EP2249980B1 - Vorrichtung für das explosionsumformen - Google Patents

Vorrichtung für das explosionsumformen Download PDF

Info

Publication number
EP2249980B1
EP2249980B1 EP08871795A EP08871795A EP2249980B1 EP 2249980 B1 EP2249980 B1 EP 2249980B1 EP 08871795 A EP08871795 A EP 08871795A EP 08871795 A EP08871795 A EP 08871795A EP 2249980 B1 EP2249980 B1 EP 2249980B1
Authority
EP
European Patent Office
Prior art keywords
shock
dissipator
ignition
elements
impact crusher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08871795A
Other languages
English (en)
French (fr)
Other versions
EP2249980A1 (de
EP2249980B9 (de
Inventor
Andreas Stranz
Alexander Zak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna International Inc
Original Assignee
Magna International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna International Inc filed Critical Magna International Inc
Priority to PL08871795T priority Critical patent/PL2249980T3/pl
Publication of EP2249980A1 publication Critical patent/EP2249980A1/de
Publication of EP2249980B1 publication Critical patent/EP2249980B1/de
Application granted granted Critical
Publication of EP2249980B9 publication Critical patent/EP2249980B9/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/06Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves
    • B21D26/08Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves generated by explosives, e.g. chemical explosives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure
    • Y10T29/49806Explosively shaping

Definitions

  • the invention relates to a device for explosive forming, with the features of the preamble of claim 1, (see, for example EP-A-0 830 907 ).
  • An ignition tube connects an explosion chamber in the workpiece interior with a gas supply, venting and ignition device, wherein the ignition device is integrated into the ignition tube.
  • the ignition device By means of the ignition device arranged in the ignition tube, the gas, oxyhydrogen gas in a stoichiometric mixture with low oxygen excess, is ignited. The explosion of the gas develops into a detonation wave, which transforms the workpiece and then expires.
  • the invention is therefore based on the object to improve a device of the type mentioned in that the detonation wave can develop well, the explosion process can run more orderly and that the ignition mechanism has a longer life.
  • the provided on the propagation path of the detonation wave shock breaker reduces the energy of the detonation wave whereby the device can be protected against high mechanical loads and thus also against permanent damage.
  • the strong mitigation of the reflected shock wave already causes an extension of the life of the ignition mechanism.
  • the impact crusher can be arranged between the ignition location and the ignition space exit.
  • the detonation wave which returns through the Zündraumausgang can be mitigated in their energy.
  • the shock breaker For example, the explosion propagating from the ignition location can develop sufficiently to reshape the workpiece as it passes through the mold.
  • the impact crusher can be arranged closer to the ignition location than the ignition chamber outlet. This has the advantage that the developing detonation wave, after passing through the impact crusher, remains an appropriate distance through the ignition space in order to unfold, but the reflected detonation wave is attenuated in its energy when the impact crusher is reached.
  • the impact crusher can be arranged directly at the ignition location.
  • the ignition device is still effectively protected against the reflected detonation wave. Nevertheless, the explosion can still be triggered there and develop from there.
  • the impact crusher can be arranged on the side facing away from the ignition of the mold.
  • the detonation wave is attenuated after passing through the mold by the impact crusher in its energy.
  • the explosion energy may be well-developed in the detonation wave until the detonation wave reaches the mold.
  • the impact crusher can be arranged directly on the mold on the side facing away from the ignition.
  • the detonation wave passing through the mold can thus be dampened in its energy immediately after passing through the mold.
  • the impact crusher may be located closer to the end of the device opposite the ignition location. The reaction from the detonation wave striking the impact crusher to the mold could thus be reduced.
  • the impact crusher forms the end of the device opposite the ignition location.
  • the impact crusher could act as a scattering element, which strikes the detonation wave.
  • the impact crusher can be arranged within a support tube which can be attached to the mold on the side remote from the ignition location of the molding tool.
  • the support tube could be made of a different material than the impact crusher and simplify the construction of the impact crusher as an insert.
  • the impact crusher in unit with the support tube may be designed as an end piece. This tail could connect directly to the mold and complete the device on the opposite side of the ignition space. A longer discharge path for the detonation wave could be omitted in this way.
  • the impact crusher has and / or generates a curved and / or reduced passage with respect to the ignition space cross section or the support tube cross section. These transmission modes can consume a significant amount of energy for the reflected detonation wave.
  • At least one impact crusher element can be provided, which is at least partially spaced from and forming a passage with the Zündrauminnenwandung or Stützrohrinnenwandung.
  • the impact crusher element can be simple and thus stably constructed.
  • a plurality of passages forming between the impact crusher elements may be provided.
  • the flow resistance through the impact crusher may be smaller in the direction of flow away from the ignition location than towards the ignition location.
  • the reflected detonation wave is reduced in energy to a much greater extent than the original explosion triggered by the ignition mechanism, and yet the ignition mechanism is protected when the impact crusher is located between the ignition location and the forming tool.
  • the flow resistance through the impact crusher in the flow direction from the ignition location can be greater than towards the ignition location, and the impact crusher can be mounted on the side of the molding tool facing away from the ignition location.
  • the shock wave energy can be withdrawn to a considerable extent even before it is reflected at the end of the device.
  • the impact crusher can have at least one Drossef Wegschlag element. This allows the propagating explosion to pass through the shock absorber while the reflected detonation wave is decelerated by the recoil element prior to the ignition mechanism.
  • the impact crusher may comprise at least one disposable element. This allows the explosion to pass through the shock-breaker while intercepting the reflected detonation wave from the disposable element prior to reaching the ignition mechanism.
  • the impact crusher can have a larger surface area than the ignition space inner surface or supporting surface which is adjacent to the impact crusher. This can lead to increased friction with respect to the length of the impact crusher and thus to an improved reduction in the energy of the reflected detonation wave.
  • the ignition space cross section and / or the support tube cross section in the region of the impact crusher can be increased. This creates an increased space especially for complex impact crushers.
  • the impact crusher may have at least one branch off-going from a main passage.
  • the detonation wave can be split, whereby likewise the energy of the detonation wave is divided and can be reflected and absorbed several times in the area of the branching.
  • the at least one branch may be at least partially branched. This creates a multiplicity of branch points at which the detonation wave can be split up.
  • the at least one branch can be closed at its end, whereby the detonation wave can remain inside the impact crusher.
  • At least one of the branches can form a filling channel for fluid.
  • the liquid used in a variant of explosion forming could be introduced into the device via the impact crusher.
  • the explosive could be introduced into the interior of the device via the filling channel.
  • the propagation space in the device may be connected via the branch with a propagation volume.
  • the detonation wave could thus be at least partially conducted over the impact crusher in a propagation volume to decay.
  • a filling device for fluid may be arranged on the side of the molding tool facing away from the ignition location.
  • the structure of the device on the Zündortseite could be simpler and equipped with fewer connections.
  • the impact crusher has a labyrinth structure. Due to the large surface area, the long labyrinth path and the multiple diversion of the reflected detonation wave, an effective deceleration of the same can be achieved.
  • the impact crusher can have at least one labyrinth element and / or a plurality of impact crusher elements forming a labyrinth structure. Depending on the situation, it may be better to form the labyrinth from one or more labyrinth elements or from several elements that together form a labyrinth structure.
  • the first is recommended z. B. in a small space, while the second option may be easier and cheaper to manufacture.
  • the passage may be formed approximately meander-shaped.
  • the meander shape with its diverse and strong deflections can reduce the energy of the reflected detonation front very effectively.
  • the impact crusher may comprise at least one disc-like impact crusher element with at least one passage through the disc.
  • the disc can provide a large baffle in the form of its face with low manufacturing cost.
  • the impact crusher element is designed as a cylindrical disk. As a result, it can be stably formed while providing a long passage for reducing the energy of the reflected detonation front.
  • the impact crusher element can have a branched passage system. Straight branching points can significantly reduce the energy of the reflected detonation wave.
  • the impact crusher element may be formed sponge, braid and / or ball-like. These embodiments can effectively mitigate the detonation wave and have sufficient life.
  • At least one impact breaker element may be formed as a deflection wall. With deflection walls, the detonation wave can be easily steered and controlled.
  • the deflection wall is polygonal in its course. In this way, an additional attenuation of the energy of the reflected detonation wave is achieved.
  • a plurality of spaced-apart butt-breaker elements can be arranged offset one behind the other in the flow direction and transversely to the flow direction.
  • At least two shock-breaker elements arranged one behind the other can be arranged overlapping one another.
  • the resulting labyrinthine structure with narrowed passages can decelerate the reflected detonation wave particularly well.
  • the impact crusher may contain steel and / or copper beryllium (CuBe). Because of their toughness and simultaneous hardness, these materials are particularly well suited for use as impact crushers.
  • CuBe copper beryllium
  • the impact crusher can be arranged at least partially exchangeable. As a result, material fatigue or material removal can be prevented in good time by easy maintenance.
  • the explosives can be supplied on the opposite side of the Zündraumausgang the shock absorber.
  • the explosive supply can also be protected by the impact crusher.
  • the explosive supply between impact breaker and Zündraumausgang done.
  • sufficient ignition means can be supplied to the ignition mechanism for ignition, while the explosion is favored in its deployment and its growth after the impact breaker.
  • FIG. 1 shows an ignition device 1 for the explosive forming of an inserted into a mold 2 workpiece 3.
  • the workpiece 3 is indicated in dotted line in its outline, and the mold 2 shown broken off with the upper and lower halves.
  • the ignition device 1 has an ignition mechanism 4 and an ignition chamber 5, which directly adjoins the ignition mechanism 4 in this embodiment in the form of an ignition tube.
  • the ignition mechanism 4 has a Zündort 6, symbolically represented here by a spark, on which an explosive is ignited.
  • the explosive reaches via at least one of the Explosionsffenzubowen 7 after passing a valve 22 in the ignition mechanism 4.
  • the ignited in the ignition 6 explosive propagates with an explosion front in the ignition chamber 5 and the explosion front leaves this via the Zündraumausgang 8, which adjoins the mold 2 and the workpiece 3 located therein is connected.
  • the device with fluid such as water is filled.
  • a shock breaker 9 is provided, which is located here in the ignition space 5.
  • the system boundaries of the impact crusher 9 are shown in dashed line, and a double-serrated element 10 symbolically denotes at least one impact crusher element 10, wherein it is indicated that the flow resistance in the direction of the forming tool 2 is smaller from the direction of the mold 2.
  • the impact crusher 9 is disposed closer to the ignition point 6 than at the Zündraumausgang 8 and has outer walls 11, which pass into those of the ignition space 5.
  • the explosive can be supplied via explosives 7 directly to the ignition mechanism 4 and thus the ignition point 6 and / or on the opposite side of the shock absorber 9 the ignition chamber 5.
  • the flow direction 36 is marked with an arrow, which simultaneously describes the propagation path 37 of the detonation wave. A reflected detonation wave propagates substantially along the propagation path 37 but opposite to the flow direction 36 in the device.
  • the outer walls 11 of the impact crusher 9 are enlarged in the region of the impact crusher 9 and adapted to an octagonal outer contour of a shock crusher element 10.
  • the octagonal-prismatic impact breaker element 10 and the outer walls 11 define therebetween an arcuate as well as reduced passageway 12 through which both the original and the reflected detonation wave must pass.
  • the end faces 13 of the impact crusher element 10 reduce the energy of the shaft.
  • FIG. 2b form two hexagonal-prismatic, abutting the outer walls 11, impact breaker elements 10 a curved and reduced, labyrinth-like passage 12 for the detonation wave from.
  • a breakwater act here the edges of the flow direction behind the other and overlapping each other arranged Stoßbrecheremia 10th
  • FIG 2c are three in the flow direction behind the other and arranged transversely offset thrust elements 10 used.
  • the cube-shaped impact crusher elements 10 are oriented with their edges in the flow direction 36.
  • In a second plane parallel to the plane of three cubic shock-breaker elements 10 are shown in dashed lines, offset from those described above. This creates a labyrinth-like structure with angled, reduced passages 12.
  • Figure 2d are arranged transversely to the direction of flow walls as impact breaker elements 10 used to force the detonation wave through a labyrinthine, meander-like passage 12.
  • the impact crusher elements 10 extend adjacent to the outer walls 11 of the impact crusher 9, transversely to the flow direction 36, approximately perpendicular to the Ignition space.
  • the Figure 2d can also be understood that the impact breaker elements 10 are arranged only partially inclined to the flow direction 36 of the detonation wave.
  • FIG. 2e two impact crusher elements 10 are arranged without spacing to the outer walls 11 of the impact crusher 9 in the flow direction 36 one behind the other. Their curved, reduced passage 12 and the series connection results in a labyrinth structure of individual labyrinth elements.
  • FIG. 2f are, unlike FIG. 2e , a plurality of L-shaped shock breaker elements 10 arranged such that a labyrinth structure for an approximately Z-shaped passage 12 results between them.
  • Figure 2g is a single-curved passage 12 shown as a shock absorber 9, the outer walls 11 connect to the ignition space 5.
  • FIG. 2h shows a coil-like impact breaker element 10, which rebounds many times the detonation and deflects labyrinthine in itself.
  • This ball-like impact breaker element 10 is partly on the outer walls 11 of the impact crusher 9, partly it is spaced therefrom.
  • FIGS. 2a to 2h Also be understood that the corresponding shock breaker has surface elements which are arranged inclined to the flow direction 36 of the detonation wave, which form the Stoßbrecheremia 10, where the detonation wave reflects many times and thereby can be partially absorbed.
  • FIG. 2i takes care of the symbolism of hydraulics to represent a disposable element 14 as a shock breaker element 10. This is to describe a shock-breaker element 10 which allows the propagating explosion wave to pass while blocking its reflection in the reverse flow direction.
  • This disposable element 14 is not necessarily a valve as known from hydraulics.
  • FIG. 2j has a throttle check element 15 as a shock breaker element 10.
  • This contains a disposable element 14 as in FIG. 2i and a throttle element, which is equivalent to a curved and / or reduced passage 12.
  • the throttle check element 15 is not necessarily a valve.
  • To be expressed is a construction that lets the explosion through in its propagation direction and in hinders their direction of reflection. This is with the FIGS. 2i and 2j the flow resistance through the impact crusher 9 in the flow direction from the Zündraumausgang 8 to the ignition 6 each greater than that of the ignition point 6 to the Zündraumausgang. 8
  • FIGS. 3a and b 1 a first detailed embodiment of an impact crusher 9 is shown in which three impact crusher elements 10 together form a labyrinth structure in the form of a multiply curved passage 12.
  • FIG. 3a the rotationally symmetrical impact crusher 9 is shown in section, wherein the three impact crusher elements 10 are not cut.
  • These are cylindrical disc-like impact crusher elements 10, each having a bore 16 and a groove 17 as a passage through the disc or past the disc. Because the cylinder-disk-shaped shock-breaker elements 10 are arranged in phase relationship with respect to their bores 16 and grooves 17 in the flow direction, the part of the detonation wave flowing through the impact-breaker elements 10 is redirected several times.
  • the cylindrical disks 10 are arranged at a distance from the outer walls 11 of the impact crusher 9, so that an additional passage 12 is produced at this point.
  • the impact breaker 9 or the impact breaker elements 10 can be mounted and maintained in a simple manner via a thread 23.
  • the passage 12 is enlarged, but then tapered again so that the impact crusher elements 10 can not get into the adjacent ignition space 5 or into the support tube 25.
  • this provides for above-mentioned reduction of the passage 12th
  • FIG. 3b the cylindrical disk-shaped impact crusher elements 10 are drawn in perspective.
  • the respective bores 16 and grooves 17 are here phase-shifted by 60 ° to the respective next in the flow direction of the cylindrical disk 10.
  • FIG. 4 another shock breaker 9 is shown with cylindrical disc-shaped impact crusher elements 10.
  • FIG. 4a shows a section through the rotationally symmetrical impact crusher 9, wherein the Stoßbrecheremia 10, four in number, are cut along.
  • the cylindrically shaped impact crusher elements 10 here symmetrically constructed labyrinth elements.
  • a labyrinth structure results here merely by juxtaposing in the flow direction 36.
  • These impact crusher elements 10 are immovably on the outer wall 11 of the impact crusher 9. Starting from the ignition point 6 is the propagating explosion wave, a passage 12 is available, which tapers conically towards the impact crusher elements 10 and then reduced continues.
  • the cylindrically shaped impact crusher elements 10 each have two bores 16 transversely to the flow direction 36, which are connected to each other via recesses 17 attached laterally. Longitudinal bores from the side of the end faces 13 end in each case at the bores 16. As a result, the passage 12 is first branched in T-shape, in order then to be brought together again via a second T-shape. The outlet of a bumper element 10 abuts the inlet of the next bumper element 10.
  • FIG. 4b are two of the impact breaker elements 10 made FIG. 4a presented in different rotated perspective. Due to the branched passage system, it is irrelevant how the impact breaker elements 10 are arranged one behind the other in the flow direction.
  • the impact breaker 9 consists of an octagonal-prismatic impact breaker element 10, whose end faces 13 are aligned as baffles in the flow direction 36.
  • the impact crusher element 10 is laterally flanked by two deflecting walls 18 which continue the outer contour of the impact crusher element 10 at a parallel distance therefrom.
  • the outer wall 11 of the impact crusher 9 is extended laterally of the impact crusher element 10 and the deflecting walls 18 and also follows, at a parallel distance to the deflecting walls 18, the outer contour of the octagonal-prismatic Stoßbrecherelements 10.
  • the passage 12 between the impact crusher element 10 and outer walls 11 each divided and diverted.
  • the passage 12 widens vascularly through the impact crusher 9, so that in the expansion of several shock-absorbing elements superimposed on each other like bulk material 10 find space.
  • a catcher 19 This applies in particular to impact breaker elements 10, which are smaller than the corresponding passage 12 and a securing in the direction of gravity and the rebounding detonation wave.
  • the catcher 19 is formed like a net, but it may also have blocking struts, which narrow the passage 12 such that no impact breaker element 10 passes through. The catcher 19 thus acts flow permeable and bulk solids blocking.
  • this impact crusher 9 has a substantially larger surface area than the ignition space inner surface adjacent to the impact crusher 9.
  • the dashed line 20 indicates a way to disconnect the assembly and maintenance of the two impact breaker half shells.
  • FIG. 7 an arrangement is shown on the gap of several, here diamond-shaped prismatic, impact breaker elements 10 on a shock breaker carrier 21.
  • the impact breaker elements 10 can be easily replaced.
  • the impact breaker 9 or the impact breaker elements 10 contains steel and / or copper beryllium (CuBe).
  • FIG. 8 shows a schematic view of a device 29 according to the invention, in which the impact crusher 9 is arranged on the side facing away from the ignition point 6 of the mold 2.
  • the impact crusher 9 can be arranged directly adjacent to the molding tool 2, at a distance thereto or at the end of the support pipe 25.
  • two valves 22 are provided, one being located at the ignition location 6 and the other at the support tube 25.
  • the valves 22 can on the one hand serve for the supply of explosive 7, but also as a filling device for fluids, such as water.
  • the impact crusher 9 could also be arranged on the side of the molding tool 2 facing the ignition location 6, or a plurality of impact crushers 9 could be provided on the propagation path of the detonation shaft. Furthermore, the orientation of the symbol for the impact breaker elements 10 is opposite to the representation in FIG FIG. 1 rotated by 180 degrees, to indicate that in this embodiment, the flow resistance of the impact crusher 9 in the flow direction 36 is greater than to the Zündort 6 out. In this case, the detonation wave can be attenuated after passing through the mold 2 already at the end of the device 29 in their energy. But the shock breaker 9 could also be arranged in the same way as in FIG. 1 so that the detonation wave is first attenuated when passing through less or not at all, to be broken by the impact breaker 9 after the reflection at the end 38 of the device 29.
  • FIG. 9 shows a further embodiment of an impact crusher 9, which has a main passage 30 and a branch 26 has.
  • the branch has sidewalls 33, which are inclined to the main passage. The inclination of the side walls 33 is conceivable at any angle to the main passage 30. Only one branch 26 is shown, although a plurality of such branches may be formed at a plurality of angles to the main passage 30. At its end, the branch 26 is closed. It can thereby be achieved that the detonation wave remains within the impact crusher 9 and can not act on the support tube 25 possibly surrounding the impact crusher 9 or the ignition chamber 5.
  • At least the support tube 25 or the ignition space 5 in the region of the impact crusher can be made of a different material than the impact crusher, which preferably consists of resistant material, as mentioned above.
  • the impact crusher 9 may be circular in cross-section, which facilitates assembly within a pipe or tubular member. However, it is also conceivable any deviating cross-section, for example, polygonal shapes.
  • FIG. 10 shows an embodiment of the impact crusher 9, which is formed as a single impact breaker element 10 and is disposed within a support tube 25.
  • the impact crusher element 10 has a lateral branch 26, which is open at its end and forms a filling channel 35 with an omission 34 in the support tube 25, by means of which fluid, for example water, can be filled into the propagation space of the device 29 or else the explosive agent supply 7 can be trained.
  • the propagation space extends inside the device from the ignition point 6 to the end 38 of the device.
  • the impact crusher 9 has a round cross-sectional shape, which, however, could also be formed in some other way square.
  • FIG. 11 shows another embodiment of an impact crusher 9, which is formed as a single impact crusher member 10, wherein the impact crusher member 10 has a plurality of side branches, which are partially branched and branched, and an exemplary branch, which is connected via a channel 35 with a propagation space 27 ,
  • the detonation wave can here partly leave the impact crusher, as well as the support tube 25, to be weakened in the propagation space 27 in their energy.
  • the propagation space 27 may be filled with gas, liquid or solids.
  • the main passage 30 opens into a reflection surface 32, which is hemispherical in this embodiment.
  • the reflection surface 32 may also have another shape such as a dome shape or pyramidal or the like.
  • the reflection surface 32 is formed in this embodiment as a part of a lid 31, which is removably attached to the support tube 25 in this embodiment and is formed together with the support tube 25 and the impact crusher 9 as an end piece.
  • FIG. 12 shows a further embodiment of an impact crusher 9 according to the invention, which is attached to the end 38 of the device 29 and has a plurality of reflective surfaces 32.
  • the reflection surfaces form in such a way that in each case two reflection surfaces 32 oppose each other at an opening angle and thus result in triangular recesses on the impact crusher 9 seen from the side.
  • the figure can also be understood to mean that it is a cross-section and as indicated by the dashed lines within the impact crusher 9, the recesses have a pyramidal shape.
  • the incident from the flow direction 36 detonation wave can be broken several times, so that the energy of the impinging detonation wave is divided on a variety of reflected back at different angles shock waves.
  • the maximum energy which can occur after reflection at the impact crusher 9 in a reflected back shock wave can thus be reduced with respect to the detonation wave.
  • the impact breaker 9 may be provided in this embodiment, without additional holding devices in a direction indicated by the outer dashed lines support tube at the end 38.
  • a reflection of the detonation wave at the smooth end 38 of the device 29 can be avoided in the present embodiment by using the impact crusher 9.
  • the detonation wave can be scattered directly at the impact crusher 9 by hitting the plurality of reflection surfaces 32.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Disintegrating Or Milling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Vibration Dampers (AREA)
  • Confectionery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Surgical Instruments (AREA)
  • Presses And Accessory Devices Thereof (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Air Bags (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung für das Explosionsumformen, mit den Merkmalen des Oberbegriffs des Anspruchs 1, (siehe z.B. EP-A-0 830 907 ).
  • Eine Solche Vorrichtung ist in der WO 2006/128519 beschrieben. Ein Zündrohr verbindet einen Explosionsraum im Werkstückinneren mit einer Gaszufuhr-, Entlüftungs- und Zündvorrichtung, wobei die Zündvorrichtung in das Zündrohr integriert ist. Durch die in dem Zündrohr angeordnete Zündvorrichtung wird das Gas, Knallgas in stöchiometrischer Mischung mit geringem Sauerstoffüberschuss, gezündet. Die Explosion des Gases entwickelt sich zu einer Detonationswelle, welche das Werkstück umformt und dann ausläuft.
  • In der Praxis hat sich bei gattungsgemäßen Vorrichtungen gezeigt, dass die Zündvorrichtung bzw. der Zündmechanismus durch das Explosionsumformen geschädigt wird.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung der eingangs erwähnten Gattung dahingehend zu verbessern, dass sich die Detonationswelle gut entwickeln kann, der Explosionsvorgang geordneter ablaufen kann und dass der Zündmechanismus eine höhere Lebensdauer aufweist.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung mit den Merkmalen des Anspruchs 1.
  • Der auf dem Ausbreitungsweg der Detonationswelle vorgesehene Stoßbrecher mindert die Energie der Detonationswelle wodurch die Vorrichtung vor hohen mechanischen Belastungen und somit auch vor Dauerschäden geschützt werden kann. Erstaunlicherweise bewirkt das starke Abmildern der reflektierten Stoßwelle bereits eine Verlängerung der Lebensdauer des Zündmechanismus.
  • In einer Variante der Erfindung kann der Stoßbrecher zwischen dem Zündort und dem Zündraumausgang angeordnet sein. Somit kann die Detonationswelle, die durch den Zündraumausgang zurückkehrt in ihrer Energie abgemildert werden. Trotz des Stoßbrechers kann sich die vom Zündort aus ausbreitende Explosion ausreichend entfalten, um beim Durchlaufen des Formwerkzeugs das Werkstück umzuformen.
  • In einem günstigen Ausführungsbeispiel der Erfindung kann der Stoßbrecher näher an dem Zündort als dem Zündraumausgang angeordnet sein. Dies hat den Vorteil, dass der sich aufbauenden Detonationswelle nach Durchlaufen des Stoßbrechers eine angemessene Strecke durch den Zündraum bleibt, um sich zu entfalten, aber die reflektierte Detonationswelle bei Erreichen des Stoßbrechers in ihrer Energie abgemildert ist.
  • Vorteilhafterweise kann der Stoßbrecher direkt an dem Zündort angeordnet sein. Damit wird die Zündeinrichtung noch wirksam gegen die reflektierte Detonationswelle geschützt. Trotzdem kann die Explosion dort noch ausgelöst werden und sich von dort entwickeln.
  • In einer bevorzugten Ausführungsform der Erfindung kann der Stoßbrecher auf der dem Zündort abgewandten Seite des Formwerkzeuges angeordnet sein. Die Detonationswelle wird nach dem Durchlauf durch das Formwerkzeug von dem Stoßbrecher in ihrer Energie gedämpft. Somit kann die Explosionsenergie gut entwickelt in der Detonationswelle enthalten sein, bis die Detonationswelle das Formwerkzeug erreicht.
  • In besonderer Weise kann der Stoßbrecher unmittelbar an dem Formwerkzeug auf der dem Zündort abgewandten Seite angeordnet sein. Die das Formwerkzeug durchlaufende Detonationswelle kann so unmittelbar nach dem Durchlaufen des Formwerkzeuges in ihrer Energie gedämpft werden.
  • Günstigerweise kann der Stoßbrecher näher an dem Ende der Vorrichtung angeordnet sein, welches dem Zündort gegenüberliegt. Die Rückwirkung von der auf den Stoßbrecher treffenden Detonationswelle auf das Formwerkzeug könnte so verringert werden.
  • Vorstellbar kann ebenfalls sein, dass der Stoßbrecher das dem Zündort gegenüberliegende Ende der Vorrichtung bildet. So könnte der Stoßbrecher als streuendes Element wirken, auf das die Detonationswelle auftrifft.
  • Es wird vorgeschlagen, dass der Stoßbrecher innerhalb eines Stützrohres angeordnet sein kann, welches auf der dem Zündort abgewandten Seite des Formwerkzeuges an dem Formwerkzeug angebracht sein kann. Das Stützrohr könnte aus einem anderen Material als der Stoßbrecher gefertigt sein und den Aufbau des Stoßbrechers als Einsatz vereinfachen. Günstigerweise kann der Stoßbrecher in Einheit mit dem Stützrohr als Endstück ausgeführt sein. Dieses Endstück könnte sich direkt an das Formwerkzeug anschließen und die Vorrichtung auf der dem Zündraum entgegen gesetzten Seite abschließen. Eine längere Auslaufstrecke für die Detonationswelle könnte so entfallen.
  • Es kann weiter von Vorteil sein, wenn der Stoßbrecher einen gekrümmten und/oder verringerten Durchlass gegenüber dem Zündraumquerschnitt oder dem Stützrohrquerschnitt aufweist und/oder erzeugt. Diese Durchlassformen können der reflektierten Detonationswelle in erheblichem Umfang Energie nehmen.
  • In besonderer Weise kann mindestens ein Stoßbrecherelement vorgesehen sein, welches wenigstens teilweise beabstandet zu und einen Durchlass mit der Zündrauminnenwandung oder der Stützrohrinnenwandung bildend angeordnet ist. Durch den Einsatz des Stoßbrecherelements zur Bildung eines Durchlasses zwischen sich und der Zündrauminnenwandung oder der Stützrohrinnenwandung kann das Stoßbrecherelement einfach und damit stabil aufgebaut sein.
  • In einer vorteilhaften Ausführungsform können mehrere sich zwischen den Stoßbrecherelementen bildende Durchlässe vorgesehen sein. Durch den Einsatz mehrerer derartiger Stoßbrecherelemente kann die Auswirkung der reflektierten Detonationswelle an den Zündrauminnenwänden oder den Stützrohrinnenwänden verringert und auf mehrere Elemente verteilt werden. Weiterhin kann deren Energie damit schrittweise gemindert werden, was wiederum die Beanspruchung der einzelnen Stoßbrecherelemente verringert.
  • In einem günstigen Ausführungsbeispiel kann der Strömungswiderstand durch den Stoßbrecher in Strömungsrichtung von dem Zündort weg kleiner sein als zu dem Zündort hin. Dadurch wird die reflektierte Detonationswelle in wesentlich größerem Maße in ihrer Energie gemindert als die durch den Zündmechanismus ausgelöste ursprüngliche Explosion und trotzdem der Zündmechanismus geschützt wird, wenn der Stoßbrecher zwischen dem Zündort und dem Formwerkzeug angeordnet ist.
  • Weiterhin kann der Strömungswiderstand durch den Stoßbrecher in Strömungsrichtung von dem Zündort weg größer sein als zu dem Zündort hin, und der Stoßbrecher kann auf der dem Zündort abgewandten Seite des Formwerkzeuges angebracht sein. Dadurch kann der Stoßwelle Energie in erheblichem Umfang entzogen werden noch bevor diese am Ende der Vorrichtung reflektiert wird.
  • In besonderer Weise kann der Stoßbrecher mindestens ein Drossefrückschlag-Element aufweisen. Dadurch kann die sich ausbreitende Explosion den Stoßbrecher passieren, während die reflektierte Detonationswelle vor dem Zündmechanismus durch das Rückschlag-Element abgebremst wird.
  • In einer besonderen Ausführungsform kann der Stoßbrecher mindestens ein Einweg-Element aufweisen. Dadurch kann die Explosion den Stoßbrecher passieren, während die reflektierte Detonationswelle von dem Einweg-Element vor Erreichen des Zündmechanismuses abgefangen wird.
  • Vorteilhafterweise kann der Stoßbrecher eine größere Oberfläche als die dem Stoßbrecher benachbarte Zündrauminnenfläche oder Stützrohnnnenfläche aufweisen. Dies kann zu einer erhöhten Reibung bezüglich der Länge des Stoßbrechers und damit zu einer verbesserten Minderung der Energie der reflektierten Detonationswelle führen.
  • In einer besonders günstigen Ausführungsform kann der Zündraumquerschnitt und/oder der Stützrohrquerschnitt in dem Bereich des Stoßbrechers vergrößert sein. Dies schafft einen vergrößerten Bauraum speziell für komplexe Stoßbrecher.
  • Günstigerweise kann der Stoßbrecher über wenigstens eine von einem Hauptdurchgang abgehende seitliche Abzweigung verfügen. An der Stelle der Abzweigung kann sich die Detonationswelle aufteilen, wobei sich ebenfalls die Energie der Detonationswelle aufteilt und im Bereich der Abzweigung mehrfach reflektiert und absorbiert werden kann.
  • Zweckmäßigerweise kann die wenigstens eine Abzweigung wenigstens teilweise verästelt sein. Damit wird eine Vielzahl von Abzweigungsstellen geschaffen, an denen sich die Detonationswelle aufteilen kann.
  • Es wird vorgeschlagen, dass die wenigstens eine Abzweigung an ihrem Ende geschlossen sein kann, wodurch die Detonationswelle im Inneren des Stoßbrechers verbleiben kann.
  • Gemäß einer Variante der Erfindung kann wenigstens eine der Abzweigungen einen Befüllkanal für Fluid bilden. So ließe sich beispielsweise die in einer Variante des Explosionsumformens genutzte Flüssigkeit über den Stoßbrecher in die Vorrichtung einfüllen. Weiterhin könnte über den Befüllkanal das Explosionsmittel in das Innere der Vorrichtung eingebracht werden.
  • Vorstellbar kann der Ausbreitungsraum in der Vorrichtung über die Abzweigung mit einem Ausbreitungsvolumen verbunden sein. Die Detonationswelle könnte so zumindest teilweise über den Stoßbrecher in ein Ausbreitungsvolumen zum Abklingen geleitet werden.
  • Möglicherweise kann eine Befüllvorrichtung für Fluid an der dem Zündort abgewandten Seite des Formwerkzeugs angeordnet sein. Dadurch könnte der Aufbau der Vorrichtung auf der Zündortseite einfacher und mit weniger Anschlüssen ausgestattet sein.
  • Es kann von Vorteil sein, wenn der Stoßbrecher eine Labyrinth-Struktur aufweist. Durch die große Oberfläche, die lange zu durchlaufende Labyrinth-Strecke und die mehrfache Umleitung der reflektierten Detonationswelle kann ein effektives Abbremsen derselben erreicht werden.
  • In besonderer Weise kann der Stoßbrecher mindestens ein Labyrinth-Element und/oder mehrere, eine Labyrinth-Struktur bildende Stoßbrecherelemente aufweisen. Je nach Situation kann es günstiger sein, das Labyrinth aus einem oder aus mehreren Labyrinth-Elementen zu bilden oder aber aus mehreren Elementen, welche gemeinsam eine Labyrinth-Struktur bilden. Ersteres empfiehlt sich z. B. bei geringem Bauraum, während die zweitere Möglichkeit einfacher und billiger in der Herstellung sein kann.
  • In einem günstigen Ausführungsbeispiel kann der Durchlass etwa mäanderförmig ausgebildet sein. Die Mäanderform mit ihren vielfältigen und starken Umlenkungen kann die Energie der reflektierten Detonationsfront sehr effektiv mindern.
  • Vorteilhafterweise kann der Stoßbrecher mindestens ein scheibenartiges Stoßbrecherelement mit mindestens einem Durchlass durch die Scheibe hindurch aufweisen. Die Scheibe kann eine große Prallfläche in Form ihrer Stirnfläche bei gleichzeitig geringem Fertigungsaufwand bieten.
  • Es kann von Vorteil sein, wenn das Stoßbrecherelement als Zylinderscheibe ausgebildet ist. Dadurch kann es stabil ausgebildet werden und gleichzeitig für einen langen Durchlass zur Minderung der Energie der reflektierten Detonationsfront sorgen.
  • In besonderer Weise können mehrere Stoßbrecherelemente mit phasenverschoben aufeinanderfolgenden Durchlässen vorgesehen sein. Dadurch wird die Detonationswelle mehrfach umgelenkt, was deren Energie in besonderer Weise mindert.
  • In einer vorteilhaften Ausführungsform kann das Stoßbrecherelement ein verzweigtes Durchlasssystem aufweisen. Gerade Verzweigungsstellen können die Energie der reflektierten Detonationswelle erheblich mindern.
  • In einem günstigen Ausführungsbeispiel kann das Stoßbrecherelement schwamm-, geflecht- und/oder knäuelartig ausgebildet sein. Diese Ausbildungsformen können die Detonationswelle wirksam abmildern und haben eine ausreichende Lebensdauer.
  • Vorteilhafterweise kann mindestens ein Stoßbrecherelement als Umlenkwand ausgebildet sein. Mit Umlenkwänden kann die Detonationswelle einfach gelenkt und gesteuert werden.
  • Es kann von Vorteil sein, wenn die Umlenkwand in ihrem Verlauf mehreckig ausgebildet ist. In dieser Weise wird ein zusätzliches Abmildern der Energie der reflektierten Detonationswelle erreicht.
  • In besonderer Weise können mehrere schüttgutartig aufeinanderliegende Stoßbrecherelemente vorgesehen sein. Die schüttgutartige Anordnung bewirkt eine gute Schwächung der reflektierten Detonationswelle, und über die Menge und Art der Stoßbrecherelemente kann die gewünschte Stoßbrecherwirkung einfach gewählt werden.
  • In einer vorteilhaften Ausführungsform können mehrere zueinander beabstandete Stoßbrecherelemente in Strömungsrichtung hintereinander und quer zur Strömungsrichtung versetzt zueinander angeordnet sein. Dadurch kann in besonderer Weise auf die Form der Detonationsfront und ihrer nachfolgenden Welle eingegangen, und diese somit effektiv abgebremst werden.
  • In einem günstigen Ausführungsbeispiel können mindestens zwei hintereinander angeordnete Stoßbrecherelemente überlappend zueinander angeordnet sein. Die dadurch entstehende labyrinthartige Struktur mit verengten Durchlässen kann die reflektierte Detonationswelle besonders gut abbremsen.
  • In besonderer Weise können mehrere Stoßbrecherelemente von einem Stoßbrecherträger gehalten sein. Dies erlaubt eine einfache Montage und Wartung der Stoßbrecherelemente. In einer besonderen Ausführungsform kann der Stoßbrecher Stahl und/oder Kupfer-Beryllium (CuBe) enthalten. Diese Werkstoffe eignen sich wegen ihrer Zähigkeit bei gleichzeitiger Härte besonders gut für den Einsatz als Stoßbrecher.
  • Vorteilhafterweise kann der Stoßbrecher wenigstens teilweise austauschbar angeordnet sein. Dadurch kann einer Materialermüdung beziehungsweise einem Materialabtrag rechtzeitig durch einfach durchzuführende Wartung vorgebeugt werden.
  • In besonderer Weise kann die Explosionsmittelzufuhr auf der dem Zündraumausgang entgegengesetzten Seite des Stoßbrechers erfolgen. Dadurch kann die Explosionsmittelzufuhr ebenso durch den Stoßbrecher geschützt werden.
  • In einem alternativen günstigen Ausführungsbeispiel kann die Explosionsmittelzufuhr zwischen Stoßbrecher und Zündraumausgang erfolgen. Dadurch kann dem Zündmechanismus ausreichend Explosionsmittel zur Zündung zugeführt werden, während die Explosion in ihrer Entfaltung und ihrem Anwachsen nach dem Stoßbrecher begünstigt ist.
  • Im Folgenden werden mehrere Ausführungsformen der Erfindung anhand der Zeichnung beschrieben. Es zeigen:
  • Figur 1
    eine schematische Darstellung der Erfindung,
    Figur 2a bis j
    mehrere schematische Ausführungsformen des Stoßbrechers aus Figur 1 oder Figur 8,
    Figur 3a, b
    eine detaillierte Ausführungsform des Stoßbrechers aus Figur 1 oder Figur 8,
    Figur 4a, b
    eine weitere detaillierte Ausführungsform des Stoßbrechers aus Figur 1 oder Figur 8,
    Figur 5
    eine weitere schematische Ausführungsform des Stoßbrechers aus Figur 1 oder Figur 8,
    Figur 6
    eine zusätzliche schematische Ausführungsform des Stoßbrechers aus Figur 1 oder Figur 8,
    Figur 7
    eine schematische Ausführungsform eines Stoßbrecherträgers für einen Stoßbrecher nach den Figuren 1, 2 oder 5,
    Figur 8
    eine schematische Darstellung einer zusätzlichen Ausführungsform der Erfin- dung
    Figur 9
    eine schematische Darstellung einer weiteren Ausführungsform des Stoßbre- chers aus Figur 1 oder Figur 8,
    Figur 10
    eine zusätzliche schematische Darstellung einer Ausführungsform des Stoß- brechers aus den Figuren 1 oder 8, und
    Figur 11
    eine schematische Darstellung einer weiteren Ausführungsform des Stoßbre- chers, sowie einer schematischen Darstellung des Ausbreitungsraumes oder einer Befüllvorrichtung,
    Figur 12
    eine schematische Darstellung einer weiteren Ausführungsform des Stoßbre- chers, am Ende der Vorrichtung aus Figur 1 oder Figur 8 angeordnet.
  • Figur 1 zeigt eine Zündeinrichtung 1 für das Explosionsumformen von einem in ein Formwerkzeug 2 eingelegten Werkstück 3. Dabei ist das Werkstück 3 in gepunkteter Linie in seinem Umriss angedeutet, und das Formwerkzeug 2 mit Ober- und Unterhälfte abgebrochen dargestellt. Die Zündeinrichtung 1 weist einen Zündmechanismus 4 und einen Zündraum 5 auf, welcher sich an den Zündmechanismus 4 bei dieser Ausführung in Form eines Zündrohrs direkt anschließt. Der Zündmechanismus 4 weist einen Zündort 6, hier symbolhaft dargestellt durch einen Zündfunken, auf, an welchem ein Explosionsmittel gezündet wird. Das Explosionsmittel gelangt über mindestens eine der Explosionsmittelzufuhren 7 nach Passieren eines Ventils 22 in den Zündmechanismus 4. Das im Zündort 6 gezündete Explosionsmittel breitet sich mit einer Explosionsfront in dem Zündraum 5 aus und die Explosionsfront verlässt diesen über den Zündraumausgang 8, der sich an das Formwerkzeug 2 und das darin befindliche Werkstück 3 anschließt. Die Figur kann auch so verstanden werden, dass über eines der Ventile 22 die Vorrichtung mit Fluid, etwa Wasser befüllbar ist.
  • Zwischen dem Zündort 6 und dem Zündraumausgang 8 ist ein Stoßbrecher 9 vorgesehen, welcher sich hier in dem Zündraum 5 befindet. Dabei sind die Systemgrenzen des Stoßbrechers 9 in gestrichelter Linie dargestellt, und ein doppeltgezacktes Element 10 bezeichnet symbolisch mindestens ein Stoßbrecherelement 10 wobei angedeutet wird, dass der Strömungswiderstand in Richtung des Formwerkzeuges 2 kleiner ist aus der Richtung des Formwerkzeuges 2. In diesem Ausführungsbeispiel ist der Stoßbrecher 9 näher an dem Zündort 6 als an dem Zündraumausgang 8 angeordnet und weist Außenwände 11 auf, welche in diejenigen des Zündraums 5 übergehen. Das Explosionsmittel kann über Explosionsmittelzufuhren 7 direkt dem Zündmechanismus 4 und damit dem Zündort 6 und/oder auf der dem Stoßbrecher 9 entgegengesetzten Seite dem Zündraum 5 zugeführt werden. Die Strömungsrichtung 36 ist mit einem Pfeil gekennzeichnet, welcher gleichzeitig auch den Ausbreitungsweg 37 der Detonationswelle beschreibt. Eine reflektierte Detonationswelle breitet sich im Wesentlichen entlang des Ausbreitungsweges 37 aber entgegengesetzt zur Strömungsrichtung 36 in der Vorrichtung aus.
  • In Figur 2a sind die Außenwände 11 des Stoßbrechers 9 in dem Bereich des Stoßbrechers 9 vergrößert und einer achteckigen Außenkontur eines Stoßbrecherelements 10 angepasst. Das oktagonal-prismatische Stoßbrecherelement 10 und die Außenwände 11 bilden zwischen sich einen sowohl gekrümmten als auch verringerten Durchlass 12 aus, den sowohl die ursprüngliche als auch die reflektierte Detonationswelle passieren muss. Besonders die Stirnflächen 13 des Stoßbrecherelements 10 mindern die Energie der Welle.
  • In Figur 2b bilden zwei hexagonal-prismatische, flächig an den Außenwänden 11 anliegende, Stoßbrecherelemente 10 einen gekrümmten und verringerten, labyrinthartigen Durchlass 12 für die Detonationswelle aus. Als Wellenbrecher fungieren hier die Kanten der in Strömungsrichtung hintereinander und überlappend zueinander angeordneten Stoßbrecherelemente 10.
  • In Figur 2c sind drei in Strömungsrichtung hintereinander und quer dazu versetzt angeordnete Stoßbrecherelemente 10 eingesetzt. Dabei sind die würfelförmigen Stoßbrecherelemente 10 mit ihren Kanten in Strömungsrichtung 36 orientiert. In einer zweiten Ebene parallel zur Zeichenebene sind drei weitere würfelförmige Stoßbrecherelemente 10 gestrichelt dargestellt, versetzt zu den eingangs beschriebenen angeordnet. Dadurch wird eine labyrinth-artige Struktur mit gewinkelten, verringerten Durchlässen 12 erzeugt.
  • In Figur 2d sind quer zur Strömungsrichtung angeordnete Wände als Stoßbrecherelemente 10 eingesetzt, um die Detonationswelle durch einen labyrinthartigen, mäanderähnlichen Durchlass 12 zu zwingen. Die Stoßbrecherelemente 10 erstrecken sich angrenzend an die Außenwände 11 des Stoßbrechers 9, quer zur Strömungsrichtung 36, etwa senkrecht in den Zündraum. Die Figur 2d kann auch so verstanden werden, dass die Stoßbrecherelemente 10 nur teilweise geneigt zur Strömungsrichtung 36 der Detonationswelle angeordnet sind.
  • In Figur 2e sind zwei Stoßbrecherelemente 10 abstandslos zu den Außenwänden 11 des Stoßbrechers 9 in Strömungsrichtung 36 hintereinander angeordnet. Durch ihren gekrümmten, verringerten Durchlass 12 und die Hintereinanderschaltung ergibt sich eine Labyrinth-Struktur aus einzelnen Labyrinth-Elementen.
  • In Figur 2f sind, im Gegensatz zu Figur 2e, mehrere L-förmige Stoßbrecherelemente 10 derart angeordnet, dass sich zwischen ihnen eine Labyrinth-Struktur für einen etwa Z-förmigen Durchlass 12 ergibt.
  • In Figur 2g ist ein einfach gekrümmter Durchlass 12 als Stoßbrecher 9 gezeigt, dessen Außenwande 11 an die des Zündraums 5 anschließen.
  • Figur 2h zeigt ein knäuelartiges Stoßbrecherelement 10, welches die Detonationswelle vielfach abprallen lässt und labyrinthartig in sich umlenkt. Dieses knäuelartige Stoßbrecherelement 10 liegt teils an den Außenwänden 11 des Stoßbrechers 9 an, teils ist es beabstandet dazu.
  • Grundsätzlich können die Figuren 2a bis 2h auch so verstanden werden, dass der entsprechende Stoßbrecher über Flächenelemente verfügt, die zur Strömungsrichtung 36 der Detonationswelle geneigt angeordnet sind, welche die Stoßbrecherelemente 10 bilden, an denen die Detonationswelle vielfach reflektiert und dabei teilweise absorbiert werden kann.
  • Figur 2i behilft sich der Symbolik der Hydraulik, um ein Einweg-Element 14 als Stoßbrecherelement 10 darzustellen. Damit soll ein Stoßbrecherelement 10 beschrieben werden, welches die sich ausbreitende Explosionswelle passieren lässt, während deren Reflexion in umgekehrter Strömungsrichtung abgeblockt wird. Dieses Einweg-Element 14 ist nicht notwendigerweise ein Ventil wie aus der Hydraulik bekannt.
  • Figur 2j weist ein Drosselrückschlag-Element 15 als Stoßbrecherelement 10 auf. Dieses enthält ein Einweg-Element 14 wie in Figur 2i und ein Drossel-Element, welches einem gekrümmten und/oder verringerten Durchlass 12 gleichzusetzen ist. Ebenso wie in Figur 2i sei hier nur die Symbolik der Hydraulik verwendet, und es handelt sich bei dem Drosselrückschlag-Element 15 nicht notwendigerweise um ein Ventil. Zum Ausdruck gebracht werden soll eine Konstruktion, die die Explosion in deren Ausbreitungsrichtung durchlässt und in deren Reflexionsrichtung behindert. Damit ist bei den Figuren 2i und 2j der Strömungswiderstand durch den Stoßbrecher 9 in Strömungsrichtung von dem Zündraumausgang 8 zu dem Zündort 6 jeweils größer als der von dem Zündort 6 zu dem Zündraumausgang 8.
  • In den Figuren 3a und b ist eine erste detaillierte Ausführungsform eines Stoßbrechers 9 gezeigt, bei welchem drei Stoßbrecherelemente 10 gemeinsam eine Labyrinth-Struktur in Form eines mehrfach gekrümmten Durchlasses 12 bilden.
  • In Figur 3a ist der rotationssymmetrische Stoßbrecher 9 im Schnitt dargestellt, wobei die drei Stoßbrecherelemente 10 nicht geschnitten sind. Es handelt sich hier um zylinderscheibenartige Stoßbrecherelemente 10, die jeweils eine Bohrung 16 und eine Rille 17 als Durchlass durch die Scheibe hindurch bzw. an der Scheibe vorbei aufweisen. Dadurch, dass die zylinderscheibenförmigen Stoßbrecherelemente 10 bezogen auf deren Bohrungen 16 und Rillen 17 phasenverschoben in Strömungsrichtung hintereinander angeordnet sind, wird der durch die Stoßbrecherelemente 10 strömende Teil der Detonationswelle mehrfach umgeleitet. Die Zylinderscheiben 10 sind beabstandet zu den Außenwänden 11 des Stoßbrechers 9 angeordnet, so dass an dieser Stelle ein zusätzlicher Durchlass 12 erzeugt wird. Durch einen zweiteiligen Gehäuseaufbau mit Teilungsebene 24 kann über ein Gewinde 23 der Stoßbrecher 9 bzw. die Stoßbrecherelemente 10 auf einfache Art und Weise montiert und gewartet werden. Im Bereich der Stoßbrecherelemente 10 ist der Durchlass 12 vergrößert, danach jedoch wieder verjüngt, so dass die Stoßbrecherelemente 10 nicht in den angrenzenden Zündraum 5 oder in das Stützrohr 25 gelangen können. Außerdem sorgt dies für obig erwähnte Verringerung des Durchlasses 12.
  • In Figur 3b sind die zylinderscheibenförmigen Stoßbrecherelemente 10 perspektivisch herausgezeichnet. Die jeweiligen Bohrungen 16 und Rillen 17 sind hier zur jeweils in Strömungsrichtung nächsten Zylinderscheibe 10 um 60° phasenverschoben.
  • In Figur 4 ist ein weiterer Stoßbrecher 9 mit zylinderscheibenförmigen Stoßbrecherelementen 10 dargestellt. Figur 4a zeigt einen Schnitt durch den rotationssymmetrischen Stoßbrecher 9, wobei die Stoßbrecherelemente 10, vier an der Zahl, mitgeschnitten sind. Zum Erleichtem von Montage und Wartung ist der Stoßbrecher 9 erneut zweiteilig und über ein Gewinde 23 verbunden konstruiert. Im Unterschied zu Figur 3 sind die zylinderscheibenartigen Stoßbrecherelemente 10 hier symmetrisch aufgebaute Labyrinth-Elemente. Eine Labyrinth-Struktur ergibt sich hier durch bloßes Aneinanderreihen in Strömungsrichtung 36. Diese Stoßbrecherelemente 10 liegen unverrückbar an der Außenwand 11 des Stoßbrechers 9 an. Ausgehend vom Zündort 6 steht der sich ausbreitenden Explosionswelle ein Durchlass 12 zur Verfügung, welcher sich auf die Stoßbrecherelemente 10 zugehend konisch verjüngt und danach verringert fortgeführt wird. Dieser verringerte Durchlass 12 wird nach Passieren der Stoßbrecherelemente 10 beibehalten. Die zylinderscheibenförmigen Stoßbrecherelemente 10 weisen je zwei Bohrungen 16 quer zur Strömungsrichtung 36 auf, welche über seitlich angebrachte Vertiefungen 17 miteinander verbunden sind. Längsbohrungen von Seiten der Stirnflächen 13 aus enden jeweils an den Bohrungen 16. Dadurch wird der Durchlass 12 zuerst in T-Form verzweigt, um dann über eine zweite T-Form wieder zusammengeführt zu werden. Der Auslass eines Stoßbrecherelements 10 liegt an dem Einlass des nächsten Stoßbrecherelements 10 an.
  • In Figur 4b sind zwei der Stoßbrecherelemente 10 aus Figur 4a in unterschiedlich gedrehter Perspektive dargestellt. Aufgrund des verzweigten Durchlasssystems ist es irrelevant, wie die Stoßbrecherelemente 10 in Strömungsrichtung hintereinander angeordnet sind.
  • In Figur 5 besteht der Stoßbrecher 9 aus einem oktagonal-prismatischen Stoßbrecherelement 10, dessen Stirnflächen 13 als Prallflächen in Strömungsrichtung 36 ausgerichtet sind. Das Stoßbrecherelement 10 wird seitlich von zwei Umlenkwänden 18 flankiert, die die Außenkontur des Stoßbrecherelements 10 in parallelem Abstand dazu fortführen. Die Außenwand 11 des Stoßbrechers 9 ist seitlich des Stoßbrecherelements 10 und den Umlenkwänden 18 ausgeweitet und folgt ebenfalls, im parallelem Abstand zu den Umlenkwänden 18, der Außenkontur des oktagonal-prismatischen Stoßbrecherelements 10. Dadurch wird der Durchlass 12 zwischen Stoßbrecherelement 10 und Außenwänden 11 je aufgeteilt und umgelenkt.
  • In Figur 6 weitet sich der Durchlass 12 durch den Stoßbrecher 9 gefäßartig aus, so dass in dessen Ausweitung mehrere schüttgutartig aufeinanderliegende Stoßbrecherelemente 10 Platz finden. Durch die schüttgutartig aufeinanderliegenden Stoßbrecherelemente 10 ergibt sich eine Vielzahl an verzweigten Durchlässen 12 durch den Stoßbrecher 9. Je nach Ausgestaltung kann es günstig sein, die Stoßbrecherelemente 10 durch einen Fänger 19 vom Zündort 6 und/oder Zündraum 5 fernzuhalten. Dies gilt speziell für Stoßbrecherelemente 10, welche kleiner sind als der entsprechende Durchlass 12 und eine Absicherung in Richtung der Schwerkraft sowie der rückprallenden Detonationswelle. Idealerweise ist der Fänger 19 netzartig ausgebildet, er kann jedoch auch Blockierstreben aufweisen, welche den Durchlass 12 derart verengen, dass kein Stoßbrecherelement 10 mehr hindurchpasst. Der Fänger 19 wirkt also strömungsdurchlässig und schüttgutsperrend. Besonders dieser Stoßbrecher 9 weist eine wesentlich größere Oberfläche als die dem Stoßbrecher 9 benachbarte Zündrauminnenfläche auf. Die gestrichelte Linie 20 bezeichnet eine Trennmöglichkeit zur Montage und Wartung der beiden Stoßbrecherhalbschalen.
  • In Figur 7 ist eine Anordnung auf Lücke von mehreren, hier rautenförmig-prismatischen, Stoßbrecherelementen 10 auf einem Stoßbrecherträger 21 gezeigt. Dadurch können die Stoßbrecherelemente 10 einfach ausgewechselt werden. Ebenso ist es möglich, über mehrere hinter- oder übereinander angeordnete Stoßbrecherträger 21 eine Vielzahl an Stoßbrecherelementen 10 platzsparend in den Stoßbrecher 9 einzubauen.
  • Aufgrund der beim Abbremsen der Detonationswelle wirksamen Kräfte enthält der Stoßbrecher 9 bzw. die Stoßbrecherelemente 10 Stahl und/oder Kupfer-Beryllium (CuBe).
  • Figur 8 zeigt eine schematische Ansicht einer erfindungsgemäßen Vorrichtung 29, bei der der Stoßbrecher 9 auf der dem Zündort 6 abgewandten Seite des Formwerkzeuges 2 angeordnet ist. Dabei kann der Stoßbrecher 9 unmittelbar an das Formwerkzeug 2 anschließend, beabstandet dazu oder am Ende des Stützrohres 25 angeordnet sein. Weiterhin sind zwei Ventile 22 vorgesehen, wobei eines am Zündort 6 und das andere am Stützrohr 25 angeordnet ist. Die Ventile 22 können einerseits zur Explosionsmittelzufuhr 7 dienen, aber auch als Befülleinrichtung für Fluide, etwa Wasser.
  • Der Stoßbrecher 9 könnte auch auf der dem Zündort 6 zugewandten Seite des Formwerkzeuges 2 angeordnet sein oder es könnten mehrere Stoßbrecher 9 auf dem Ausbreitungsweg der Detonationswelle vorgesehen sein. Weiterhin ist die Orientierung des Symbols für die Stoßbrecherelemente 10 gegenüber der Darstellung in Figur 1 um 180 Grad gedreht, um anzudeuten, dass in diesem Ausführungsbeispiel der Strömungswiderstand des Stoßbrechers 9 in Strömungsrichtung 36 größer ist als zu dem Zündort 6 hin. In diesem Fall kann die Detonationswelle nach dem Durchlaufen des Formwerkzeuges 2 bereits am Ende der Vorrichtung 29 in ihrer Energie abgeschwächt werden. Der Stoßbrecher 9 könnte aber auch auf die gleiche Weise angeordnet sein, wie in Figur 1, sodass die Detonationswelle beim Durchlaufen zunächst weniger oder gar nicht abgeschwächt wird, um nach der Reflektion am Ende 38 der Vorrichtung 29 vom Stoßbrecher 9 gebrochen zu werden.
  • Figur 9 zeigt eine weitere Ausführungsform eines Stoßbrechers 9, wobei dieser über einen Hauptdurchgang 30 und einer Abzweigung 26 verfügt. Die Abzweigung weist Seitenwände 33 auf, die zum Hauptdurchgang geneigt sind. Die Neigung der Seitenwände 33 ist unter beliebigen Winkeln zum Hauptdurchgang 30 vorstellbar. Es wird nur eine Abzweigung 26 gezeigt, obwohl eine Vielzahl solcher Abzweigungen, die unter einer Vielzahl von Winkeln zum Hauptdurchgang 30 ausgebildet vorliegen können. An ihrem Ende ist die Abzweigung 26 geschlossen. Dadurch kann erreicht werden, dass die Detonationswelle innerhalb des Stoßbrechers 9 verbleibt und nicht auf das den Stoßbrecher 9 möglicherweise umgebende Stützrohr 25 oder den Zündraum 5 einwirken kann. Damit kann erreicht werden, dass wenigstens das Stützrohr 25 oder der Zündraum 5 im Bereich des Stoßbrechers aus einem anderen Material gefertigt sein können als der Stoßbrecher, welcher vorzugsweise aus widerstandsfähigem Material, wie zuvor genannt, besteht. Der Stoßbrecher 9 kann in seinem Querschnitt kreisförmig ausgebildet sein, was die Montage innerhalb eines Rohres oder eines rohrförmigen Bauteils erleichtert. Denkbar ist jedoch auch ein beliebiger abweichender Querschnitt, zum Beispiel mehreckige Formen.
  • Figur 10 zeigt eine Ausführungsform des Stoßbrechers 9, der als einzelnes Stoßbrecherelement 10 ausgebildet ist und innerhalb eines Stützrohres 25 angeordnet ist. Das Stoßbrecherelement 10 weist eine seitliche Abzweigung 26 auf, die an ihrem Ende geöffnet ist und mit einer Auslassung 34 im Stützrohr 25 einen Befüllkanal 35 bildet, durch den einerseits Fluid, etwa Wasser in den Ausbreitungsraum der Vorrichtung 29 gefüllt werden kann oder andererseits die Explosionsmittelzufuhr 7 ausgebildet sein kann. Der Ausbreitungsraum erstreckt sich im Inneren der Vorrichtung vom Zündort 6 bis zum Ende 38 der Vorrichtung. In diesem Ausführungsbeispiel weist der Stoßbrecher 9 eine runde Querschnittsform auf, die jedoch auch auf andere Weise etwa eckig ausgebildet sein könnte.
  • Figur 11 zeigt ein weiteres Ausführungsbeispiel eines Stoßbrechers 9, welcher als einzelnes Stoßbrecherelement 10 ausgebildet ist, wobei das Stoßbrecherelement 10 eine Vielzahl von seitlichen Abzweigungen, die teilweise verästelt und verzweigt sind aufweist, sowie eine beispielhafte Verzweigung, die über einen Kanal 35 mit einem Ausbreitungsraum 27 verbunden ist. Die Detonationswelle kann hier teilweise den Stoßbrecher, sowie das Stützrohr 25 verlassen, um im Ausbreitungsraum 27 in ihrer Energie abgeschwächt zu werden. Der Ausbreitungsraum 27 kann mit Gas, Flüssigkeit oder festen Stoffen gefüllt sein.
  • Der Hauptdurchgang 30 mündet in einer Reflexionsfläche 32, die in diesem Ausführungsbeispiel halbkugelförmig ausgebildet ist. Die Reflexionsfläche 32 kann jedoch auch eine andere Form aufweisen etwa eine Kalottenform oder pyramidenförmig oder dergleichen. Die Reflexionsfläche 32 ist in diesem Ausführungsbeispiel als ein Teil eines Deckels 31 ausgebildet, der in diesem Ausführungsbeispiel abnehmbar an dem Stützrohr 25 angebracht ist und zusammen mit dem Stützrohr 25 und dem Stoßbrecher 9 als Endstück ausgebildet ist.
  • Figur 12 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Stoßbrechers 9, welcher am Ende 38 der Vorrichtung 29 angebracht ist und eine Vielzahl von Reflexionsflächen 32 aufweist. In diesem Ausführungsbeispiel ist angedeutet, dass die Reflexionsflächen sich derart ausbilden, dass jeweils zwei Reflexionsflächen 32 sich unter einem Öffnungswinkel gegenüberliegen und sich so von der Seite gesehen dreieckige Aussparungen an dem Stoßbrecher 9 ergeben. Die Figur kann auch so verstanden werden, dass es sich um einen Querschnitt handelt und wie durch die gestrichelten Linien innerhalb des Stoßbrechers 9 angedeutet die Aussparungen eine Pyramidenform aufweisen. An derart geformten und vielfach an dem Stoßbrecher 9 auftretenden Reflexionsflächen 32 kann die aus der Strömungsrichtung 36 auftreffende Detonationswelle mehrfach gebrochen werden, sodass sich die Energie der auftreffenden Detonationswelle auf eine Vielzahl von unter verschiedenen Winkeln zurückreflektierten Stoßwellen aufteilt. Die maximale Energie, die nach der Reflexion an dem Stoßbrecher 9 in einer zurückreflektierten Stoßwelle auftreten kann, kann so gegenüber der Detonationswelle herabgesetzt werden.
  • Der Stoßbrecher 9 kann in diesem Ausführungsbeispiel ohne zusätzliche Haltevorrichtungen in einem durch die äußeren gestrichelten Linien angedeuteten Stützrohr an dessen Ende 38 vorgesehen sei. Eine Reflexion der Detonationswelle an dem glatten Ende 38 der Vorrichtung 29 kann in dem vorliegenden Ausführungsbeispiel durch Einsatz des Stoßbrechers 9 vermieden werden. Die Detonationswelle kann unmittelbar an dem Stoßbrecher 9 durch Auftreffen auf die Vielzahl der Reflexionsflächen 32 gestreut werden.

Claims (26)

  1. Vorrichtung für das Explosionsumformen von Werkstücken (3), welche einen Zündraum (5) und einen Zündmechanismus (4) aufweist, wobei mit Hilfe des Zündmechanismus (4) ein Explosionsmittel in dem Zündraum (5) an einem Zündort (6) entzündbar ist, wovon sich eine Detonationswelle zum Umformen des Werkstücks in einem Formwerkzeug (2) ausbreiten kann,
    dadurch gekennzeichnet,
    dass auf dem Ausbreitungsweg (37) der Detonationswelle ein Stoßbrecher (9) vorgesehen ist, und dass der Stoßbrecher (9) außerhalb des Formwerkzeugs (2) vorgesehen ist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) zwischen dem Zündort (6) und einem Zündraumausgang (8) angeordnet ist.
  3. Vorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) näher an dem Zündort (6) als an dem Zündraumausgang (8) angeordnet ist, insbesondere dass der Stoßbrecher (9) direkt an dem Zündort (6) angeordnet ist.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) auf der dem Zündort (6) abgewandten Seite des Formwerkzeuges (2) angeordnet ist, vorzugsweise dass der Stoßbrecher (9) unmittelbar am Formwerkzeug (2) angeordnet ist, oder vorzugsweise dass der Stoßbrecher (9) näher zu dem den Zündort (6) gegenüberliegenden Ende (38) der Vorrichtung (29) liegend angeordnet ist, insbesondere dass der Stoßbrecher (9) das dem Zündort (6) gegenüberliegende Ende (38) der Vorrichtung (29) bildet.
  5. Vorrichtung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) innerhalb eines Stützrohres (25) vorgesehen ist, insbesondere dass der Stoßbrecher (9) in Einheit mit dem Stützrohr (25) als Endstück (28) ausgeführt ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) einen gekrümmten und/oder verringerten Durchlass (12) gegenüber dem Zündraumquerschnitt aufweist und/oder erzeugt.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass mindestens ein Stoßbrecherelement (10) vorgesehen ist, welches wenigstens teilweise beabstandet zu und einen Durchlass (12) mit der Zündrauminnenwandung oder der Stützrohrinnenwandung bildend angeordnet ist, oder dass mehrere Durchlässe (12) zwischen sich bildende Stoßbrecherelemente (10) vorgesehen sind, insbesondere dass mehrere schüttgutartig aufeinanderliegende Stoßbrecherelemente (10) vorgesehen sind.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Strömungswiderstand durch den Stoßbrecher (9) in Strömungsrichtung (36) von zu dem Zündort (6) weg größer oder kleiner ist als zu dem Zündort (6) hin.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) mindestens ein Drosselrückschlag-Element (15) oder mindestens ein Einweg-Element (14) aufweist.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) eine größere Oberfläche als die dem Stoßbrecher (9) benachbarte Zündrauminnenfläche oder Stützrohrinnenfläche aufweist.
  11. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9), wenigstens teilweise zur Strömungsrichtung (36) geneigt angeordnete Flächenelemente aufweisende Stoßbrecherelemente (10) umfasst, die insbesondere wenigstens teilweise versetzt angeordnet sind.
  12. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Zündraumquerschnitt und/oder der Stützrohrquerschnitt in dem Bereich des Stoßbrechers (9) vergrößert ist.
  13. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) über wenigstens eine von einem Hauptdurchgang (30) abgehende seitliche Abzweigung (26) verfügt, vorzugsweise dass die wenigstens eine Abzweigung (26) wenigstens teilweise verästelt ist, insbesondere dass die Abzweigung (26) an ihrem Ende geschlossen ist.
  14. Vorrichtung nach Anspruch 13,
    dadurch gekennzeichnet,
    dass wenigstens eine Abzweigung (26) einen Befüllkanal (35) für Fluid bildet.
  15. Vorrichtung nach den Ansprüchen 13 oder 14,
    dadurch gekennzeichnet,
    dass der Ausbreitungsraum innerhalb der Vorrichtung (29) über die Abzweigung (26) mit einem Ausbreitungsvolumen (27) verbunden ist.
  16. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass ein Befüllkanal (35) für Fluid an der dem Zündort (6) abgewandten Seite des Formwerkzeuges (2) vorgesehen ist.
  17. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) eine Labyrinth-Struktur aufweist, vorzugsweise dass der Stoßbrecher (9) mindestens ein Labyrinth-Element und/oder mehrere, eine Labyrinth-Struktur bildende Stoßbrecherelemente (10) aufweist, insbesondere dass der Durchlass (12) etwa mäanderförmig ausgebildet ist.
  18. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) mindestens ein scheibenartiges Stoßbrecherelement (10) mit mindestens einem Durchlass (12) durch die Scheibe hindurch aufweist, insbesondere dass das Stoßbrecherelement (10) als Zylinderscheibe ausgebildet ist.
  19. Vorrichtung nach Anspruch 18,
    dadurch gekennzeichnet,
    dass mehrere Stoßbrecherelemente (10) mit phasenverschoben aufeinander folgenden Durchlässen (12) vorgesehen sind, oder dass das Stoßbrecherelement (10) ein verzweigtes Durchlasssystem aufweist.
  20. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Stoßbrecherelement (10) schwamm-, geflecht- und/oder knäuelartig ausgebildet ist.
  21. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass mindestens ein Stoßbrecherelement (10) als Umlenkwand (18) ausgebildet ist, insbesondere dass die Umlenkwand (18) in ihrem Verlauf mehreckig ausgebildet ist.
  22. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass mehrere zueinander beabstandete Stoßbrecherelemente (10) in Strömungsrichtung (36) hintereinander und quer zur Strömungsrichtung (36) versetzt zueinander angeordnet sind, insbesondere dass mindestens zwei hintereinander angeordnete Stoßbrecherelemente (10) überlappend zueinander angeordnet sind.
  23. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass mehrere Stoßbrecherelemente (10) von einem Stoßbrecherträger (21) gehalten sind.
  24. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) Stahl- und/oder Kupfer-Beryllium (CuBe) enthält.
  25. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stoßbrecher (9) wenigstens teilweise austauschbar angeordnet ist.
  26. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Explosionsmittelzufuhr (7) auf der dem Zündraumausgang (8) entgegengesetzten Seite des Stoßbrechers (9) erfolgt, oder dass die Explosionsmittelzufuhr (7) zwischen Stoßbrecher (9) und Zündraumausgang (8) erfolgt.
EP08871795A 2008-01-31 2008-09-19 Vorrichtung für das explosionsumformen Not-in-force EP2249980B9 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08871795T PL2249980T3 (pl) 2008-01-31 2008-09-19 Urządzenie do kształtowania wybuchowego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008006979A DE102008006979A1 (de) 2008-01-31 2008-01-31 Vorrichtung für das Explosionsumformen
PCT/EP2008/007901 WO2009095042A1 (de) 2008-01-31 2008-09-19 Vorrichtung für das explosionsumformen

Publications (3)

Publication Number Publication Date
EP2249980A1 EP2249980A1 (de) 2010-11-17
EP2249980B1 true EP2249980B1 (de) 2011-08-31
EP2249980B9 EP2249980B9 (de) 2012-02-22

Family

ID=40786550

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08871795A Not-in-force EP2249980B9 (de) 2008-01-31 2008-09-19 Vorrichtung für das explosionsumformen

Country Status (12)

Country Link
US (1) US8713982B2 (de)
EP (1) EP2249980B9 (de)
CN (1) CN101970148B (de)
AT (1) ATE522296T1 (de)
BR (1) BRPI0822038A2 (de)
CA (1) CA2713659A1 (de)
DE (1) DE102008006979A1 (de)
ES (1) ES2369838T3 (de)
MX (1) MX2010008467A (de)
PL (1) PL2249980T3 (de)
RU (1) RU2487775C2 (de)
WO (1) WO2009095042A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005025660B4 (de) 2005-06-03 2015-10-15 Cosma Engineering Europe Ag Vorrichtung und Verfahren zum Explosionsumformen
DE102006037742B4 (de) 2006-08-11 2010-12-09 Cosma Engineering Europe Ag Verfahren und Vorrichtung zum Explosionsumformen
DE102006037754B3 (de) 2006-08-11 2008-01-24 Cosma Engineering Europe Ag Verfahren und Vorrichtung zum Explosionsumformen
DE102006056788B4 (de) 2006-12-01 2013-10-10 Cosma Engineering Europe Ag Verschlusseinrichtung für das Explosionsumformen
DE102006060372A1 (de) 2006-12-20 2008-06-26 Cosma Engineering Europe Ag Werkstück und Verfahren für das Explosionsumformen
DE102007007330A1 (de) 2007-02-14 2008-08-21 Cosma Engineering Europe Ag Verfahren und Werkzeuganordnung zum Explosionsumformen
US8443641B2 (en) 2007-02-14 2013-05-21 Cosma Engineering Europe Ag Explosion forming system
DE102007023669B4 (de) 2007-05-22 2010-12-02 Cosma Engineering Europe Ag Zündeinrichtung für das Explosionsumformen
DE102007036196A1 (de) 2007-08-02 2009-02-05 Cosma Engineering Europe Ag Vorrichtung für die Zufuhr eines Fluids für Explosionsumformen
US9636736B2 (en) * 2007-12-13 2017-05-02 Cosma Engineering Europe Ag Method and mould arrangement for explosion forming
DE102008006979A1 (de) 2008-01-31 2009-08-06 Cosma Engineering Europe Ag Vorrichtung für das Explosionsumformen
BRPI0911553A2 (pt) * 2008-04-30 2015-10-13 Magna Int Inc aparelho e método para modificar uma peça de trabalho, válvula, e, sistema de formação combustivo para modificar peças de trabalho em série.
CZ201190A3 (cs) * 2011-02-18 2012-01-18 Západoceská Univerzita V Plzni Zpusob výroby dutých vysokopevných teles z vícefázových martenzitických ocelí
FR3009214B1 (fr) * 2013-08-01 2016-01-01 Nantes Ecole Centrale Machine d'electro-hydroformage pour la deformation plastique d'une partie projectile de la paroi d'une piece a former
CN103743638A (zh) * 2014-01-06 2014-04-23 安徽理工大学 爆炸波模拟复合加载装置
US11628485B2 (en) 2021-05-14 2023-04-18 Battelle Savannah River Alliance, LLC. Tooling assembly and method for explosively forming features in a thin-walled cylinder

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1452667U (de)
DE260450C (de)
DE217154C (de)
US392635A (en) 1888-11-13 powers
US1280451A (en) 1917-02-02 1918-10-01 William F Hagen Valve.
GB742460A (en) 1952-06-11 1955-12-30 Union Carbide & Carbon Corp Sheet metal forming by use of detonation waves
GB878178A (en) * 1959-12-01 1961-09-27 Olin Mathieson Metal forming
DE1129562B (de) 1961-04-21 1962-05-17 Telefonbau Schaltungsanordnung zur Gebuehrenerfassung mit Gespraechszetteldrucker im internationalen Fernwahlbetrieb
US3162087A (en) 1962-03-23 1964-12-22 Lakes Jack Cartridge forming apparatus utilizing explosive pressure
US3252312A (en) 1962-04-25 1966-05-24 Continental Can Co Method and apparatus for explosive reshaping of hollow ductile objects
US3160949A (en) 1962-05-21 1964-12-15 Aerojet General Co Method of joining elongated objects
DE1235246B (de) 1962-07-17 1967-03-02 Wmf Wuerttemberg Metallwaren Vorrichtung zur Hochenergieformung, insbesondere zur Explosionsumformung von Metallblechen od. dgl.
CH409831A (de) 1962-08-28 1966-03-31 Josef Schaberger & Co G M B H Vorrichtung zur Verformung von Körpern durch Explosion
FR1342377A (fr) 1962-10-17 1963-11-08 Continental Can Co Procédé et dispositif de refaçonnage par explosion d'objets creux ductiles
DE1218986B (de) 1962-12-21 1966-06-16 Wmf Wuerttemberg Metallwaren Verfahen und Platine zur Herstellung von Hohlkoerpern oder aehnlichen Formteilen ausBlech durch Hochenergieumformung
AT248838B (de) 1963-11-19 1966-08-25 Wmf Wuerttemberg Metallwaren Verfahren und Werkzeug zur Herstellung von Werkstücken durch Hochenergieformung
US3342048A (en) 1964-08-13 1967-09-19 Gen Am Transport Detonation wave forming machine
US3338080A (en) 1964-09-21 1967-08-29 Gen Dynamics Corp Forming apparatus
DE1527949A1 (de) 1965-01-19 1969-11-20 Chemokomplex Vegyipari Gep Es Verfahren und Einrichtung zur Ausbildung von gewoelbten Schalen aus Metallplatten
DE1552100B2 (de) * 1965-03-18 1971-07-22 Tokyu Seizo K.K., Yokohama, Kana gawa (Japan) Vorrichtung zum hochenergieumformen von metallischen werkstuecxken mit einem fluessigkeitsstrahl
DE1452667A1 (de) 1965-09-30 1969-03-06 Gen American Transp Corp Maschine zum plastischen Verformen mittels Detonationswellen
GB1129562A (en) 1966-03-07 1968-10-09 Vickers Ltd The generation of shock waves by exploding wire methods
GB1280451A (en) 1968-05-02 1972-07-05 Int Research & Dev Co Ltd Improvements in and relating to methods of explosively welding tubes into tube plates
AT299664B (de) 1968-05-17 1972-06-26 Boehler & Co Ag Geb Vorrichtung zur Explosionverformung metallischer Werkstoffe
DE1777208A1 (de) 1968-09-25 1971-04-01 Hertel Heinrich Prof Dr Ing Vorrichtung zur Hochleistungsumformung von Werkstuecken,insbesondere aus Blech,mit Hilfe von Schockwirkungsmitteln
DE1777207A1 (de) 1968-09-25 1971-04-01 Hertel Heinrich Prof Dr Ing Vorrichtung zur Hochleistungsumformung von Werkstuecken,insbesondere aus Blech,mit Hilfe von Schockwirkungsmitteln
DE1801784A1 (de) 1968-10-08 1970-06-11 Bbc Brown Boveri & Cie Arbeitsfunkenstrecke zur Erzeugung von Druckwellen in einem isolierenden,fluessigen Medium
DE1808942A1 (de) 1968-11-14 1970-06-11 Rune Hank Verfahren zur Explosionsumformung
US3654788A (en) 1968-11-20 1972-04-11 Lead Metal Kogyo Kk Method of discharge forming bulged articles
US3640110A (en) 1969-08-14 1972-02-08 Inoue K Shock forming
US3661004A (en) 1969-11-07 1972-05-09 Atlas Chem Ind Explosive tubing swager
US3737975A (en) 1970-07-15 1973-06-12 Kinnon C Mc Arrangement for explosively formed connections and method of making such connections
DE2043251A1 (en) 1970-09-01 1972-03-02 Nydamit Nobel Ag Explosive forming - by shock wave conducted into the workpiece from outside
DE2059181C3 (de) 1970-12-02 1975-02-27 Messwandler-Bau Gmbh, 8600 Bamberg Anordnung zur Hochdruck-Energieumformung von Körpern
US3742746A (en) 1971-01-04 1973-07-03 Continental Can Co Electrohydraulic plus fuel detonation explosive forming
DE2107460A1 (en) 1971-02-17 1972-08-31 Mylaeus Geb Internally expanding pipes - to centrally increase their buckling strength
GB1436538A (en) * 1972-11-17 1976-05-19 Dale Ltd John Manufacture of articles such as collapsible tubes
DE2337176C3 (de) 1973-07-21 1981-08-06 Tokyu Sharyo Seizo K.K., Yokohama, Kanagawa Vorrichtung zum Hochgeschwindigkeitsumformen vom metallischen rohrförmigen Werkstücken in einer mehrteiligen Formkammer
GB1419889A (en) 1973-12-21 1975-12-31 Kh Aviatsionnyj Institut Plant for explosive forming
ZA754574B (en) 1974-07-29 1976-06-30 Concast Inc A method of forming the walls of continuous casting and chill
DD114231A1 (de) 1974-08-29 1975-07-20
FR2300322A1 (fr) 1975-02-04 1976-09-03 Poudres & Explosifs Ste Nale Systeme de mise a feu pour charges explosives immergees
SU575161A1 (ru) * 1975-05-11 1977-10-05 Физико-технический институт АН Белорусской ССР Устройство дл штамповки листовых заготовок жидкостью высокого давлени
GB1482978A (en) 1975-06-27 1977-08-17 Ici Ltd Expanding metal tubes
DE2628579C2 (de) 1976-06-25 1983-02-17 Fiziko-techničeskij institut Akademii Nauk Belorusskoj SSR, Minsk Vorrichtung zum elektrohydraulischen Explosionsumformen
GB1542519A (en) 1976-07-07 1979-03-21 Fiz Tekh I An Brus Ssr Electrical discharge forming devices
US4187709A (en) 1976-08-23 1980-02-12 Kevin Strickland Explosive forming
DE2754666A1 (de) 1977-12-08 1979-06-13 Hinapat Ag Verfahren und vorrichtung zur herstellung eines tubenrohlings
DD135859A1 (de) 1978-04-24 1979-06-06 Heinz Heinrich Verfahren zum zuenden von sprengstoff in explosivumformanlagen
AT387515B (de) 1979-04-06 1989-02-10 Uk Nii Protezirovania Protezos Verfahren zur herstellung von aufnahmehuelsen fuer an stuempfen anzubringende prothesen und gaskannone hiefuer
AT371384B (de) 1980-08-08 1983-06-27 Uk Nii Protezirovania Protezos Verfahren zum umformen eines werkstueckes durch impulsbelastung, gaskanone zur durchfuehrung des verfahrens sowie umformeinrichtung zum umformen von werkstuecken durch impulsbelastung mit einer solchen gaskanone
DD158364B1 (de) 1981-04-09 1986-03-12 Germania Chemnitz Schutzvorrichtung zur explosivbearbeitung von bauteilen
BG34210A1 (en) 1981-07-15 1983-08-15 Kortenski Machine for explosive forming
US4492104A (en) 1981-12-02 1985-01-08 Meadowcraft Inc. Explosive shaping of metal tubing
US4494392A (en) * 1982-11-19 1985-01-22 Foster Wheeler Energy Corporation Apparatus for forming an explosively expanded tube-tube sheet joint including a low energy transfer cord and booster
DE3305615C2 (de) 1983-02-18 1986-10-16 Heinrich Dr.-Ing. 4290 Bocholt Hampel Anordnung zum Befestigen eines Rohres in einer Lochplatte mittels Explosionsdruckwellen
US4571800A (en) 1983-07-11 1986-02-25 Thiokol Corporation Method for explosively forming an auxiliary exit cone for the nozzle of a rocket motor
DE3347319A1 (de) 1983-12-28 1985-07-11 Kraftwerk Union AG, 4330 Mülheim Einrichtung zum schweissplattieren von rohren
EP0151490B1 (de) 1984-02-09 1991-01-16 Toyota Jidosha Kabushiki Kaisha Verfahren zur Herstellung von ultrafeinen Keramikpartikeln
SU1181331A1 (ru) 1984-06-05 1989-10-23 Научно-исследовательский институт технологии автомобильной промышленности Установка дл детонационного напылени
DE3512015A1 (de) 1985-04-02 1986-10-02 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur behandlung von werkstuecken mittels temperatur- und druckstoessen durch zuenden eines brennbaren gasgemisches, insbesondere thermische entgratanlage
US4738012A (en) 1985-12-31 1988-04-19 Hughes Robert W Method of making a cam shaft
DE3709181A1 (de) 1987-03-20 1988-09-29 Asea Ab Verfahren zur herstellung von komplizierten blechteilen und werkzeug fuer die druckumformung solcher blechteile
WO1988007899A1 (en) 1987-04-15 1988-10-20 The Research Foundation Institute Pty. Limited A method of forming metal
US4856311A (en) * 1987-06-11 1989-08-15 Vital Force, Inc. Apparatus and method for the rapid attainment of high hydrostatic pressures and concurrent delivery to a workpiece
DE3726475C1 (de) * 1987-08-08 1988-09-29 Bosch Gmbh Robert Verfahren und Vorrichtung zum Bestimmen der Menge eines in eine Bearbeitungskammer fuer Materialien einzubringenden explosiven Gasgemisches
US4788841A (en) 1987-11-18 1988-12-06 Aluminum Company Of America Method and apparatus for making step wall tubing
GB8918552D0 (en) * 1989-08-15 1989-09-27 Alford Sidney C Flexible linear explosive cutting or fracturing charge
DE4035894C1 (en) 1990-11-12 1992-01-30 Hampel, Heinrich, Dr., Moresnet, Be Cooling box for blast furnaces with low mfr. cost - produced from cooling pipe preformed with number bends and explosively welded
US5256430A (en) * 1991-05-29 1993-10-26 Nkk Corporation Method for generating a detonation pressure
GB9114444D0 (en) 1991-07-04 1991-08-21 Cmb Foodcan Plc Apparatus and method for reshaping containers
US5220727A (en) 1992-06-25 1993-06-22 Hochstein Peter A Method making cam shafts
DE4232913C2 (de) 1992-10-01 1995-04-27 Daimler Benz Ag Zweistufiges Verfahren zum hydromechanischen explosionsunterstützen Tiefziehen von Blech und Tiefziehpresse zur Durchführung des Verfahrens
RU2049581C1 (ru) * 1993-01-25 1995-12-10 Всероссийский научно-исследовательский институт технической физики Способ газовзрывной штамповки и устройство для его осуществления
CN1032576C (zh) * 1993-05-24 1996-08-21 王南海 金属筒体封头无横爆炸成形方法
JPH0751761A (ja) * 1993-08-18 1995-02-28 Nkk Corp 爆轟圧によるパネル部品の製造方法
JPH0788570A (ja) * 1993-09-20 1995-04-04 Nkk Corp 爆轟液圧又は弾圧による成形装置およびその基礎
DE19536292C2 (de) 1995-09-29 1997-09-25 Leinemann Gmbh & Co Verfahren und Vorrichtung zum Abschwächen einer Detonation in einem Behälter- bzw. Rohrleitungssystem
EP0830907A3 (de) * 1996-09-20 1998-09-23 Schmalbach-Lubeca AG Verschlussvorrichtung für eine Einrichtung zum Expansionsformen
DE19638679A1 (de) 1996-09-20 1998-03-26 Schmalbach Lubeca Verschlußvorrichtung für Einrichtung zum Expansionsformen mit lanzenförmigem Stopfen
DE19638688A1 (de) 1996-09-20 1998-03-26 Schmalbach Lubeca Verschlußvorrichtung für Einrichtung zum Expansionsformen mit konischem Stopfen
DE19638678A1 (de) 1996-09-20 1998-03-26 Schmalbach Lubeca Verschlußvorrichtung für eine Einrichtung zum Expansionsformen
DE19709918C2 (de) 1997-03-11 2001-02-01 Dornier Medizintechnik Hochleistungs-Druckwellenquelle
US5890698A (en) 1997-10-13 1999-04-06 Domytrak; Walter Valve having pressure equalizing conduit
IL122795A (en) 1997-12-29 2002-02-10 Pulsar Welding Ltd Combined pulsed magnetic and pulsed discharge forming of a dish from a planar plate
DE19818572C1 (de) 1998-04-25 1999-11-11 Leinemann Gmbh & Co Verfahren zum Unschädlichmachen einer Detonationsfront und Detonationssicherung
SE518722C2 (sv) 1998-06-26 2002-11-12 Flow Holdings Gmbh Sagl Llc Anordning och förfarande för expansionsformning
DE19852302A1 (de) 1998-11-12 2000-05-25 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Bearbeiten von Werkstücken mit Hochenergiestrahlung
DE19915383B4 (de) 1999-04-06 2004-07-22 Amborn, Peter, Dr.-Ing. Hydroformverfahren
JP4421021B2 (ja) 1999-08-19 2010-02-24 株式会社ディスコ 放電成形ユニット及び切削装置
DE19957836B4 (de) 1999-11-25 2004-05-27 RMG - Gaselan Regel + Meßtechnik GmbH Verfahren und Vorrichtung zum Dämpfen des Druckstoßes an Flammensperren bei Detonationen
JP2002093379A (ja) 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd 放電形成デバイス、放電発光デバイス、プラズマディスプレイパネル、並びにそれらを用いた照明装置及びディスプレイ装置
US7093470B2 (en) 2002-09-24 2006-08-22 The Boeing Company Methods of making integrally stiffened axial load carrying skin panels for primary aircraft structure and fuel tank structures
DE10328154A1 (de) 2003-06-07 2004-12-23 Günter Volland Bombenschutzbehälter
US7296449B2 (en) 2004-09-21 2007-11-20 Ball Corporation Dry hydraulic can shaping
CN1278795C (zh) * 2004-12-28 2006-10-11 张宝军 双金属管爆燃复合装置及其双金属管制备工艺
DE102005012475A1 (de) 2005-03-16 2006-09-21 IFUTEC Ingenieurbüro für Umformtechnik GmbH Verfahren zur Herstellung eines Übergangs an einem Hohlformteil
DE102005025660B4 (de) 2005-06-03 2015-10-15 Cosma Engineering Europe Ag Vorrichtung und Verfahren zum Explosionsumformen
DE102006008533A1 (de) * 2006-02-22 2007-08-30 Rheinisch-Westfälisch-Technische Hochschule Aachen Verfahren und Vorrichtung zur Gestaltung eines Druckprofils bei einer Detonationsumformung
JP2007222778A (ja) 2006-02-23 2007-09-06 Toto Ltd 放電生成ガス溶解装置
DE102006019856A1 (de) 2006-04-28 2007-11-08 Admedes Schuessler Gmbh Verfahren zum Bearbeiten von Werkstoffen unter Verwendung von porösem Silizium als Sprengstoff
DE102006037742B4 (de) 2006-08-11 2010-12-09 Cosma Engineering Europe Ag Verfahren und Vorrichtung zum Explosionsumformen
DE102006037754B3 (de) 2006-08-11 2008-01-24 Cosma Engineering Europe Ag Verfahren und Vorrichtung zum Explosionsumformen
DE102006056788B4 (de) 2006-12-01 2013-10-10 Cosma Engineering Europe Ag Verschlusseinrichtung für das Explosionsumformen
DE102006060372A1 (de) 2006-12-20 2008-06-26 Cosma Engineering Europe Ag Werkstück und Verfahren für das Explosionsumformen
DE102007007330A1 (de) 2007-02-14 2008-08-21 Cosma Engineering Europe Ag Verfahren und Werkzeuganordnung zum Explosionsumformen
US8443641B2 (en) * 2007-02-14 2013-05-21 Cosma Engineering Europe Ag Explosion forming system
DE102007023669B4 (de) 2007-05-22 2010-12-02 Cosma Engineering Europe Ag Zündeinrichtung für das Explosionsumformen
DE102007036196A1 (de) 2007-08-02 2009-02-05 Cosma Engineering Europe Ag Vorrichtung für die Zufuhr eines Fluids für Explosionsumformen
DE102008006979A1 (de) 2008-01-31 2009-08-06 Cosma Engineering Europe Ag Vorrichtung für das Explosionsumformen

Also Published As

Publication number Publication date
BRPI0822038A2 (pt) 2015-07-21
DE102008006979A1 (de) 2009-08-06
RU2010135870A (ru) 2012-03-10
CN101970148A (zh) 2011-02-09
MX2010008467A (es) 2010-10-07
EP2249980A1 (de) 2010-11-17
ATE522296T1 (de) 2011-09-15
US8713982B2 (en) 2014-05-06
CN101970148B (zh) 2016-08-03
ES2369838T3 (es) 2011-12-07
EP2249980B9 (de) 2012-02-22
PL2249980T3 (pl) 2011-12-30
RU2487775C2 (ru) 2013-07-20
CA2713659A1 (en) 2009-08-06
US20100326158A1 (en) 2010-12-30
WO2009095042A1 (de) 2009-08-06

Similar Documents

Publication Publication Date Title
EP2249980B1 (de) Vorrichtung für das explosionsumformen
DE60209556T2 (de) Detonationsflammensperre mit einem spiralförmig gewickelten keildrahtgitter für gase mit kleiner grenzspaltweite
EP1944565B1 (de) Vorrichtung zur Abwehr von Hohlladungsgeschossen
EP1516964B1 (de) Auffangnetz insbesondere für Steinschlagverbauungen
AT522084B1 (de) Löschvorrichtung
DE19638658A1 (de) Vorrichtung zur druckstoßabsorbierenden Befestigung eines Flächenelementes an einem Wandelement
DE1925131A1 (de) Fahrzeug-Sicherheitsvorrichtung
DE2557836A1 (de) Drucklufthammer
DE2520389A1 (de) Drosselorgan
DE19607919B4 (de) Zentrifugal-Ölabscheider für die blow-by-Gase einer Brennkraftmaschine
DE2708249A1 (de) Druckausgleichventil fuer schachtoefen
DE19821449A1 (de) Vorrichtung zum Verbessern der Wirksamkeit schnell strömender Medien und Verwendung als Hochdruck-Düse zum Erzeugen eines Hochdruck-Flüssigkeitsstrahles sowie andere Verwendungen
DE60037934T2 (de) Mauerzerbrechender Gefechtskopf
DE2342288C2 (de) Hydraulische Zerkleinerungsvorrichtung für Kernbohrwerkzeuge
DE1910779A1 (de) Verbesserungen in bezug auf die wirksamkeit von hohlladungen
EP1283958A1 (de) Pneumatikzylinder mit endlagendämpfung
DE4106566A1 (de) Schutzvorrichtung für gegen den Aufprall herkömmlicher Projektile geschützte Orte
DE102007035551A1 (de) Stützvorrichtung für eine Sprengladung eines Penetrators
DE102019215501A1 (de) Fräswerkzeug und Verfahren für ein Entfernen eines im Erdreich verlegten Rohres
DE202019106316U1 (de) Signaturdämpfer
DE602005004548T2 (de) Abschirmung und mit einer derartigen abschirmung ausgerüstetes geschoss wie eine granate
EP0382916B1 (de) Rohraggregat für die Aufnahme von Kabeln
DE7838809U1 (de) Einrichtung zur aussonderung luftverschmutzender teilchen, insbesondere bleiteilchen, aus den abgasen einer brennkraftmaschine
DE3615169C2 (de)
DE3808419C1 (en) Armour plate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004735

Country of ref document: DE

Effective date: 20111027

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2369838

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111207

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110831

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111231

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111201

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: MAGNA INTERNATIONAL INC.

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004735

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120919

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20140826

Year of fee payment: 7

Ref country code: AT

Payment date: 20140827

Year of fee payment: 7

Ref country code: ES

Payment date: 20140812

Year of fee payment: 7

Ref country code: PL

Payment date: 20140825

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140917

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140906

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150919

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 522296

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150919

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150919

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180904

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008004735

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401