EP2825699B1 - Faserstoffzusammensetzung - Google Patents

Faserstoffzusammensetzung Download PDF

Info

Publication number
EP2825699B1
EP2825699B1 EP13714563.7A EP13714563A EP2825699B1 EP 2825699 B1 EP2825699 B1 EP 2825699B1 EP 13714563 A EP13714563 A EP 13714563A EP 2825699 B1 EP2825699 B1 EP 2825699B1
Authority
EP
European Patent Office
Prior art keywords
grass
algae
pulp
seagrass
sedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13714563.7A
Other languages
English (en)
French (fr)
Other versions
EP2825699A1 (de
Inventor
Uwe D'agnone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201220002588 external-priority patent/DE202012002588U1/de
Application filed by Individual filed Critical Individual
Priority to SI201330543A priority Critical patent/SI2825699T1/sl
Priority to RS20170230A priority patent/RS55754B1/sr
Priority to PL13714563T priority patent/PL2825699T3/pl
Publication of EP2825699A1 publication Critical patent/EP2825699A1/de
Application granted granted Critical
Publication of EP2825699B1 publication Critical patent/EP2825699B1/de
Priority to HRP20170354TT priority patent/HRP20170354T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/14Secondary fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/12Pulp from non-woody plants or crops, e.g. cotton, flax, straw, bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard

Definitions

  • the present invention relates to a pulp composition, in particular for use in the production of paper, paperboard, cardboard, printing media, insulating or insulating material, fiberboard, filling material and a method for producing such a pulp mixture.
  • Pulp mixtures are known in the art.
  • wood-containing and wood-free fibers are used in the prior art, which are obtained essentially from tree-like plants.
  • the corresponding plants such as tree trunks are crushed and processed either as wood pulp or as pulp, in which at least significant parts of the lignin contained in the wood are removed.
  • the corresponding fibrous materials are sometimes even adapted to the optical and mechanical requirements, for example by means of bleaching or grinding and then processed further.
  • a disadvantage of the known in the prior art pulp compositions and processes for the preparation of this is that the defibration of wood, wood logs or sawdust is very energy-consuming, in the production of pulp considerable process engineering effort, as well as significant amounts of chemical aids and water used Need to become.
  • the wood to be used for this purpose must be cultured for a relatively long period of time before it can be fed to the fiber preparation process. Furthermore, this relatively high transport costs are necessary.
  • the object is achieved by a pulp mixture according to claim 1 and the claimed method for producing this pulp mixture according to claim 8.
  • Preferred embodiments of the pulp composition and the method are the subject of the respective subclaims.
  • the object is also achieved by the use of the pulp for the production of products, as they are determined with claim 16.
  • the pulp mixture according to the invention comprises a predetermined proportion of virgin fibers and / or waste paper, which in addition to the excipients and water and a predetermined proportion of fresh and / or sour grass and / or seaweed and / or algae fibers has.
  • the proportion by weight of the fresh, sour, seagrass and / or algae fibers (individually or in combination) in the pulp mixture is between 1 and 100% by weight, based on the entire mass of the pulp and determined as the oven-dry pulp content.
  • oven-dry substance content For determining the oven-dry substance content, reference is made to the relevant standards for determining consistency, dry content and / or residual moisture content.
  • virgin fibers or waste paper are understood to be fibrous materials selected from the group consisting of long fiber pulp, short fiber pulp, chemically delignified pulps, sulphate pulp, sulphite pulp, soda or organocell pulps, cotton pulp, pulp, thermo mechanical pulp, groundwood, chemo Thermo Mechanical Pulp, waste paper, in particular of grades A - D: Lower varieties; E - J: medium varieties; K - U: better varieties; V - W: kraft grades and X: special grades, bleached pulps, combinations thereof, and the like. It should be noted that it is also within the meaning of the present invention that the aforementioned fibrous materials are or are pretreated mechanically and / or chemically.
  • the bleach can be either oxidative or reductive, or even in the combination of corresponding bleaching stages exist.
  • the fibrous materials may also be pretreated enzymatically, so as to reduce, for example, the grinding resistance of the pulp.
  • the pulp composition according to the invention also comprises a predetermined proportion of sweet and / or sour grass fibers.
  • grass fibers are preferably provided from dried, semi-dried or fresh grass, the grass preferably being selected from a group consisting of ear-grasses, bluegrasses and spikes grasses, as well as species of the genera Poaceae, and Cyperaceae, in particular grasses of the subfamilies Anomochlooideae, Pharoideae, Puelioideae, Bambusoideae Ehrhartoideae, Pooideae, such as, for example, Tribus Aveneae, Tribune Poeae, Tribe Triticeae, Aristidoideae, Danthonioideae, Arundinoideae, Chloridoideae, Centothecoideae, Panicoideae, such as Saccharum officinarum and Micrairoideae,
  • seagrass or algae can also be used as so-called grass fibers in addition to or in combination with the above sweet and / or sour grasses, which are selected from a group which includes, inter alia, genera seagrass (Zostera) and the species Zostera angustifolia (Hornem.) Rchb Zostera asiatica Miki, Zostera caespitosa Miki, Zostera capensis Setch., Zostera capricorni Ash., Zostera caulescens Miki, Zostera japonica Ash.
  • the fresh, sour, seagrass and / or algae fiber fraction (individually or in combination) of the pulp composition is mechanically processed before it is mixed with the other constituents.
  • the fresh, sour, seagrass and / or algae can be further processed directly after the cut without drying.
  • this direct processing it should be further noted that this is accompanied by a relatively strong green discoloration in the end product (grass paper), if no further precautions or process steps are taken.
  • the grass ie the fresh and / or sour and / or seagrass and / or algae fiber can also only be partially dried, with low residual moisture also accompanied by a reduced green discoloration in the end product.
  • the grass can be very heavily dried (dry content between 75 and 90%), whereby relatively low green colorations can be achieved in the final product.
  • the grass is washed prior to processing. This can be done in one or more stages, for which purpose preferably water is used whose temperature is between 10 ° C and 95 ° C. Good results are achieved with multiple washes ranging between one and six wash cycles.
  • the grass is provided by cutting and harvesting meadow grass, sports and / or working lawns, wherein especially in meadows the second or each further cut is particularly well suited, as this reduces the tendency to knot is.
  • the grass or grass fibers When cleaning the grass or grass fibers, it is also within the spirit of the present invention that prior to further processing, contaminants such as e.g. Earth, stones, plastic, etc. are removed. This can be dry-cleaned both by air classifiers (here, for example, the fibers are blown with air on a sieve, whereby heavy foreign matter and light foreign matter in this case due to their weight, a distance other than the fibers overcome and thus separated). Alternatively, in particular, the dry fibers can also be cleaned by centrifuges. In addition, the fibers can also be washed for cleaning, which can be done for example by washing out and wrestling in a filter. Through this cleaning step, the green discoloration can also be reduced in parallel.
  • air classifiers here, for example, the fibers are blown with air on a sieve, whereby heavy foreign matter and light foreign matter in this case due to their weight, a distance other than the fibers overcome and thus separated.
  • the dry fibers can also be cleaned by centrifuges.
  • This process can be done in Any state of fiber, whether fresh or dry. Due to the then lower resistance, the shredding of the dry fiber is the easiest.
  • the comminution is also possible during grinding, such as in the refiner and the corresponding setting of this unit.
  • Another possibility is a combination of cutting before grinding and grinding, for example, the fibers outside the refiner or Dutchman to a max. Pre-cut length of 50 mm and compressed, for example, to pellets. These pellets can then be suspended in water and, after swelling in the refiner or dutchman, further comminuted or ground. With this possibility results inter alia a shortening of the processing time in the refiner / dutchman and an associated energy saving.
  • adjuvants are in particular additives which are selected from the group consisting of retention agents, drainage aids, retention agent dual systems or microparticle systems, wet and dry strength promoters, fillers and / or pigments, in particular from a group of kaolin, talc , Calcium carbonate, calcium silicate, titanium dioxide, aluminum hydroxide, silicic acid, bentonite, barium sulfate, selected, binder components, coating components, antifoams, deaerators, biocide, enzymes, antioxidants, preservatives, bleaching aids, optical brighteners, dyes, shading dyes, impurities scavenger, precipitants, glue, resin, Fixatives, wetting agents, pH regulators, binders, such as starch, Carboxymethyl cellulose, casein, guar, soy proteins, cellulose ethers, vegetable proteins of other origin, synthetic binders in dispersion form and water-soluble form based on styrene-but
  • the proportion of the weight fraction of fresh, sour, seagrass and / or algae fibers is greater than 10%, in particular greater than 25% and particularly preferably greater than 50% / or the proportion of fresh fibers and / or waste paper is less than the proportion by weight of sweet, sour, seagrass and / or algae fibers in the pulp composition.
  • the object of the present invention is also achieved by a process for producing a pulp mixture, the process comprising the steps of harvesting the sweet, sour, seagrass and / or algae (singly or in combination), cutting the sweet, sour -, seaweed and / or algae fiber (individually or in combination) to a predetermined length, the suspension of the fresh, sour, seagrass and / or algae fibers (individually or in combination) in water and the addition of predetermined proportions of fresh fiber and / or waste paper and / or excipients.
  • a process for producing a pulp mixture comprising the steps of harvesting the sweet, sour, seagrass and / or algae (singly or in combination), cutting the sweet, sour -, seaweed and / or algae fiber (individually or in combination) to a predetermined length, the suspension of the fresh, sour, seagrass and / or algae fibers (individually or in combination) in water and the addition of predetermined proportions of fresh fiber and / or waste paper
  • the method according to the invention comprises, after mowing, the step of partially drying and / or pelleting, in which case the sweet, sour, seagrass and / or algae fibers (individually or in combination) preferably have a predetermined length prior to pelleting is shortened. Possibly. This can also be combined with the pelleting process or process.
  • the green grass fiber fraction is ground before the addition of virgin fibers and / or waste paper.
  • This can be historically through a dutchman or modern through take a refiner, which can be ground by cutting the adjustment of the corresponding treated pulp and / or fibrillating.
  • the fribrilizing refining has the advantage of not only changing the length of the pulp, but also significantly increasing the surface area of the pulp, thus increasing the ability to build up connections between the fibers and thus also improving the strength of the product produced.
  • pulp composition it is also within the meaning of the present invention that individual pulp components or the entire pulp composition is bleached, sorted, dispersed and / or homogenized and in particular when processing into paper, cardboard or paperboard is adjusted to a predetermined consistency.
  • this reduction should be carried out in such a way that the length of the grass is predominantly approx. 20 cm, in particular 10 cm and preferably between 100 mm and 0.1 mm, more preferably between 50 mm and 1 mm and in particular between 10 mm and 1 mm.
  • the object of the present invention is also achieved by the use of the above-described pulp composition for producing paper, paperboard, cardboard, printing substrates, insulating or insulating material, fiberboard, filling material, combinations thereof, and the like.
  • grass paper for example, conventional lawns, lawns (sports lawns, private households, towns and municipalities) - in the following only called grass - can be used. It can be used here a variety of grasses of the order "sweet grass” (Poales) or “sour grass” (Cyperaceae), wherein in the subfamily Cyperoidorae such. Zypergräser and papyrus may be subject to certain restrictions. For these grasses, additional peeling would be required for further processing. This might be (energy) consuming.
  • the grass When inserting the ordinary meadow grass can be processed easily on existing leaves on meadows. For better processing, storage and more efficient transport, the grass can be dried (hay) freed from foreign matter and crushed. A compression, such as pelleting can be useful here.
  • the grass is in a row without added additional processing in a mixing ratio of, for example, 10% in a stock suspension, or presented in water.
  • the other additives may be pulps of virgin fibers or else secondary fibers such as rags or waste paper. These additives can also be combined.
  • the ratio of pulp components can be increased up to 99% grass fiber content.
  • Et al the natural color of the grass gives the material a high opacity. Due to the high opacity, the user of the paper can use lighter grammages without allowing a shine through.
  • the material can optionally z. B. on the line, the mass or when sizing colored. As a result, a fair share of white can be obtained.
  • the surface can be additionally smoothed.
  • Dry hay with a dry content between 75 and 85% was used in this test series. This was roughly cleaned to be free of foreign matter such as e.g. Earth is free. Then it was shortened to one third of its length (about 20 cm) and then washed with about 15 degrees warm water and wrung out in a filter. This procedure was repeated 3 times and each time a lot of green discoloration was washed out.
  • the appropriately cleaned hay was added to a Dutchman while still wet. Added to this were fresh fiber pulp, waste paper (120g / sqm natural paper with 1.9 times volume) and auxiliaries. In a second batch filler was also added to see what impact this has on the surface and whiteness. After twenty-two minutes of suspension in the Dutch, the stock preparation was completed and test sheets were produced. Printing tests were carried out with these sheets in order to check whether the possibly missing whiteness can be improved, for example by means of offset printing in white. This too was successful.
  • Dry hay from meadow grass was used in this test series. This was cleaned with air and thus freed of foreign matter such as soil and dust and then reduced by means of a cutting unit to about one-tenth of its length (about 6 cm). This shortened hay was given to a Dutchman while still dry. Added to this were fresh fiber pulp, waste paper and two different auxiliaries in order, among other things, to obtain a better surface. After about 30 minutes of suspension, the stock preparation was completed. By means of a round sieve, sheets of about 70 x 100 cm were produced. These sheets were each transported on a felt on the drying cylinder and dried to about 35% residual moisture. In this test, the paper thus produced had a grammage of about 200 g / sqm or about 110 g / sqm.
  • the volume was about 1.3 g / cm 3 .
  • the paper thus produced shows different smoothness values on the top and bottom, the screen side being smoother than the top.
  • a printing test was carried out on a 4-color offset printing machine. A 4-color motif was tested here, once with the prior application of offset printing white and once without. Both variants were absolutely successful.
  • Tables 1 and 2 the property characteristics of the papers from Experiments 2 and 3 are compared. In this case, the values for sample 1 from experiment 2 and those for sample 2 from experiment 3. In addition to the absolute values, the changes in the characteristic values are also given in table 1, the calendering being expected to indicate the thickness and The air permeability of the paper decrease and, apart from the breaking force, all other values tend to increase transversely, and even significantly increase in terms of elongation.
  • Table 2 shows the optical measurement values of the two papers examined, whereby, in addition to the clear coloration, the very high opacity value of close to 100% can be recognized.
  • Pulp use Magazine paper 14% long fiber (pine / spruce) / Stendal ECF (Mercer), 33% short fiber (eucalyptus) / Cenibra, 3% CTMP (spruce / pine) / Waggeryd CTMP, 50% grass.
  • the grass is southern German meadow grass that was cut conventionally for feed use and dried in the air to approx. 8% residual moisture.
  • the defibration was carried out at a consistency of 5%, a speed of the pulper of 990 rpm over a period of 15 minutes.
  • the grinding was carried out at a consistency of 4%, a cutting angle of 60 °, an edge load of 0.7 Ws / m and a grinding energy of 150 kWh / t.
  • the dewatering resistance achieved after grinding was 32 ° SR.
  • Fiber material Wave paper from approx. 50% AP grade 1.02 / 50% AP variety 1.04, 50% grass.
  • the grass used is southern German meadow grass that was cut conventionally for feed use and dried in the air to a residual moisture content of around 8%.
  • Additives (based on pulp): 1% starch / Cargill 35844, 0.025% PAM / BASF - Percol 540
  • the grass used in the above composition was prepared as follows:
  • the defibration of the grass was carried out at a consistency of 10%, a speed of the pulper of 990 rpm over a period of 20 minutes. This was followed by deflaking at a speed of 2200 rpm over a period of 5 minutes. Grinding of the grass was carried out at a consistency of 8%, a cutting angle of 60 °, an edge load of 0.7 Ws / m and a grinding energy of 25 kWh / t. After that, the grass pulp had a drainage resistance measured as SR value of 52 °.
  • FIG. 2 the fiber length distribution in fiber length classes of the material systems used in this experiment is reproduced and compared with other, common pulp systems.
  • the fiber length classes - length weights and the y-axis the percentage in the fiber length class are plotted on the x-axis.
  • the course 1 shows the fiber length distribution of straw after defibration, 2 of straw after 5 min defibration, 3 short fiber pulp eucalyptus, 4 grass with a drainage resistance of 52 ° SR and 5 grass with a drainage resistance of 49 ° SR.
  • Paper rolls or paper sheets having different grammages between 40 g / m 2 and 80 g / m 2 for the magazine paper and between 90 g / m 2 and 250 g / m 2 for the corrugated cardboard liner under comparable conditions were produced from the corresponding material systems.
  • FIGS. 3 to 6 show the property values of corresponding magazine papers, which were made from the aforementioned pulp system. It shows FIG. 3 for a pulp / grass pulp system 31 and a pure pulp fiber system 32 the evolution of the specific volume in cm 3 / g (y-axis) as a function of the mass per unit area in g / m 2 (x-axis).
  • FIG. 4 shows the elongation at break along 41 and across 42 in% (y-axis) as a function of the area-related mass in g / m 2 (x-axis), FIG.
  • FIG. 5 the tensile index along 51 and transverse 52 in Nm / g (y-axis) as a function of the basis weight in g / m 2 (x-axis) and FIG. 6 the working capacity along 41 and transverse 42 in J / g (y-axis) as a function of the mass per unit area in g / m 2 (x-axis).
  • FIGS. 7 to 9 show the property values of corresponding corrugated cardboard liners made from the aforementioned pulp system. It shows FIG. 7 for a liner / grass pulp system 71 and a virgin liner pulp system 72, the evolution of the specific volume in cm 3 / g (y-axis) as a function of basis weight in g / m 2 (x-axis).
  • FIG. 8 shows the bursting resistance (according to Mullen) in kPa (y-axis) as a function of the mass per unit area in g / m 2 (x-axis)
  • FIG. 9 the strip crush resistance along 91 and transverse 92 in kN / m (y-axis) as a function of the area-related mass in g / m 2 (x-axis).
  • the results of the fiber length investigation and the fiber length distribution show a similarity with pulp such as fiber pulp systems from straw.
  • the pulp has a relatively large fiber diameter and a high fiber wall thickness. Especially at low basis weight, this has an increasing effect on the volume of the paper.
  • the tensile strength for magazine paper is approximately at the level of a wood-free, uncoated paper made of 100% short fiber pulp with about 20% filler.
  • the measured strengths of the liner are also at a good base level, with the higher volume having an advantageous effect on stiffness properties.

Landscapes

  • Paper (AREA)
  • Artificial Filaments (AREA)
  • Cosmetics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cultivation Of Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Faserstoffzusammensetzung, insbesondere für den Einsatz zur Erzeugung von Papier, Pappe, Karton, Druckträgern, Isolier- oder Dämmmaterial, Faserplatten, Füllmaterial und ein Verfahren zur Herstellung einer solchen Faserstoffmischung.
  • Faserstoffmischungen sind im Stand der Technik bekannt. Hierzu werden im Stand der Technik holzhaltige und holzfreie Faserstoffe verwendet, die im wesentlichen aus baumartigen Pflanzen gewonnen werden. Hierzu werden die entsprechenden Pflanzen wie zum Beispiel Baumstämme zerkleinert und entweder als Holzstoff oder als Zellstoff, bei welchem zu mindestens wesentliche Teile des im Holz enthaltenen Lignin entfernt werden, aufbereitet. Die entsprechenden Faserstoffe werden teilweise auch noch an die optischen und mechanischen Anforderungen, zum Beispiel mittels Bleiche oder Mahlung angepasst und dann weiter verarbeitet.
  • Nachteilig bei den im Stand der Technik bekannten Faserstoffzusammensetzungen und Verfahren zur Herstellung dieser ist, dass die Zerfaserung insbesondere von Holz, Holzstämmen oder auch Sägerestholz sehr Energieaufwendig ist, bei der Herstellung von Zellstoff erheblicher verfahrenstechnischer Aufwand, als auch erhebliche Mengen an chemischen Hilfsmitteln und Wasser verwendet werden müssen. Darüber hinaus muß das hierfür zu verwendende Holz über einen relativ langen Zeitraum kultiviert werden, bevor es dem Aufbereitungsprozess zur Faserherstellung zugeführt werden kann. Ferner sind hierfür auch relativ hohe Transportaufwendungen notwendig.
  • Hierzu ist im Stand der Technik die EP 2 374 930 A1 betreffend die Herstellung und Anwendung von Rohpapier, die GB 543 972 A betreffend Verbesserungen bei der Papierherstellung und die EP 281 811 A1 betreffend ein poröses Absorbent und ein Verfahren zur Herstellung bzw. der Nutzung eines solchen Absorbents bekannt.
  • Ausgehend von diesem Stand der Technik für Faserstoffmischungen und deren Herstellung ist es Aufgabe der vorliegenden Erfindung die im Stand der Technik bekannten Nachteile wenigstens teilweise zu reduzieren bzw. zu vermeiden.
  • Die Aufgabe wird durch eine Faserstoffmischung gemäß Anspruch 1 und das beanspruchte Verfahren zur Herstellung dieser Faserstoffmischung gemäß Anspruch 8 gelöst. Bevorzugte Ausführungsformen der Faserstoffzusammensetzung und des Verfahrens sind Gegenstand der jeweiligen Unteransprüche. Ferner wird die Aufgabe auch durch die Verwendung des Faserstoffes zur Herstellung von Produkten gelöst, wie sie mit Anspruch 16 bestimmt sind.
  • Die erfindungsgemäße Faserstoffmischung umfasst einen vorgegebenen Anteil an Frischfasern und/oder Altpapier, die neben den Hilfsstoffen und Wasser auch einen vorgegebenen Anteil an Süß- und/oder Sauergras und/oder Seegras und/oder Algenfasernaufweist. Der Gewichtsanteil der Süß-, Sauer-, Seegras- und/oder Algenfasern (einzeln oder in Kombination) in der Faserstoffmischung liegt zwischen 1 und 100 Gewichtsprozent bezogen auf die gesamte Stoffmasse und bestimmt als ofentrockener Stoffanteil.
  • Für die Bestimmung der ofentrockenen Stoffanteils wird auf die einschlägigen Normen zur Bestimmung Stoffdichte, Trockengehalt und/oder Restfeuchte verwiesen.
  • Als Frischfasern oder Altpapier werden gemäß der vorliegenden Erfindung Faserstoffe verstanden, welche aus einer Gruppe ausgewählt sind, welche Langfaserzellstoff, Kurzfaserzellstoff, chemisch delignifizierte Faserstoffe, Sulfatzellstoff, Sulfitzellstoff, Zellstoffe aus dem Sodaverfahren oder Organocellverfahren, Baumwollzellstoff, Holzstoff, Thermo Mechanical Pulp, Holzschliff, Chemo Thermo Mechanical Pulp, Altpapier insbesondere der Sorten A - D: Untere Sorten; E - J: Mittlere Sorten; K - U: Bessere Sorten; V - W: Krafthaltige Sorten und X: Sondersorten, gebleichte Zellstoffe, Kombinationen hiervon und dergleichen enthält. Dabei ist zu berücksichtigen, dass es auch im Sinne der vorliegenden Erfindung liegt, dass die vorgenannten Faserstoffe mechanisch und/oder chemisch vorbehandelt werden oder sind. Dies umfasst insbesondere die Mahlung und/oder das Schneiden der Fasern, aber auch das Bleichen und/oder das chemische Mahlen dieser Faserstoffe. Die Bleiche kann hierbei sowohl oxidativ oder reduktiv erfolgen, bzw. auch in der Kombination aus entsprechenden Bleichstufen bestehen. Fernen können die Faserstoffe auch enzymatisch vorbehandelt sein, um somit zum Beispiel die Mahlresistenz des Faserstoffes zu reduzieren.
  • Neben den zuvor dargestellten und bestimmten Faserstoffen umfasst die erfindungsgemäße Faserstoffzusammensetzung auch einen vorgegebenen Anteil von Süß- und/oder Sauergrasfasern. Diese Grasfasern werden vorzugsweise aus getrocknetem, teilgetrocknetem oder frischen Gras bereitgestellt, wobei das Gras vorzugsweise aus einer Gruppe ausgewählt wird, welche Ährengräser, Rispengräser und Ährenrispengräser, sowie Riedgrasgewächse der Gattungen Poaceae, und Cyperaceae, insbesondere Gräser der Unterfamilien Anomochlooideae, Pharoideae, Puelioideae, Bambusoideae, Ehrhartoideae, Pooideae, wie zum Beispiel Tribus Aveneae, Tribus Poeae, Tribus Triticeae, Aristidoideae, Danthonioideae, Arundinoideae, Chloridoideae, Centothecoideae, Panicoideae, wie zum Beispiel Saccharum officinarum und Micrairoideae und insbesondere Agrostis canina - Hunds-Straußgras; Agrostis capillaris - Rotes Straußgras; Agrostis stolonifera - Weißes Straußgras; Agrostis vinealis - Sand-Straußgras; Aira caryophyllea - Nelken-Haferschmiele; Aira praecox - Frühe Haferschmiele; Alopecurus geniculatus - Knick-Fuchsschwanzgras; Alopecurus myosuroides - Acker-Fuchsschwanz; Alopecurus pratensis - Wiesen-Fuchschwanzgras; Ammophila arenaria - Strandhafer; Anthoxanthum aristatum - Grannen-Ruchgras; Anthoxanthum odoratum - Gewöhnliches Ruchgras; Apera spica-venti - Gewöhnlicher Windhalm; Arrhenatherum elatius - Glatthafer; Avena fatua - Flug-Hafer; Avena sativa - Saat-Hafer; Brachypodium pinnatum - Fieder-Zwenke; Brachypodium sylvaticum - Wald-Zwenke; Briza maxima - Großes Zittergras; Briza media - Gewöhnliches Zittergras; Bromus arvensis - Acker-Trespe; Bromus benekenii - Raue Trespe; Bromus carinatus - Plattährige Trespe Bromus commutatus - Wiesen-Trespe; Bromus erectus - Aufrechte Trespe; Bromus hordeaceus - Weiche Trespe; Bromus inermis - Grannenlose Trespe; Bromus madritensis - Mittelmeer-Trespe; Bromus secalinus - Roggen-Trespe; Bromus sterilis - Taube Trespe; Bromus tectorum - Dach-Trespe; Calamagrostis arundinacea - Wald-Reitgras; Calamagrostis epigejos - Land-Reitgras; Catapodium rigidum - Steifgras; Coix lacryma-jobi - Hiobsträne; Cortaderia selloana - Pampasgras; Corynephorus canescens - Silbergras; Cynodon dactylon - Hundszahngras; Cynosurus cristatus - Kammgras; Dactylis glomerata - Wiesen-Knäuelgras; Danthonia decumbens - Dreizahn; Deschampsia cespitosa - Rasen-Schmiele; Deschampsia flexuosa - Draht-Schmiele; Deschampsia setacea - Moor-Schmiele; Digitaria ischaemum - Faden-Fingerhirse; Digitaria sanguinalis - Blutrote Fingerhirse; Echinochloa crus-galli - Gewöhnliche Hühnerhirse; Echinochloa muricata - Borstige Hühnerhirse; Elymus caninus - Hunds-Quecke; Elymus repens - Kriechende Quecke; Eragrostis albensis - Elbe-Liebesgras; Eragrostis curvula - Gebogenes Liebesgras; Eragrostis minor - Kleines Liebesgras; Eragrostis multicaulis - Japanisches Liebesgras; Festuca arundinacea - Rohr-Schwingel; Festuca filiformis - Haar-Schwafschwingel; Festuca gigantea - Riesen-Schwingel; Festuca pratensis - Wiesen-Schwingel; Festuca rubra - Rot-Schwingel; Glyceria fluitans - Flutender Schwaden; Glyceria maxima - Großer Schwaden; Glyceria maxima - Großer Schwaden; Helictotrichon pratense - Echter Wiesenhafer; Helictotrichon pubescens - Flaumhafer; Helictotrichon pubescens - Flaumhafer; Holcus lanatus - Wolliges Honiggras; Hordelymus europaeus - Wald-Haargerste; Hordeum jubatum - Mähnen-Gerste; Hordeum murinum - Mäuse-Gerste; Hordeum vulgare - Saat-Gerste; Koeleria macrantha - Zierliches Schillergras; Koeleria pyramidata - Pyramiden-Schillergras; Lolium multiflorum - Vielblütiges Weidelgras; Lolium perenne - Ausdauerndes Weidelgras; Lolium remotum - Lein-Lolch; Lolium temulentum - Taumel-Lolch; Melica ciliata - Wimper-Perlgras; Melica nutans - Nickendes Perlgras; Melica uniflora - Einblütiges Perlgras; Milium effusum - Flattergras; Miscanthus floridulus - Riesen-Chinaschilf; Miscanthus sacchariflorus - Silberfahnengras; Miscanthus sinensis - Chinaschilf; Miscanthus sinensis 'Variegatus' - Chinaschilf; Miscanthus sinensis 'Variegatus' - Chinaschilf; Molinia arundinacea - Rohr-Pfeifengras; Molinia caerulea - Gewöhnliches Pfeifengras; Nardus stricta - Borstgras; Panicum capillare - Haarästige Hirse; Panicum miliaceum - Rispen-Hirse; Panicum riparia - Flussufer-Rispenhirse; Pennisetum setaceum - Rotes Lampenputzergras; Pennisetum villosum - Federborstengras; Phalaris arundinacea - Rohr-Glanzgras; Phalaris canariensis - Kanariengras; Phleum phleoides - Steppen-Lieschgras; Phleum pratense - Wiesen-Lieschgras; Phragmites australis - Schilf; Poa annua - Einjähriges Rispengras; Poa bulbosa - Knolliges Rispengras Poa chaixii - Wald-Rispengras; Poa compressa - Platthalm-Rispengras; Poa nemoralis - Hain-Rispengras; Poa palustris - Sumpf-Rispengras; Poa pratensis - Wiesen-Rispengras; Poa trivialis - Gewöhnliches Rispengras; Polypogon monspeliensis - Bürstengras; Puccinellia distans - Gewöhnlicher Salzschwaden; Secale cereale - Roggen; Sclerochloa dura - Hartgras; Setaria italica - Kolbenhirse; Setaria pumila - Fuchsrote Borstenhirse; Setaria verticillata - Quirlige Borstenhirse ; Setaria viridis - Grüne Borstenhirse; Sorghum bicolor - Mohrenhirse; Sorghum halepense - Wilde Mohrenhirse; Trisetum flavescens - Goldhafer; Triticale; Triticum aestivum - SaatWeizen; Triticum dicoccon - Emmer; Triticum durum - Hartweizen; Triticum monoccocum - Einkorn; Triticum spelta - Dinkel; Vulpia myuros - Mäuseschwanz-Federschwingel; Zea mays - Mais, Wiesengras, Sport- und Gebrauchsgras wie zum Beispiel, Festuca, Lolium perenne, Poa pratensis, Agrosti, Sauergräser der Gattung Carex, Kombinationen hiervon und dergleichen enthält. Auch bei diesen Fasern ist zu berücksichtigen, dass es auch im Sinne der vorliegenden Erfindung liegt, die vorgenannten Faserstoffe nach Bedarf mechanisch und/oder chemisch vorzubehandeln. Dies umfasst insbesondere die Mahlung und/oder das Schneiden der Fasern, aber auch das Bleichen und/oder das chemische Mahlen dieser Faserstoffe. Die Bleiche kann hierbei sowohl oxidativ oder reduktiv erfolgen, bzw. auch in der Kombination aus entsprechenden Bleichstufen bestehen. Fernen können die Faserstoffe auch enzymatisch vorbehandelt sein, um somit zum Beispiel die Mahlresistenz des Faserstoffes zu reduzieren.
  • Besonders bevorzugte Zusammensetzungen für die Süß- und/oder Sauergrasfasern ergeben sich wie folgt, wobei die entsprechenden Zusammensetzungen bevorzugt wenigstens die genannten Pflanzen aufweisen:
    • Variante 1: Glatthafer, Goldhafer, Knaulgras, Rotes Straußgras, Wiesenlieschgras.
    • Variante 2: Mais.
    • Variante 3: Wenigstens ein Gras aus einer Gruppe, welche Quellbinsen (Blysmus), Strandsimsen (Bolboschoenus), Seggen (Carex), Schneiden (Cladium), Zypergräser (Cyperus), Sumpfbinsen (Eleocharis), Wollgräser (Eriophorum), Moorbinsen (Isolepis), Nackt-/Schuppenried (Kobresia), Schnabelriede (Rhynchospora), Kopfried (Schoenus), Teichbinsen (Schoenoplectus), Simsen (Scirpus), Rasenbinsen (Trichophorum) umfasst.
    • Variante 4: Buchweizen, Deutsches Weidelgras, Glatthafer, Goldhafer, Hafer, Knaulgras, Waldstaudenroggen, Welsches Weidelgras, Wiesenlieschgras, Wiesenrispe, Wiesenschwingel.
    • Variante 5: Zuckerrohr.
    • Variante 6: Buchweizen, Waldstaudenroggen, Hafer.
    • Variante 7: Hafer, Buchweizen, Waldstaudenroggen, Schwarzhafer, Saatweizen.
    • Variante 8: Wiesenschwingel, Dt. Weidelgras, Wiesenlieschgras, Wiesenrispe, Rotschwingel.
    • Variante 9: Dt. Weidelgras Gremie, Dt. Weidelgras Hübal, Dt. Weidelgras, Rotschwingel, Wiesenlieschgras, Wiesenrispe.
    • Variante 10: Festuca rubra commutata, Festuca rubra trichophylla, Poa pratensis.
    • Variante 11: Lolium perenne, Poa pratensis, Festuca rubra rubra.
    • Variante 12: Koeleria macrantha, Poa pratensis, Festuca rubra commutata.
    • Variante 13: Festuca rubra trichophylla, Festuca rubra commutata, Poa pratensis.
    • Variante 14: Festuca rubra commutata, Festuca rubra rubra, Festuca rubra trichophylla, Lolium perenne, Poa pratensis.
    • Variante 15: Festuca rubra trichoph. Festuca rubra rubra, Lolium perennePoa , pratensis, Achillea millefolium.
    • Variante 16: Agrostis canina oder Agrostis capillaris,, Festuca ovina duriusula oder Festuca ovina vulgaris, Festuca rubra commutata, Festuca rubra rubra, Festuca rubra trichophylla, Lolium perenne, Poa pratensis.
    • Variante 17: Agrostis canina oder Agrostis capillaris, Festuca ovina duriusula oder Festuca ovina vulgaris, Festuca rubra commutata, Festuca rubra rubra, Festuca rubra trichophylla, Lolium perenne, Poa pratensis.
  • Ferner können neben oder in Kombination mit den vorstehenden Süß- und/oder Sauergräsers auch Seegras oder Algen als sogenannte Grasfasern eingesetzt werden, welche aus einer Gruppe ausgewählt werden, welche unter anderem Gattungen Seegräser (Zostera) und die Arten Zostera angustifolia (Hornem.) Rchb., Zostera asiatica Miki, Zostera caespitosa Miki, Zostera capensis Setch., Zostera capricorni Asch., Zostera caulescens Miki, Zostera japonica Asch. & Graebn., Gewöhnliches Seegras (Zostera marina L.), Zostera mucronata Hartog, Zostera muelleri Irmisch ex Asch., Zwerg-Seegras (Zostera noltii Hornem.), Zostera novazelandica Setch., Zostera tasmanica M.Martens ex Asch., ferner Heterozostera und Phyllospadix, Neptungräser (Posidonia) aus der Familie Posidoniaceae, Cymodocea, Halodule, Syringodium und Thalassodendron aus der Familie Cymodoceaceae und Enhalus acoroides, Halophila und Thalassia aus der Familie der Froschbissgewächse (Hydrocharitaceae), Unterfamilie Halophiloideae, bzw. Glaucophyta, Haptophyta, Schlundgeißler (Cryptista), Euglenozoa, Dinozoa (s. Dinoflagellaten), Raphidophyceae (Chloromonadophyceae), Chlorarachniophyta, Gelbgrüne Algen (Xanthophyceae), Goldalgen (Chrysophyta), Kieselalgen (Bacillariophyta), Braunalgen (Phaeophyta), Rotalgen (Rhodophyta), Grünalgen (Chlorophyta), Picobiliphyta, Heterokontophyta, Excavata, Stramenopile, Haptophyta, Cryptophyta, Chlorarachniophyta und Heterokontophyta, Alveolata, Biliphyta Kombinationen hiervon und dergleichen enthält.
  • Gemäß einer weiteren, besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird insbesondere nur der Süß-, Sauer-, Seegras- und/oder Algenfaseranteil (einzeln oder in Kombination) der Faserstoffzusammensetzung vor dessen Vermengung mit den anderen Bestandteilen mechanisch aufbereitet. Dies umfasst insbesondere die Trocknung, Reinigung und/oder Kürzung bzw. Mahlung.
  • Dabei kann insbesondere das Süß-, Sauer-, Seegras- und/oder die Algen (einzeln oder in Kombination) direkte nach dem Schnitt ohne Trocknung weiterverarbeitet werden. Dies sollte bevorzugt möglichst zeitnah zum Schnitt bzw. der Ernte erfolgen, da der sonst startende Gärungsprozess u.a. zu einer erhöhten Temperaturentwicklung, insbesondere bei Zusatz von Wasser bei der Weiterverarbeitung führt. Bei dieser direkten Verarbeitung ist fernere festzustellen, dass diese mit einer relativ starken Grünverfärbung beim Endprodukt (Graspapier) einhergeht, wenn keine weiteren Vorkehrungen oder Verfahrensschritte vorgenommen werden.
  • Alternativ kann das Gras d.h. die Süß- und/oder Sauer- und/oder Seegras- und/oder Algenfaser auch nur teilweise getrocknet werden, wobei mit geringer Restfeuchtigkeit auch eine reduzierte Grünverfärbung im Endprodukt einhergeht.
  • Schließlich kann das Gras sehr stark getrocknet (Trockengehalt zwischen 75 und 90 %) werden, womit relativ geringe Grüneinfärbungen im Endprodukt erzielt werden können.
  • Es liegt ferner auch im Sinn der vorliegenden Erfindung, dass das Gras vor der Verarbeitung gewaschen wird. Dies kann ein- oder mehrstufig erfolgen, wobei hierzu vorzugsweise Wasser verwendet wird, dessen Temperatur zwischen 10 °C und 95 °C liegt. Gute Ergebnisse werden mit mehrfachen Waschungen im Bereich zwischen einem und sechs Waschzyklen erzielt.
  • Gemäß einer weiteren, besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird das Gras durch schneiden und ernten von Wiesengras, Sport- und/oder Gebrauchsrasen bereitgestellt, wobei sich insbesondere bei Wiesen der zweite oder jeder weitere Schnitt besonders gut eignet, da hierbei die Tendenz zur Knotenbildung reduziert ist. Es liegt aber auch im Sinn der vorliegenden Erfindung Süß- und/oder Sauergras aus dem ersten Schnitt der Weiterverarbeitung zuzuführen, wobei sich dann der Aufwand beim Schneiden und/oder Mahlen ggf. erhöhen kann.
  • Bei der Reinigung des Grases bzw. der Grasfasern liegt es auch in Sinn der vorliegenden Erfindung, dass vor der Weiterverarbeitung Fremdstoffe wie z.B. Erde, Steine, Kunststoff, etc. entfernt werden. Dies kann sowohl durch Windsichter (hierbei werden beispielsweise die Fasern mit Luft auf ein Sieb geblasen, wodurch schwere Fremdstoffe und leichte Fremdstoffe hierbei aufgrund ihres Gewichtes eine andere Entfernung als die Fasern überwinden und somit separiert werden) trocken gereinigt werden. Alternativ können insbesondere die trockenen Fasern auch mittels Zentrifugen gereinigt werden. Darüber hinaus können die Fasern auch für die Reinigung gewaschen werden, wobei dies Beispielsweise durch Auswaschen und Wringen in einem Filter durchgeführt werden kann. Durch diesen Reinigungsschritt lässt sich auch parallel die Grünverfärbung verringern.
  • Vorteil einer trockenen Reinigung ist, dass eine ggf. notwendige Zwischentrockung vermieden werden kann.
  • Darüber hinaus liegt es im Sinn der vorliegenden Erfindung die Fasern vor der Suspendierung auf eine max. Länge von 15 mm, am besten jedoch auf unter 1 mm zu zerkleinert, um eine gute Verarbeitung zu gewährleisten. Dieser Vorgang kann in jedem Zustand der Faser erfolgen, ob frisch oder trocken. Aufgrund des dann geringeren Wiederstandes ist das Zerkleinern bei der trockenen Faser am einfachsten. Möglich ist die Zerkleinerung auch bei der Mahlung, wie beispielsweise im Refiner und der entsprechenden Einstellung dieses Aggregates. Eine weitere Möglichkeit ist auch eine Kombination des Schneidens vor der Mahlung und der Mahlung, wobei beispielsweise die Fasern außerhalb des Refiners oder Holländers auf eine max. Länge von 50 mm vorgeschnitten und beispielsweise zu Pellets komprimiert werden. Diese Pellets können dann in Wasser suspendiert werden und nach deren Quellung im Refiner oder Holländer weiter zerkleinert bzw. gemahlen werden. Bei dieser Möglichkeit ergibt sich u.a. eine Verkürzung der Verarbeitungszeit im Refiner / Holländer und eine damit verbunden Energieersparnis.
  • Durch die Trocknung auf einen Trockengehalt zwischen 75 und 90 % ergibt sich u.a. eine verbesserte Lagerfähigkeit und eine damit verbundene ganzjährige Vorratshaltung und sowie eine saisonunabhängige Papierproduktion. Je trockener die Fasern sind um so weniger Gewicht muss transportiert werden. Durch die Komprimierung beim Pelletieren benötigt man weniger Transportvolumen und eine kürzere Zerkleinerungsphase im Refiner / Holländer.
  • Es liegt auch im Sinn der Erfindung beim Pelletieren das Mischverhältnis des Grases, mit den entsprechenden Zusätzen wie Zellstoff, Holzschliff, Altpapier etc. und/oder durch die Zugabe eines Hilfsstoffs oder mehrerer Hilfsstoffe eine Ausrüstung vorzunehmen und somit eine Fertigmischung für die Weiterverarbeitung bereit zu stellen.
  • Als Hilfsstoffe werden gemäß der vorliegenden Erfindung insbesondere Additive verstanden, welche aus einer Gruppe ausgewählt werden, welche Retentionsmittel, Entwässerungshilfsmittel, Retentionsmittel-Dual-systeme oder Mikropartikelsysteme, Nass- und Trockenverfestiger, Füllstoffe und/oder Pigmente, insbesondere aus einer Gruppe von Kaolin, Talkum, Calciumcarbonat, Calziumsilikat, Titandioxid, Aluminiumhydroxid, Kieselsäure, Bentonit, Bariumsulfat, ausgewählt, Bindemittelkomponenten, Streichfarbenkomponenten, Entschäumer, Entlüfter, Biozid, Enzyme, Antioxidantien, Konservierungsmittel, Bleichhilfsmittel, optische Aufheller, Farbstoffe, Nuancierfarbstoffen, Störstofffänger, Fällungsmittel, Leim, Harz, Fixiermittel, Benetzungsmittel, pH-Regulatoren, Bindemittel, wie Stärke, Carboxymethylcellulose, Casein, Guar, Sojaproteine, Celluloseether, pflanzliche Proteine anderen Ursprungs, synthetische Bindemittel in Dispersionsform sowie wasserlösbarer Form auf Basis von Styrol-Butadien, Styrol-(Meth) Acrylatestern, Vinylacetetat-Ethylen, Vinylacetat-Acrylatestern, Vinylacetat sowie Polyvinylalkoholen, Vernetzer, Viskositätsregler, optische Aufheller, Entlüfter, pH-Regulatoren, Kombinationen hiervon und dergleichen aufweist.
  • Gemäß einer weiteren, besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist der Anteil der Gewichtsanteil an Süß-, Sauer-, Seegras- und/oder Algenfasern (einzeln oder in Kombination) größer 10 %, insbesondere größer 25 % und besonders bevorzugt größer 50 % ist und/oder der Anteil an Frischfasern und/oder Altpapier kleiner ist als der Gewichtsanteil an Süß-, Sauer-, Seegras- und/oder Algenfasern in der Faserstoffzusammensetzung.
  • Die Aufgabe der vorliegenden Erfindung wird auch durch ein Verfahren zur Herstellung einer Faserstoffmischung gelöst, wobei das Verfahren die Schritte des Ernten des Süß-, Sauer-, Seegrases und/oder der Algen (einzeln oder in Kombination), das Schneiden der Süß-, Sauer-, Seegras- und/oder Algenfaser (einzeln oder in Kombination) auf eine vorgegebene Länge, die Suspendierung der Süß-, Sauer-, Seegras- und/oder Algenfasern (einzeln oder in Kombination) in Wasser und die Zugabe von vorgegebenen Anteilen an Frischfaser und/oder Altpapier und/oder Hilfsstoffen umfasst. Bei den vorgenannten Verfahrensschritten ist jedoch auch zu berücksichtigen, dass diese in ihrer Reihenfolge ggf. verändert werden können, um insbesondere Synergieeffekte bei der Aufbereitung unterschiedlicher Faserstofftypen mit zu berücksichtigen.
  • Das erfindungsgemäße Verfahren umfasst gemäß einer weiteren Ausführungsform nach dem Mähen den Schritt des teilweisen Trocknens und/oder Pelletierens, wobei hierzu die Süß-, Sauer-, Seegras- und/oder Algenfasern(einzeln oder in Kombination) vor dem Pelletieren vorzugsweise auf eine vorgegebene Länge gekürzt wird. Ggf. kann dies auch mit dem Pelletiervorgang oder -verfahren kombiniert werden.
  • Gemäß einer weiteren besonders bevorzugten Ausführungsform des vorliegenden Verfahrens wird der Grüngrasfaseranteil vor der Zugabe von Frischfasern und/oder Altpapier gemahlen. Dies kann historisch durch einen Holländer oder modern durch einen Refiner erfolgen, wobei durch die Einstellung des Refiners der entsprechend behandelte Faserstoff schneidend und/oder fibrillierend gemahlen werden kann. Insbesondere bietet die fribrilierende Mahlung den Vorteil, dass nicht nur die Länge des Faserstoffs verändert wird, sondern dass auch die Oberfläche des Faserstoffes deutlich vergrößert wird, womit die Fähigkeit zwischen den Fasern Verbindungen aufzubauen erhöht und somit auch die Festigkeit des erzeugten Produkts verbessert wird.
  • Entsprechend den vorstehenden Ausführungen zur Faserstoffzusammensetzung ist es auch im Sinn der vorliegenden Erfindung, dass einzelne Faserstoffkomponenten oder die gesamte Faserstoffzusammensetzung gebleicht, sortiert, dispergiert und/oder homogenisiert wird und insbesondere bei der Verarbeitung zu Papier, Karton oder Pappen auf eine vorgegebene Stoffdichte eingestellt wird.
  • Bezüglich der Kürzung bzw. dem Schneiden des Süß- und/oder Sauer- und/oder Seegrases und/oder der Algen vor der Weiterverarbeitung, insbesondere vor dem Suspendieren im Wasser, sollte diese Kürzung derart ausgeführt werden, dass die Länge des Grases schwerpunktmäßig ca. 20 cm, insbesondere 10 cm beträgt und bevorzugt zwischen 100 mm und 0,1 mm, besonders bevorzugt zwischen 50 mm und 1 mm und insbesondere zwischen 10 mm und 1 mm liegt.
  • Ferner liegt es auch im Sinn des vorliegenden Verfahrens, dass insbesondere das Süß-, Sauer-, Seegras und/oder die Algen (einzeln oder in Kombination) vor dem Schneiden bzw. Weiterverarbeiten auf eine vorgegebene Länge mechanisch gereinigt wird, insbesondere mit Luft und/oder Wasser gereinigt bzw. gewaschen wird.
  • Die Aufgabe der vorliegenden Erfindung wird auch durch die Verwendung der zuvor beschriebenen Faserstoffzusammensetzung zur Erzeugung von Papier, Pappe, Karton, Druckträgern, Isolier- oder Dämmmaterial, Faserplatten, Füllmaterial, Kombinationen hiervon und dergleichen gelöst.
  • Weitere Aspekte der Erfindung, ergeben sich aus der nachfolgenden detaillierten Beschreibung einer möglichen Ausführungsform der Erfindung in Verbindung mit der Zeichnung, sowie den Ansprüchen. Es wird darauf hingewiesen, dass durch dieses Beispiel Abwandlungen beziehungsweise Ergänzungen wie sie sich für den Fachmann unmittelbar ergeben mit umfasst sind. Darüber hinaus stellen die bevorzugten Ausführungsbeispiele keine Beschränkung der Erfindung dar, so dass auch Abwandlungen und Ergänzungen im Umfang der vorliegenden Erfindung liegen.
  • Dabei zeigen:
    • Fig. 1 schematische Darstellung zu den Variablen bei der Produktion von grashaltigen Produkte. Hierbei wird gezeigt, wie die Faserstoffzusammensetzung in ihren Variationsmöglichkeiten u.a. Einfluss auf die Opazität und damit auch die Einstufung in Produktgruppen, z.B. Kartonage - sehr Opak - viel Grasanteil nimmt. In dem hier dargestellten Beispiel, kann die Faserstoffzusammensetzung aus Zellstoff, Grasfasern (Gras), Altpapier und Stoffresten bestehen, die in unterschiedlichen Anteilen der Faserstoffzusammensetzung beigefügt werden. Ferner wird gezeigt, dass sowohl die Zeit, die Wassermenge, als auch die Wassertemperatur bei der Verarbeitung des Faserstoffes unmittelbaren Einfluss auf die Eigenschaften, insbesondere die Opazität der Faserstoffzusammensetzung haben. Die ggf. wesentliche Veränderung findet bei der Mahlung statt, wobei die Verarbeitungszeit bei der Mahlung mit der Zunahme des Süß- und/oder Sauergrasanteils zunimmt. Unter dem Bereich der Produkte sind schematisch verschiedene Gruppen aufgeführt, die durch das jeweilige Anforderungsprofil der jeweiligen Anwendung und Weiterverarbeitung bestimmt werden.
  • Für die Herstellung des Graspapiers kann beispielsweise herkömmliche Wiese, Rasen (Sportrasen, private Haushalte, Städte und Gemeinden) - in Folge nur Gras genannt- genutzt werden. Einsetzbar sind hierbei eine Vielzahl von Gräser der Ordnung "süßgrasartige" (Poales) oder "sauergrasartige" (Cyperaceae), wobei bei der Unterfamilie Cyperoidorae wie z.B. Zypergräser und Papyrus gewisse Einschränkungen gelten können. Bei diesen Gräsern müsste eine zusätzliche Schälung zur Weiterverarbeitung erfolgen. Dieses wäre evtl. (Energie) aufwendig.
  • Beim Einsetzen des ordinären Wiesengrases können unproblematisch die auf Wiesen vorhandenen Blätter mit verarbeitet werden. Für die bessere Weiterverarbeitung, Lagerung und effizienteren Transport kann das Gras getrocknet (Heu) von Fremdstoffen befreit und zerkleinert werden. Auch eine Komprimierung, wie z.B. Pelletierung kann hierbei nützlich sein. Das Gras wird in Folge ohne zusätzliche Verarbeitung im Mischungsverhältnis von beispielsweise 10 % in eine Stoffsuspension beigegeben, oder in Wasser vorgelegt. Die weiteren Zusätze können Zellstoffe aus Frischfasern sein oder aber auch Sekundärfasern wie zum Beispiel Lumpen oder Altpapier. Diese Zusätze können auch kombiniert werden.
  • Das Verhältnis der Faserstoffkomponenten kann bis auf 99 % Grasfaseranteil erhöht werden. Je höher der Grasanteil ist, um so geringer ist wohl der Energieaufwand bei der Herstellung des Rohstoffes im Vergleich zum herkömmlichen Papier. U.a. durch die natürliche Farbe des Grases erreicht das Material eine hohe Opazität. Durch die hohe Opazität kann der Nutzer des Papiers leichtere Grammaturen einsetzen ohne ein Durchscheinen zu gestatten. Um eine hohe eine Einsatzmöglichkeit zu gewährleisten, kann dem Material wahlweise z. B. über den Strich, die Masse oder bei der Leimung Farbigkeit zugeführt werden. Dadurch kann ein marktgerechter Weißanteil erlangt werden. Durch Einsatz des Kalanders kann wahlweise die Oberfläche zusätzlich geglättet werden.
  • Versuch 1:
  • Bei dieser Testreihe wurde trockenes Heu mit einem Trockengehalt zwischen 75 und 85 % genutzt. Dieses wurde grob gereinigt, damit es von Fremdstoffen wie z.B. Erde befreit ist. Anschließend wurde es auf eine drittel Länge (ca. 20 cm) gekürzt und dann mit ca. 15 Grad warmen Wasser ausgewaschen und in einem Filter ausgewrungen. Diese Prozedur wurde 3 x wiederholt und jeweils wurde eine Menge an Grünverfärbung ausgewaschen. Das entsprechend gereinigte Heu wurde im noch feuchten Zustand in einen Holländer gegeben. Hinzu kamen noch Frischfaserzellstoff, Altpapier (120g/qm Naturpapier mit 1,9-fachem Volumen) und ein Hilfsmittel. Bei einer 2. Charge wurde zusätzlich noch Füllstoff zugefügt, um zu sehen welchen Einfluss dieser auf die Oberfläche und den Weißgrad hat. Nach zweiundzwanzig minütiger Suspendierung im Holländer wurde die Stoffaufbereitung abgeschlossen und Testbögen hergestellt. Mit diesen Bögen wurden Drucktest vorgenommen, um zu überprüfen, ob der ggf. fehlende Weißgrad zum Beispiel mittels einer Offsetbedruckung in Weiß verbessert werden kann. Auch dies war erfolgreich.
  • Versuch 2:
  • Bei dieser Testreihe wurde trockenes Heu aus Wiesengras verwendet. Dieses wurde mit Luft gereinigt und damit von Fremdstoffen wie z.B. Erde und Staub befreit und anschließend mittels eines Schneidaggregats auf ca. ein Zehntel seiner Länge (ca. 6 cm) reduziert. Dieses gekürzte Heu wurde im noch trockenen Zustand in einen Holländer gegeben. Hinzu kamen Frischfaserzellstoff, Altpapier und zwei unterschiedliche Hilfsmittel, um u.a. eine bessere Oberfläche zu erhalten. Nach ca. 30 minütiger Suspendierung wurde die Stoffaufbereitung abgeschlossen. Mittels eines Rundsiebes wurden ca. 70 x 100 cm große Bögen hergestellt. Diese Bögen wurden jeweils auf einem Filz über die Trockenzylinder transportiert und auf ca. 35 % Restfeuchte getrocknet. Bei diesem Test hatte das so erzeugte Papier eine Grammatur von ca. 200 g/qm bzw. ca. 110 g/qm. Das Volumen lag bei ca. 1,3 g/cm3. Das so erzeugte Papier zeigt auf der Ober- und Unterseite unterschiedliche Glättewerte, wobei die Siebseite glatter war als die Oberseite. Auch bei diesem maschinell hergestellten Material wurde ein Drucktest auf einer 4-farbigen Offsetdruckmaschine vorgenommen. Getestet wurde hier ein 4-farbiges Motiv , einmal mit vorherigem Auftragen von Offset-Druckweiß und einmal ohne. Beide Varianten waren absolut erfolgreich.
  • Versuch 3:
  • Um eine gleichmäßig gute Glättung zu erhalten wurde ein weiterer Test vorgenommen. Das Papier aus dem Versuch 2 wurde mit einer Restfeuchte von ca. 40 % kalandriert, wobei der Kalander nur mit dem Druck des Eigengewichts der Zylinder arbeitet. Das Papier hat nach dieser Bearbeitung nur noch ein Volumen von ca. 1,1 g/cm3. Bei dieser Testreihe wurden Papier im Gewicht von ca. 90 g/qm und 120 g/qm hergestellt. Um weiter Verarbeitungsvarianten zu überprüfen wurden Drucktests mittels einem Digitaldrucker (OKI C 3200), einem Laserprinter von HP und einem Brother Tintenstrahldrucker und ein Stanz- und Nuttest über einen Planotigel erfolgreich absolviert.
  • In den Tabelle 1 und 2 sind die Eigenschaftskennwerte der Papiere aus den Versuchen 2 und 3 gegenüber gestellt. Dabei beziehen sich die Werte zur Probe 1 aus dem Versuch 2 und die zur Probe 2 aus dem Versuch 3. Neben den absoluten Werten sind in der Tabelle 1 auch die Veränderungen der Eigenschaftskennwerte benannt, wobei erwartungsgemäß durch das Kalandrieren die Dicke und die Luftdurchlässigkeit des Papiers abnehmen und bis auf die Bruchkraft quer alle anderen Werte tendenziell, in Bezug auf die Dehnung sogar signifikant zunehmen.
  • Tabelle 2 zeigt die optischen Messwerte der beiden untersuchten Papiere, wobei neben der deutlichen Färbung auch der sehr hohe Opazitätswert von nahe 100% zu erkennen ist.
  • Die Messwerte wurden bei Normklima 23°C und 50% Luftfeuchtigkeit wie folgt ermittelt:
    • Luftdurchlässigkeit nach Bendtsen: DIN-53108 (Prüfung von Papier), Messgerät: Gockel & Co. - Modell6, Prüffläche: 31,5 mm bei einem Messkopfgewicht von 267 g, Messwert:ml Luftmenge pro Minute, Messeinstellung: Überdruck von 1,5 kPa (Manostat 150 mm);
    • Weiterreißarbeit Brecht-Imset: DIN 53115), Messgerät:Karl Frank, Messwert: Weiterreißarbeit in mJ/N;
    • Bruchlast und Dehnung: ISO 527-1, 100 mm Einspannlänge bei 10 mm/min Dehngeschwindigkeit Messgerät: Zwick/Roell ZMART.PRO Messwert: Bruchlast in N und Dehnung in % (bezogen auf 100 mm), E-Modul im reversiblen Bereich [N/mm2];
    • Flächengewicht [g/m2] gemäß ISO 536, Messwert: Gewicht eines DIN-A4 Blattes bestimmt, Fläche eines DIN A4 Blattes bestimmen;
    • Dicke in µm gemäß ISO 534, Messgerät: Firma Lehmann LDAL-03, Messwert: Dicke in µm.
    Versuch 4:
  • In einem weiteren Versuch wurde die Anwendbarkeit des Faserstoffsystems für den Einsatz bei Magazinpapier und Wellenpapier untersucht. Mittels dieser Versuche auf einer Papiermaschine wurde die prinzipielle Machbarkeit der Verwendung von Gras in den genannten Qualitäten demonstriert. Für weitere Verarbeitungs- und Veredelungsversuche wurden für jede Papierqualität drei Rollen mit unterschiedlichen Grammaturen mit je ca. 100 m gefertigt.
  • Faserstoffeinsatz Magazinpapier: 14% Langfaser (Kiefer / Fichte) / Stendal ECF (Mercer), 33% Kurzfaser (Eukalyptus) / Cenibra, 3% CTMP (Fichte/Kiefer) / Waggeryd CTMP, 50% Gras. Dabei handelt es sich bei dem Gras um süddeutsches Wiesengras, dass konventionell für den Futtermitteleinsatz geschnitten und an der Luft auf ca. 8 % Restfeuchte getrocknet wurde.
  • Additive (bezogen auf Faserstoff): 1 % Stärke / Cargill 35844, 0,8% AKD / Akzo Nobel EKA DR 28 HF (0,5% bei den Versuchen 6 - 10), 0,025% PAM / BASF - Percol 540
  • Stoffaufbereitung: Die Zerfaserung erfolgte bei einer Stoffdichte von 5%, einer Drehzahl des Pulpers von 990 rpm über einer Zeit von 15 Minuten. Die Mahlung erfolgte bei einer Stoffdichte von 4%, einem Schnittwinkel von 60°, einer Kantenlast von 0,7 Ws/m und einer Mahlenergie von 150 kWh/t. Der erzielte Entwässerungswiderstand lag nach der Mahlung bei einem SR Wert 32°.
  • Faserstoffeinsatz: Wellenpapier aus ca. 50% AP Sorte 1.02 / 50% AP Sorte 1.04, 50 % Gras. Auch hier handelt es sich bei dem eingesetzten Gras um süddeutsches Wiesengras, dass konventionell für den Futtermitteleinsatz geschnitten und an der Luft auf ca. 8 % Restfeuchte getrocknet wurde.
  • Additive (bezogen auf Faserstoff): 1% Stärke / Cargill 35844, 0,025% PAM / BASF - Percol 540
  • Stoffaufbereitung: Die Zerfaserung erfolgte bei einer Stoffdichte von 5%, einer Drehzahl des Pulpers von 990 rpm über einer Zeit von 15 Minuten.
  • Darüberhinaus wurde das in den oben genannten Stoffzusammensetzung verwendete Gras wie folgt aufbereitet:
  • Die Zerfaserung des Grases erfolgte bei einer Stoffdichte von 10%, einer Drehzahl des Pulpers von 990 rpm über eine Zeitdauer von 20 Minuten. Im Anschluss erfolgte eine Entstippung bei einer Drehzahl von 2200 rpm über die Zeitdauer von 5 Minuten. Die Mahlung des Grases erfolgte bei einer Stoffdichte von 8%, einem Schnittwinkel von 60°, einer Kantenlast von 0,7 Ws/m und einer Mahlenergie von 25 kWh/t. Hiernach wies der Grasfaserstoff einen Entwässerungswiderstand gemessen als SR Wert von 52° auf.
  • In Figur 2 ist die Faserlängenverteilung in Faserlängenklassen der in diesem Versuch eingesetzten Stoffsysteme wiedergegeben und in Vergleich zu anderen, gängigen Faserstoffsystemen dargestellt. Auf der x-Achse sind hierbei die Faserlängenklassen - längengewichte und auf der y-Achse der prozentuale Anteil in der Faserlängenklasse aufgetragen. Der Verlauf 1 zeigt die Faserlängenverteilung von Stroh nach Zerfaserung, 2 von Stroh nach 5 min Entstippung, 3 Kurzfaserzellstoff Eukalyptus, 4 Gras mit einem Entwässerungswiderstand von 52°SR und 5 Gras mit einem Entwässerungswiderstand von 49°SR.
  • Hierbei zeigt sich, dass die beiden verwendeten Grasfaserstoffe 4 und 5 eine im Vergleich zu den anderen Faserstoffsystemen homogenere Faserlängenverteilung haben, da die Schwerpunkte in den Längenklassen 0,2-0,5 mm bzw. 0,5-1,2 mm nicht so stark ausgeprägt sind.
  • Aus den entsprechenden Stoffsystemen wurden Papierrollen bzw. Papierbogen mit unterschiedlichen Grammaturen zwischen 40 g/m2 und 80 g/m2 für das Magazinpapier und zwischen 90 g/m2 und 250 g/m2 für den Wellpappenliner unter vergleichbaren Bedingungen hergestellt.
  • Die Figuren 3 bis 6 zeigen die Eigenschaftswerte entsprechender Magazinpapiere, welche aus dem vorgenannten Faserstoffsystem hergestellt wurden. Dabei zeigt Figur 3 für ein Zellstoff/Gras-Faserstoffsystem 31 und eine reines Zellstofffasersystem 32 die Entwicklung des spezifischen Volumens in cm3/g (y-Achse) in Abhängigkeit der flächenbezogenen Masse in g/m2 (x-Achse). Figur 4 zeigt die Bruchdehnung längs 41 und quer 42 in % (y-Achse) in Abhängigkeit der flächenbezogenen Masse in g/m2 (x-Achse), Figur 5 den Zugfestigkeitsindex längs 51 und quer 52 in Nm/g (y-Achse) in Abhängigkeit der flächenbezogenen Masse in g/m2 (x-Achse) und Figur 6 das Arbeitsaufnahmevermögen längs 41 und quer 42 in J/g (y-Achse) in Abhängigkeit der flächenbezogenen Masse in g/m2 (x-Achse).
  • Die Figuren 7 bis 9 zeigen die Eigenschaftswerte entsprechender Wellenpappenliner, welche aus dem vorgenannten Faserstoffsystem hergestellt wurden. Dabei zeigt Figur 7 für ein Liner/Gras-Faserstoffsystem 71 und ein reines Linerfaserstoffsystem 72 die Entwicklung des spezifischen Volumens in cm3/g (y-Achse) in Abhängigkeit der flächenbezogenen Masse in g/m2 (x-Achse). Figur 8 zeigt den Berstwiderstand (nach Mullen) in kPa (y-Achse) in Abhängigkeit der flächenbezogenen Masse in g/m2 (x-Achse) und Figur 9 der Streifenstauchwiderstand längs 91 und quer 92 in kN/m (y-Achse) in Abhängigkeit der flächenbezogenen Masse in g/m2 (x-Achse).
  • Die Ergebnisse der Faserlängenuntersuchung und der Faserlängenverteilung zeigen eine Ähnlichkeit mit Faserstoff wie zum Beispiel Faserstoffsysteme aus Stroh. Der Faserstoff hat einen verhältnismäßig großen Faserdurchmesser und eine hohe Faserwandstärke. Insbesondere bei niedrigem Flächengewicht wirkt sich dies erhöhend auf das Volumen des Papiers aus. Die Zugfestigkeit für Magazinpapier liegt in etwa auf dem Niveau eines holzfreien, ungestrichenen Papieres aus 100 % Kurzfaserzellstoff mit ca. 20 % Füllstoff. Die gemessenen Festigkeiten beim Liner liegen ebenso auf einem guten Grundniveau, wobei sich das höhere Volumen vorteilhaft auf Steifigkeitseigenschaften auswirkt.

Claims (4)

  1. Verfahren zur Herstellung einer Faserstoffzusammensetzung mit den Schritten:
    a) Ernten von Süß- und/oder Sauergras und/oder Seegras und/oder Algen;
    b) Reinigen des Süß- und/oder Sauergras und/oder Seegrases und/oder der Algen, einzeln oder in Kombination, mechanisch reinigen bzw. waschen mit Luft und/oder Wasser;
    c) Schneiden des Süß- und/oder Sauergras und/oder Seegrases und/oder der Algen auf eine vorgegebene Länge zwischen 100 mm und 0,1 mm;
    d) Fibrillierendes Mahlen, des Süß- und/oder Sauergras und/oder Seegrases und/oder der Algen;
    e) ggf. wenigstens teilweise trocknen des Süß- und/oder Sauergras und/oder Seegrases und/oder der Algen, einzeln oder in Kombination;
    f) Pelletieren des Süß- und/oder Sauergras und/oder Seegrases und/oder der Algen, einzeln oder in Kombination;
    g) Suspendieren des Süß- und/oder Sauergras und/oder Seegrases und/oder Algen in Wasser;
    h) Zugabe vorgegebener Anteile an Frischfasern und/oder Altpapier und/oder Hilfsstoffen in die Suspension.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
    der Faserstoff vor oder nach der Zugabe der Frischfasern und/oder Altpapiers gemahlen, insbesondere schneidend und/oder fibrillierend gemahlen wird.
  3. Verfahren nach Anspruch 1 oder2, dadurch gekennzeichnet, dass
    das Süß-, Sauergras, Seegras und/oder die Algen einzeln oder in Kombination auf eine Länge zwischen 50 mm und 1 mm und insbesondere auf eine Länge zwischen 10 mm und 1 mm geschnitten wird.
  4. Verwendung des Faserstoffes nach einem der Ansprüche 1 bis 3 bzw. einer Faserstoffzusammensetzung, welche entsprechend einem der Ansprüche 1 bis 3 hergestellt wurde zur Erzeugung von Papier, Pappe, Karton, Druckträgern, Isolier- oder Dämmmaterial, Faserplatten, Füllmaterial, Kombinationen hiervon und dergleichen.
EP13714563.7A 2012-03-13 2013-03-11 Faserstoffzusammensetzung Active EP2825699B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SI201330543A SI2825699T1 (sl) 2012-03-13 2013-03-11 Vlaknasti sestavek
RS20170230A RS55754B1 (sr) 2012-03-13 2013-03-11 Kompozicija vlaknastih materijala
PL13714563T PL2825699T3 (pl) 2012-03-13 2013-03-11 Kompozycja materiału włóknistego
HRP20170354TT HRP20170354T1 (hr) 2012-03-13 2017-03-03 Kompozicija vlaknastih materijala

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE201220002588 DE202012002588U1 (de) 2012-03-13 2012-03-13 Graspapier
DE201210107193 DE102012107193A1 (de) 2012-03-13 2012-08-06 Faserstoffzusammensetzung
DE102012109306 2012-10-01
PCT/EP2013/054885 WO2013135632A1 (de) 2012-03-13 2013-03-11 Faserstoffzusammensetzung

Publications (2)

Publication Number Publication Date
EP2825699A1 EP2825699A1 (de) 2015-01-21
EP2825699B1 true EP2825699B1 (de) 2016-12-07

Family

ID=49160273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13714563.7A Active EP2825699B1 (de) 2012-03-13 2013-03-11 Faserstoffzusammensetzung

Country Status (23)

Country Link
US (1) US9976255B2 (de)
EP (1) EP2825699B1 (de)
JP (1) JP6415988B2 (de)
KR (1) KR101840514B1 (de)
CN (1) CN104271834B (de)
AP (1) AP2014008010A0 (de)
BR (1) BR112014022557B1 (de)
CA (1) CA2867056C (de)
CY (1) CY1118697T1 (de)
DK (1) DK2825699T3 (de)
EA (1) EA029141B1 (de)
ES (1) ES2617343T3 (de)
HK (1) HK1206401A1 (de)
HR (1) HRP20170354T1 (de)
HU (1) HUE031974T2 (de)
IN (1) IN2014DN08383A (de)
LT (1) LT2825699T (de)
PL (1) PL2825699T3 (de)
PT (1) PT2825699T (de)
RS (1) RS55754B1 (de)
SI (1) SI2825699T1 (de)
WO (1) WO2013135632A1 (de)
ZA (1) ZA201406498B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020239510A1 (de) 2019-05-28 2020-12-03 Ricola Group Ag Faserstoff für papier, pappe oder karton sowie dessen bereitstellung und verwendung

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2862815B1 (de) * 2013-10-15 2017-03-22 Huhtamaki Molded Fiber Technology B.V. Verfahren zur Herstellung eines Verpackungsformteils bestehend aus Fasern und Lebensmittelverpackungsformteil
DE102013019715A1 (de) * 2013-11-27 2015-05-28 Jürgen Marz Dämmstoffelement und Verfahren zu dessen Herstellung
DE102013114386A1 (de) * 2013-12-18 2015-06-18 Uwe D'Agnone Verfahren zur Aufbereitung von Gras für die Herstellung von Papier, Pappen und Karton
AU2015393147B9 (en) 2015-04-29 2019-05-16 Essity Hygiene And Health Aktiebolag Tissue paper comprising pulp fibers originating from Miscanthus and method for manufacturing the same
US9650746B2 (en) * 2015-06-11 2017-05-16 Golden Arrow Printing Co., Ltd. Pulp molding process and paper-shaped article made thereby
CN105133415B (zh) * 2015-07-09 2017-04-12 东岚高科(青岛)有限公司 一种环保型海洋生物基阻燃纸及其制备方法
CN105178091A (zh) * 2015-08-13 2015-12-23 合肥龙发包装有限公司 一种防水瓦楞纸浆及其制作方法
CN105856380B (zh) * 2016-04-18 2018-02-27 重庆晋豪美耐皿制品有限公司 一种利用秸秆、果壳纤维制可降解餐具及容器具的工艺
JP6690821B2 (ja) * 2017-06-04 2020-04-28 学校法人ヴィアトール学園 生分解紙及びその製造方法
CN108000671A (zh) * 2017-11-09 2018-05-08 大连海洋大学 一种利用海藻废料制备的纤维板及其制备方法
DE102017129489A1 (de) * 2017-11-10 2019-05-16 Creapaper Gmbh Verfahren und Vorrichtung zur Aufbereitung von Grasfasern
FR3077520B1 (fr) * 2018-02-02 2020-01-10 Eric Marcouyeux Produit composite et son procede de fabrication
WO2020048758A1 (de) * 2018-09-07 2020-03-12 DAGNONE Uwe Verfahren zur aufbereitung von grasfasern
EP3892433B1 (de) * 2018-12-05 2024-03-27 Furukawa Electric Co., Ltd. Cellulosefaserdispergierender harzverbundstoff, formkörper und verbundteil
DE202018107331U1 (de) * 2018-12-20 2019-01-30 Creapaper Gmbh Trinkhalm
DE202019100702U1 (de) 2019-01-15 2019-02-25 Papierfabrik Meldorf GmbH & Co. Kommanditgesellschaft Mehrlagiges Altpapier- und Grasfasern enthaltendes Papier
ES2881623T3 (es) 2019-01-15 2021-11-30 Papierfabrik Meldorf Gmbh & Co Kg Papel multicapa que contiene papel de desecho y fibras de hierba
DE102019001184B4 (de) * 2019-02-18 2023-06-22 Soumeya Nadir Verfahren zur Herstellung von Papier auf Basis von mittels eines schonenden Extraktionsverfahrens aus aquatischen Makrophyten, insbesondere Wasserpest (Elodea), isolierter Cellulose und durch dieses Verfahren hergestelltes Papier
DE102019122192A1 (de) * 2019-08-19 2021-02-25 Creapaper Gmbh Grashaltiger Flüssigkeitskarton
DE102020103185A1 (de) * 2020-02-07 2021-08-12 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Material auf Basis von Makroalgen
US11926965B2 (en) * 2020-11-23 2024-03-12 Northeastern University Natural fiber composites as a low-cost plastic alternative
EP4029985A1 (de) * 2021-01-14 2022-07-20 Energiepark Hahnennest GmbH & Co.KG Verfahren zur herstellung eines faserstoffgemischs
KR102298082B1 (ko) * 2021-01-19 2021-09-03 주식회사 코코드론 레이저 커팅을 위한 다층 접합 종이 보드 제조방법
EP4144914B1 (de) 2021-09-07 2024-04-17 Certina Production AG Mehrlagiges altpapier- und zusatzfasern enthaltendes papier
AT526354B1 (de) * 2022-09-14 2024-02-15 Tannpapier Gmbh Hüll- oder Verpackungsmaterial

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US614A (en) * 1838-02-22 Discovery in the manufacture of brown paper from a new material called
US1876221A (en) * 1928-12-04 1932-09-06 Grunder Friedrich Process for making fibrous insulating products
GB543972A (en) * 1940-06-14 1942-03-23 Frederick George Lucas Becker Improvements in paper manufacture
JPS551319A (en) * 1978-06-12 1980-01-08 Osaka Seiken Yuugen Production of pulp by algae
JPS6163800A (ja) * 1984-09-05 1986-04-01 上野 孝 海藻紙
IT1262021B (it) * 1992-04-16 1996-06-18 Favini Cartiera Spa Procedimento per la produzione di carta da alghe marine e carta cosi' ottenuta
JPH06235198A (ja) * 1993-02-08 1994-08-23 Shinfuji Seishi Kk 模様紙
JPH07279087A (ja) * 1994-04-05 1995-10-24 Heiwa Shigyo Kk ホソジュズモを含有する紙及びその製造方法
US5582681A (en) * 1994-06-29 1996-12-10 Kimberly-Clark Corporation Production of soft paper products from old newspaper
JP3326664B2 (ja) 1995-03-10 2002-09-24 北越製紙株式会社 薬草粕を含有する再生紙及びその製造方法
JP3013027B2 (ja) * 1996-06-03 2000-02-28 鹿児島県 漉込紙
JP3178790B2 (ja) * 1996-06-28 2001-06-25 株式会社パックス 成形用植物繊維製ペレット
EP1056902A4 (de) * 1998-02-19 2001-05-30 Int Paper Co Verfahren zur zellstoffherstellung aus grasartigen pflanzen
JP3840142B2 (ja) 2001-08-01 2006-11-01 キヤノン株式会社 多孔質インク吸収体およびインクジェット記録装置
JP4208047B2 (ja) * 2002-10-30 2009-01-14 順一 金刺 藺草含有紙の製造方法
CN101725067A (zh) * 2003-11-13 2010-06-09 俞学哲 由红藻制得的纸浆和纸张及其制造方法
CN101573492A (zh) * 2006-12-19 2009-11-04 可国一株式会社 棉纤维形成的成形品的制造方法及棉纤维形成的成形品
CN101319471A (zh) 2008-05-20 2008-12-10 李刚荣 环保节能循环型无污染制浆工艺及其系统装置
WO2010066195A1 (zh) 2008-12-09 2010-06-17 山东福荫造纸环保科技有限公司 一种原纸以及制备方法和应用
CN201250366Y (zh) 2008-12-09 2009-06-03 山东福荫造纸环保科技有限公司 一种食品包装纸
EP2402504A1 (de) 2010-06-29 2012-01-04 M-real Oyj Transparentpapier, enthaltend Faserstoffe aus Einjahrespflanzen und/oder andere schnellwachsende Nichtholzfaserstoffe
WO2012010181A1 (en) 2010-07-19 2012-01-26 Benvegnu Francesco Marine plants processing method for the production of pulp for the production of paper
CN101934286B (zh) * 2010-08-31 2012-06-27 中国水产科学研究院渔业机械仪器研究所 一种浒苔资源化处理装置及相关工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020239510A1 (de) 2019-05-28 2020-12-03 Ricola Group Ag Faserstoff für papier, pappe oder karton sowie dessen bereitstellung und verwendung

Also Published As

Publication number Publication date
EA201491659A1 (ru) 2015-05-29
BR112014022557B1 (pt) 2021-11-30
US9976255B2 (en) 2018-05-22
JP6415988B2 (ja) 2018-10-31
ES2617343T3 (es) 2017-06-16
BR112014022557A2 (pt) 2017-07-04
HRP20170354T1 (hr) 2017-05-05
CA2867056A1 (en) 2013-09-19
HUE031974T2 (en) 2017-08-28
IN2014DN08383A (de) 2015-05-08
ZA201406498B (en) 2015-11-25
EP2825699A1 (de) 2015-01-21
CN104271834A (zh) 2015-01-07
US20150068693A1 (en) 2015-03-12
DK2825699T3 (en) 2017-03-13
HK1206401A1 (en) 2016-01-08
PL2825699T3 (pl) 2017-08-31
SI2825699T1 (sl) 2017-07-31
KR20140143177A (ko) 2014-12-15
CA2867056C (en) 2019-11-26
CY1118697T1 (el) 2017-07-12
RS55754B1 (sr) 2017-07-31
EA029141B1 (ru) 2018-02-28
KR101840514B1 (ko) 2018-03-20
PT2825699T (pt) 2017-03-10
CN104271834B (zh) 2018-01-23
LT2825699T (lt) 2017-04-10
JP2015510053A (ja) 2015-04-02
WO2013135632A1 (de) 2013-09-19
AP2014008010A0 (en) 2014-10-31

Similar Documents

Publication Publication Date Title
EP2825699B1 (de) Faserstoffzusammensetzung
DE202012013621U1 (de) Faserstoffzusammensetzung
DE2553923C2 (de) Pulpe-Flocken und Verfahren zu deren Herstellung
US10865523B2 (en) Method of producing a fibrous web containing natural and synthetic fibres
EP2402504A1 (de) Transparentpapier, enthaltend Faserstoffe aus Einjahrespflanzen und/oder andere schnellwachsende Nichtholzfaserstoffe
DE60038316T2 (de) Rohmaterial für druckpapier, verfahren zu seiner herstellung und druckpapier
Eckhart Recyclability of Cartonboard and carton
WO2021032739A1 (de) Grasfaser-haltiger karton und dessen verwendung zur herstellung eines flüssigkeitsbehälters
DE69612108T2 (de) Weiches, voluminöses saugfähiges papier, das chemithermomechanischen zellstoff enthält
DE3223149C1 (de) Verfahren zur Herstellung von Papier oder dergleichen Werkstoffe
WO2022027081A1 (de) Verfahren zur herstellung von cellulosefaser-basierten verpackungsprodukten und cellulosefaser-basiertes verpackungsprodukt
WO2022027080A1 (de) Verfahren zur herstellung von cellulosefaser-basierten verpackungsprodukten und cellulosefaser-basiertes verpackungsprodukt
EP4018033B1 (de) Verfahren zur aufbereitung von grasfasern, insbesondere zur aufbereitung einer grasfasern enthaltenden faserstoffmischung
DE3879190T2 (de) Ein pflanzenfuellstoff enthaltendes material herabgesetzter dichte.
DE69004671T2 (de) Poröser, wenigdichter mikronisierter pflanzlicher füllstoff mit kontrollierter granulometrie und kleinen physikalischen und hydraulischen oberflächenkennzahlen und verfahren zu seiner herstellung.
DE2005526A1 (de) Zellstoff und Verfahren zur Herstellung
CH716233A1 (de) Faserstoffmischung für Papier, Pappe oder Karton sowie Verfahren zu deren Bereitstellung.
Bassa et al. Mixtures of Eucalyptus grandis x Eucalyptus urophylla and Pinus taeda wood chip for the production of kraft pulping using the lo-solids process
WO2020048758A1 (de) Verfahren zur aufbereitung von grasfasern
Myoung et al. Characteristics of pulp and paper produced from corn stalk
Hussin et al. Effect of Tree Portion and Anthraquinone (AQ) on Pulp Properties from Batai
DE102009036551A1 (de) Faserstoffhaltiges Material auf Cellulosebasis
WO2008138428A1 (de) Verfahren zum zerfasern von chemisch behandeltem, lignocellulosischem rohstoff
DE1121451B (de) Verfahren zur Herstellung von Papierstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1206401

Country of ref document: HK

17Q First examination report despatched

Effective date: 20160425

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160923

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 851827

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005646

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20170354

Country of ref document: HR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2825699

Country of ref document: PT

Date of ref document: 20170310

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20170306

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170309

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E013388

Country of ref document: EE

Effective date: 20170303

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20161207

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20170354

Country of ref document: HR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2617343

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170616

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E031974

Country of ref document: HU

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 23681

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005646

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

26N No opposition filed

Effective date: 20170908

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1206401

Country of ref document: HK

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170354

Country of ref document: HR

Payment date: 20190306

Year of fee payment: 7

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170354

Country of ref document: HR

Payment date: 20200311

Year of fee payment: 8

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170354

Country of ref document: HR

Payment date: 20210226

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013005646

Country of ref document: DE

Representative=s name: WITHERS & ROGERS LLP, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013005646

Country of ref document: DE

Owner name: CREAPAPER GMBH, DE

Free format text: FORMER OWNER: D'AGNONE, UWE, 53773 HENNEF, DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: CREAPAPER GMBH

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: CREAPAPER GMBH, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: CREAPAPER GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: D'AGNONE, UWE

Effective date: 20210716

REG Reference to a national code

Ref country code: HU

Ref legal event code: GB9C

Owner name: CREAPAPER GMBH, DE

Free format text: FORMER OWNER(S): D'AGNONE, UWE, DE

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Representative=s name: DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CREAPAPER GMBH

Effective date: 20210903

REG Reference to a national code

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 23681

Country of ref document: SK

Owner name: CREAPAPER GMBH, HENNEF, DE

Free format text: FORMER OWNER: D'AGNONE UWE, HENNEF, DE

Effective date: 20210831

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: CREAPAPER GMBH; DE

Effective date: 20210929

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: CREAPAPER GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: D'AGNONE, UWE

Effective date: 20211007

REG Reference to a national code

Ref country code: EE

Ref legal event code: HC1A

Ref document number: E013388

Country of ref document: EE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 851827

Country of ref document: AT

Kind code of ref document: T

Owner name: CREAPAPER GMBH, DE

Effective date: 20211229

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170354

Country of ref document: HR

Payment date: 20220307

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170354

Country of ref document: HR

Payment date: 20230307

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20230307

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170354

Country of ref document: HR

Payment date: 20240304

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240328

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20240327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20240305

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240329

Year of fee payment: 12

Ref country code: IE

Payment date: 20240329

Year of fee payment: 12

Ref country code: NL

Payment date: 20240329

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240403

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20240327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SM

Payment date: 20240327

Year of fee payment: 12

Ref country code: RO

Payment date: 20240229

Year of fee payment: 12

Ref country code: HU

Payment date: 20240322

Year of fee payment: 12

Ref country code: FI

Payment date: 20240328

Year of fee payment: 12

Ref country code: EE

Payment date: 20240327

Year of fee payment: 12

Ref country code: CZ

Payment date: 20240304

Year of fee payment: 12

Ref country code: BG

Payment date: 20240328

Year of fee payment: 12

Ref country code: PT

Payment date: 20240229

Year of fee payment: 12

Ref country code: GB

Payment date: 20240327

Year of fee payment: 12

Ref country code: SK

Payment date: 20240304

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240229

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240304

Year of fee payment: 12

Ref country code: RS

Payment date: 20240229

Year of fee payment: 12

Ref country code: PL

Payment date: 20240305

Year of fee payment: 12

Ref country code: MT

Payment date: 20240327

Year of fee payment: 12

Ref country code: LV

Payment date: 20240327

Year of fee payment: 12

Ref country code: IT

Payment date: 20240328

Year of fee payment: 12

Ref country code: HR

Payment date: 20240304

Year of fee payment: 12

Ref country code: FR

Payment date: 20240329

Year of fee payment: 12

Ref country code: DK

Payment date: 20240329

Year of fee payment: 12

Ref country code: BE

Payment date: 20240329

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240329

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240404

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240426

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240403

Year of fee payment: 12

Ref country code: CY

Payment date: 20240307

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240329

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20240327

Year of fee payment: 12