EP2112245B1 - Ferritic stainless steel for exhaust gas passage member - Google Patents
Ferritic stainless steel for exhaust gas passage member Download PDFInfo
- Publication number
- EP2112245B1 EP2112245B1 EP08710877.5A EP08710877A EP2112245B1 EP 2112245 B1 EP2112245 B1 EP 2112245B1 EP 08710877 A EP08710877 A EP 08710877A EP 2112245 B1 EP2112245 B1 EP 2112245B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- phase
- exhaust gas
- temperature
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 description 88
- 239000010959 steel Substances 0.000 description 88
- 238000001556 precipitation Methods 0.000 description 31
- 239000000463 material Substances 0.000 description 24
- 239000007789 gas Substances 0.000 description 22
- 238000000137 annealing Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- 230000002708 enhancing effect Effects 0.000 description 13
- 238000001816 cooling Methods 0.000 description 12
- 238000003466 welding Methods 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910052758 niobium Inorganic materials 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/16—Selection of particular materials
Definitions
- the present invention relates to a ferritic stainless steel for use as exhaust gas path members such as typically exhaust manifolds, catalyst converter casings (outer casings), front pipes and center pipes, and to an automobile exhaust gas path member using the same.
- Patent References 1 and 2 disclose a ferritic stainless steel with approximately from 1 to 2 % by mass of Cu added thereto. Cu in the steel precipitates as a Cu phase when heated, and acts to enhance the high-temperature strength and the thermal fatigue resistance of the steel.
- the Cu-containing steel of the type is suitable to exhaust gas path members to be connected to engines of a type where the exhaust gas temperature is high.
- Patent Reference 1 WO03/004714
- Patent Reference 2 JP-A 2006-117985
- Patent References 1 and 2 For enhancing the high-temperature strength and the thermal fatigue resistance of ferritic stainless steel, there is known a method of adding a suitable amount of Cu to the steel, as in the above-mentioned Patent References 1 and 2; and in Patent Reference 2, in particular, there is employed a method of adding Nb to the steel in an amount of at most 0.6 % by mass for the purpose of enhancing the high-temperature strength of the steel in a high-temperature range over 700°C.
- Patent References 1 and 2 may have good thermal fatigue resistance when the maximum ultimate temperature thereof is high (for example, from 200 to 900°C), but when the maximum ultimate temperature thereof is low (for example, from 200 to 750°C), its thermal fatigue resistance is somewhat inferior to that of SUS444-type materials. Accordingly, the steel of Patent References 1 and 2 is suitable to automobiles with high-power engines mounted therein where the exhaust gas temperature is high, but is not suitable so much for application to automobiles with small-sized engines mounted therein where the exhaust gas temperature is relatively low. Depending on the mode of its use, the exhaust gas temperature in a high-power engine may vary, and therefore for the exhaust gas path members, it is desired to use a material having good thermal fatigue resistance even in a case where the maximum ultimate temperature is low.
- An object of the present invention is to provide a ferritic stainless steel capable of exhibiting excellent thermal fatigue resistance when applied to exhaust gas path members of both cases where the maximum ultimate temperature is high and low, and having excellent low-temperature toughness.
- the thermal fatigue resistance of steel can be enhanced through precipitation of a Cu phase therein.
- the thermal fatigue resistance of steel in a case where the maximum ultimate temperature is low for example, at around 750°C or lower can be enhanced through control of the precipitation morphology of Nb in steel.
- a ferritic stainless steel can be realized capable of being well applicable to both cases where the maximum ultimate temperature is high and low.
- the present invention provides a stainless steel for exhaust gas path members, which has a composition comprising, in terms of % by mass, at most 0.03 % of C, at most 1 % of Si, at most 1.5 % of Mn, at most 0.6 % of Ni, from 10 to 20 % of Cr, from more than 0.5 to 0.7 % of Nb, from 0.05 to 0.3 % of Ti, from more than 1 to 2 % of Cu, at most 0.2 % of V, at most 0.03 % of N, from 0.0005 to 0.02 % of B, and optionally at most 0.1 % of Al, and further optionally at least one of Mo, W, Zr and Co in an amount of at most 4 % in total, with a balance of Fe and inevitable impurities, and having an [Nb] value, as defined by the following formula (2) or (3) in accordance with the [Ti] value thereof as defined by the following formula (1), falling within a range of from 0.5 to 0.65, and which has a texture where the Cu phase having
- Preferred embodiments of the exhaust gas path members include, for example, automobile exhaust manifolds, catalyst converters, front pipes and center pipes. Needless-to-say, the members may be applicable to any other various exhaust gas path members than those of automobiles.
- the present invention has realized a ferritic stainless steel improved in point of both the thermal fatigue resistance thereof in a case where the maximum ultimate temperature is high (for example, 200 to 900°C) and the thermal fatigue resistance thereof in a case where the maximum ultimate temperature is low (for example, 200 to 750°C). Accordingly, the ferritic stainless steel of the invention is widely applicable to a case where the exhaust gas path members comprising it are used at a high exhaust gas temperature and to a case where they are used at a low exhaust gas temperature.
- the steel material satisfies the fundamental heat resistance (high-temperature oxidation resistance, high-temperature strength) required for automobile exhaust gas path members, and has excellent low-temperature toughness, and is therefore extremely useful for the recent exhaust gas path members that are required to be worked under severe conditions.
- the steel of the invention contains Cu and Nb, in which different types of precipitation phases of a Cu phase and an Nb compound phase are formed in actual service environments, and therefore, the steel exhibits excellent thermal fatigue resistance in both cases where the maximum ultimate temperature is high and low.
- the Cu phase is a so-called ⁇ -Cu precipitation phase, and this tends to readily grow in one direction and is generally in the form of rods.
- the Nb compound phase is a precipitation mainly comprising Fe 2 Nb, and when containing Mo, it generally has a morphology of Fe 2 (Mo,Nb).
- the Nb compound phase also tends to readily grow in one direction, and is generally in the form of rods. Accordingly, it is reasonable to evaluate the size of the precipitation phase as the major diameter thereof. Concretely, the major diameter of the precipitation appearing in the image projected through a transmission electronic microscope (TEM) (corresponding to the projection length in the image picture) may be taken as the major diameter of the phase.
- TEM transmission electronic microscope
- the projected phase may be identified with an analyzer (e.g., EDX) attached to TEM.
- an analyzer e.g., EDX
- Nb carbides and Nb nitrides are excluded from the Nb compound phase as referred to herein.
- the carbides and the nitrides are often in the form of masses or spheres, and from their forms, they may be relatively readily differentiated from the Fe 2 Nb-type precipitation phase.
- the phases may be identified with the above-mentioned analyzer (e.g., EDX).
- the maximum ultimate temperature in use of the steel is around 900°C or higher than it, Cu therein may sufficiently re-dissolve as a solid solution therein by that heating, therefore precipitating a fine Cu phase essentially at 500 to 700°C. Accordingly, the fatigue resistance in repeated heating (that is, the thermal fatigue resistance) of the steel can be thereby enhanced.
- the maximum ultimate temperature is at most around 750°C and is low, Cu could not sufficiently re-dissolve in the steel. Accordingly, the steel could not take a sufficient effect of enhancing the thermal fatigue resistance thereof owing to the fine precipitation of the Cu phase therein.
- the thermal fatigue resistance of the steel in the case where the maximum ultimate temperature is low and the Cu phase could not sufficiently improve the resistance by itself is compensated by the fine precipitation of the Nb compound phase in the steel.
- the Nb compound phase brings about precipitation reinforcement by heating at 700 to 750°C though within an extremely short period of time. It has been found that the precipitation reinforcement phenomenon within the short period of time remarkably enhances the thermal fatigue resistance of the steel in a temperature range of from 200 to 750°C.
- the steel could be free from balging to be caused by Ratchetting deformation or compression stress in the initial stage of repeated heating, and this could be advantageous for the thermal fatigue resistance of the steel where the maximum ultimate temperature is low.
- C and N are generally said to be effective for enhancing the creep strength and other high-temperature strength of steel; however, when steel contains them excessively, then the oxidation resistance, the workability, the low-temperature toughness and the weldability of the steel worsen.
- both C and N are limited to a content of at most 0.03 % by mass each.
- Si is effective for enhancing the high-temperature oxidation resistance of steel. In addition, it bonds to oxygen in the atmosphere in welding, therefore having the effect of preventing oxygen from penetrating into steel. However, when the Si content is excessive, then the hardness of the steel may increase and the workability and the low-temperature toughness thereof may worsen.
- the Si content is limited to at most 1 % by mass, and for example, it may be limited to a range of from 0.1 to 0.6 % by mass.
- Mn enhances the high-temperature oxidation resistance, especially the scale peeling resistance of steel.
- Mn is an austenite-stabilizing element, a martensite phase may be readily formed when it is added too much, therefore causing a factor of reducing the workability of steel.
- the Mn content is limited to at most 1.5 % by mass, more preferably at most 1.3 % by mass.
- the element may be defined to be from 0.1 to less than 1 % by mass.
- Ni is an austenite-stabilizing element, and when added excessively, it causes the formation of a martensite phase like Mn, therefore bringing about a factor of reducing the workability of steel.
- the Ni content is defined to be up to at most 0.6 % by mass.
- the Cr content is to be from 10 to 20 % by mass.
- the Cr content is controlled in accordance with the temperature in use of the material. For example, in case where high-temperature oxidation resistance up to 950°C is desired, the Cr content is preferably at least 16 % by mass; and when the resistance up to 900°C is desired, the Cr content may be from 12 to 16 % by mass.
- Nb is an element extremely effective for securing the high-temperature strength of steel in a high-temperature range over 700°C. It is believed that the Nb solid solution reinforcement in this composition system may greatly contribute toward the high-temperature strength enhancement. Nb fixes C and N and is therefore effective for preventing toughness reduction in steel. These effects of Nb are heretofore general ones; and further in the invention, the steel takes advantage of the fine precipitation of the Nb compound phase therein, therefore having another advantage of thermal fatigue resistance enhancement in a case where the maximum ultimate temperature is around at most 750°C and is low (as described in the above). For sufficiently securing the effect of Nb, the Nb content must be more than 0.5 % by mass, more effectively more than 0.6 % by mass. However, too much addition of Nb worsens the workability and the low-temperature toughness of steel, and increases the high-temperature cracking sensitivity in welding; and therefore, the Nb content is limited up to at most 0.7 % by mass.
- Nb readily bonds to C and N.
- the [Nb] value of the composition as defined by the following formula (2) or (3) in accordance with the [Ti] value thereof as defined by the following formula (1), or that is, the effective Nb amount in the composition is specifically defined.
- the composition secures the Ti content over the amount capable of bonding to C and N, or that is, when the effective Ti amount [Ti] is not less than 0, then the Nb content value can be directly taken as the effective Nb amount [Nb] as in the formula (2).
- the composition when the effective Ti amount [Ti] is less than 0, then the composition must secure an Nb content enough to compensate the effective Ti amount, and therefore, as in the formula (3), a value smaller than the Nb content is taken as the effective Nb amount [Nb].
- the Nb content is defined to fall within a range of from more than 0.5 to 0.7 % by mass, and in addition, the effective Nb amount [Nb] is defined to fall within a range of from 0.5 to 0. 65.
- the Nb content is severely defined within an extremely narrow range, and this is important to enhance the thermal fatigue resistance of the steel in a case where the maximum ultimate temperature is low, in addition to enhancing the high-temperature strength and the low-temperature toughness thereof.
- Ti generally fixes C and N and is effective for enhancing the shapability of steel and preventing the toughness reduction in steel.
- the Ti content must also be severely controlled from the viewpoint of securing the effective Nb amount as so mentioned in the above.
- the Ti content must be at least 0.05 % by mass.
- addition of excessive Ti may worsen the surface property of steel owing to the formation of a large quantity of TiN, and may further have some negative influences on the weldability and the low-temperature toughness of steel. Accordingly, the Ti content is defined to be from 0.05 to 0.3 % by mass.
- Al is a deoxidizer, and is an element that acts for enhancing the high-temperature oxidation resistance of steel.
- Al may be in the steel in a range of at most 0.1 % by mass. Excessive Al, if any in steel, may form a large quantity of oxides in welding, and may act as a starting point of working cracks.
- the invention takes advantage of the fine dispersion precipitation phenomenon of the Cu phase of steel to thereby enhance the strength thereof at from 500 to 700°C especially when the maximum ultimate temperature is not lower than around 900°C and is high. Accordingly, the Cu content must be more than 1 % by mass. However, too much Cu, if any in steel, may worsen the workability, the low-temperature toughness and the weldability of steel, and therefore, the Cu content is limited to be at most 2 % by mass.
- V contributes to enhancing the high-temperature strength of steel when added in combination with Nb and Cu.
- V improves the workability, the low-temperature toughness, the resistance to grain boundary corrosion susceptibility, and the toughness of weld heat affected regions of steel.
- excessive addition of V rather impairs the workability and the low-temperature toughness of steel.
- the V content is limited to at most 0.2 % by mass.
- the V content is from 0.01 to 0.2 % by mass, more preferably from 0.03 to 0.15 % by mass.
- the B is effective in enhancing the resistance to secondary working brittleness of steel.
- the mechanism thereof is assumed to be due to the decrease in the solid solution C in grain boundaries or due to the strengthening of the grain boundaries.
- the addition of excessive B worsens the producibility and the weldability of steel.
- the B content is from 0.0005 to 0.02 % by mass.
- Mo, W, Zr and Co are effective for enhancing the high-temperature strength of the ferritic stainless steel comprising the composition of the invention. If desired, at least one of these may be added to steel. However, too much addition may make the steel brittle, and therefore, when these elements are added, their total content is defined to be at most 4 % by mass. More effectively, the total content is from 0.5 to 4 % by mass.
- the ferritic stainless steel having the above-mentioned composition can be produced according to an ordinary stainless steel smelting and casting process, and then, for example, this may be processed according to a cycle of "hot rolling ⁇ annealing ⁇ washing with acid” and optionally further according to one or more cycles of "cold rolling ⁇ annealing ⁇ washing with acid", thereby giving an annealed steel sheet having a thickness of, for example, from 1 to 2.5 mm or so.
- the steel material is heated at from 950 to 1100°C, preferably at from 1000 to 1100°C, and thereafter the mean cooling speed thereof from 1000 to 700°C as a temperature range for Nb compound phase precipitation (when the heating temperature is lower than 1000°C, the mean cooling speed is from that heating temperature to 700°C) is from more than 30 to 100°C/sec, and the mean cooling speed from 700 to 400°C as a temperature range for Cu phase precipitation is from 5 to 50°C/sec.
- a steel material (annealed steel sheet) can be obtained, having a texture condition where the Cu phase having a major diameter of at least 0.5 ⁇ m is controlled to be in an amount of at most 10 grains/25 ⁇ m 2 and the Nb compound phase having a major diameter of at least 0. 5 ⁇ m is in an amount of at most 10 grains/25 ⁇ m 2 .
- "Final annealing” as referred to herein is the final annealing to be carried out in a process of producing a steel material.
- an exhaust gas path member is constructed.
- the tubular member is constructed as follows: The annealed steel sheet is roll-formed into a predetermined tubular form, then the butting portions of the two forms are welded to give a tube.
- employable is any known tube-forming welding method of TIG welding, laser welding, high-frequency welding or the like.
- the steel tube is, if desired, processed for heat treatment and washing with acid, and then worked into an exhaust gas path member.
- a ferritic stainless steel having the composition shown in Table 1 was produced through smelting and casting, and then processed according to a process of "hot rolling ⁇ annealing/washing with acid ⁇ cold rolling ⁇ final annealing/washing with acid" to give an annealed steel sheet having a thickness of 2 mm.
- a part of the cast slab is hot-forged into a round rod having a diameter of about 25 mm, and this was processed for final annealing.
- the final annealing of the sheet and the final annealing of the rod were as follows, except for Steel No. 19.
- the sheet or the rod was soaked at 1050°C for 1 minute, and then cooled from 1000°C to 700°C at a mean cooling speed of from more than 30 to 100°C/sec, and further from 700°C to 400°C at a mean cooling speed of from 5 to 50°C/sec.
- the final annealing of Steel No. 19 was as follows: From 1000°C to 700°C, the mean cooling speed was controlled to be from 10 to 20°C/sec, and the other condition was the same as that of the other samples (common to both the sheet material and the rod material).
- the rolling direction of the sheet material and the longitudinal direction of the rod material are referred to as L direction.
- the sheet material and the rod material were analyzed for the metal texture in the cross direction thereof cut perpendicularly to the L direction.
- TEM transmission electronic microscope
- the Cu phase and the Nb compound phase were analyzed for their size, and the number of the Cu phase grains and the Nb compound phase grains having a major diameter of at least 0. 5 ⁇ m seen per 25 ⁇ m 2 was counted. At least 10 viewing sites were analyzed in one sample, and the data were averaged.
- the type of the precipitation phase was identified by quantifying Fe, Nb, Mo and Cu with EDX (energy dispersion fluorescent X-ray analyzer) attached to TEM.
- the constitutive elements of the steel base were detected together with the phase-constituting elements. Therefore, of the found data of the above-mentioned four elements to which the precipitation phase was targeted, the value of at least 50 % by mass for Cu was identified as the Cu phase; and the value of at least 30 % by mass of Nb was identified as the Nb compound phase.
- the samples where the Cu phase having a major diameter of at least 0.5 ⁇ m was in an amount of at most 10 grains/25 ⁇ m 2 are O (good), and the others are x (not good), as in the column of the Cu phase in Table 2.
- the sheet material was tested in an impact test for the low-temperature toughness thereof.
- a V-notched impact test piece was so collected that the direction in which the impact is to be given to the piece could be the rolling direction of the sheet.
- the samples of which the transition temperature was lower than -25°C (the samples showing ductile fracture even at -25°C) were evaluated as O (good), and the others were evaluated as ⁇ (not good).
- a heat cycle of "200°C ⁇ 0.5 minutes soaking ⁇ heating up to 750°C at a heating speed of about 3°C/sec ⁇ 750°C ⁇ 2.0 minutes soaking ⁇ cooling to 200°C at a cooling speed of about 3°C/sec” with a restraint ratio (ratio of imparted strain to thermal expansion) of 25 % was repeated in every sample.
- the samples having a thermal fatigue life of at least 1800 cycles were evaluated as O (good) ; those having a thermal fatigue life of from 1500 cycles to less than 1800 cycles were evaluated as ⁇ (relatively not good) ; and those having a thermal fatigue life of less than 1500 cycles were evaluated as ⁇ (not good).
- the samples with the evaluation "O" passed the test.
- a heat cycle of "200°C ⁇ 0.5 minutes soaking ⁇ heating up to 900°C at a heating speed of about 3°C/sec ⁇ 900°C x 0.5 minutes soaking ⁇ cooling to 200°C at a cooling speed of about 3°C/sec” with a restraint ratio (ratio of imparted strain to thermal expansion) of 20 % was repeated in every sample.
- the samples having a thermal fatigue life of at least 900 cycles were evaluated as ⁇ (good) ; and those having a thermal fatigue life of less than 900 cycles were evaluated as ⁇ (not good).
- the samples with the evaluation " ⁇ " passed the test.
- Table 2 confirms that the samples of the invention, having the chemical composition as defined in the invention and satisfying the precipitation morphology of the Cu phase and the Nb compound phase, were improved in point of both the thermal fatigue resistance under the high maximum ultimate temperature condition (200 to 900°C) and the thermal fatigue resistance under the low maximum ultimate temperature condition (200 to 750°C), and had good low-temperature toughness.
- No. 19 is a steel having the composition defined in the invention; however, in its final annealing, the cooling speed within the temperature range for Nb compound phase precipitation was too late, and coarse Nb compound phase grains were formed. As a result, in the following heating process, fine Nb compound phase grains could not be sufficiently precipitated in this, and therefore the thermal fatigue resistance at 200 to 750°C of this sample was poor. In addition, owing to the influence of the coarse Nb compound phase grains thereon, the low-temperature toughness of the sample was also poor.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
- Exhaust Silencers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007024253A JP5010301B2 (ja) | 2007-02-02 | 2007-02-02 | 排ガス経路部材用フェライト系ステンレス鋼および排ガス経路部材 |
PCT/JP2008/051981 WO2008093888A1 (ja) | 2007-02-02 | 2008-01-31 | 排ガス経路部材用フェライト系ステンレス鋼 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2112245A1 EP2112245A1 (en) | 2009-10-28 |
EP2112245A4 EP2112245A4 (en) | 2010-06-16 |
EP2112245B1 true EP2112245B1 (en) | 2015-06-03 |
Family
ID=39674186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08710877.5A Active EP2112245B1 (en) | 2007-02-02 | 2008-01-31 | Ferritic stainless steel for exhaust gas passage member |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100050617A1 (zh) |
EP (1) | EP2112245B1 (zh) |
JP (1) | JP5010301B2 (zh) |
KR (1) | KR101473205B1 (zh) |
CN (2) | CN101611162A (zh) |
ES (1) | ES2542693T3 (zh) |
WO (1) | WO2008093888A1 (zh) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5297630B2 (ja) * | 2007-02-26 | 2013-09-25 | 新日鐵住金ステンレス株式会社 | 耐熱性に優れたフェライト系ステンレス鋼板 |
JP5178156B2 (ja) * | 2007-11-13 | 2013-04-10 | 日新製鋼株式会社 | 自動車排ガス経路部材用フェライト系ステンレス鋼材 |
JP5239644B2 (ja) * | 2008-08-29 | 2013-07-17 | Jfeスチール株式会社 | 熱疲労特性、高温疲労特性、耐酸化性および靭性に優れるフェライト系ステンレス鋼 |
JP2010236001A (ja) * | 2009-03-31 | 2010-10-21 | Nisshin Steel Co Ltd | フェライト系ステンレス鋼 |
CN102791897A (zh) | 2010-03-11 | 2012-11-21 | 新日铁住金不锈钢株式会社 | 耐氧化性优异的铁素体系不锈钢板和耐热性优异的铁素体系不锈钢板及其制造方法 |
JP5658893B2 (ja) * | 2010-03-11 | 2015-01-28 | 新日鐵住金ステンレス株式会社 | 耐熱性に優れたフェライト系ステンレス鋼板およびその製造方法 |
JP5546922B2 (ja) * | 2010-03-26 | 2014-07-09 | 新日鐵住金ステンレス株式会社 | 耐熱性と加工性に優れたフェライト系ステンレス鋼板およびその製造方法 |
CN102234740B (zh) * | 2010-04-22 | 2013-07-17 | 宝山钢铁股份有限公司 | 一种铁素体不锈钢及其冷轧板的制造方法 |
JP5793283B2 (ja) * | 2010-08-06 | 2015-10-14 | 新日鐵住金ステンレス株式会社 | ブラックスポットの生成の少ないフェライト系ステンレス鋼 |
JP5152387B2 (ja) * | 2010-10-14 | 2013-02-27 | Jfeスチール株式会社 | 耐熱性と加工性に優れるフェライト系ステンレス鋼 |
JP5659061B2 (ja) | 2011-03-29 | 2015-01-28 | 新日鐵住金ステンレス株式会社 | 耐熱性と加工性に優れたフェライト系ステンレス鋼板及びその製造方法 |
WO2012170210A2 (en) * | 2011-06-07 | 2012-12-13 | Borgwarner Inc. | Turbocharger and component therefor |
DE102012100289A1 (de) * | 2012-01-13 | 2013-07-18 | Benteler Automobiltechnik Gmbh | Rostfreier ferritischer Stahl und Verfahren zur Herstellung eines Hochtemperaturbauteils |
JP6037882B2 (ja) | 2012-02-15 | 2016-12-07 | 新日鐵住金ステンレス株式会社 | 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法 |
JP6071608B2 (ja) * | 2012-03-09 | 2017-02-01 | 新日鐵住金ステンレス株式会社 | 耐酸化性に優れたフェライト系ステンレス鋼板 |
JP5793459B2 (ja) | 2012-03-30 | 2015-10-14 | 新日鐵住金ステンレス株式会社 | 加工性に優れた耐熱フェライト系ステンレス冷延鋼板、冷延素材用フェライト系ステンレス熱延鋼板及びそれらの製造方法 |
FI125855B (fi) * | 2012-06-26 | 2016-03-15 | Outokumpu Oy | Ferriittinen ruostumaton teräs |
KR101394037B1 (ko) * | 2012-08-28 | 2014-05-09 | 기아자동차 주식회사 | 배기가스 배기시스템 |
KR101692660B1 (ko) | 2013-03-06 | 2017-01-03 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | 내열성이 우수한 페라이트계 스테인레스 강판 |
CA2907970C (en) * | 2013-03-27 | 2021-05-25 | Nippon Steel & Sumikin Stainless Steel Corporation | Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip |
JP5958412B2 (ja) * | 2013-04-23 | 2016-08-02 | Jfeスチール株式会社 | 熱疲労特性に優れたフェライト系ステンレス鋼 |
JP5977854B1 (ja) * | 2015-03-26 | 2016-08-24 | 新日鐵住金ステンレス株式会社 | 耐浸炭性及び耐酸化性に優れたフェライト系ステンレス鋼板及びその製造方法 |
JP6367259B2 (ja) * | 2016-04-21 | 2018-08-01 | 新日鐵住金ステンレス株式会社 | 耐浸炭性及び耐酸化性に優れたフェライト系ステンレス鋼板 |
JP6796708B2 (ja) | 2017-03-27 | 2020-12-09 | 日鉄ステンレス株式会社 | フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品 |
WO2018180643A1 (ja) * | 2017-03-29 | 2018-10-04 | 新日鐵住金ステンレス株式会社 | 高温耐摩耗性に優れたフェライト系ステンレス鋼、フェライト系ステンレス鋼板の製造方法、排気部品、高温摺動部品、およびターボチャージャー部品 |
JPWO2023170996A1 (zh) | 2022-03-07 | 2023-09-14 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05140700A (ja) * | 1991-11-15 | 1993-06-08 | Mazda Motor Corp | フエライト系耐熱鋳鋼部材及びその製造法 |
CN1049699C (zh) * | 1994-04-21 | 2000-02-23 | 川崎制铁株式会社 | 汽车排气材料用的热轧铁素体钢 |
JP4608818B2 (ja) * | 2000-07-04 | 2011-01-12 | Jfeスチール株式会社 | 溶接部の耐二次加工脆性および高温疲労特性に優れたフェライト系ステンレス鋼 |
JP2002309935A (ja) * | 2001-02-08 | 2002-10-23 | Hitachi Metals Ltd | 耐熱鋳鋼製排気系部品 |
EP1413640B1 (en) * | 2001-07-05 | 2005-05-25 | Nisshin Steel Co., Ltd. | Ferritic stainless steel for member of exhaust gas flow passage |
JP4312653B2 (ja) * | 2004-04-28 | 2009-08-12 | 新日鐵住金ステンレス株式会社 | 耐熱性および加工性に優れたフェライト系ステンレス鋼およびその製造方法 |
JP4468137B2 (ja) * | 2004-10-20 | 2010-05-26 | 日新製鋼株式会社 | 熱疲労特性に優れたフェライト系ステンレス鋼材および自動車排ガス経路部材 |
JP4498950B2 (ja) * | 2005-02-25 | 2010-07-07 | 新日鐵住金ステンレス株式会社 | 加工性に優れた排気部品用フェライト系ステンレス鋼板およびその製造方法 |
JP4752620B2 (ja) * | 2005-06-09 | 2011-08-17 | Jfeスチール株式会社 | ベローズ素管用フェライト系ステンレス鋼板 |
JP4948998B2 (ja) * | 2006-12-07 | 2012-06-06 | 日新製鋼株式会社 | 自動車排ガス流路部材用フェライト系ステンレス鋼および溶接鋼管 |
-
2007
- 2007-02-02 JP JP2007024253A patent/JP5010301B2/ja active Active
-
2008
- 2008-01-31 ES ES08710877.5T patent/ES2542693T3/es active Active
- 2008-01-31 CN CNA2008800037935A patent/CN101611162A/zh active Pending
- 2008-01-31 US US12/449,295 patent/US20100050617A1/en not_active Abandoned
- 2008-01-31 CN CN2011103196212A patent/CN102392194A/zh active Pending
- 2008-01-31 KR KR1020097015121A patent/KR101473205B1/ko active IP Right Grant
- 2008-01-31 WO PCT/JP2008/051981 patent/WO2008093888A1/ja active Application Filing
- 2008-01-31 EP EP08710877.5A patent/EP2112245B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008189974A (ja) | 2008-08-21 |
WO2008093888A1 (ja) | 2008-08-07 |
EP2112245A1 (en) | 2009-10-28 |
ES2542693T3 (es) | 2015-08-10 |
EP2112245A4 (en) | 2010-06-16 |
KR101473205B1 (ko) | 2014-12-16 |
KR20090109540A (ko) | 2009-10-20 |
CN101611162A (zh) | 2009-12-23 |
CN102392194A (zh) | 2012-03-28 |
JP5010301B2 (ja) | 2012-08-29 |
US20100050617A1 (en) | 2010-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2112245B1 (en) | Ferritic stainless steel for exhaust gas passage member | |
EP2060650B1 (en) | Ferritic stainless steel material for automobile exhaust gas passage components | |
KR102267129B1 (ko) | Nb함유 페라이트계 스테인리스 열연 강판 및 그 제조 방법과, Nb함유 페라이트계 스테인리스 냉연 강판 및 그 제조 방법 | |
CN108367396B (zh) | 铁素体系耐热钢用焊接材料、铁素体系耐热钢用焊接接头以及铁素体系耐热钢用焊接接头的制造方法 | |
EP2474635B1 (en) | Ferritic stainless steel having excellent heat resistance | |
EP2264202B1 (en) | Ferritic stainless steel with excellent heat resistance and toughness | |
EP1734143B1 (en) | Ferritic stainless steel sheet excellent in formability and method for production thereof | |
JP4468137B2 (ja) | 熱疲労特性に優れたフェライト系ステンレス鋼材および自動車排ガス経路部材 | |
EP2166120A1 (en) | Ferritic stainless steel having excellent heat resistance | |
JP5396752B2 (ja) | 靭性に優れたフェライト系ステンレス鋼およびその製造方法 | |
US9243306B2 (en) | Ferritic stainless steel sheet excellent in oxidation resistance | |
US20080279712A1 (en) | Ferritic stainless steel sheet with excellent thermal fatigue properties, and automotive exhaust-gas path member | |
EP3118342A1 (en) | Ferritic stainless steel | |
KR0165152B1 (ko) | 벨로우즈 성형용 페라이트계 스텐레스강 | |
JP5867474B2 (ja) | 電縫溶接部の信頼性に優れた高炭素電縫溶接鋼管の製造方法 | |
JP7468470B2 (ja) | フェライト系ステンレス鋼板およびその製造方法 | |
JP4241431B2 (ja) | フェライト系ステンレス鋼 | |
JP2923825B2 (ja) | 高温強度および溶接性に優れた耐熱用フエライト系ステンレス鋼板 | |
JP2682335B2 (ja) | フェライト系ステンレス鋼熱延鋼帯の製造法 | |
JPH0698499B2 (ja) | ステンレス鋼の溶接方法およびステンレス鋼溶接体 | |
JP3800150B2 (ja) | 製造性に優れるマルテンサイト系ステンレス熱延鋼帯 | |
JP3475621B2 (ja) | 溶接部の靱性に優れた高強度フェライト系耐熱鋼 | |
JPH10237600A (ja) | 耐高温溶接割れ性および溶接熱影響部の靭性に優れるフェライト系耐熱鋼 | |
JP2000160281A (ja) | 溶接性に優れた高張力鋼板 | |
JP2004230404A (ja) | 溶接材料及び溶接金属 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090728 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20100517 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/54 20060101ALI20141125BHEP Ipc: C21D 8/02 20060101ALI20141125BHEP Ipc: C22C 38/32 20060101ALI20141125BHEP Ipc: C22C 38/00 20060101AFI20141125BHEP Ipc: C21D 9/46 20060101ALI20141125BHEP |
|
INTG | Intention to grant announced |
Effective date: 20141211 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 729980 Country of ref document: AT Kind code of ref document: T Effective date: 20150715 Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008038415 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2542693 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150810 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 729980 Country of ref document: AT Kind code of ref document: T Effective date: 20150603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150903 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150603 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150904 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150903 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150603 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151003 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151006 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008038415 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 |
|
26N | No opposition filed |
Effective date: 20160304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080131 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150603 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: NIPPON STEEL STAINLESS STEEL CORPORATION Effective date: 20200214 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008038415 Country of ref document: DE Representative=s name: WAGNER & GEYER PARTNERSCHAFT MBB PATENT- UND R, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602008038415 Country of ref document: DE Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOYOTA-SHI, JP Free format text: FORMER OWNER: NISSHIN STEEL CO., LTD., TOKIO/TOKYO, JP Ref country code: DE Ref legal event code: R081 Ref document number: 602008038415 Country of ref document: DE Owner name: NIPPON STEEL STAINLESS STEEL CORPORATION, JP Free format text: FORMER OWNER: NISSHIN STEEL CO., LTD., TOKIO/TOKYO, JP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20200227 AND 20200304 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240223 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 17 Ref country code: GB Payment date: 20240123 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240124 Year of fee payment: 17 |