JP4202002B2 - High yield stress Zr-based amorphous alloy - Google Patents

High yield stress Zr-based amorphous alloy Download PDF

Info

Publication number
JP4202002B2
JP4202002B2 JP2001140784A JP2001140784A JP4202002B2 JP 4202002 B2 JP4202002 B2 JP 4202002B2 JP 2001140784 A JP2001140784 A JP 2001140784A JP 2001140784 A JP2001140784 A JP 2001140784A JP 4202002 B2 JP4202002 B2 JP 4202002B2
Authority
JP
Japan
Prior art keywords
yield stress
amorphous
amorphous alloy
alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001140784A
Other languages
Japanese (ja)
Other versions
JP2002332532A (en
Inventor
明久 井上
涛 張
信行 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001140784A priority Critical patent/JP4202002B2/en
Publication of JP2002332532A publication Critical patent/JP2002332532A/en
Application granted granted Critical
Publication of JP4202002B2 publication Critical patent/JP4202002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys

Description

【0001】
【発明の属する技術分野】
本発明は、優れた非晶質形成能と高降伏応力を有するZr系非晶質合金に関する。
【0002】
【従来の技術】
溶融状態の合金を急冷することにより薄帯状、フィラメント状、粉粒体状等、種々の形状を有する非晶質金属材料が得られることはよく知られている。非晶質合金薄帯は、大きな冷却速度の得られる単ロール法、双ロール法、回転液中紡糸法等の方法によって容易に製造できるので、これまでにも、Fe系、Ni系、Co系、Pd系、Cu系、Zr系、またはTi系合金について数多くの非晶質合金が得られており、高耐食性、高強度等の非晶質合金特有の性質が明らかにされている。なかでも、Zr系非晶質合金は、他の非晶質合金に比べ格段に優れた非晶質形成能を有する新しいタイプの非晶質合金として、構造材料、医用材料、化学材料等の分野への応用が期待されている。
【0003】
しかし、前記した製造方法によって得られる非晶質合金は薄帯や細線に限られており、それらを用いて最終製品形状へ加工することが困難なことから、工業的にみてその用途がかなり限定されていた。
【0004】
非晶質合金の中でも、Zr−Al−Ni−Cu非晶質合金は100℃以上の過冷却液体領域の温度幅を有し、耐食性に優れるなど実用性の高い非晶質合金とされていた[特公平07-122120号公報]。さらに、これらの非晶質合金の非晶質形成能(非晶質の形成され易さ)の改善が行われ、最小厚み方向で5mmを超える大寸法Zr系非晶質合金が開発され[特開平08-74010号公報]公知となっている。
【0005】
