグネシウム基金属ガラス合金に酸化物や炭化物の粒子を分散させても
延性は発現しないことを確認した。ところが、ある特定の金属、すなわち、Ti、Co、
Fe又はZrから選ばれる少なくとも1種の金属元素の所定の大きさの粒体を分散させた
場合には強度向上の作用はないもののマグネシウム基金属ガラス合金が大きな延性を有す
るようになることを見出し、本発明を完成するに至った。
The present inventors have confirmed that ductility is not exhibited even when oxide or carbide particles are dispersed in a magnesium-based metallic glass alloy. However, certain metals, namely Ti, Co,
It has been found that when particles of a predetermined size of at least one metal element selected from Fe or Zr are dispersed, the magnesium-based metallic glass alloy has a large ductility although there is no effect of improving the strength. The present invention has been completed.

すなわち、本発明は次の項目に記載した構成からなる。
(1)組成式Mg100-a-b-cLnabc(式中、Lnは、Y、Gd、Tb、Dy、Ho、
Er及びTmより選択される一種以上の元素、Mは、Cu,Agから選ばれる1種又は2
種の元素、Xは、Pd及びZnから選択される一種以上の元素、5≦a<15、15≦b
<35、0≦c<10、及び25≦a+b+c<45である)からなる金属ガラス合金に
、Ti、Co、Fe及びZrから選択される一種以上の元素からなる平均粒径が20μm
以上400μm未満の金属球状粒体が分散してなり、鋳造のままで室温破断伸びが5%以
上であることを特徴とするマグネシウム基金属ガラス合金−金属粒体複合材。
That is, this invention consists of the structure described in the following item.
(1) in the composition formula Mg 100-abc Ln a M b X c ( wherein, Ln is, Y, Gd, Tb, Dy , Ho,
One or more elements selected from Er and Tm, M is one or two elements selected from Cu and Ag
Species element, X is one or more elements selected from Pd and Zn, 5 ≦ a <15, 15 ≦ b
<35, 0 ≦ c <10, and 25 ≦ a + b + c <45), an average particle diameter of one or more elements selected from Ti, Co, Fe, and Zr is 20 μm
A magnesium-based metal glass alloy-metal particle composite material characterized in that metal spherical particles of less than 400 μm are dispersed, and the elongation at room temperature is 5% or more as cast.

(2)金属ガラス合金−金属粒体複合体に対する該金属球状粒体の体積分率が5%以上5
0%未満であることを特徴とする上記(1)のマグネシウム基金属ガラス合金−金属粒体
複合材。
(2) The volume fraction of the metal spherical particles with respect to the metal glass alloy-metal particle composite is 5% or more and 5
The magnesium-based metallic glass alloy-metal particle composite material according to (1) above, which is less than 0%.

(3)圧縮荷重下で耐力(σ0.2)が800MPa以上で、かつ、室温破断伸びが20%以上
であることを特徴とする上記(1)又は(2)のマグネシウム基金属ガラス合金−金属粒
体複合材。
(3) Magnesium-based metallic glass alloy-metal particles according to (1) or (2) above, wherein the yield strength (σ 0.2 ) is 800 MPa or more under compressive load and the room temperature breaking elongation is 20% or more. Body composite material.

(4)上記(1)〜(3)のいずれかに記載のマグネシウム基金属ガラス合金−金属粒体
複合材からなることを特徴とする塑性加工用素材。
(4) A plastic working material comprising the magnesium-based metallic glass alloy-metal particle composite material according to any one of (1) to (3).

(5)上記(1)〜(3)のいずれかに記載のマグネシウム基金属ガラス合金−金属粒体
複合材を該金属ガラス合金の過冷却液体温度領域において塑性加工した後、結晶化しない
冷却速度で冷却して得られた室温破断伸びが5%以上であることを特徴とするマグネシウ
ム基金属ガラス合金−金属粒体複合材からなる製品。
(5) Cooling rate at which crystallization does not occur after plastic processing of the magnesium-based metal glass alloy-metal particle composite material according to any one of (1) to (3) above in the supercooled liquid temperature region of the metal glass alloy. A product made of a magnesium-based metallic glass alloy-metal particle composite material having a room-temperature elongation at break of 5% or more obtained by cooling at a temperature of 5%.

本発明のマグネシウム基金属ガラス合金−金属粒体複合材は、母相の合金組成となる金
属原料の粉末や塊及びTi、Co、Fe又はZr元素の粒体を混合して溶解し、金型鋳造
、高圧ダイカスト鋳造などの手法により鋳造することにより容易に得ることができる。母
相となる原料が溶解した時点においても、Ti、Co、Fe及びZrの粒体は、母相の主
たる元素であるMgに相分離傾向であるために、Ti、Co、Fe及びZrの粒体が溶湯
に溶解せず粒体の形状が保たれている。粒体成分が母相に溶解するとガラス形成能が低下
し、母相が脆化する。
The magnesium-based metallic glass alloy-metal particle composite material of the present invention is obtained by mixing and melting metal raw material powder and lump and Ti, Co, Fe, or Zr element particles as an alloy composition of the matrix, It can be easily obtained by casting using a technique such as casting or high pressure die casting. Even when the raw material for the parent phase is dissolved, the Ti, Co, Fe, and Zr grains tend to phase separate into Mg, which is the main element of the parent phase. The body is not dissolved in the molten metal, and the shape of the granule is maintained. When the granule component is dissolved in the parent phase, the glass forming ability is lowered and the parent phase becomes brittle.

母相の溶解時には、金属球状粒体の表面においては、母相のマグネシウム以外のLn元
素(Y、Gd、Tb、Dy、Ho、Er及びTmより選択される一種以上)、M元素(Cu,Agから選ば
れる1種又は2種)と金属球状粒体の元素が、金属球状粒体表面のみで反応が生じ、金属
ガラス合金と金属球状粒体が十分に濡れた状態を生じせしめることができる。このため、
母相の金属ガラス合金と金属球状粒体が強固に密着した複合材となる。金属ガラス合金の
母相に比較的大きな金属球状粒体が分散して介在すると、母相の連続性が損なわれ、通常
は強度が低下すると考えられるが、本発明のマグネシウム基金属ガラス合金−金属粒体複
合材は、強度の低下は抑制され、マグネシウム基金属ガラス母相の高強度という特性と高
延性を兼ね備えることができる。
At the time of dissolution of the matrix phase, on the surface of the metal spherical particles, Ln elements other than magnesium of the matrix phase (one or more selected from Y, Gd, Tb, Dy, Ho, Er and Tm), M element (Cu, 1 type or 2 types selected from Ag) and the element of the metal spherical particles can react only on the surface of the metal spherical particles, and the metal glass alloy and the metal spherical particles can be sufficiently wetted. . For this reason,
It becomes a composite material in which the metallic glass alloy of the matrix and the metal spherical particles are firmly adhered. When relatively large metal spherical particles are dispersed and interspersed in the parent phase of the metal glass alloy, it is considered that the continuity of the parent phase is impaired and the strength is usually lowered. In the granular composite material, strength reduction is suppressed, and the high strength and high ductility of the magnesium-based metallic glass matrix can be achieved.

母相の金属ガラス合金と金属球状粒体の複合により、マグネシウム基金属ガラス合金−
金属粒体複合材が強度と延性を兼ね備えることについては、種々の要因があると考えられ
る。破断面の観察によると、マグネシウム基金属ガラス合金の脆性的な破壊によって生じ
る破壊表面の模様が金属球状粒体付近で複雑化していることから、母相の脆性的な破壊が
ナノメートルスケールで生じても、金属球状粒体近傍でその破壊の進行を止めることがで
きること、及び金属球状粒体が潰れて変形している様子が観察されることからみて、球状
粒体が変形する際に抵抗が生じること、等により延性が生じるものと推察される。しかし
、これ以外の理由によって高強度高延性を兼ね備えている可能性もあり、高強度と高延性
を兼ね備えている理由は本発明を何ら限定するものではない。
Magnesium-based metallic glass alloy with a composite of metallic glass alloy and spherical metal particles
It is considered that there are various factors that the metal particle composite material has both strength and ductility. According to the observation of the fracture surface, the fracture surface pattern generated by the brittle fracture of the magnesium-based metallic glass alloy is complicated near the metal spherical particles, so the brittle fracture of the parent phase occurs at the nanometer scale. However, in view of the fact that the progress of the fracture can be stopped in the vicinity of the metal spherical particles and that the metal spherical particles are observed to be crushed and deformed, there is resistance when the spherical particles are deformed. It is inferred that ductility is caused by the occurrence. However, there is a possibility of having both high strength and high ductility for other reasons, and the reason for having both high strength and high ductility does not limit the present invention.

実用的には、本発明のマグネシム基金属ガラス合金−金属粒体複合材は、ガラス形成能
が高い合金組成を母相に用いていており、加熱昇温すると、金属ガラス合金が結晶化する
前にある特定の温度範囲において、過冷却液体状態を生じる。この過冷却液体状態におい
ては、粘性が低下し軟化するためにガラス状態を保持したままの成形及び加工が容易にな
る。そのため、鍛造などの手法を用いても、母相が容易に変形するために母相中の金属球
状粒体に影響を与えず、容易に目的形状の製品に塑性加工することができる。加工した後
は母相が結晶化しない冷却速度で冷却することにより金属ガラス合金の特性を失うことな
く、また、延性も失われない。そのため、本発明のマグネシウム基金属ガラス合金−金属
粒体複合材は工業的に有益である。
Practically, the magnesium-based metallic glass alloy-metal particle composite of the present invention uses an alloy composition having a high glass-forming ability as a matrix phase, and when heated and heated, before the metallic glass alloy crystallizes. A supercooled liquid state is produced in a certain temperature range. In this supercooled liquid state, the viscosity decreases and softens, so that molding and processing while maintaining the glass state are facilitated. For this reason, even if a technique such as forging is used, the matrix phase is easily deformed, so that the metal spherical particles in the matrix phase are not affected, and the product can be easily plastically processed into a target shape. After processing, cooling is performed at a cooling rate at which the matrix phase does not crystallize, so that the properties of the metallic glass alloy are not lost and the ductility is not lost. Therefore, the magnesium-based metallic glass alloy-metal particle composite material of the present invention is industrially beneficial.

マグネシウム基金属ガラス合金は、高い強度を有するものの、塑性変形に応じた破断伸
びを見せず、高強度を生かすような部材を実用上は作製することができなかったが、特定
の金属球状粒体をマグネシウム基金属ガラス合金−金属粒体複合材の母相合金の溶湯に混
合して金属ガラス合金と金属球状粒体の複合体を形成するという比較的簡単な手段でマグ
ネシウム基金属ガラス合金の特性を全く損なうことなく、顕著な室温塑性伸び、すなわち
室温破断伸びを有するマグネシウム基金属ガラス合金の実現に成功した。
Although the magnesium-based metallic glass alloy has high strength, it did not show break elongation according to plastic deformation, and a member that makes use of high strength could not be practically produced. Characteristics of Magnesium-Based Metallic Glass Alloys with a Relatively Simple Method of Mixing the Molten-Metallic Metallic Glass Alloy-Metal Grain Composite Matrix Alloy Melt to Form a Composite of Metallic Glass Alloy and Metal Spherical Particles The magnesium-based metallic glass alloy having remarkable room temperature plastic elongation, that is, room temperature breaking elongation, was successfully achieved without any loss of the above.

本発明においては、母相の金属ガラス合金に金属球状粒体が分散した状態においても、
母相はガラス状態を維持している必要があることから、母相となる金属ガラス合金の組成
を限定している。
In the present invention, even when the metal spherical particles are dispersed in the metallic glass alloy of the parent phase,
Since the parent phase needs to maintain the glass state, the composition of the metallic glass alloy to be the parent phase is limited.

本発明のマグネシウム基金属ガラス合金−金属粒体複合材は、急冷凝固鋳造法などの手
法により種々の形状の部材を得ることができることを特徴としていることから、高いガラ
ス形成能を有している必要がある。特許文献1及び2に示される公知の組成範囲の中でも
、特にガラス形成能が高い組成を母相の組成に限定している。本発明の合金組成として限
定している組成範囲から逸脱した場合、母相の金属ガラス合金が結晶化しやすい傾向にあ
るために脆化する問題を有しており、本発明の合金を種々の部材として用いることができ
なくなる。
Since the magnesium-based metallic glass alloy-metal particle composite material of the present invention is characterized by being able to obtain members having various shapes by a method such as a rapid solidification casting method, it has a high glass forming ability. There is a need. Among the known composition ranges shown in Patent Documents 1 and 2, a composition having particularly high glass-forming ability is limited to the composition of the parent phase. When it deviates from the composition range which is limited as the alloy composition of the present invention, it has a problem of embrittlement because the metallic glass alloy of the parent phase tends to be crystallized. Cannot be used.

すなわち、母相の合金において、Mgは55原子%以上75原子%未満である必要があ
り、60原子%以上70原子%未満がより好ましい。また、Y、Gd、Tb、Dy、Ho
、Er及びTmから選択される1種以上の元素が5原子%以上15原子%未満である必要
があり、より好ましくは8原子%以上12原子%未満である。これらの元素の含有量が5
原子%未満又は15原子%を越えると、非晶質形成能が低下し、金型鋳造法を用いて5mm
φ以上のバルク材を作製しても、非晶質単相のバルク材が得られない。
That is, in the parent phase alloy, Mg needs to be 55 atom% or more and less than 75 atom%, and more preferably 60 atom% or more and less than 70 atom%. Y, Gd, Tb, Dy, Ho
One or more elements selected from Er and Tm must be 5 atomic% or more and less than 15 atomic%, more preferably 8 atomic% or more and less than 12 atomic%. The content of these elements is 5
If it is less than 15% or more than 15% by atom, the ability to form an amorphous material is lowered, and 5 mm is obtained by using a die casting method.
Even if a bulk material of φ or larger is produced, an amorphous single-phase bulk material cannot be obtained.

さらに、Cu及びAgの中から選択される一種以上の元素が15原子%以上35原子%
未満である必要があり、より好ましくは20原子%以上30原子%未満である。これらの
元素の含有量が15原子%未満又は35原子%を越えると、非晶質形成能が低下し、金型
鋳造法を用いて5mmφ以上のバルク材を作製しても、非晶質単相のバルク材が得られない
Further, at least one element selected from Cu and Ag is 15 atomic% to 35 atomic%.
It is necessary to be less than 20% by atom, and more preferably 20 atom% or more and less than 30 atom%. When the content of these elements is less than 15 atomic% or more than 35 atomic%, the amorphous forming ability is reduced, and even if a bulk material having a diameter of 5 mmφ or more is produced by using a die casting method, amorphous element Phase bulk material is not obtained.

Zn及びPdから選択される1種又は2種の元素は10原子%未満であり、より好まし
くは5原子%未満である。Zn及びPdは、ガラス形成能を向上させる元素であり、これ
らの元素を添加することにより直径又は厚み10mm以上の非晶質の体積分率が100%の
金属ガラス合金鋳造材を作製することができる。しかし、Znの添加により耐熱強度が若
干減少し、また、Pdは高価であることから、本発明のマグネシウム基金属ガラス合金−
金属粒体複合材を作製する場合にガラス形成能が不足する場合に必要に応じて添加するこ
とが望ましい。
One or two elements selected from Zn and Pd are less than 10 atomic%, more preferably less than 5 atomic%. Zn and Pd are elements that improve the glass-forming ability. By adding these elements, it is possible to produce a metallic glass alloy casting material with an amorphous volume fraction of 100% in diameter or thickness of 10 mm or more. it can. However, the heat resistance strength is slightly reduced by the addition of Zn, and since Pd is expensive, the magnesium-based metallic glass alloy of the present invention-
When producing a metal particle composite material, it is desirable to add as needed when the glass forming ability is insufficient.

本発明の大きな特徴である母相に分散させる金属球状粒体は以下のように限定する。金
属球状粒体は、Ti、Zr、Co及びFeから選択される一種以上の元素からなることが
必要である。これらの元素はマグネシウムと相分離傾向にある元素であるが、母相合金の
溶製中及び鋳造時に母相合金を溶解する時点で、母相の金属ガラス合金の溶湯に溶け込む
ことなく、母相の金属ガラス合金と金属球状粒体の濡れが見られるようになることが重要
である。なお、粉粒体の用語については、明確な定義はないが、一般に、数十μm以上を
「粒体」、約3μm〜数十μmを「粉体」と称する(神保著「粉体の科学」。1985年、
講談社)ので、本明細書ではこの用例に従った。
The spherical metal particles dispersed in the matrix, which is a major feature of the present invention, are limited as follows. The metal spherical particles need to be composed of one or more elements selected from Ti, Zr, Co, and Fe. These elements are elements that tend to phase-separate with magnesium, but at the time of melting the parent phase alloy during melting of the parent phase alloy and at the time of casting, the parent phase is not melted into the molten metal glass alloy. It is important that the metallic glass alloy and the spherical metal particles become wet. In addition, although there is no clear definition about the term of a granular material, generally several dozen micrometer or more is called a "granule", and about 3 micrometer-several dozen micrometer is called "powder." 1985.
Kodansha), so this example was followed in this specification.

これらの元素からなる金属球状粒体以外の純金属又は合金を用いると母相合金の溶製中
に金属球状粒体が溶解してしまうと同時に、溶解した原子が母相の金属ガラス合金の形成
能を劣化するか、又は溶解しない場合でも、金属球状粒体の表面が母相のマグネシウム基
金属ガラス合金に濡れないために金属球状粒体が複合材として延性をもたらす作用を果た
さない。例えば、Nb、V、Mo、Wのような高融点金属については、溶解しないが、金
属粒子が溶湯に濡れないので、鋳造材中の金属粒子は母相より剥離した状態になり、延性
が発現しない。
When pure metals or alloys other than the metal spherical particles composed of these elements are used, the metal spherical particles dissolve during the melting of the matrix alloy, and at the same time, the dissolved atoms form the matrix glass alloy. Even when the performance deteriorates or does not melt, the surface of the metal spherical particles does not get wet with the magnesium-based metallic glass alloy of the parent phase, so that the metal spherical particles do not act to provide ductility as a composite material. For example, refractory metals such as Nb, V, Mo, and W do not melt, but the metal particles do not get wet with the molten metal, so that the metal particles in the cast material are peeled off from the parent phase and develop ductility. do not do.

さらに、上記の金属球状粒体の平均粒径は20μm以上400μm未満が好ましい。本発
明の金属球状粒体の平均粒径は溶湯に加える球状粒体原料の平均粒径で表している。複合
材中の金属球状粒体の平均粒径は、例えば、走査型電子顕微鏡により観察して、任意の0
.2mm×0.3mmの視野を5視野観察し、視野中に存在する全金属粒子の粒径を平均する
ことにより算出する方法により求めることができる。この方法で測定した平均粒径と球状
粒体原料の平均粒径とは実質的に相違がない。
Furthermore, the average particle diameter of the metal spherical particles is preferably 20 μm or more and less than 400 μm. The average particle size of the metal spherical particles of the present invention is expressed as the average particle size of the spherical particle material added to the melt. The average particle diameter of the metal spherical particles in the composite material is, for example, an arbitrary 0 as observed with a scanning electron microscope.
. It can be obtained by a method of calculating by observing 5 fields of view of 2 mm × 0.3 mm and averaging the particle diameters of all metal particles present in the field of view. There is substantially no difference between the average particle size measured by this method and the average particle size of the spherical granular material.

金属球状粒体の平均粒径が20μm未満であると、金属球状粒体の表面積が大きくなり
、母相合金への金属球状粒体の混合が困難になる傾向があり、平均粒径が400μm以上
であると、複合材の強度の低下や伸びの減少を生じる傾向がある。金属球状粒体の最も好
ましい平均粒径は50μm以上200μm未満である。このような金属球状粒体は、一般に
ガスアトマイズ法やプラズマアトマイズ法により作製されたものが市販されており、本発
明においてはこれらの市販品を使用することができる。
When the average particle diameter of the metal spherical particles is less than 20 μm, the surface area of the metal spherical particles tends to be large, and it tends to be difficult to mix the metal spherical particles into the matrix alloy, and the average particle diameter is 400 μm or more. When it is, there exists a tendency which produces the fall of the intensity | strength of a composite material, and the reduction | decrease of elongation. The most preferable average particle size of the metal spherical particles is 50 μm or more and less than 200 μm. As such metal spherical particles, those produced by a gas atomizing method or a plasma atomizing method are generally commercially available, and these commercially available products can be used in the present invention.

なお、Ti、Zr、Co及びFeの金属球状粒体は、純金属の粒体に限定されず、純金
属球状粒体と同等に、母相の金属ガラス合金の溶湯に溶け込むことなく、母相の金属ガラ
ス合金と金属球状粒体の濡れが見られ、室温破断伸び5%以上の延性をもたらすものであ
れば、これらの金属を主成分とする合金や、異種粒体にこれらの金属を被覆したものでも
よい。
The spherical metal particles of Ti, Zr, Co, and Fe are not limited to pure metal particles, and are equivalent to the pure metal spherical particles without melting into the molten metal glass alloy of the parent phase. As long as wetting between the metallic glass alloy and the spherical metal particles is observed and the ductility of the room temperature breaking elongation is 5% or more, these metals are mainly coated with these metals or dissimilar particles. You may have done.

本発明のマグネシウム基金属ガラス合金−金属粒体複合材は、金属球状粒体の種類、平
均粒径及び混合率により種々の強度と伸びを選択することができる。純Tiからなる金属
球状粒体で粒径が100μmである場合、複合材全体に占める金属球状粒体の混合率が体
積分率で5%未満の場合は塑性伸びが見られないが、体積分率が5%以上30%未満の場
合は、圧縮試験において耐力(σ0.2)が700MPa以上で室温破断伸びが5%以上のマ
グネシウム基金属ガラス合金−金属粒体複合材を得ることができる。さらに、金属球状粒
体の混合率が体積分率で20%以上40%未満の場合は、耐力が600MPa以上で室温破
断伸びが20%以上であるマグネシウム基金属ガラス合金−金属粒体複合材を得ることが
できる。
The magnesium-based metallic glass alloy-metal particle composite material of the present invention can be selected from various strengths and elongations depending on the type, average particle size, and mixing ratio of the metal spherical particles. In the case of spherical metal particles made of pure Ti and having a particle size of 100 μm, no plastic elongation is observed when the mixing ratio of the spherical metal particles in the composite material is less than 5%. When the rate is 5% or more and less than 30%, it is possible to obtain a magnesium-based metal glass alloy-metal particle composite having a yield strength (σ 0.2 ) of 700 MPa or more and a room temperature breaking elongation of 5% or more in a compression test. Furthermore, when the mixing ratio of the metal spherical particles is 20% or more and less than 40%, a magnesium-based metal glass alloy-metal particle composite having a yield strength of 600 MPa or more and a room temperature breaking elongation of 20% or more is obtained. Obtainable.

本発明のマグネシウム基金属ガラス合金−金属粒体複合材は、例えば、アルゴン雰囲気
において母相となる金属ガラス合金を溶解し、その溶湯に所定の金属球状粒体を混合する
ことにより母相合金を作製することができる。溶解においては、金属球状粒体を均一に分
散させる必要があることから、溶湯の攪拌効果を兼ね備えている高周波誘導溶解による溶
解が望ましい。高周波誘導溶解の周波数により攪拌効果が少ない場合、又は他の溶解手法
を選択した場合は、機械的に外部から振動を加える手法を用いても金属球状粒体を均一に
分散することが可能である。
The magnesium-based metal glass alloy-metal particle composite material of the present invention is obtained by, for example, dissolving a metal glass alloy serving as a parent phase in an argon atmosphere, and mixing a predetermined metal spherical particle into the molten metal to form a parent phase alloy. Can be produced. In melting, since it is necessary to uniformly disperse the metal spherical particles, melting by high frequency induction melting that also has the stirring effect of the molten metal is desirable. When the stirring effect is small due to the frequency of high frequency induction melting, or when another melting method is selected, it is possible to uniformly disperse the metal spherical particles even using a method of mechanically applying vibration from the outside. .

この母相合金を溶融状態から、種々の金型で金型鋳造法を用いて冷却固化させることに
より、本発明のマグネシウム基金属ガラス合金−金属粒体複合材を得ることができるが、
大型の鋳造材の作製には、冷却速度が高いCu製鋳型を用いた金型鋳造が好ましく、さら
には、高圧状態で鋳造が可能な高圧ダイキャスト装置を用いた金型鋳造法が好ましい。
By cooling and solidifying the matrix alloy from a molten state using a mold casting method in various molds, the magnesium-based metal glass alloy-metal particle composite material of the present invention can be obtained.
For the production of a large casting material, die casting using a Cu mold having a high cooling rate is preferable, and further, a die casting method using a high-pressure die casting apparatus capable of casting in a high-pressure state is preferable.

なお、本発明において、これらの金型鋳造法を用いる場合、従来公知の各製造法で用い
られている製造条件により容易に作製することができる。例えば、母相合金を、アルゴン
雰囲気下において孔径1mm〜3.0mmのセラミックスノズルを兼ねたセラミックスルツボ
中で溶融した後、アルゴン雰囲気下、噴出圧0.2〜5.0kg/cm2で溶湯をノズルからC
u製の金型に噴出することにより、マグネシウム基金属ガラス合金−金属粒体複合鋳造材
を得ることができる。
In the present invention, when these mold casting methods are used, they can be easily manufactured under the manufacturing conditions used in each conventionally known manufacturing method. For example, the mother phase alloy is melted in a ceramic crucible also serving as a ceramic nozzle having a pore diameter of 1 mm to 3.0 mm in an argon atmosphere, and then the molten metal is poured at an ejection pressure of 0.2 to 5.0 kg / cm 2 in the argon atmosphere. From nozzle to C
By ejecting into a u-made mold, a magnesium-based metallic glass alloy-metal particle composite casting can be obtained.

さらに、本発明のマグネシウム基金属ガラス合金−金属粒体複合材は、母相にガラス形
成能に優れた組成を用いるため、前記以外の液体急冷法である双ロール法、溝急冷法等を
用いても、厚板状や金属ワイヤ状等の種々の大形状を有するマグネシウム基金属ガラス合
金−金属粒体複合材が容易に得られる。
Furthermore, since the magnesium-based metallic glass alloy-metal particle composite material of the present invention uses a composition excellent in glass forming ability for the matrix phase, a twin roll method, a groove quenching method, or the like other than the above is used. However, magnesium-based metallic glass alloy-metal particle composites having various large shapes such as thick plates and metal wires can be easily obtained.

次に、実施例及び比較例により本発明をさらに具体的に説明する。表1に示す各種組成
を有する合金を、アルゴン雰囲気下で溶解して製造した。具体的には、母相を形成する各
元素からなる純金属をマグネシアるつぼに挿入した後、真空チャンバー付の溶解炉におい
て、真空引き後アルゴンガスを−0.02MPaの圧力まで注入した後、アルゴン雰囲気中
において約700℃に維持して10分間かけて溶解し、Fe製鋳型に傾注を行い金属ガラ
ス合金の原料合金とした。
Next, the present invention will be described more specifically with reference to examples and comparative examples. Alloys having various compositions shown in Table 1 were produced by melting in an argon atmosphere. Specifically, after inserting pure metals composed of each element forming the parent phase into a magnesia crucible, in a melting furnace with a vacuum chamber, after evacuation, argon gas was injected to a pressure of -0.02 MPa, It melt | dissolved over 10 minutes maintaining at about 700 degreeC in atmosphere, and it poured into the casting_mold | template made from Fe, and was set as the raw material alloy of a metal glass alloy.

次に、該原料合金を大きさ5〜10mm程度に粉砕し、所定の混合比で金属球状粒体と同
時にマグネシアるつぼに挿入し、真空引きした後アルゴンガスを−0.02MPaの圧力ま
で注入し、アルゴンガス雰囲気中において約600℃に維持して10分間かけて溶解した
後にFe製鋳型に傾注を行い、マグネシウム基金属ガラス合金−金属粒体複合材の原料合
金とした。
Next, the raw material alloy is pulverized to a size of about 5 to 10 mm, inserted into a magnesia crucible at the same time as the metal spherical particles at a predetermined mixing ratio, evacuated, and then injected with argon gas to a pressure of -0.02 MPa. Then, it was melted over 10 minutes while maintaining at about 600 ° C. in an argon gas atmosphere, and then poured into an Fe mold to prepare a raw material alloy of a magnesium-based metal glass alloy-metal particle composite material.

金属球状粒体の種類、金属球状粒体の平均粒径及び体積分率は表1に示す通りである。
金属球状粒体は株式会社高純度化学研究所製のアトマイズ法で作製した金属球状粒体を用
いた。なお、表1に示す金属球状粒体の平均粒径は、前記のとおり走査型電子顕微鏡観察
により求めた平均粒径であり、原料の金属球状粒体の平均粒径と実質的に同じであった。
作製した原料合金を、孔径2.0mmのノズルを兼ねた石英ルツボ中で溶融した後、600
℃でアルゴン雰囲気下、噴出圧1.0kg/cm2でノズルから、2mmの径を有するCu製鋳
型に溶融金属を押し出し、表1の組成を有する棒状の鋳造材を作製した。比較例1につい
ては金属球状粒体を混入していない従来のマグネシウム基金属ガラス合金である。
Table 1 shows the types of metal spherical particles, the average particle size and volume fraction of the metal spherical particles.
As the metal spherical particles, metal spherical particles produced by the atomizing method manufactured by Kojundo Chemical Laboratory Co., Ltd. were used. The average particle size of the metal spherical particles shown in Table 1 is the average particle size obtained by observation with a scanning electron microscope as described above, and is substantially the same as the average particle size of the raw metal spherical particles. It was.
The produced raw material alloy was melted in a quartz crucible which also served as a nozzle having a hole diameter of 2.0 mm, and then 600
The molten metal was extruded from a nozzle into a Cu mold having a diameter of 2 mm at a jet pressure of 1.0 kg / cm 2 in an argon atmosphere at 0 ° C. to produce a rod-shaped cast material having the composition shown in Table 1. Comparative Example 1 is a conventional magnesium-based metallic glass alloy in which metal spherical particles are not mixed.

次に、作製したこれらの鋳造材を円周方向に1mm幅に切断した後、X線回析法により相
の同定を行った。また、予め金属球状粒体だけで金属球状粒体の回折ピークを取得してお
いた。相の判定は、金属ガラス合金特有のブロードなピークがあり、金属球状粒体のみか
ら得られた回折ピークと鋳造材から得られた回折ピークが一致する場合、ガラスと金属球
状粒体と判断し、表1には(ガラス+粒体)と表示した。また、ブロードなピーク及び金
属球状粒体のみのピークとは異なる回折ピークが出現している場合には、結晶相と判断し
、結晶相と金属球状粒体のみのピークと同一な回折ピークが出現している場合は、結晶相
と金属球状粒体相の混相と判断した。その結果を表1に示す。
Next, after cutting these produced cast materials into 1 mm width in the circumferential direction, phases were identified by an X-ray diffraction method. Moreover, the diffraction peak of the metal spherical particle was previously acquired only with the metal spherical particle. Judgment of phase has a broad peak peculiar to metallic glass alloys, and when the diffraction peak obtained only from the metal spherical particles and the diffraction peak obtained from the cast material coincide, it is judged as glass and metal spherical particles. In Table 1, (glass + particles) is indicated. In addition, when a diffraction peak different from the peak of only the broad peak and the spherical metal particles appears, the crystal phase is judged and the same diffraction peak as the peak of the crystalline phase and the spherical metal particles appears. When it is, it was judged as a mixed phase of a crystal phase and a metal spherical particle phase. The results are shown in Table 1.

また、実施例1〜13及び比較例1に示す2mmφの鋳造材を5mmの長さに切断し、室温
で圧縮試験を行った。圧縮試験においては、インストロン型引張試験機により1×10-5
の歪速度で試験を行って耐力と塑性伸びを求めた。結果を表1に併せて示す。
Moreover, the cast material of 2 mmφ shown in Examples 1 to 13 and Comparative Example 1 was cut to a length of 5 mm, and a compression test was performed at room temperature. In the compression test, 1 × 10 -5 by Instron tensile tester
The yield strength and plastic elongation were determined by performing a test at a strain rate of. The results are also shown in Table 1.

表1より明らかなように、実施例1〜13のマグネシウム基金属ガラス合金−金属粒体
複合材からなる鋳造材は、2mmφのバルク材において、いずれもガラス相と金属球状粒体
からなる本発明のマグネシウム基金属ガラス合金−金属粒体複合材であった。比較例1は
、塑性伸びが無いのに対して、実施例1〜13のマグネシム基金属ガラス合金−金属粒体
複合材は、いずれの組成においても600MPaを越える耐力と5%以上の室温破断伸びが
得られ、従来のMg基金属ガラス合金よりやや強度が低下するものの延性がある。比較例
2に示されるように、本発明において用いる金属球状粒体でないCu金属球状粒体を用い
た場合、Cuが溶湯中に溶け出しガラス形成能を低下させるために金属ガラス合金を得る
ことができない。
As is apparent from Table 1, the cast material made of the magnesium-based metallic glass alloy-metal particle composite material of Examples 1 to 13 is a 2 mmφ bulk material, both of which are made of a glass phase and metal spherical particles. This was a magnesium-based metallic glass alloy-metal particle composite. Comparative Example 1 has no plastic elongation, whereas the Magnesium-based metallic glass alloy-metal particle composites of Examples 1 to 13 have a yield strength exceeding 600 MPa and room temperature breaking elongation of 5% or more in any composition. And is ductile although its strength is slightly lower than that of conventional Mg-based metallic glass alloys. As shown in Comparative Example 2, when Cu metal spherical particles that are not metal spherical particles used in the present invention are used, Cu melts into the molten metal to reduce the glass-forming ability, thereby obtaining a metal glass alloy. Can not.

表1の実施例の中で、塑性伸びが最大である実施例12の真応力−真ひずみ曲線を図1
に、破壊後の破断断面の走査電子顕微鏡像と組成像を図2に示す。図1に示すように、耐
力以上の応力においても強度は上昇しながら伸びを示しており、脆性的な破壊挙動は一切
見られない。また、破壊後には、図2に見られるように、試験前は球形であった粒体が潰
れて変形している様子が観察できており、金属球状粒体が延性の向上に寄与していること
は明らかである。
Among the examples in Table 1, the true stress-true strain curve of Example 12 having the largest plastic elongation is shown in FIG.
FIG. 2 shows a scanning electron microscope image and a composition image of the fractured section after the fracture. As shown in FIG. 1, even when the stress is higher than the yield strength, the strength increases while increasing, and no brittle fracture behavior is observed. In addition, after breaking, as seen in FIG. 2, it was possible to observe that the spherical particles before the test were crushed and deformed, and the metal spherical particles contributed to the improvement of ductility. It is clear.

Figure 0004602210
Figure 0004602210

実施例14、比較例3及び比較例4、比較例5
金属球状粒体を混合することにより母相のガラス形成能が低下していないことを確認す
るために実施例1と同様に、Mg65Gd10Cu25(原子%)を母相として、Ti金属球状粒体を
40体積%混合した合金原料を作製し、金型鋳造により径5mm(実施例14)及び径6mm
(比較例3)の鋳造材を作製した。また、比較例4、比較例5として、金属球状粒体を混
合していない鋳造材を同様に作製した。相の同定は実施例1と同様にX線回折法により判
断した。
Example 14, Comparative Example 3 and Comparative Example 4, Comparative Example 5
In order to confirm that the glass forming ability of the parent phase was not lowered by mixing the metal spherical particles, as in Example 1, Mg 65 Gd 10 Cu 25 (atomic%) was used as the parent phase and Ti metal was used. An alloy raw material in which 40% by volume of spherical particles are mixed is prepared, and is 5 mm in diameter (Example 14) and 6 mm in diameter by die casting.
A cast material of (Comparative Example 3) was produced. Moreover, as Comparative Example 4 and Comparative Example 5, casting materials in which metal spherical particles were not mixed were similarly produced. Phase identification was determined by X-ray diffraction as in Example 1.

Figure 0004602210
Figure 0004602210

表2に示す通り、Mg65Gd10Cu25のマグネシウム基金属ガラス合金は、金属球状粒体を混
合していない場合は、比較例4及び5に示すように直径5mmがガラス相を得ることができ
る最大の直径である。これに対して、金属球状粒体を混合した場合においても、金属球状
粒体が混合されているにも関わらず、実施例14及び比較例3に示すように、直径5mmま
で母相はガラス相を維持しており、金属球状粒体の混合による金属ガラス合金相のガラス
形成能の低下は認められない。
[比較例6]
As shown in Table 2, the Mg 65 Gd 10 Cu 25 magnesium-based metallic glass alloy can obtain a glass phase having a diameter of 5 mm as shown in Comparative Examples 4 and 5 when metallic spherical particles are not mixed. The maximum diameter that can be made. On the other hand, even when the metal spherical particles are mixed, the parent phase is a glass phase up to a diameter of 5 mm as shown in Example 14 and Comparative Example 3 even though the metal spherical particles are mixed. The glass forming ability of the metallic glass alloy phase is not reduced by mixing the spherical metal particles.
[Comparative Example 6]

特許文献2(WO96/04134)の実施例と同様に、TiCの粒子を分散させたマグネシウム
基金属ガラス合金の鋳造材を作製した。母相合金及びTiC粒子の具体的な混合方法は、
実施例1と同様であり、マグネシウム基金属ガラス合金はMg65Gd10Cu25(数字は原子%)
を用い、粉末にはTiCを用いて粉末の混合比を40体積%とした。
Similar to the example of Patent Document 2 (WO96 / 04134), a cast material of a magnesium-based metallic glass alloy in which TiC particles were dispersed was produced. The specific mixing method of the parent phase alloy and TiC particles is as follows:
The same as in Example 1, the magnesium-based metallic glass alloy has Mg 65 Gd 10 Cu 25 (figures atomic%)
The powder was mixed at a volume ratio of 40% by volume using TiC.

得られた合金は結晶相であり、実施例と同様に測定した結果、強度は580MPaであり
、延性は得られなかった。特許文献2の実施例によると「TiCは十分に濡れていて」と
あるが、断面観察のために、鋳造材を切断・研摩している際にTiC粒子が母相のマグネ
シウム基金属から離脱する状態であり、TiCが十分に濡れている状態であるといえなか
った。
The obtained alloy was in a crystalline phase, and as a result of measurement in the same manner as in Examples, the strength was 580 MPa, and ductility was not obtained. According to the example of Patent Document 2, “TiC is sufficiently wet”, but TiC particles are detached from the magnesium-based metal of the parent phase when the cast material is cut and polished for cross-sectional observation. It was a state, and it could not be said that TiC was sufficiently wet.

本発明のマグネシウム基金属ガラス合金−金属粒複合材は、母相にガラス形成能に優れ
高強度の合金を用い、母相に適した金属球状粒体を分散させたことにより、塑性伸びを示
しながらも、従来のマグネシウム金属ガラス合金と同等の強度を有している。また、本発
明のマグネシウム基金属ガラス合金−金属粒複合材は、金型を任意の形状にすることによ
り、種々の形状の鋳造材や該鋳造材からなる塑性加工用素材を提供することができる。
The magnesium-based metallic glass alloy-metal particle composite of the present invention exhibits plastic elongation by using a high-strength alloy with excellent glass-forming ability as the matrix and dispersing metal spherical particles suitable for the matrix. However, it has the same strength as the conventional magnesium metal glass alloy. In addition, the magnesium-based metallic glass alloy-metal particle composite material of the present invention can provide a casting material having various shapes and a plastic working material made of the casting material by making the mold into an arbitrary shape. .

実施例12のマグネシウム基金属ガラス合金−金属粒体複合材の真応力−真ひずみ曲線を示すグラフである。It is a graph which shows the true stress-true strain curve of the magnesium group metal glass alloy-metal particle composite material of Example 12. 実施例12のマグネシウム基金属ガラス合金−金属粒体複合材の圧縮試験による破壊後の破断断面の走査電子顕微鏡像と組成像を示す図面代用写真である。It is a drawing substitute photograph which shows the scanning electron microscope image and composition image of the fracture | rupture cross section after the fracture | rupture by the compression test of the magnesium group metal glass alloy-metal particle composite material of Example 12.

Claims (5)

組成式Mg100-a-b-cLnabc(式中、Lnは、Y、Gd、Tb、Dy、Ho、Er及
びTmより選択される一種以上の元素、Mは、Cu,Agから選ばれる1種又は2種の元
素、Xは、Pd及びZnから選択される一種以上の元素、5≦a<15、15≦b<35
、0≦c<10、及び25≦a+b+c<45である)からなる金属ガラス合金に、Ti
、Co、Fe及びZrから選択される一種以上の元素からなる平均粒径が20μm以上4
00μm未満の金属球状粒体が分散してなり、鋳造のままで室温破断伸びが5%以上であ
ることを特徴とするマグネシウム基金属ガラス合金−金属粒体複合材。
In the composition formula Mg 100-abc Ln a M b X c ( wherein, Ln is Y, Gd, Tb, Dy, Ho, one or more elements selected from Er and Tm, M is selected Cu, from Ag One or two elements, X is one or more elements selected from Pd and Zn, 5 ≦ a <15, 15 ≦ b <35
, 0 ≦ c <10, and 25 ≦ a + b + c <45).
And an average particle diameter of at least 20 μm consisting of one or more elements selected from Co, Fe and Zr 4
A magnesium-based metal glass alloy-metal particle composite material, characterized in that metal spherical particles less than 00 μm are dispersed, and the elongation at room temperature is 5% or more as cast.
金属ガラス合金−金属粒体複合体に対する該金属球状粒体の体積分率が5%以上50%未
満であることを特徴とする請求項1記載のマグネシウム基金属ガラス合金−金属粒体複合
材。
The magnesium-based metal glass alloy-metal particle composite according to claim 1, wherein the volume fraction of the metal spherical particles with respect to the metal glass alloy-metal particle composite is 5% or more and less than 50%.
圧縮荷重下で耐力(σ0.2)が800MPa以上で、かつ、室温破断伸びが20%以上である
ことを特徴とする請求項1又は2記載のマグネシウム基金属ガラス合金−金属粒体複合材
The magnesium-based metallic glass alloy-metal particle composite according to claim 1 or 2, wherein the proof stress (σ 0.2 ) is 800 MPa or more under a compressive load and the room temperature breaking elongation is 20% or more.
請求項1〜3のいずれかに記載のマグネシウム基金属ガラス合金−金属粒体複合材からな
ることを特徴とする塑性加工用素材。
A material for plastic working, comprising the magnesium-based metallic glass alloy-metal particle composite material according to any one of claims 1 to 3.
請求項1〜3のいずれかに記載のマグネシウム基金属ガラス合金−金属粒体複合材を該金
属ガラス合金の過冷却液体温度領域において塑性加工した後、結晶化しない冷却速度で冷
却して得られた室温破断伸びが5%以上であることを特徴とするマグネシウム基金属ガラ
ス合金−金属粒体複合材からなる製品。
It is obtained by plastically processing the magnesium-based metallic glass alloy-metal granular composite material according to any one of claims 1 to 3 in a supercooled liquid temperature region of the metallic glass alloy and then cooling at a cooling rate that does not crystallize. Further, a product comprising a magnesium-based metallic glass alloy-metal particle composite material having a room temperature breaking elongation of 5% or more.
JP2005280839A 2005-09-27 2005-09-27 Magnesium-based metallic glass alloy-metal particle composite with ductility Expired - Fee Related JP4602210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280839A JP4602210B2 (en) 2005-09-27 2005-09-27 Magnesium-based metallic glass alloy-metal particle composite with ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280839A JP4602210B2 (en) 2005-09-27 2005-09-27 Magnesium-based metallic glass alloy-metal particle composite with ductility

Publications (2)

Publication Number Publication Date
JP2007092103A JP2007092103A (en) 2007-04-12
JP4602210B2 true JP4602210B2 (en) 2010-12-22

Family

ID=37978153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280839A Expired - Fee Related JP4602210B2 (en) 2005-09-27 2005-09-27 Magnesium-based metallic glass alloy-metal particle composite with ductility

Country Status (1)

Country Link
JP (1) JP4602210B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI385256B (en) * 2008-03-28 2013-02-11 Univ Ishou High toughness magnesium base metal glass composite material
JP2011144400A (en) * 2010-01-12 2011-07-28 Olympus Corp Transition metal particle-dispersed alloy and method for producing the same, and transition metal particle-dispersed amorphous alloy and method for producing the same
WO2012147559A1 (en) 2011-04-28 2012-11-01 国立大学法人東北大学 Metallic glass nanowire manufacturing method, metallic glass nanowire manufactured thereby, and catalyst containing metallic glass nanowire
CN104388841B (en) * 2014-10-15 2016-08-24 南京工程学院 A kind of corrosion-resistant biological magnesium-base metal glass composite and preparation method thereof
CN108203784B (en) * 2016-12-19 2020-11-20 有研工程技术研究院有限公司 Magnesium alloy mesh with electromagnetic shielding function and preparation method thereof
CN109182865B (en) * 2018-11-20 2020-09-29 浙江海洋大学 High-strength rare earth-magnesium alloy material and preparation method thereof
CN113502441A (en) * 2021-06-23 2021-10-15 华中科技大学 In-situ authigenic phase-reinforced magnesium-based amorphous composite material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509098A (en) * 1994-08-01 2000-07-18 アモルファス・アロイズ・コーポレイション Amorphous metal / reinforcement composite material
JP2001254157A (en) * 2000-03-09 2001-09-18 Japan Science & Technology Corp Mg-BASED AMORPHOUS ALLOY
WO2002027055A1 (en) * 2000-09-25 2002-04-04 Tohoku Techno Arch Co., Ltd. Amorphous alloy and method for preparing the same
JP2003221657A (en) * 2002-01-30 2003-08-08 Yonsei Univ Amorphous matrix composite material reinforced by ductile particle, and manufacturing method therefor
JP2005120473A (en) * 2003-09-25 2005-05-12 National Institute Of Advanced Industrial & Technology Metal glass body, process for producing the same and apparatus therefor
JP2005220406A (en) * 2004-02-05 2005-08-18 National Institute For Materials Science Two phase metallic glass

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947352A (en) * 1982-09-08 1984-03-17 Alps Electric Co Ltd Super-rapidly chilled alloy containing dispersed second phase particle
JPH07116546B2 (en) * 1988-09-05 1995-12-13 健 増本 High strength magnesium base alloy
JPH0533075A (en) * 1991-07-26 1993-02-09 Honda Motor Co Ltd Production of structural member made of amorphous alloy
JP3302031B2 (en) * 1991-09-06 2002-07-15 健 増本 Manufacturing method of high toughness and high strength amorphous alloy material
JP3110117B2 (en) * 1991-12-26 2000-11-20 健 増本 High strength magnesium based alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509098A (en) * 1994-08-01 2000-07-18 アモルファス・アロイズ・コーポレイション Amorphous metal / reinforcement composite material
JP2001254157A (en) * 2000-03-09 2001-09-18 Japan Science & Technology Corp Mg-BASED AMORPHOUS ALLOY
WO2002027055A1 (en) * 2000-09-25 2002-04-04 Tohoku Techno Arch Co., Ltd. Amorphous alloy and method for preparing the same
JP2003221657A (en) * 2002-01-30 2003-08-08 Yonsei Univ Amorphous matrix composite material reinforced by ductile particle, and manufacturing method therefor
JP2005120473A (en) * 2003-09-25 2005-05-12 National Institute Of Advanced Industrial & Technology Metal glass body, process for producing the same and apparatus therefor
JP2005220406A (en) * 2004-02-05 2005-08-18 National Institute For Materials Science Two phase metallic glass

Also Published As

Publication number Publication date
JP2007092103A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
Ma et al. Mg-based bulk metallic glass composites with plasticity and high strength
JP5239022B2 (en) High strength and high toughness magnesium alloy and method for producing the same
Nie et al. Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration
He et al. In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity
US6471797B1 (en) Quasicrystalline phase-reinforced Mg-based metallic alloy with high warm and hot formability and method of making the same
Zhang et al. Ductile ultrafine-grained Ti-based alloys with high yield strength
He et al. Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52. 25Cu28. 5Ni4. 75Al9. 5Ta5 bulk metallic glass
JP4602210B2 (en) Magnesium-based metallic glass alloy-metal particle composite with ductility
Zhang et al. Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion
EP0693567B1 (en) High-strength, high-ductility cast aluminum alloy and process for producing the same
WO2010122960A1 (en) High-strength copper alloy
EP0187235A2 (en) Production of increased ductility in articles consolidated from a rapidly solidified alloy
EP2634278A1 (en) Magnesium alloy having excellent ignition resistance and mechanical properties, and method for manufacturing same
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP4500916B2 (en) Magnesium alloy and manufacturing method thereof
Eckert et al. Processing routes, microstructure and mechanical properties of metallic glasses and their composites
TWI385256B (en) High toughness magnesium base metal glass composite material
JP5111005B2 (en) Manufacturing method of high fatigue strength Al alloy
Wang et al. Microstructure and mechanical properties of Al–Si–Ni–Ce alloys prepared by gas-atomization spark plasma sintering and hot-extrusion
Guan et al. Interfacial microstructure, mechanical properties and strengthening mechanism of Mg/Al bimetallic composites produced by a novel compound casting with the addition of Gd
Naseri et al. Optimizing the strength and electrical conductivity of graphene reinforced Cu–Cr–Zr alloy fabricated by powder metallurgy and spark plasma sintering
Wu et al. Strength and ductility synergy of Nb-alloyed Ni0. 6CoFe1. 4 alloys
Eckert et al. Nanostructured composites in multicomponent alloy systems
Fang et al. Temperature dependent tensile and fracture behaviors of Mo–10 wt.% Cu composite
US7976775B2 (en) Sintered binary aluminum alloy powder sintered material and method for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees