JP4332647B2 - High-strength amorphous alloy and method for producing the same - Google Patents

High-strength amorphous alloy and method for producing the same Download PDF

Info

Publication number
JP4332647B2
JP4332647B2 JP06924499A JP6924499A JP4332647B2 JP 4332647 B2 JP4332647 B2 JP 4332647B2 JP 06924499 A JP06924499 A JP 06924499A JP 6924499 A JP6924499 A JP 6924499A JP 4332647 B2 JP4332647 B2 JP 4332647B2
Authority
JP
Japan
Prior art keywords
amorphous
strength
alloy
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06924499A
Other languages
Japanese (ja)
Other versions
JP2000265252A (en
Inventor
明久 井上
涛 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Techno Arch Co Ltd
Original Assignee
Tohoku Techno Arch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co Ltd filed Critical Tohoku Techno Arch Co Ltd
Priority to JP06924499A priority Critical patent/JP4332647B2/en
Publication of JP2000265252A publication Critical patent/JP2000265252A/en
Application granted granted Critical
Publication of JP4332647B2 publication Critical patent/JP4332647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は、硬度及び強度が高く、延性に優れ、高耐食性を有し、かつ加工性に優れ、組織中に非晶質を含む非晶質合金およびその製造方法に関するものである。
【従来の技術】
【0002】
従来のZr基合金では、ある特定された合金組成において結晶化の前でガラス遷移が見られ、広い過冷却液体領域を有しており、大きいアモルファス形成能を示すため、非晶質合金の基材金属として広く使用されている。これらのZr基合金は、前述のように大きなアモルファス形成能を有しているために、液体急冷法などのような大きな冷却速度が得られる特殊な形成方法のみならず、Cu鋳型鋳造などのような比較的冷却度の遅い一般的な鋳造法によってでもアモルファス(非晶質)化し、ねい(高靱性)バルクアモルファスを比較的容易に作製することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、例えば液体急冷法によって作製したねばい(高靱性)急冷薄帯等を結晶化温度前後の温度に加熱した場合や、前記バルクアモルファスを前記Cu鋳型鋳造法にて作製する際に冷却速度が所定の冷却速度より遅くなった場合においては、得られるバルクアモルファスの特性、特にねばさ(靱性)が結晶が析出することにより劣化し、180°密着曲げ等の加工がしらくなってしまうとともに、その曲げ強度も低下してしまうという問題があった。
【0004】
よって、本発明は上記した問題点に着目してなされたもので、作製したねばい(高靱性)薄帯やバルク材等を熱処理を施して結晶を析出させた場合や、作業性や生産性等の向上のために金型鋳造法で冷却速度を遅くして結晶を析出させた場合における、前記ねばさ(靱性)や強度等の特性が劣化する問題点を解決可能な組成を有する非晶質合金並びにその製造方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
前記した問題を解決するために、本発明の高強度非晶質合金は、一般式;XaMbAlcTdPe(ただし、X;ZrおよびHfから選ばれる1種又2種の元素、M;Ni、Cu、Fe、CoおよびMnから選ばれる少なくとも1種の元素、T;前記X、M、Alの少なくとも1種以上の元素に対して負の混合エンタルピーを有する元素、P;前記X、M、Alの少なくとも1種以上の元素に対して正の混合エンタルピーを有する元素、a、b、c、d、eは原子パーセントで、25≦a≦85、5≦b≦70、0<c≦30、0<d≦10、0<e≦20)で示され、少なくとも非晶質相を有する組織からなることを特徴としている。この特徴によれば、前記のように負の混合エンタルピーを有する元素と正の混合エンタルピーを有する元素とを組成中に含むことにより、前記熱処理や冷却速度を遅くすることにより析出する結晶の大きさを微細化できるようになり、ねばさ(靱性)や強度等の特性が劣化することがなく、著しく高い強度および延び等の靱性を有する合金を得ることができる。
【0006】
本発明の高強度非晶質合金は、前記T元素がRu、Os、Rh、Ir、Pd、Pt、V、Cr、Mo、W、Au、Ga、Ge、Re、Si、Sn、Tiから選ばれる少なくとも1種の元素であることが好ましい。このようにすれば、前記特性劣化の防止および高強度、高靱性等の特性向上において高い効果を得ることができる。
【0007】
本発明の高強度非晶質合金は、前記P元素がAg、Nb、Taから選ばれる少なくとも1種の元素であることが好ましい。このようにすれば、前記特性劣化の防止および高強度、高靱性等の特性向上において高い効果を得ることができる。
【0008】
本発明の高強度非晶質合金は、前記組織が非晶質相と微細結晶質相との混相であることが好ましい。このようにすれば、前記特性劣化の防止および高強度、高靱性等の特性向上において高い効果を得ることができる。
【0009】
本発明の高強度非晶質合金は、前記非晶質組織中に、少なくとも準結晶相を含むことが好ましい。このようにすれば、前記特性劣化の防止および高強度、高靱性等の特性向上、特に曲げ強度の点において高い効果を得ることができる。
【0010】
本発明の高強度非晶質合金の製造方法は、一般式;XaMbAlcTdPe(ただし、X;ZrおよびHfから選ばれる1種又2種の元素、M;Ni、Cu、Fe、CoおよびMnから選ばれる少なくとも1種の元素、T;前記X、M、Alの少なくとも1種以上の元素に対して負の混合エンタルピーを有する元素、P;前記X、M、Alの少なくとも1種以上の元素に対して正の混合エンタルピーを有する元素、a、b、c、d、eは原子パーセントで、25≦a≦85、5≦b≦70、0<c≦30、0<d≦10、0<e≦20)で示される組成を有し、少なくとも非晶質相を含む非晶質合金を作製し、これを該合金のガラス遷移温度Tgと第1発熱反応の開始温度(Tx1:晶化温度)までの温度領域にて加処理することを特徴としている。この特徴によれば、前記加熱処理温度が前記ガラス遷移温度Tg未満であると、微細な結晶質または準結晶質の移行が良好になされず、又、該加熱処理温度が前記第1発熱反応の開始温度Tx1を越えると、組織内に形成される前記結晶または準結晶の大きさが粗大化して得られる合金の特性が劣化してしまうことから、前記TgとTx1の間の温度領域にて加処理することで、前記非晶質相中に含まれる微細結晶または準結晶の量および大きさを適宜なものとすることが可能となり、ねばさ(靱性)や強度等の特性が劣化することがなく、著しく高い強度および延び等の靱性を有する合金を得ることができる。
【0011】
本発明の高強度非晶質合金の製造方法は、前記温度領域における加熱処理時間を1〜120分とすることが好ましい。このようにすれば、形成される微細結晶または準結晶の量およびその大きさを適宜なものとすることができる。
【0012】
本発明の高強度非晶質合金の製造方法は、前記加処理にて前記非晶質相を含む合金を準結晶単相からなる合金とすることが好ましい。このようにすれば、得られる合金のねばさ(靱性)や強度等の特性を著しく向上できる。
【0013】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を説明する。
【0014】
(実施例)
前記請求項におけるX元素としてZr、M元素としてNiとCu、T元素としてAu、P元素としてAgを用いてZr65Al . Cu . Ni10AgAu(添字は原子%)の組成からなる母合金をアーク溶解炉で溶製し、一般的に用いられる単ロール式液体急冷装置(メルトスピニング装置)によって簿帯(厚さ:20μm、幅1.5mm)を製造した、その際のロールは直径200mmの銅製、回転数は4000rpm、雰囲気は10−3Torr以下のArである。
【0015】
また、本発明の比較として、前記正のエンタルピーを有するP元素のみを含むものとして、該P元素としてNbのみを用いたZr55Al10Cu29NiNbと、該P元素をも含まないZr55Al10Cu30Ni(添字は原子%)の組成からなる母合金を、前記と同様にして簿帯を作製した。
【0016】
これら得られた各非晶質単相合金簿帯について示差走査熱分析装置(DSC)による測定を行った。図1において、Zr55Al10Cu30Niの熱的特性は(a)で示されるものであり、Zr55Al10Cu29NiNbの熱的特性は(b)で示されるものであり、Zr65Al . Cu . Ni10AgAuの熱的特性は(c)で示されてる。
【0017】
これら各示差走査熱分析装置(DSC)による測定に基づき、前記それぞれの合金について、ガラス遷移温度(Tg)、結晶化温度(Tx;Tx1、Tx2)を求めた。これらTgとTxとの取り方について説明すると、示差走査熱量分析曲線上で吸熱反応が起こる部分で、その曲線の立ち上がり部と基線の外挿が交わる点での温度をTgとし、逆に発熱反応が起こる部分で、上記と同様にして得られた温度をTxとして設定している。なお、過冷却液体領域(△T)は、前記ガラス遷移温度(Tg)と結晶化温度(Tx1)との間の領域であり、本発明では、前記にて作製された各非晶質単相合金簿帯は、該過冷却液体領域内より選択された適宜な温度にて所定時間加熱処理される。
【0018】
これら加熱処理される時間としては、この時間が短いと前記非晶質相の微細結晶または微細準結晶への移行が十分になされず、またこの時間が長いと組織中に形成される結晶または準結晶の大きさが粗大化してしまうことから、1〜120分の範囲とすることが好ましく、本実施例では2分としている。
【0019】
図2は、本実施例の合金について前記のように加熱処理を行ったときのX線回折によるデータである。これら結果より、本実施例の合金は前記過冷却液体領域である703Kと753Kでは、そのピーク強度に大きな差がなく、この温度領域にて安定した結晶が形成できることを示している。また、同時に非晶質相特有のブロードな回折パターンも確認することができ、得られる合金が非晶質相と結晶相の混合相であり、更に、前記ピークの状況から、前記非晶質相中に形成される結晶が図5に示す構造を有する準結晶であることも分かる。
【0020】
前記のようにして加熱処理された各合金に関して、3点曲げ強度を測定した結果を図3に示す。この結果より、前記比較合金であるP元素をも含まないZr55Al10Cu30Niに対して、正のエンタルピーを有するP元素としてNbを微量混合することで、該強度およびねばさ(靱性)の指標である延びが向上することが分り、更に正および負のエンタルピーを有するPおよびT元素としてAg、Auを共存させた本実施例の合金であるZr65Al . Cu . Ni10AgAuでは、前記のNbを混合したものよりも更に強度が向上していることが分かるとともに、前記180°密着曲げが可能であった。
【0021】
この本実施例の合金(Zr65Al . Cu . Ni10AgAu)について前記における加熱処理時間を変化させ、マトリクス中に存在する結晶相の体積率に対する機械的特性を調べた結果を図4に示す。この結果より非晶質相に分散する結晶質相の体積が増加するにしたがい、引張強度、硬度、ヤング率の機械的特性が向上していることが分かり、これら結晶質相が100%近くになっても該機械的特性は低下しない。このことからも、マトリクス中に形成される結晶が、前記図 の(a)に示すような準結晶の構造を有するものと考えられ、該準結晶質相の体積が増加しても、その機械的特性が劣化しないものと考えられる。
【0022】
以上、本発明を図面に基づいて説明してきたが、本発明はこれら各実施例に限定されるものではなく、本発明の主旨を逸脱しない範囲での変更や追加があっても、本発明に含まれることは言うまでもない。
【0023】
また、前記実施例では、前記非晶質単相合金簿帯を単ロール式液体急冷装置(メルトスピニング装置)によって作製しているが、本発明はこれに限定されるものではなく、これら非晶質単相合金を得る方法としてその他の方法、例えば双口一ル法、回転液中紡糸法、高圧ガス噴霧法、スプレー法、又はスパッタリングによる急冷あるいは金型鋳造法を用いても良い。
【0024】
【発明の効果】
本発明は次の効果を奏する。
【0025】
(a)請求項1の発明によれば、前記のように負の混合エンタルピーを有する元素と正の混合エンタルピーを有する元素とを組成中に含むことにより、前記熱処理や冷却速度を遅くすることにより析出する結晶の大きさを微細化できるようになり、ねばさ(靱性)や強度等の特性が劣化することがなく、著しく高い強度および延び等の靱性を有する合金を得ることができる。
【0026】
(b)請求項2の発明によれば、前記特性劣化の防止および高強度、高靱性等の特性向上において高い効果を得ることができる。
【0027】
(c)請求項3の発明によれば、前記特性劣化の防止および高強度、高靱性等の特性向上において高い効果を得ることができる。
【0028】
(d)請求項4の発明によれば、前記特性劣化の防止および高強度、高靱性等の特性向上において高い効果を得ることができる。
【0029】
(e)請求項5の発明によれば、前記特性劣化の防止および高強度、高靱性等の特性向上、特に曲げ強度の点において高い効果を得ることができる。
【0030】
(f)請求項6の発明によれば、前記加熱処理温度が前記ガラス遷移温度Tg未満であると、微細な結晶質または準結晶質の移行が良好になされず、又、該加熱処理温度が前記第1発熱反応の開始温度Tx1を越えると、組織内に形成される前記結晶または準結晶の大きさが粗大化して得られる合金の特性が劣化してしまうことから、前記TgとTx1の間の温度領域にて加処理することで、前記非晶質相中に含まれる微細結晶または準結晶の量および大きさを適宜なものとすることが可能となり、ねばさ(靱性)や強度等の特性が劣化することがなく、著しく高い強度および延び等の靱性を有する合金を得ることができる。
【0031】
(g)請求項7の発明によれば、形成される微細結晶または準結晶の量およびその大きさを適宜なものとすることができる。
【0032】
(h)請求項8の発明によれば、得られる合金のねばさ(靱性)や強度等の特性を著しく向上できる。
【0033】
【図面の簡単な説明】
【図1】本実施例合金並びに比較例合金の示差走査熱分析結果を示すグラフである。
【図2】本実施例合金について所定の加熱処理を行ったときのX線回折データを示すグラフである。
【図3】本実施例合金並びに比較例合金の3点曲げ強度と延びとを示すグラフである。
【図4】本実施例合金の機械的特性を示すグラフである。
【図5】準結晶の構造を示すモデル図である。
[0001]
[Field of the Invention]
The present invention relates to an amorphous alloy having high hardness and strength, excellent ductility, high corrosion resistance, excellent workability, and having an amorphous structure, and a method for producing the same.
[Prior art]
[0002]
In a conventional Zr-based alloy, a glass transition is observed before crystallization in a specific alloy composition, a wide supercooled liquid region is shown, and a large amorphous forming ability is exhibited. Widely used as metal material. Since these Zr-based alloys have a large amorphous forming ability as described above, not only a special forming method capable of obtaining a large cooling rate such as a liquid quenching method but also a Cu mold casting or the like. Do relatively slow cooling speed common casting method by even amorphous turned into, Ne if have (high toughness) can be produced relatively easily the bulk amorphous.
[0003]
[Problems to be solved by the invention]
However, for example, when a thick (high toughness) quenching ribbon produced by a liquid quenching method is heated to a temperature around the crystallization temperature, or when the bulk amorphous is produced by the Cu mold casting method, the cooling rate is low. in the case of slower than a predetermined cooling rate, properties of the bulk amorphous obtained, degraded by particular viscosity of (toughness) is precipitated crystal, together become Dzu pleasure to machining such as bending 180 ° adhesion There was a problem that the bending strength also decreased.
[0004]
Therefore, the present invention has been made by paying attention to the above-mentioned problems. When the prepared thick (high toughness) ribbon or bulk material is subjected to heat treatment to precipitate crystals, workability and productivity are increased. Amorphous composition that can solve the problems of deterioration of properties such as stickiness (toughness) and strength when crystals are precipitated by slowing the cooling rate in the mold casting method to improve It is an object of the present invention to provide a quality alloy and a method for producing the same.
[0005]
[Means for Solving the Problems]
In order to solve the aforementioned problems, a high strength amorphous alloy of the present invention have the general formula; XaMbAlcTdPe (However, X; 1 kind or two kinds of elements selected from Zr and Hf, M; Ni, Cu, At least one element selected from Fe, Co and Mn, T; an element having a negative mixed enthalpy with respect to at least one element selected from the group consisting of X, M and Al; P; Elements having a positive mixed enthalpy with respect to one or more elements, a, b, c, d, and e are atomic percentages, 25 ≦ a ≦ 85, 5 ≦ b ≦ 70, 0 <c ≦ 30, 0 < d ≦ 10, 0 <e ≦ 20), and is characterized by comprising a structure having at least an amorphous phase. According to this feature, the size of crystals precipitated by slowing down the heat treatment and cooling rate by including in the composition an element having a negative mixed enthalpy and an element having a positive mixed enthalpy as described above. Thus, it is possible to obtain an alloy having extremely high strength and toughness such as elongation without deterioration of properties such as stickiness (toughness) and strength.
[0006]
In the high-strength amorphous alloy of the present invention, the element T is selected from Ru, Os, Rh, Ir, Pd, Pt, V, Cr, Mo, W, Au, Ga, Ge, Re, Si, Sn, and Ti. It is preferable that it is at least one kind of element. In this way, it is possible to obtain a high effect in preventing the characteristic deterioration and improving the characteristics such as high strength and high toughness.
[0007]
In the high-strength amorphous alloy of the present invention, the P element is preferably at least one element selected from Ag, Nb and Ta. In this way, it is possible to obtain a high effect in preventing the characteristic deterioration and improving the characteristics such as high strength and high toughness.
[0008]
In the high-strength amorphous alloy of the present invention, the structure is preferably a mixed phase of an amorphous phase and a fine crystalline phase. In this way, it is possible to obtain a high effect in preventing the characteristic deterioration and improving the characteristics such as high strength and high toughness.
[0009]
The high-strength amorphous alloy of the present invention preferably contains at least a quasicrystalline phase in the amorphous structure. In this way, it is possible to obtain a high effect in terms of prevention of the characteristic deterioration and improvement of characteristics such as high strength and high toughness, particularly in terms of bending strength.
[0010]
The method of manufacturing high-strength amorphous alloy of the present invention have the general formula; XaMbAlcTdPe (However, X; 1 kind or two kinds of elements selected from Zr and Hf, M; Ni, Cu, Fe, Co and Mn At least one element selected, T; an element having a negative mixed enthalpy with respect to at least one element selected from the group consisting of X, M and Al; P; at least one element selected from X, M and Al; In contrast, elements having a positive mixed enthalpy, a, b, c, d, and e are atomic percentages, 25 ≦ a ≦ 85, 5 ≦ b ≦ 70, 0 <c ≦ 30, 0 <d ≦ 10, 0 <. has a composition represented by e ≦ 20), to produce an amorphous alloy containing at least an amorphous phase, which alloy glass transition temperature Tg and the starting temperature of the first exothermic reaction (Tx1: forming crystallization Japanese to process pressure heat set at a temperature range up to temperature) It is set to. According to this feature, if the heat treatment temperature is lower than the glass transition temperature Tg, the fine crystalline or quasicrystalline transition is not improved, and the heat treatment temperature is lower than that of the first exothermic reaction. If the starting temperature Tx1 is exceeded, the characteristics of the alloy obtained by coarsening the size of the crystals or quasicrystals formed in the structure will deteriorate, so the temperature will be increased in the temperature range between Tg and Tx1. by heat treatment, said possible to make the amount and size of fine crystals or quasi-crystals contained in the amorphous phase suitable as the result, deterioration of the characteristics such as Nebasa (toughness) and strength Therefore, an alloy having a remarkably high strength and toughness such as elongation can be obtained.
[0011]
In the method for producing a high-strength amorphous alloy of the present invention, the heat treatment time in the temperature range is preferably 1 to 120 minutes. In this way, the amount and size of fine crystals or quasicrystals formed can be made appropriate.
[0012]
Method of producing a high strength amorphous alloys of the present invention, it is preferable that the alloy of the alloy containing the amorphous phase from the quasicrystalline single phase at the pressurized heat treatment. In this way, characteristics such as the toughness (toughness) and strength of the obtained alloy can be remarkably improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
(Example)
The Zr as the element X in the claims, Ni and Cu as M elements, Au as the T element, Zr 65 Al 7 using Ag as a P element. 5 Cu 7. 5 Ni 10 Ag 5 Au 5 ( suffixes atomic%) A master alloy composed of the following composition was melted in an arc melting furnace, and a book band (thickness: 20 μm, width 1.5 mm) was produced by a commonly used single roll liquid quenching device (melt spinning device). The roll at that time is made of copper having a diameter of 200 mm, the rotational speed is 4000 rpm, and the atmosphere is Ar of 10 −3 Torr or less.
[0015]
Further, as a comparison of the present invention, Zr 55 Al 10 Cu 29 Ni 5 Nb 1 using only Nb as the P element, and not including the P element, including only the P element having the positive enthalpy. Zr 55 Al 10 Cu 30 Ni 5 ( suffixes atomic%) the mother alloy having a composition of, to prepare the carrying band in the same manner as above.
[0016]
Each of the obtained amorphous single-phase alloy band was measured by a differential scanning calorimeter (DSC). In FIG. 1, the thermal characteristics of Zr 55 Al 10 Cu 30 Ni 5 are shown by (a), and the thermal characteristics of Zr 55 Al 10 Cu 29 Ni 5 Nb 1 are shown by (b). There, Zr 65 Al 7. 5 Cu 7. thermal properties of 5 Ni 10 Ag 5 Au 5 is shown in (c).
[0017]
Based on the measurement by each differential scanning calorimeter (DSC), the glass transition temperature (Tg) and the crystallization temperature (Tx; Tx1, Tx2) were determined for each of the alloys. Explaining how Tg and Tx are taken, the endothermic reaction occurs on the differential scanning calorimetry curve. The temperature at the point where the rising edge of the curve and the extrapolation of the baseline intersect is Tg, and the exothermic reaction is reversed. The temperature obtained in the same manner as described above is set as Tx. The supercooled liquid region (ΔT) is a region between the glass transition temperature (Tg) and the crystallization temperature (Tx1). In the present invention, each amorphous single phase produced above is used. The alloy band is heated for a predetermined time at an appropriate temperature selected from the supercooled liquid region.
[0018]
As the time for these heat treatments, if this time is short, the transition of the amorphous phase to fine crystals or fine quasicrystals will not be sufficient, and if this time is long, crystals or quasi-forms formed in the structure will be formed. Since the size of the crystal becomes coarse, it is preferably in the range of 1 to 120 minutes, and in this example, it is 2 minutes.
[0019]
FIG. 2 shows data by X-ray diffraction when the alloy of this example is heat-treated as described above. From these results, it can be seen that the alloy of this example has no significant difference in peak intensity between the supercooled liquid regions 703K and 753K, and stable crystals can be formed in this temperature region. At the same time, a broad diffraction pattern peculiar to the amorphous phase can be confirmed, and the resulting alloy is a mixed phase of an amorphous phase and a crystalline phase. It can also be seen that the crystals formed therein are quasicrystals having the structure shown in FIG.
[0020]
FIG. 3 shows the results of measuring the three-point bending strength for each alloy heat-treated as described above. From this result, it was found that the Zr 55 Al 10 Cu 30 Ni 5 that does not contain the P element as the comparative alloy was mixed with a small amount of Nb as a P element having a positive enthalpy, thereby obtaining the strength and stiffness (toughness). indicator extends understand that improves a of), Zr 65 Al 7 a further Ag as P and T elements having positive and negative enthalpy, the alloy of this embodiment are allowed to coexist Au. 5 Cu 7. 5 In Ni 10 Ag 5 Au 5 , it was found that the strength was further improved as compared with the mixture of Nb, and the 180 ° contact bending was possible.
[0021]
Alloys of this embodiment (Zr 65 Al 7. 5 Cu 7. 5 Ni 10 Ag 5 Au 5) by changing the heat treatment time in the the mechanical properties with respect to the volume of the crystal phase present in Matrigel Tsu box FIG. 4 shows the result of examination. From this result, it can be seen that as the volume of the crystalline phase dispersed in the amorphous phase increases, the mechanical properties of tensile strength, hardness, and Young's modulus improve, and these crystalline phases are close to 100%. Even if it becomes, this mechanical characteristic does not fall. This also crystals formed during Matrigel Tsu box, believed to have a quasicrystalline structure as shown in the diagram (a), even if the increase in the volume of the quasi-crystalline phase, It is considered that the mechanical properties do not deteriorate.
[0022]
The present invention has been described with reference to the drawings. However, the present invention is not limited to these embodiments, and the present invention can be modified or added without departing from the spirit of the present invention. Needless to say, it is included.
[0023]
Moreover, in the said Example, although the said amorphous single phase alloy book band is produced with the single roll-type liquid quenching apparatus (melt spinning apparatus), this invention is not limited to this, These amorphous | non-crystalline materials Other methods such as a double neck method, spinning in a rotating liquid, high-pressure gas spraying method, spraying method, rapid cooling by sputtering or die casting method may be used as a method for obtaining a porous single phase alloy.
[0024]
【The invention's effect】
The present invention has the following effects.
[0025]
(A) According to the invention of claim 1, by including in the composition the element having a negative mixed enthalpy and the element having a positive mixed enthalpy as described above, the heat treatment and the cooling rate are reduced. The size of crystals to be precipitated can be made finer, and properties such as stickiness (toughness) and strength are not deteriorated, and an alloy having extremely high strength and toughness such as elongation can be obtained.
[0026]
(B) According to invention of Claim 2, a high effect can be acquired in prevention of the said characteristic deterioration and characteristic improvement, such as high intensity | strength and high toughness.
[0027]
(C) According to the invention of claim 3, it is possible to obtain a high effect in preventing the characteristic deterioration and improving the characteristics such as high strength and high toughness.
[0028]
(D) According to the invention of claim 4, it is possible to obtain a high effect in preventing the characteristic deterioration and improving the characteristics such as high strength and high toughness.
[0029]
(E) According to the invention of claim 5, it is possible to obtain a high effect in terms of prevention of the characteristic deterioration and improvement of characteristics such as high strength and high toughness, particularly bending strength.
[0030]
(F) According to the invention of claim 6, when the heat treatment temperature is lower than the glass transition temperature Tg, the fine crystalline or quasicrystalline transition is not improved, and the heat treatment temperature is If the temperature of the first exothermic reaction exceeds the start temperature Tx1, the characteristics of the alloy obtained by coarsening the crystal or quasicrystal formed in the structure deteriorates. of by processed under heat at a temperature region, the possible the amount and size of fine crystals or quasi-crystals contained in the amorphous phase as a suitable one and will, Nebasa (toughness) and strength or the like Thus, an alloy having extremely high strength and toughness such as elongation can be obtained.
[0031]
(G) According to the invention of claim 7, the amount and size of fine crystals or quasicrystals to be formed can be made appropriate.
[0032]
(H) According to the invention of claim 8, characteristics such as the toughness (toughness) and strength of the obtained alloy can be remarkably improved.
[0033]
[Brief description of the drawings]
FIG. 1 is a graph showing the results of differential scanning calorimetry of an alloy of this example and a comparative example alloy.
FIG. 2 is a graph showing X-ray diffraction data when a predetermined heat treatment is performed on the alloy of this example.
FIG. 3 is a graph showing the three-point bending strength and elongation of this example alloy and a comparative example alloy.
FIG. 4 is a graph showing mechanical properties of the alloy of this example.
FIG. 5 is a model diagram showing the structure of a quasicrystal.

Claims (8)

一般式;ZraMbAlcAudAge(ただし、MNiおよびCuから選ばれる元素、a、b、c、d、eは原子パーセントで、25≦a≦85、5≦b≦70、0<c≦30、0<d≦10、0<e≦20)で示され、少なくとも非晶質相を有する組織からなることを特徴とする高強度非晶質合金。 Formula; ZraMbAlcAudAge (and only, M; Ni and Cu do we selected Ru elements, a, b, c, d , e in atomic percent, 25 ≦ a ≦ 85,5 ≦ b ≦ 70,0 <c ≦ 30, 0 <d ≦ 10, 0 <e ≦ 20), and has a structure having at least an amorphous phase. 前記元素がNi+Cuである請求項1に記載の高強度非晶質合金。The high-strength amorphous alloy according to claim 1, wherein the M element is Ni + Cu . Zr 65 Al 7.5 Cu 7.5 Ni 10 Ag 5 Au 5 (添字は原子%)の組成で示される合金である請求項1または2に記載の高強度非晶質合金。The high-strength amorphous alloy according to claim 1 or 2, which is an alloy represented by a composition of Zr 65 Al 7.5 Cu 7.5 Ni 10 Ag 5 Au 5 (subscript is atomic%) . 前記組織が非晶質相と微細結晶質相との混相である請求項1〜3のいずれかに記載の高強度非晶質合金。   The high-strength amorphous alloy according to any one of claims 1 to 3, wherein the structure is a mixed phase of an amorphous phase and a fine crystalline phase. 前記非晶質組織中に、少なくとも準結晶相を含む請求項1〜4のいずれかに記載の高強度非晶質合金。   The high-strength amorphous alloy according to any one of claims 1 to 4, wherein the amorphous structure includes at least a quasicrystalline phase. 一般式;ZraMbAlcAuAge(ただし、MNiおよびCuから選ばれる元素、a、b、c、d、eは原子パーセントで、25≦a≦85、5≦b≦70、0<c≦30、0<d≦10、0<e≦20)で示される組成を有し、少なくとも非晶質相を含む非晶質合金を作製し、これを該合金のガラス遷移温度Tgと第1発反応の開始温度(Tx1:晶化温度)までの温度領域にて加処理することを特徴とする高強度非晶質合金の製造方法。 Formula; and Zr aMbAlc Au d Ag e (free, M; Ni and Cu do we selected that elemental, a, b, c, d , e in atomic percent, 25 ≦ a ≦ 85,5 ≦ b ≦ 70, 0 <c ≦ 30, 0 <d ≦ 10, 0 <e ≦ 20), and an amorphous alloy containing at least an amorphous phase is produced. temperature Tg and the starting temperature of the first shot Hydrothermal: high strength method for producing an amorphous alloy, which comprises processed under heat at a temperature range of up to (Tx1 sintering crystallization temperature). 前記温度領域における加熱処理時間を1〜120分とする請求項6記載の高強度非晶質合金の製造方法。  The method for producing a high-strength amorphous alloy according to claim 6, wherein the heat treatment time in the temperature region is 1 to 120 minutes. 前記加処理にて前記非晶質相を含む合金を準結晶単相からなる合金とする請求項6または7に記載の高強度非晶質合金の製造方法。Method of producing a high strength amorphous alloy as claimed in claim 6 or 7, alloy of an alloy containing the amorphous phase from the quasicrystalline single phase at the pressurized heat treatment.
JP06924499A 1999-03-15 1999-03-15 High-strength amorphous alloy and method for producing the same Expired - Fee Related JP4332647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06924499A JP4332647B2 (en) 1999-03-15 1999-03-15 High-strength amorphous alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06924499A JP4332647B2 (en) 1999-03-15 1999-03-15 High-strength amorphous alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000265252A JP2000265252A (en) 2000-09-26
JP4332647B2 true JP4332647B2 (en) 2009-09-16

Family

ID=13397154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06924499A Expired - Fee Related JP4332647B2 (en) 1999-03-15 1999-03-15 High-strength amorphous alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4332647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038899A (en) * 2019-04-17 2019-07-23 常州大学 A method of amorphous/aluminium system laminar composite material is enhanced based on accumulation pack rolling preparation fcc-Al

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027050A1 (en) * 2000-09-25 2002-04-04 Johns Hopkins University Alloy with metallic glass and quasi-crystalline properties
WO2003040422A1 (en) 2001-11-05 2003-05-15 Johns Hopkins University Alloy and method of producing the same
CN101061252A (en) * 2004-11-15 2007-10-24 日矿金属株式会社 Sputtering target for production of metallic glass film and process for producing the same
US7789948B2 (en) * 2004-11-15 2010-09-07 Nippon Mining & Metals Co., Ltd Hydrogen separation membrane, sputtering target for forming said hydrogen separation membrane, and manufacturing method thereof
KR20110055399A (en) * 2009-11-19 2011-05-25 한국생산기술연구원 Sputtering target mother material of multi-component alloy system and method for manufacturing complex-coating thin film of multi-function
JP2014178255A (en) * 2013-03-15 2014-09-25 Toshiba Corp Reactor control rod using high strength anticorrosive hafnium alloy, and high strength anticorrosive hafnium alloy for reactor control rod
KR101539647B1 (en) * 2013-06-05 2015-07-28 한국생산기술연구원 Polycrystalline alloy having glass forming ability, method of fabricating the same, alloy target for sputtering and method of fabricating the same
CN104726801A (en) * 2015-04-09 2015-06-24 中信戴卡股份有限公司 Aluminum alloy melting method and aluminum alloy manufacturing thereby
CN104762568A (en) * 2015-04-09 2015-07-08 中信戴卡股份有限公司 Aluminum alloy refiner material and preparation method thereof
CN105239024A (en) * 2015-11-13 2016-01-13 东莞宜安科技股份有限公司 High-hardness amorphous composite as well as preparation method and application thereof
CN105886966B (en) * 2016-06-06 2017-08-04 天津大学 A kind of zirconium base multicomponent non-crystaline amorphous metal with high thermal stability and preparation method thereof
CN109280864B (en) * 2018-10-29 2021-05-18 湖南理工学院 Zr-Al-Ni-Cu bulk metallic glass with different cluster content and performance
CN109763079B (en) * 2019-01-08 2020-12-01 东莞辰越新材料科技有限公司 Seawater corrosion resistant amorphous alloy material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038899A (en) * 2019-04-17 2019-07-23 常州大学 A method of amorphous/aluminium system laminar composite material is enhanced based on accumulation pack rolling preparation fcc-Al

Also Published As

Publication number Publication date
JP2000265252A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP3805601B2 (en) High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy
KR920004680B1 (en) High strength heat-resistant alluminum-based alloy
JP4332647B2 (en) High-strength amorphous alloy and method for producing the same
JP3852809B2 (en) High strength and toughness Zr amorphous alloy
US5308410A (en) Process for producing high strength and high toughness aluminum alloy
EP0905269B1 (en) High-strength amorphous alloy and process for preparing the same
JP2005504882A (en) Method for improving bulk solidified amorphous alloy composition and castings made therefrom
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
WO2006054822A1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
JP4633580B2 (en) Cu- (Hf, Zr) -Ag metallic glass alloy.
EP0905268A1 (en) High-strength amorphous alloy and process for preparing the same
JP3891736B2 (en) High strength and high corrosion resistance Ni-based amorphous alloy
JP2004091868A (en) Cu-BASED AMORPHOUS ALLOY
JP2002256401A (en) Amorphous copper base alloy
JPH07238336A (en) High strength aluminum-base alloy
EP0530844B1 (en) Process for producing amorphous alloy materials having high toughness and high strength
EP0093487B1 (en) Nickel-based alloy
JP2911708B2 (en) High-strength, heat-resistant, rapidly solidified aluminum alloy, its solidified material, and its manufacturing method
JP3205362B2 (en) High strength, high toughness aluminum-based alloy
Louzguine et al. Strong influence of supercooled liquid on crystallization of the Al 85 Ni 5 Y 4 Nd 4 Co 2 metallic glass
JP4202002B2 (en) High yield stress Zr-based amorphous alloy
JPS6411704B2 (en)
JP2945205B2 (en) Amorphous alloy material and manufacturing method thereof
JP2006348333A (en) Mo-BASED HEAT-RESISTANT AMORPHOUS ALLOY
JP3710698B2 (en) Ni-Ti-Zr Ni-based amorphous alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees