EP2989224B1 - Alliage cuivreux de fonderie pour machines asynchrones - Google Patents

Alliage cuivreux de fonderie pour machines asynchrones Download PDF

Info

Publication number
EP2989224B1
EP2989224B1 EP14718324.8A EP14718324A EP2989224B1 EP 2989224 B1 EP2989224 B1 EP 2989224B1 EP 14718324 A EP14718324 A EP 14718324A EP 2989224 B1 EP2989224 B1 EP 2989224B1
Authority
EP
European Patent Office
Prior art keywords
elements
weight
group
alloy
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14718324.8A
Other languages
German (de)
English (en)
Other versions
EP2989224A1 (fr
Inventor
Timo ALLMENDINGER
Tony Robert NOLL
Joachim Riedle
Gerhard Thumm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP2989224A1 publication Critical patent/EP2989224A1/fr
Application granted granted Critical
Publication of EP2989224B1 publication Critical patent/EP2989224B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Definitions

  • the invention relates to copper casting alloys and current-carrying structural parts made therefrom by means of primary molding processes.
  • the invention relates to cast squirrel-cage rotors for asynchronous machines.
  • the electrical conductivity is only slightly reduced by the alloy elements.
  • the material must have good castability. Zirconium and / or chromium are often used as alloy components.
  • JP 56010059 A a copper alloy containing zinc, chromium, zirconium and titanium is proposed for the die casting process.
  • JP 2011 027280 A discloses a copper alloy with 0.1 to 2 wt% aluminum, tin from 0.1 wt% to aluminum content, zinc from 0.05 wt% to aluminum content and phosphorus from 0.001 to 0.1 wt. -%. Tubes for heat exchangers are made from the alloy.
  • Copper materials processed by metal forming processes are characterized by a higher strength than copper materials in the as-cast state.
  • the person skilled in the art can therefore give no indication of the above-mentioned prior art Find out which copper alloy has a favorable combination of properties with regard to electrical conductivity and strength even when cast.
  • the invention is therefore based on the object of specifying improved copper casting alloys in terms of strength, conductivity and castability and improved current-carrying structural parts in terms of strength and conductivity.
  • the invention is intended to provide improved, one-piece cast squirrel-cage rotors for asynchronous machines.
  • the alloy elements should also be selected with regard to their effects on health and the environment. In particular, lead and cadmium should be avoided.
  • the invention is given with respect to a copper alloy by the features of claim 1, with regard to a structural part with the features of claim 10 and alternatively with claim 12 and with respect to a squirrel-cage rotor with the features of claim 11 and alternatively with claim 13.
  • the further back claims relate to advantageous developments and further developments of the invention.
  • the invention is based on the consideration that the strength of metals is increased by the incorporation of foreign atoms. This effect is particularly interesting for cast alloys, because it enables high strength values to be achieved without further forming steps.
  • a The elements Al, Sn, Ni and Zn have a particularly great effect on solid solution strengthening in copper. If the strength of pure copper is to be increased by solid solution strengthening, the addition of Al and Sn is particularly worthwhile. It is also known that the addition of alloy elements fundamentally worsens the electrical and thermal conductivity of pure copper. In the field of mixed crystal formation, however, the conductivity of copper is influenced relatively little by the elements Zn, Ag, Ni, Sn and Al. If the electrical conductivity of copper is to be impaired as little as possible, the addition of Zn and Ag is particularly worthwhile.
  • a casting material can be found that has a particularly favorable combination of strength and conductivity.
  • the content of the individual elements should be at least 0.05% by weight and at most 0.5% by weight.
  • the effect of the alloy elements is too low for element contents less than 0.05% by weight.
  • the sum of the element contents can preferably be at least 0.25% by weight.
  • element contents greater than 0.5% by weight undesired segregation of the alloy or segregation can occur.
  • the content of the individual elements can preferably be at most 0.3% by weight.
  • Alloying three or more elements creates an alloy whose melting interval is longer than the melting interval of alloys with fewer elements. This has a favorable effect on the castability of the material.
  • the copper alloy preferably contains the element Sn. This results in particularly favorable properties.
  • the copper alloy contains the element Ag. This results in particularly favorable properties with regard to electrical conductivity.
  • 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb can be added to the alloy. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. By deoxidizing the melt you can also reduce the gas intake.
  • the sum of the contents of the elements Mg, Ti, Zr, B, P, As, Sb can be limited to a maximum of 0.5% by weight.
  • the content of the individual elements can be limited to a maximum of 0.07% by weight.
  • the increase in strength is not always sufficient at contents of less than 0.06% by weight. With element contents greater than 0.15% by weight, the electrical conductivity can be reduced too much, for example below 75% IACS.
  • the sum of the proportions of the elements from the group consisting of Ag, Ni, Zn, Sn and Al is preferably at least 0.20% by weight and at most 0.35% by weight.
  • the proportions of the alloy elements can preferably be selected such that the ratio by weight of two arbitrary alloy elements from the group consisting of Ag, Ni, Zn, Sn and Al is at most 1.5.
  • the more common of the two alloying elements forms the numerator of the quotient to be calculated.
  • This weight ratio is particularly preferably at most 1.3.
  • the elements selected from the group consisting of Ag, Ni, Zn, Sn and Al for the respective alloy are alloyed in approximately equal parts by weight.
  • the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.5% Ni: 0.06 to 0.5% Zn: 0.06 to 0.5% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such an alloy has an electrical conductivity of at least 68% IACS and can exceed the strength of pure copper by up to 35%.
  • the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Ni: 0.06 to 0.15% Zn: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • IACS IACS
  • such an alloy has an electrical conductivity that is approximately equal to that of a copper alloy which contains 1% by weight of Ag (CuAg1).
  • the increase in strength compared to pure copper in the as-cast state is approximately 20%.
  • Such an alloy thus has a very favorable combination of properties.
  • the relative increase in strength is greater than the relative decrease in conductivity. Due to the low proportion of alloys, the alloy is at the cost level of commercially available copper alloys.
  • the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Sn: 0.06 to 0.15% Ni: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such an alloy has an electrical conductivity of approximately 85% IACS.
  • the increase in strength compared to pure copper in the as-cast state is approximately 20%.
  • Such an alloy thus has a very favorable combination of properties.
  • the relative increase in strength is greater than the relative decrease in conductivity. Due to the low proportion of alloys, the alloy is at the cost level of commercially available copper alloys.
  • the copper alloy can have the following composition in% by weight: Ag: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such an alloy has an electrical Conductivity of about 85% IACS. The increase in strength compared to pure copper in the as-cast state is approximately 10%. Due to the elements Zn and Al, this alloy is an inexpensive alternative.
  • Another advantageous copper alloy can have the following composition in% by weight: Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such an alloy has an electrical conductivity of approximately 80% IACS.
  • the increase in strength compared to pure copper in the as-cast state is approximately 10%. Since this alloy does not contain silver, it is a particularly inexpensive alternative.
  • a further aspect of the invention relates to current-carrying structural parts made of copper alloys, the structural parts being produced by means of an original molding process and the copper alloys having the following composition in% by weight: 0.05 to 0.5% Ag, in each case 0.05 to 0.5 % of at least two elements from the group consisting of Ni, Zn, Sn and Al, balance Cu and inevitable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb exists.
  • the copper alloy of the structural part can have the following composition in% by weight: Sn: 0.06 to 0.15%, Zn: 0.06 to 0.15%, Al: 0.06 to 0.15%, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • Such structural parts can be, for example, switches, commutators, grinding wheels, busbars, contacts, brushes, bridges, components for switching devices, conductor bars or short-circuit rings of cage rotors or other components.
  • Primary molding processes are understood to mean casting processes such as, for example, die casting, investment casting, full mold casting or other processes.
  • the above-mentioned casting process the cast body essentially already has the shape of the desired structural part. Separation processes can be used to carry out one or more further processing steps which slightly change the shape of the structural part. Examples of this are cutting off the sprue or reworking the surface of the structural part.
  • the finished construction part is therefore in the as-cast state.
  • the copper alloys according to the invention have a higher strength than pure copper due to the solidification of the solid solution in the as-cast state.
  • the electrical conductivity is relatively little reduced compared to pure copper.
  • the alloys according to the invention also have good castability: they show only a slight tendency to absorb gas and are characterized by a good mold filling capacity.
  • an alloy adapted to the respective application can be found.
  • the Ag content can be limited to 0.15% by weight.
  • the metal costs of the alloys according to the invention are increased by a maximum of 15% compared to pure copper.
  • Construction parts produced by master molding processes are less expensive to manufacture than construction parts that are made from semi-finished products.
  • the total cost of the construction parts according to the invention can consequently be cheaper than the total costs of other construction parts.
  • the alloy according to the invention can optionally contain 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. By deoxidizing the melt, they can also reduce gas absorption.
  • the copper alloy has the following composition in% by weight: 0.05 to 0.5% Ag, in each case 0.05 to 0.5% of at least two elements from the group consisting of Ni, Zn, Sn and Al, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • the copper alloy of the cage rotor can have the following composition in% by weight: Sn: 0.06 to 0.15%, Zn: 0.06 to 0.15%, Al: 0.06 to 0.15%, Balance Cu and unavoidable impurities, optionally 0.01 to 0.2% of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb.
  • the invention is based on the idea of casting conductor bars and short-circuit rings of cage rotors in one piece. Suitable casting processes for this can be die casting, investment casting, full mold casting and other processes. Due to their high electrical conductivity, copper alloys are well suited for the manufacture of cage rotors. Since the high speeds of the asynchronous machines exert large forces, in particular on the conductor bars of the squirrel-cage rotors, the copper alloys used must have high strength even when cast. Copper alloys which have the following composition in% by weight are therefore particularly suitable: 0.05 to 0.5% Ag, in each case 0.05 to 0.5% of at least two elements from the group consisting of Ni, Zn, Sn and Al exists, rest Cu and inevitable impurities.
  • the copper alloys according to the invention have a higher strength than pure copper due to the solidification of the solid solution in the as-cast state.
  • the electrical conductivity is relatively little reduced compared to pure copper.
  • the alloys according to the invention also have good castability: they show only a slight tendency to absorb gas and are characterized by a good mold filling capacity.
  • the alloy according to the invention can optionally contain 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb. These elements result in grain refinement of the cast structure and thus increase the strength of the cast material. Through an appropriate selection of the alloying elements and the alloying composition, an alloy adapted to the respective application can be found.
  • the following alloys have proven to be particularly advantageous: Copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Ni: 0.06 to 0.15% Zn: 0.06 to 0.15% Balance Cu and unavoidable impurities; Alternatively: copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Sn: 0.06 to 0.15% Ni: 0.06 to 0.15% Balance Cu and unavoidable impurities; Alternatively: copper alloy with the following composition in% by weight: Ag: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities; Alternatively: copper alloy with the following composition in% by weight: Sn: 0.06 to 0.15% Zn: 0.06 to 0.15% Al: 0.06 to 0.15% Balance Cu and unavoidable impurities.
  • Each of the aforementioned alloys can optionally have 0.01 to 0.2% by weight of one or more elements from the group consisting of Mg, Ti, Zr, B, P, As, Sb added.
  • the metal costs of the alloys according to the invention are increased by a maximum of 15% compared to pure copper.
  • Table 1 shows a compilation of the alloys examined.
  • the composition of the sample, the determined tensile strength R m in the as-cast state and the relative electrical conductivity, expressed by the IACS value, are given for each alloy.
  • the metal costs resulting from the alloy composition are standardized to the metal costs of pure copper (sample no. 1).
  • Sample No. 2 is a reference alloy with 99% copper and 1% silver. This alloy has attractive properties in terms of strength and conductivity, but due to the high metal costs, it can only be used economically in very special applications.
  • Sample No. 3 is a copper alloy with approximately 0.5% silver, 0.5% nickel and 0.5% zinc. This alloy achieves a strength that is approx. 35% higher than that of pure copper.
  • the electrical conductivity is 68% IACS.
  • Sample No. 4 is a copper alloy with approximately 0.1% silver, 0.1% nickel and 0.1% zinc. This alloy achieves a strength that is approx. 20% higher than that of pure copper.
  • the electrical conductivity is 91% IACS.
  • the relative increase in strength is thus significantly greater than the relative Decrease in electrical conductivity.
  • This surprising combination of properties of the alloy is not to be expected from the individual contributions of the individual alloy elements.
  • the relative increase in metal costs is less than the relative increase in strength and can therefore be compensated for, for example, by reducing the cross section of the conductor bars. This alloy thus offers a very attractive combination of properties for use in cast squirrel cage rotors.
  • Sample No. 5 is a copper alloy with approximately 0.1% silver, 0.13% tin and 0.1% nickel. This alloy achieves a strength that is approx. 20% higher than that of pure copper.
  • the electrical conductivity is 84% IACS.
  • the relative increase in strength is therefore greater than the relative decrease in electrical conductivity. This surprising combination of properties of the alloy is not to be expected from the individual contributions of the individual alloy elements.
  • the relative increase in metal costs is less than the relative increase in strength.
  • Sample No. 6 is a copper alloy with approximately 0.1% silver, 0.1% zinc and 0.1% aluminum. This alloy achieves a strength that is approx. 6% higher than that of pure copper.
  • the electrical conductivity is 84% IACS. Due to the elements Zn and Al, this alloy is an inexpensive alternative.
  • Sample No. 7 is a copper alloy with approximately 0.1% tin, 0.1% zinc and 0.1% aluminum. This alloy achieves a strength that is approx. 8% higher than that of pure copper. The electrical conductivity is 78% IACS. Since this alloy does not contain silver, it is a particularly inexpensive alternative.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Power Engineering (AREA)

Claims (13)

  1. Alliage de cuivre ayant la composition suivante [en % en poids] :
    0,05 à 0,5 % de Ag,
    dans chaque cas 0,05 à 0,5 % d'au moins deux éléments du groupe qui consiste en Ni, Zn, Sn et Al,
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb.
  2. Alliage de cuivre selon la revendication 1 ayant la composition suivante [en % en poids]:
    dans chaque cas 0,05 à 0,5 % de deux éléments du groupe qui consiste en Ni, Zn, Sn et Al,
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb.
  3. Alliage de cuivre selon la revendication 2 ayant la composition suivante [en % en poids]:
    0,06 à 0,3% de Ag,
    dans chaque cas 0,06 à 0,3% de deux éléments du groupe qui consiste en Ni, Zn, Sn et Al,
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb.
  4. Alliage de cuivre selon la revendication 3 ayant la composition suivante [en % en poids]:
    0,06 à 0,15 % de Ag,
    dans chaque cas 0,06 à 0,15 % de deux éléments du groupe qui consiste en Ni, Zn, Sn et Al,
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb.
  5. Alliage de cuivre selon l'une des revendications 1 à 4, caractérisé en ce que le rapport des proportions en poids dans chaque cas de deux éléments d'alliage du groupe qui consiste en Ag, Ni, Zn, Sn et Al est au maximum de 1,5.
  6. Alliage de cuivre selon l'une des revendications 2 ou 5 ayant la composition suivante [en % en poids]:
    Ag: 0,06 à 0,5 %
    Ni: 0,06 à 0,5 %
    Zn: 0,06 à 0,5 %
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb.
  7. Alliage de cuivre selon la revendication 6 ayant la composition suivante [en % en poids]:
    Ag: 0,06 à 0,15 %
    Ni: 0,06 à 0,15 %
    Zn: 0,06 à 0,15 %
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb.
  8. Alliage de cuivre selon l'une des revendications 4 ou 5 ayant la composition suivante [en % en poids]:
    Ag: 0,06 à 0,15 %
    Sn: 0,06 à 0,15 %
    Ni: 0,06 à 0,15 %
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb.
  9. Alliage de cuivre selon l'une des revendications 4 ou 5 ayant la composition suivante [en % en poids]:
    Ag: 0,06 à 0,15 %
    Zn: 0,06 à 0,15 %
    Al: 0,06 à 0,15 %
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb.
  10. Pièce de construction conduisant le courant en un alliage de cuivre selon l'une des revendications précédentes, caractérisée en ce que la pièce de construction est fabriquée au moyen d'un procédé de moulage en la forme originale.
  11. Induit à cage d'écureuil en un alliage de cuivre selon l'une des revendications 1 à 9 dans lequel l'induit à cage d'écureuil comprend plusieurs barres conductrices et deux bagues de court-circuit, caractérisé en ce que les barres conductrices et les bagues de court-circuit sont coulées en une seule pièce.
  12. Pièce de construction conduisant le courant en un alliage de cuivre ayant la composition suivante [en % en poids]:
    Sn: 0,06 à 0,15 %
    Zn: 0,06 à 0,15 %
    Al: 0,06 à 0,15 %
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb,
    caractérisée en ce que la pièce de construction est fabriquée au moyen d'un procédé de moulage en la forme originale.
  13. Induit à cage d'écureuil en un alliage de cuivre ayant la composition suivante [en % en poids]:
    Sn: 0,06 à 0,15 %
    Zn: 0,06 à 0,15 %
    Al: 0,06 à 0,15 %
    le reste Cu et des impuretés inévitables,
    éventuellement 0,01 à 0,2 % d'un ou plusieurs éléments du groupe qui consiste en Mg, Ti, Zr, B, P, As, Sb,
    dans lequel l'induit à cage d'écureuil comprend plusieurs barres conductrices et deux bagues de court-circuit, caractérisé en ce que les barres conductrices et les bagues de court-circuit sont coulées en une seule pièce.
EP14718324.8A 2013-04-26 2014-04-10 Alliage cuivreux de fonderie pour machines asynchrones Active EP2989224B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013007274.3A DE102013007274B4 (de) 2013-04-26 2013-04-26 Konstruktionsteil aus einer Kupfergusslegierung
PCT/EP2014/000957 WO2014173498A1 (fr) 2013-04-26 2014-04-10 Alliage cuivreux de fonderie pour machines asynchrones

Publications (2)

Publication Number Publication Date
EP2989224A1 EP2989224A1 (fr) 2016-03-02
EP2989224B1 true EP2989224B1 (fr) 2020-07-22

Family

ID=50513879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14718324.8A Active EP2989224B1 (fr) 2013-04-26 2014-04-10 Alliage cuivreux de fonderie pour machines asynchrones

Country Status (9)

Country Link
US (1) US9973068B2 (fr)
EP (1) EP2989224B1 (fr)
JP (1) JP6254679B2 (fr)
KR (1) KR102195080B1 (fr)
CN (1) CN105164292A (fr)
DE (1) DE102013007274B4 (fr)
ES (1) ES2820568T3 (fr)
RU (1) RU2661691C2 (fr)
WO (1) WO2014173498A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521232B (zh) * 2016-11-22 2018-05-18 陕西斯瑞新材料股份有限公司 一种高强、中导新型铜合金Cu-Zn-Cr-RE导条及制备方法
CN107511469A (zh) * 2017-10-13 2017-12-26 安阳恒安电机有限公司 一种电机转子鼠笼低压铸铜设备、铸铜及其铸铜方法
RU2709909C1 (ru) * 2018-11-26 2019-12-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Низколегированный медный сплав
KR20230030578A (ko) * 2020-06-30 2023-03-06 미쓰비시 마테리알 가부시키가이샤 구리 합금, 구리 합금 소성 가공재, 전자·전기 기기용 부품, 단자, 버스 바, 리드 프레임, 방열 기판
CN113234955A (zh) * 2021-04-30 2021-08-10 浙江利丰电器股份有限公司 用于换向器铜片制作的银铜合金材料

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE503187C (de) 1925-07-02 1930-07-22 Heinrich Frei Laeufer fuer Ein- oder Mehrphasen-Wechselstrommotoren mit ausgepraegten Polen und n Laeuferblechkoerpern
US2304067A (en) 1940-07-29 1942-12-08 Fairbanks Morse & Co Production of rotors for electric machines
GB949570A (en) * 1960-08-03 1964-02-12 Licentia Gmbh Improvements in and relating to dynamo-electric machines
JPS52120222A (en) * 1976-04-01 1977-10-08 Sumitomo Electric Ind Ltd Copper alloy for heating element
JPS5610059A (en) 1979-07-04 1981-02-02 Yaskawa Electric Mfg Co Ltd Cage type rotor
JPS586950A (ja) 1981-07-07 1983-01-14 Furukawa Electric Co Ltd:The 回転子用導電材料
DE3324687A1 (de) 1983-06-14 1984-12-20 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Asynchronmaschine mit doppelkaefigankerwicklung
JPS61147830A (ja) * 1984-12-18 1986-07-05 Furukawa Electric Co Ltd:The 自動車熱交換器のフイン用銅合金
JPS6250425A (ja) * 1985-08-29 1987-03-05 Furukawa Electric Co Ltd:The 電子機器用銅合金
DE69133422T2 (de) * 1990-05-31 2006-02-02 Kabushiki Kaisha Toshiba, Kawasaki Leiterrahmen und diesen verwendende halbleiter verpackung
JP2864279B2 (ja) * 1990-06-20 1999-03-03 本田技研工業株式会社 摺動部材の組合せ
JP2692507B2 (ja) 1992-09-03 1997-12-17 日立工機株式会社 かご形回転子の製造装置
JP3362479B2 (ja) 1993-11-05 2003-01-07 株式会社日立製作所 回転電機の回転子
JPH1129379A (ja) * 1997-02-14 1999-02-02 Ngk Insulators Ltd 半導体ヒートシンク用複合材料及びその製造方法
DE10014643C2 (de) 2000-03-24 2003-01-30 Siemens Ag Verfahren zur Herstellung eines Läuferkäfigs für einen Asynchronmotor
US20050134137A1 (en) * 2003-12-17 2005-06-23 Sweo Edwin A. Method for manufacturing squirrel cage rotor
DE202004020873U1 (de) * 2004-03-31 2006-03-30 Ziehl-Abegg Ag Elektrische Maschine
JP4660735B2 (ja) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 銅基合金板材の製造方法
JP4680765B2 (ja) * 2005-12-22 2011-05-11 株式会社神戸製鋼所 耐応力緩和特性に優れた銅合金
JP2009179864A (ja) * 2008-01-31 2009-08-13 Kobe Steel Ltd 耐応力緩和特性に優れた銅合金板
RU2395151C1 (ru) * 2009-04-22 2010-07-20 Андрей Витальевич Шишов Ротор асинхронного двигателя
DE102009018951A1 (de) * 2009-04-25 2010-11-04 Ksb Aktiengesellschaft Kurzschlussläufer mit gegossenen Kurzschlussstäben
JP2011027280A (ja) * 2009-07-22 2011-02-10 Daikin Industries Ltd 給湯用伝熱管
WO2012026610A1 (fr) 2010-08-27 2012-03-01 古河電気工業株式会社 Feuille d'alliage de cuivre et procédé de fabrication de celle-ci
CN102394118A (zh) * 2011-09-13 2012-03-28 无锡市嘉邦电力管道厂 铜合金电缆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9973068B2 (en) 2018-05-15
JP2016518525A (ja) 2016-06-23
ES2820568T3 (es) 2021-04-21
EP2989224A1 (fr) 2016-03-02
KR102195080B1 (ko) 2020-12-28
US20160056698A1 (en) 2016-02-25
WO2014173498A1 (fr) 2014-10-30
DE102013007274B4 (de) 2020-01-16
CN105164292A (zh) 2015-12-16
RU2015150333A (ru) 2017-06-02
DE102013007274A1 (de) 2014-10-30
RU2661691C2 (ru) 2018-07-19
JP6254679B2 (ja) 2017-12-27
KR20160002690A (ko) 2016-01-08

Similar Documents

Publication Publication Date Title
DE69708578T2 (de) Kupferlegierung und Verfahren zu ihrer Herstellung
DE69327470T2 (de) Kupferlegierung mit hoher festigkeit und guter leitfähigkeit und verfahren zu deren herstellung
DE112009000731B4 (de) Cu-Ni-Si-Co-Cr-Systemlegierung für elektronische Materialien
EP2989224B1 (fr) Alliage cuivreux de fonderie pour machines asynchrones
DE3346882C2 (de) Verwendung einer Aluminiumlegierung für Konstruktionen mit hohem spezifischem elektrischem Widerstand
DE19816671A1 (de) Lötmittel-Legierungen
DE10147968B4 (de) Kupferlegierung von hoher mechanischer Festigkeit
EP3011069B1 (fr) Alliage pour résistance électrique, élément structural fabriqué en cet alliage, et procédé de production correspondant
EP3320122B1 (fr) Alliage de laiton
EP0313036A1 (fr) Application d'un alliage cuivre-zinc
DE112005000312T5 (de) Kupferlegierung
DE69207289T2 (de) Legierung auf Kupfer-Nickel-Basis
DE2932275A1 (de) Material fuer elektrische kontakte aus innen oxidierter ag-sn-bi-legierung
WO2016045770A1 (fr) Élément de connexion électrique
EP2527479B1 (fr) Alliage d'aluminium hautement conducteur pour produits conducteurs électriques
EP2644723A1 (fr) Matière active composite
WO2014154191A1 (fr) Alliage de cuivre
DE69219397T2 (de) Metalloxidmaterial auf Silberbasis für elektrische Kontakte
DE112005001271T5 (de) Kupferlegierung für elektrische und elektronische Geräte
DE102014105709A1 (de) Rotor aus aluminumlegierung für eine elektromagnetische vorrichtung
AT393697B (de) Verbesserte metallegierung auf kupferbasis, insbesondere fuer den bau elektronischer bauteile
DE3530736A1 (de) Leitermaterial auf kupferbasis fuer anschluesse von halbleitervorrichtungen
DE4415067C2 (de) Verfahren zur Herstellung einer Kupfer-Nickel-Silizium-Legierung und deren Verwendung
EP3670691A1 (fr) Alliage de magnesium et son procédé de fabrication
EP1043409B1 (fr) Matériau composite préparé par métallurgie des poudres

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIEDLE, JOACHIM

Inventor name: NOLL,TONY ROBERT

Inventor name: ALLMENDINGER, TIMO

Inventor name: THUMM, GERHARD

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181022

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014489

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293444

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2820568

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210410

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240312

Year of fee payment: 11

Ref country code: IT

Payment date: 20240313

Year of fee payment: 11

Ref country code: FR

Payment date: 20240308

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240430

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240509

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240326

Year of fee payment: 11