その結果、この大きな非晶質形成能を利用して最近ではスポーツ用品での工業的実用化もなされている(W.L.Johnson, Mat. Res. Soc. Symp. Proc. Vol.554 (1999)p.335)。これらの工業用分野では、特に良好な機械的性質を有する材料が望まれている。例えば、Zr−Ti−Cu−Ni−Be系非晶質合金の降伏応力は約1.9GPaであることが公知となっている(例えば、W.L.Johnson, Mat. Res. Soc. Symp. Proc. Vol.554 (1999) p.332やH.A.Bruck, T.Christman, A.J.Rosakis and W.L.Johnson, Scripta Metall., 30 (1994)p.429)。
本発明者ら自身の以前の研究においても、この系の非晶質合金は上述の降伏応力とほぼ同等の値しか得られていない(T.Zhang and A.Inoue, Mat. Res. Soc. Symp. Proc. Vol.554 (1999) p.361)。
【0006】
さらに、製造方法からの非晶質合金の機械的性質改善も精力的に試みられている(特開2000−24771号公報、特開2000−26943号公報、特開2000−26944号公報)。しかしながら、得られる降伏応力は充分とは言い難く、所望の降伏応力をもたらす製造方法は実現されていない。
【0007】
【発明が解決しようとする課題】
前述したZr系非晶質合金は、比較的高い降伏応力(1.9GPa)を備えてはいるものの、製造方法による機械的性質改善のみであり合金組成面からの改善はなされていなかった。そこで、さらに高降伏応力、すなわち、2GPa以上の降伏応力を有する非晶質合金の開発が望まれている。
【0008】
【課題を解決するための手段】
そこで、本発明者らは、上述の課題を解決するために、大きな非晶質形成能を損なうことなく高降伏応力が得られ、工業材料としてより好ましい機械的性質を有したZr系非晶質合金材料を提供することを目的として、最適合金組成について鋭意研究した。この結果、特定の組成を有するZr−(Ti,Hf)−(Cu,Ni,Fe,Co)系非晶質合金に特定量のAlおよびBeを同時添加することによって大きな非晶質形成能を損なうことなく、2GPa以上の高降伏応力が得られるZr系非晶質合金を見い出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、式:Zr100-a-b-cTMaAlbBec[式中、TMは、Fe,Coのいずれか1種以上を表し、a,b,およびcは、それぞれ原子百分率を表し、15≦a≦35、≦b≦15、≦c≦15、30≦a+b+c≦50を満足する。]で示される組成を有するとともに非晶質相を体積分率で90%以上含み、降伏応力2GPa以上の機械的性質を有することを特徴とするZr系非晶質合金である。
【0010】
また、本発明は、式:Zr100-a-b-cTMaAlbBec[式中、TMは、5原子百分率以上のFe,5原子百分率以上のCoのいずれか1種以上と、Ni,Cuのいずれか1種以上との組合わせを表し、a,b,およびcは、それぞれ原子百分率を表し、15≦a≦35、5≦b≦15、5≦c≦15、30≦a+b+c≦50を満足する。]で示される組成を有するとともに非晶質相を体積分率で90%以上含み、降伏応力2GPa以上の機械的性質を有することを特徴とするZr系非晶質合金である。
【0011】
さらに、本発明は、上記の非晶質合金のZrをTiまたはHfの一種以上と置換した式:(Zr1-x(Ti,Hf)x100-a-b-cTMaAlbBec[式中、xは、原子比を表し、0<x≦0.5である。]で表されることを特徴とするZr系非晶質合金である。
【0012】
なお、本明細書中記載の「過冷却液体領域」:ΔTxとは、毎分40℃の加熱速度で示差走査熱量分析を行うことにより得られるガラス遷移温度(Tg)と結晶化開始温度(Tx)の差で定義されるものである。「過冷却液体領域」は結晶化に対する抵抗力、すなわち非晶質の安定性を示す数値である。
【0013】
【発明の実施の形態】
以下に本発明の好ましい実施態様を説明する。
本発明のZr系非晶質合金において、Fe,Co,Ni,およびCuの一種または二種以上のTMで示される元素群は主たる構成元素のZrに添加することで非晶質相を形成せしめる元素群で、これらの元素群の含有量の総和は15原子百分率以上35原子百分率以下である。この含有量の総和が15原子百分率未満および35原子百分率超では、非晶質相は容易に得られるものの、AlおよびBeの総和量が本発明合金の組成範囲内にあっても、作製された非晶質合金が2GPa以上の降伏応力を示さないため好ましくない。
【0014】
また、AlおよびBeの同時添加は本発明のZr系非晶質合金において降伏応力を大幅に高める元素で、同時に、それぞれ3原子百分率以上15原子百分率以下、合計で6〜30原子百分率、好ましくは10〜30原子百分率添加することが降伏応力の向上に効果的である。AlおよびBeがそれぞれの規定組成範囲を超過すると降伏応力が低下する。AlまたはBeの何れかを単独で添加しても、両元素を含まないZr−(Ti,Hf)−(Fe,Co,Ni,Cu)系非晶質合金の降伏応力の向上効果が認められない。
【0015】
さらに、主たる構成元素Zrと同族元素であるTiおよびHfの一種または二種は主たる構成元素のZrと0.5原子比以下、好ましくは0.1から0.25の原子比で置換可能であり、0.5原子比以下であれば、置換に伴い降伏応力の低下を伴わず非晶質形成能を補助的に向上させる作用を有する。
【0016】
さらに、本発明の非晶質合金中の非晶質の体積分率は90%以上とする。本発明の非晶質合金の主たる特徴はその高降伏応力であり、この降伏応力は本発明の合金組成の合金が非晶質化されることにより本質的に達成されるものである。例えば、完全に非晶質化した本発明の非晶質合金を製造した後に熱処理することにより意図的に一部結晶化させると合金の高降伏応力は損なわれてしまうので、降伏応力が非晶質相中に混在する結晶相の体積分率と密接に関係していることが分かる。
【0017】
本発明の合金組成の合金であっても、結晶相の体積分率が10%、特に15%を超えると急激に降伏応力が低下する挙動を示す。この急激な降伏応力の低下は本発明の非晶質合金が結晶化した際に析出する脆弱な金属間化合物相に起因する。非晶質相による高降伏応力を確保するためには、本発明の非晶質合金はその非晶質相の体積分率を90%以上とする必要がある。
【0018】
本発明のZr系非晶質合金は、溶融状態から単ロール法、双ロール法、回転液中紡糸法、アトマイズ法等の種々の方法で冷却固化させ、薄帯状、フィラメント状、粉粒体状の非晶質固体を容易に得ることができる。また本発明の合金は、大きな非晶質形成能を有しているため、好ましくは、溶融合金を金型に充填鋳造することにより任意の形状の非晶質合金棒ならびに板を容易に得ることもできる。
【0019】
例えば、代表的な金型鋳造法においては、合金を石英管中でAr雰囲気中で溶融した後、溶融合金を噴出圧0.5kg/cm2以上で銅製の金型内に充填凝固させることにより非晶質合金塊を得ることができる。本発明のZr系非晶質合金は、従来のZr系非晶質合金に比べて合金組成の最適化とともに非晶質化した後の降伏応力の向上が図られており、所望される機械的性質を具備した非晶質合金が容易に得られる。
【0020】
【実施例】
以下、本発明の実施例について説明する。
表1(実施例1〜11)および表2(比較例1〜13)に示す組成からなる合金(実施例1〜11、比較例1〜13)について、金型鋳造法により直径3mm、長さ7.5mmの丸棒状試料を作製した。
【0021】
【表1】

Figure 0004202002
【0022】
試料断面のX線回折試験により鋳造材の組織を調べた。また、鋳造材より採取した小片から示差走査熱量計(DSC)によりガラス遷移温度(Tg)、結晶化開始温度(Tx)、を測定した。これらの値より過冷却液体領域ΔTxを算出した。試料の硬さはビッカース微小硬度計、降伏応力はインストロン(Instron)型試験機を用いて、歪速度4×10-4の条件でそれぞれ測定した。
【0023】
表1より明らかなように、実施例1〜11の金型鋳造による非晶質合金材料は金型鋳造法によっても直径3mmの試料が完全非晶質化するだけの優れた非晶質形成能と2GPa以上の降伏応力を兼備している。
【0024】
【表2】
Figure 0004202002
【0025】
しかしながら、比較例1、2、3の合金は非晶質形成能は良好であるが、比較例1、2はTMの含有量が本発明の合金の組成範囲外であり、比較例3はBeを含有しないためいずれも降伏応力は2GPaを下回る。比較例4〜7は、Alを含有しておらず、直径3mmの金型鋳造材では一部結晶化が起こっており、この結晶析出のため降伏応力は2GPaを下回る。また、完全に非晶質化する比較例8、一部結晶相を含む比較例9は、AlおよびBeを所定量含有するがZrを置換するHfの量が多すぎて降伏応力は2GPaを下回る。比較例10〜13はAlおよびBeを全く含まないためにその降伏応力は2GPaを下回る。
【0026】
【発明の効果】
以上説明したように、本発明のZr系非晶質合金は、2GPa以上の降伏応力を示すとともに、直径3mmの金型鋳造材においても完全非晶質化するだけの優れた非晶質形成能を兼備している。これらのことから大きな降伏応力を必要とする用途等に実用上有用なZr系非晶質合金を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Zr-based amorphous alloy having excellent amorphous forming ability and high yield stress.
[0002]
[Prior art]
It is well known that amorphous metal materials having various shapes such as ribbons, filaments, and powders can be obtained by rapidly cooling a molten alloy. Amorphous alloy ribbons can be easily manufactured by methods such as single roll method, twin roll method, spinning in a rotating liquid, etc., which can obtain a high cooling rate, so far, Fe-based, Ni-based, Co-based Many amorphous alloys have been obtained for Pd-based, Cu-based, Zr-based, or Ti-based alloys, and properties unique to amorphous alloys such as high corrosion resistance and high strength have been clarified. Among these, Zr-based amorphous alloys are a new type of amorphous alloy having a much better amorphous forming ability than other amorphous alloys, such as structural materials, medical materials, and chemical materials. Application to is expected.
[0003]
However, the amorphous alloys obtained by the manufacturing method described above are limited to ribbons and thin wires, and since it is difficult to process them into final product shapes using them, their applications are considerably limited from an industrial viewpoint. It had been.
[0004]
Among the amorphous alloys, the Zr—Al—Ni—Cu amorphous alloy has a temperature range of a supercooled liquid region of 100 ° C. or more, and is considered to be a highly practical amorphous alloy such as excellent corrosion resistance. [Japanese Patent Publication No. 07-122120]. Furthermore, the amorphous forming ability of these amorphous alloys (easy to form amorphous) was improved, and large-sized Zr-based amorphous alloys exceeding 5 mm in the minimum thickness direction were developed [special features. [Kaihei 08-74010] is publicly known.
[0005]
As a result, it has recently been put to practical use in sporting goods by utilizing this large amorphous forming ability (WLJohnson, Mat. Res. Soc. Symp. Proc. Vol.554 (1999) p.335). ). In these industrial fields, materials with particularly good mechanical properties are desired. For example, it is known that the yield stress of a Zr—Ti—Cu—Ni—Be based amorphous alloy is about 1.9 GPa (for example, WLJohnson, Mat. Res. Soc. Symp. Proc. Vol. 554 (1999) p.332 and HABruck, T.Christman, AJRosakis and WLJohnson, Scripta Metall., 30 (1994) p.429).
In our previous research, this type of amorphous alloy has only obtained a value almost equal to the above-mentioned yield stress (T. Zhang and A. Inoue, Mat. Res. Soc. Symp Proc. Vol.554 (1999) p.361).
[0006]
Furthermore, vigorous attempts have been made to improve the mechanical properties of the amorphous alloy from the production method (Japanese Patent Laid-Open Nos. 2000-24771, 2000-26943, 2000-26944). However, it is difficult to say that the yield stress obtained is sufficient, and a manufacturing method that provides the desired yield stress has not been realized.
[0007]
[Problems to be solved by the invention]
Although the Zr-based amorphous alloy described above has a relatively high yield stress (1.9 GPa), it has only been improved in mechanical properties by the manufacturing method, and has not been improved in terms of the alloy composition. Therefore, it is desired to develop an amorphous alloy having a higher yield stress, that is, a yield stress of 2 GPa or more.
[0008]
[Means for Solving the Problems]
Therefore, in order to solve the above-described problems, the present inventors have obtained a high yield stress without impairing the ability to form a large amorphous material, and a Zr-based amorphous material having more favorable mechanical properties as an industrial material. With the aim of providing alloy materials, we have intensively studied the optimal alloy composition. As a result, by adding a specific amount of Al and Be simultaneously to a Zr— (Ti, Hf) — (Cu, Ni, Fe, Co) based amorphous alloy having a specific composition, a large amorphous forming ability can be obtained. The present inventors have completed the present invention by finding a Zr-based amorphous alloy that can obtain a high yield stress of 2 GPa or more without loss.
[0009]
That is, the present invention has the formula: in Zr 100-abc TM a Al b Be c [ wherein, TM is, Fe, represents any one or more of Co, a, b, and c each represent an atomic percent 15 ≦ a ≦ 35, 5 ≦ b ≦ 15, 5 ≦ c ≦ 15, and 30 ≦ a + b + c ≦ 50 . And a mechanical property of a yield stress of 2 GPa or more, including an amorphous phase in a volume fraction of 90% or more.
[0010]
In addition, the present invention has the formula: Zr 100-abc TM a Al b Be c [wherein TM is one or more of Fe of 5 atomic percent or more, Co of 5 atomic percent or more, and Ni, Cu It represents a combination of any one or more, a, b, and c each represent an atomic percent, a 15 ≦ a ≦ 35,5 ≦ b ≦ 15,5 ≦ c ≦ 15,30 ≦ a + b + c ≦ 50 Satisfied. And a mechanical property of a yield stress of 2 GPa or more, including an amorphous phase in a volume fraction of 90% or more.
[0011]
Furthermore, the present invention relates to a formula in which Zr of the above amorphous alloy is substituted with one or more of Ti or Hf: (Zr 1-x (Ti, Hf) x ) 100-abc TM a Al b Be c [wherein , X represents an atomic ratio, and 0 <x ≦ 0.5. A Zr-based amorphous alloy characterized by the following.
[0012]
Note that “supercooled liquid region”: ΔTx described in this specification means a glass transition temperature (Tg) and a crystallization start temperature (Tx) obtained by performing differential scanning calorimetry at a heating rate of 40 ° C. per minute. ). The “supercooled liquid region” is a numerical value indicating resistance to crystallization, that is, amorphous stability.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
In the Zr-based amorphous alloy of the present invention, an element group represented by one or two or more TMs of Fe, Co, Ni, and Cu forms an amorphous phase by being added to Zr as a main constituent element. In the element group, the sum of the contents of these element groups is 15 atomic percent or more and 35 atomic percent or less. When the sum of the contents is less than 15 atomic percent and more than 35 atomic percent, an amorphous phase can be easily obtained, but it was produced even when the total amount of Al and Be was within the composition range of the alloy of the present invention. An amorphous alloy is not preferable because it does not exhibit a yield stress of 2 GPa or more.
[0014]
Further, the simultaneous addition of Al and Be is an element that greatly increases the yield stress in the Zr-based amorphous alloy of the present invention, and at the same time, 3 to 15 atomic percent, respectively, in total 6 to 30 atomic percent, preferably Adding 10 to 30 atomic percent is effective in improving yield stress. When Al and Be exceed the respective prescribed composition ranges, the yield stress decreases. Even if either Al or Be is added alone, the effect of improving the yield stress of the Zr- (Ti, Hf)-(Fe, Co, Ni, Cu) -based amorphous alloy not containing both elements is recognized. Absent.
[0015]
Furthermore, one or two of Ti and Hf, which are the same elements as the main constituent element Zr, can be replaced with the main constituent element Zr at an atomic ratio of 0.5 to 0.25, preferably 0.1 to 0.25. If it is 0.5 atomic ratio or less, it has the effect of assisting in improving the amorphous forming ability without lowering the yield stress accompanying substitution.
[0016]
Furthermore, the amorphous volume fraction in the amorphous alloy of the present invention is 90% or more. The main feature of the amorphous alloy of the present invention is its high yield stress, which is essentially achieved by amorphization of the alloy having the alloy composition of the present invention. For example, if a part of the alloy is intentionally crystallized by heat treatment after the amorphous alloy of the present invention that has been completely amorphized is produced, the high yield stress of the alloy is lost, so the yield stress is amorphous. It can be seen that it is closely related to the volume fraction of the crystal phase mixed in the mass phase.
[0017]
Even in the case of the alloy composition of the present invention, when the volume fraction of the crystal phase exceeds 10%, particularly 15%, the yield stress decreases rapidly. This rapid decrease in yield stress is attributed to the brittle intermetallic phase that precipitates when the amorphous alloy of the present invention is crystallized. In order to ensure high yield stress due to the amorphous phase, the amorphous alloy of the present invention needs to have a volume fraction of the amorphous phase of 90% or more.
[0018]
The Zr-based amorphous alloy of the present invention is cooled and solidified from a molten state by various methods such as a single roll method, a twin roll method, a spinning in a rotating liquid method, an atomizing method, etc. The amorphous solid can be easily obtained. Further, since the alloy of the present invention has a large amorphous forming ability, it is preferable to easily obtain amorphous alloy rods and plates of any shape by filling and casting a molten alloy in a mold. You can also.
[0019]
For example, in a typical mold casting method, after melting an alloy in a quartz tube in an Ar atmosphere, the molten alloy is filled and solidified in a copper mold at an ejection pressure of 0.5 kg / cm 2 or more. An amorphous alloy mass can be obtained. The Zr-based amorphous alloy of the present invention has improved yield stress after amorphization as well as optimization of the alloy composition as compared with the conventional Zr-based amorphous alloy, and has the desired mechanical properties. An amorphous alloy having properties can be easily obtained.
[0020]
【Example】
Examples of the present invention will be described below.
About the alloy (Examples 1-11, Comparative Examples 1-13) which consists of a composition shown in Table 1 (Examples 1-11) and Table 2 (Comparative Examples 1-13), diameter 3mm and length by the die casting method A 7.5 mm round bar sample was prepared.
[0021]
[Table 1]
Figure 0004202002
[0022]
The structure of the cast material was examined by X-ray diffraction test of the sample cross section. Moreover, the glass transition temperature (Tg) and the crystallization start temperature (Tx) were measured from the small piece extract | collected from the casting material with the differential scanning calorimeter (DSC). The supercooled liquid region ΔTx was calculated from these values. The hardness of the sample was measured using a Vickers microhardness meter, and the yield stress was measured using an Instron type tester at a strain rate of 4 × 10 −4 .
[0023]
As is apparent from Table 1, the amorphous alloy materials obtained by die casting in Examples 1 to 11 have excellent amorphous forming ability that a sample having a diameter of 3 mm can be completely amorphized even by the die casting method. And yield stress of 2 GPa or more.
[0024]
[Table 2]
Figure 0004202002
[0025]
However, the alloys of Comparative Examples 1, 2, and 3 have good amorphous forming ability, but in Comparative Examples 1 and 2, the TM content is outside the composition range of the alloy of the present invention, and Comparative Example 3 is Be. In any case, the yield stress is less than 2 GPa. In Comparative Examples 4 to 7, Al was not contained, and crystallization occurred partly in the mold casting material having a diameter of 3 mm, and the yield stress was less than 2 GPa due to this crystal precipitation. Further, Comparative Example 8 that completely becomes amorphous and Comparative Example 9 including a part of the crystal phase contain a predetermined amount of Al and Be, but the amount of Hf that substitutes Zr is too large, and the yield stress is below 2 GPa. . Since Comparative Examples 10 to 13 do not contain Al or Be at all, the yield stress is less than 2 GPa.
[0026]
【The invention's effect】
As described above, the Zr-based amorphous alloy of the present invention exhibits a yield stress of 2 GPa or more and an excellent amorphous forming ability that can be completely amorphized even in a mold casting material having a diameter of 3 mm. Have both. From these facts, it is possible to provide a Zr-based amorphous alloy that is practically useful for applications that require a large yield stress.

Claims (3)

式:Zr100-a-b-cTMaAlbBec[式中、TMは、Fe,Coのいずれか1種以上を表し、a,b,およびcは、それぞれ原子百分率を表し、15≦a≦35、≦b≦15、≦c≦15、30≦a+b+c≦50を満足する。]で示される組成を有するとともに非晶質相を体積分率で90%以上含み、降伏応力2GPa以上の機械的性質を有することを特徴とするZr系非晶質合金。Formula: Zr 100-abc TM a Al b Be c [wherein, TM represents one or more of Fe and Co , a, b, and c each represent an atomic percentage, and 15 ≦ a ≦ 35 5 ≦ b ≦ 15, 5 ≦ c ≦ 15, 30 ≦ a + b + c ≦ 50 . A Zr-based amorphous alloy characterized by having an amorphous phase in a volume fraction of 90% or more and having a mechanical property of a yield stress of 2 GPa or more. 式:Zr100-a-b-cTMaAlbBec[式中、TMは、5原子百分率以上のFe,5原子百分率以上のCoのいずれか1種以上と、Ni,Cuのいずれか1種以上との組合わせを表し、a,b,およびcは、それぞれ原子百分率を表し、15≦a≦35、5≦b≦15、5≦c≦15、30≦a+b+c≦50を満足する。]で示される組成を有するとともに非晶質相を体積分率で90%以上含み、降伏応力2GPa以上の機械的性質を有することを特徴とするZr系非晶質合金。Formula: Zr 100-abc TM a Al b Be c [ wherein, TM is a 5 atomic percent or more Fe, 5 either atomic percent or more Co 1 or more and, Ni, either Cu 1 or more A , b, and c each represent an atomic percentage, and satisfy 15 ≦ a ≦ 35, 5 ≦ b ≦ 15, 5 ≦ c ≦ 15, and 30 ≦ a + b + c ≦ 50. A Zr-based amorphous alloy characterized by having an amorphous phase in a volume fraction of 90% or more and having a mechanical property of a yield stress of 2 GPa or more. 請求項1または2記載の非晶質合金のZrをTiまたはHfの一種以上と置換した式:(Zr1-x(Ti,Hf)x100-a-b-cTMaAlbBec[式中、xは、原子比を表し、0<x≦0.5である。]で表されることを特徴とするZr系非晶質合金。The Zr amorphous alloy according to claim 1 or 2 wherein the substituted with one or more Ti or Hf formula: (Zr 1-x (Ti , Hf) x) in 100-abc TM a Al b Be c [ wherein, x represents an atomic ratio, and 0 <x ≦ 0.5. Zr-based amorphous alloy characterized by the above.
JP2001140784A 2001-05-10 2001-05-10 High yield stress Zr-based amorphous alloy Expired - Fee Related JP4202002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140784A JP4202002B2 (en) 2001-05-10 2001-05-10 High yield stress Zr-based amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140784A JP4202002B2 (en) 2001-05-10 2001-05-10 High yield stress Zr-based amorphous alloy

Publications (2)

Publication Number Publication Date
JP2002332532A JP2002332532A (en) 2002-11-22
JP4202002B2 true JP4202002B2 (en) 2008-12-24

Family

ID=18987332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140784A Expired - Fee Related JP4202002B2 (en) 2001-05-10 2001-05-10 High yield stress Zr-based amorphous alloy

Country Status (1)

Country Link
JP (1) JP4202002B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030264A1 (en) 2011-08-31 2013-03-07 Ecosynth Bvba Method to modify carbohydrates
CN105220083A (en) * 2015-10-21 2016-01-06 东莞宜安科技股份有限公司 Non-crystaline amorphous metal of a kind of wear-and corrosion-resistant and its preparation method and application

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632584A1 (en) * 2004-09-06 2006-03-08 Eidgenössische Technische Hochschule Zürich Amorphous alloys on the base of Zr and their use
KR100658982B1 (en) 2005-03-08 2006-12-21 학교법인연세대학교 Zr-based Bulk Metallic Glasses Containing Multi-Elements
CN100432272C (en) * 2005-12-28 2008-11-12 中国科学院金属研究所 Zirconium base massive nano-amorphous alloy with larger plastic strain
KR100760695B1 (en) 2006-03-17 2007-09-20 연세대학교 산학협력단 Zr-y based two phase metallic glass compositions having excellent glass forming ability
US20140261898A1 (en) * 2013-03-15 2014-09-18 Apple Inc. Bulk metallic glasses with low concentration of beryllium
CN105112817B (en) * 2015-09-10 2017-03-29 深圳市锆安材料科技有限公司 A kind of non-crystaline amorphous metal of wear-and corrosion-resistant and preparation method thereof
CN108070801B (en) * 2017-12-19 2019-12-31 哈尔滨工业大学 Method for preparing low-cost centimeter-level zirconium-based amorphous alloy by adopting industrial-level sponge zirconium
CN114032478A (en) * 2021-11-11 2022-02-11 盘星新型合金材料(常州)有限公司 Zr-based amorphous alloy with plasticity and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030264A1 (en) 2011-08-31 2013-03-07 Ecosynth Bvba Method to modify carbohydrates
CN105220083A (en) * 2015-10-21 2016-01-06 东莞宜安科技股份有限公司 Non-crystaline amorphous metal of a kind of wear-and corrosion-resistant and its preparation method and application

Also Published As

Publication number Publication date
JP2002332532A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP3852809B2 (en) High strength and toughness Zr amorphous alloy
JP3805601B2 (en) High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy
Zhu et al. Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm
JP3963802B2 (en) Cu-based amorphous alloy
US6325868B1 (en) Nickel-based amorphous alloy compositions
JP3891736B2 (en) High strength and high corrosion resistance Ni-based amorphous alloy
JP4633580B2 (en) Cu- (Hf, Zr) -Ag metallic glass alloy.
JP4011316B2 (en) Cu-based amorphous alloy
JP3860445B2 (en) Cu-Be based amorphous alloy
JP4202002B2 (en) High yield stress Zr-based amorphous alloy
Zhang et al. New glassy Zr-Al-Fe and Zr-Al-Co alloys with a large supercooled liquid region
JP4332647B2 (en) High-strength amorphous alloy and method for producing the same
JP3761737B2 (en) High specific strength Ti-based amorphous alloy
Zhang et al. Formation and mechanical strength of new Cu-based bulk glassy alloys with large supercooled liquid region
Zhang et al. Bulk glassy alloys with low liquidus temperature in Pt-Cu-P system
JP2000178700A (en) HIGH CORROSION RESISTANCE Zr AMORPHOUS ALLOY
JP3933713B2 (en) Ti-based amorphous alloy
JP3880245B2 (en) High strength and high corrosion resistance Ni-based amorphous alloy
Na et al. The effect of Ta addition on the glass forming ability and mechanical properties of Ni–Zr–Nb–Al metallic glass alloys
JP4346192B2 (en) High corrosion-resistant bulk amorphous alloy and method for producing the same
Zhang et al. Synthesis and mechanical properties of new Cu‐Zr‐based glassy alloys with high glass‐forming ability
Men et al. Effect of titanium on glass-forming ability of Cu-Zr-Al alloys
JP4086195B2 (en) Ni-based metallic glass alloy with excellent mechanical properties and plastic workability
JP5321999B2 (en) Ni-based metallic glass alloy
JP3647281B2 (en) Ni-based amorphous alloy with wide supercooled liquid region

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees