EP1999066A2 - Dotierte bleitelluride fuer thermoelektrische anwendungen - Google Patents

Dotierte bleitelluride fuer thermoelektrische anwendungen

Info

Publication number
EP1999066A2
EP1999066A2 EP07704205A EP07704205A EP1999066A2 EP 1999066 A2 EP1999066 A2 EP 1999066A2 EP 07704205 A EP07704205 A EP 07704205A EP 07704205 A EP07704205 A EP 07704205A EP 1999066 A2 EP1999066 A2 EP 1999066A2
Authority
EP
European Patent Office
Prior art keywords
semiconductor material
temperature
ampoule
thermoelectric
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07704205A
Other languages
English (en)
French (fr)
Inventor
Frank Haass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP07704205A priority Critical patent/EP1999066A2/de
Publication of EP1999066A2 publication Critical patent/EP1999066A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to semiconductor materials containing lead and tellurium and at least one or two further dopants, as well as these containing thermoelectric generators and Peltier arrangements.
  • Thermoelectric generators and Peltier arrangements as such have long been known.
  • P- and n-doped semiconductors which are heated on one side and cooled on the other side, carry electrical charges through an external circuit, and electrical work can be done on a load in the circuit.
  • the achieved conversion efficiency of heat into electrical energy is thermodynamically limited by the C arnot efficiency.
  • an efficiency of (1000 - 400): 1000 60% is possible.
  • efficiencies up to 10% are achieved.
  • Such a Peltier arrangement operates as a heat pump and is therefore suitable for cooling equipment parts, vehicles or buildings.
  • the heating via the Peltier principle is cheaper than a conventional heating, because more and more heat is transported than the supplied energy equivalent corresponds.
  • thermoelectric generators are used in space probes for generating direct currents, for cathodic corrosion protection of pipelines, for powering light and radio buoys, for operating radios and televisions.
  • the advantages of the thermoelectric generators are in their utmost reliability. So they work regardless of atmospheric conditions such as humidity; there is no fault-susceptible mass transfer, but only a charge transport; The fuel is burned continuously - even without catalytic free flame -, whereby only small amounts of CO, NO x and unburned fuel are released; they are Suitable fuels can be used from hydrogen through natural gas, gasoline, kerosene, diesel fuel to biologically produced fuels such as rapeseed oil methyl ester.
  • thermoelectric energy conversion adapts extremely flexibly to future needs such as the hydrogen economy or energy generation from renewable energies.
  • a particularly attractive application would be the use for conversion into electrical energy in electrically powered vehicles. There was no need to change the existing filling station network. However, efficiencies greater than 30% are required for such an application.
  • Concentrators such as parabolic troughs, with efficiencies of 95 to 97%, can concentrate solar energy on thermoelectric generators, generating electrical energy.
  • thermoelectrically active materials are evaluated essentially on the basis of their efficiency. Characteristic of thermoelectric materials in this regard is the so-called Z factor (figure of merit):
  • thermoelectric materials which have the lowest possible thermal conductivity, the greatest possible electrical conductivity and the largest possible Seebeck coefficient, so that the figure of merit as high as possible Takes value.
  • the product S 2 ⁇ is referred to as a power factor and is used to compare the thermoelectric materials. Moreover, for comparison purposes, the dimensionless product ZT is often given. Previously known thermoelectric materials have maximum values of ZT of about 1 at an optimum temperature. Beyond this optimum temperature, the values of ZT are often lower than 1.
  • thermoelectrically active material which has the highest possible value for Z and a high temperature difference that can be achieved. From the point of view of solid-state physics many problems have to be overcome:
  • a high ⁇ requires a high electron mobility in the material, ie electrons (or holes in p-type materials) should not be strongly bound to the atomic hulls.
  • Materials with high electrical conductivity ⁇ usually have at the same time a high thermal conductivity (Wiedemann - Franz's Law), which means that Z can not be favorably influenced.
  • Currently used materials such as Bi 2 Te 3 are already compromises. Thus, the electrical conductivity is reduced by alloying less than the thermal conductivity. Therefore, alloys are preferably used such as (Bi 2 Te 3 ) 9 o (Sb 2 Te 3 ) s (Sb 2 Se 3 ) 5 or BiI 2 Sb 23 Te 65 , as described in US 5,448,109.
  • thermoelectric materials with high efficiency preferably further boundary conditions are to be met. Above all, they must be sufficiently temperature-stable to operate under operating conditions for years without significant loss of efficiency to work. This requires a high temperature stable phase per se, a stable phase composition and a negligible diffusion of alloying components into the adjacent contact materials.
  • thermoelectric materials can be found in the more recent patent literature, for example in US Pat. No. 6,225,550 and EP-A-1 102 334.
  • the US 6,225,550 relates to materials substantially consisting of Mg x Sb 2, with a further element, preferably a transition metal, are doped.
  • EP-A-1 102 334 discloses p- or n-doped semiconductor materials containing an at least ternary material from the classes of suicides, borides, germanides, tellurides, sulfides, selenides, antimonides, plumbides and semiconducting oxides.
  • the (Pbi_ x Ge x) Te- Blocks are then produced in a melt furnace at 1000 ° C. at a growth rate of 1 mm / min., The ingots are then ground into a powder having a size of 90 to 250 ⁇ m, followed by a reduction treatment at 400 ° C. for 24 hours in a H 2 ZAr atmosphere. The powders are cold and then hot pressed in a vacuum at 650 0 C and 750 0 C. From the materials thus obtained, it was found that the Seebeck coefficient and the electrical resistance of the thermoelectric materials increases with the GeTe content x in the semiconductor material, while the thermal conductivity decreases as the GeTe content x in the semiconductor material increases.
  • the object of the present invention is to provide semiconductor materials (thermoelectrically active materials) which have a high degree of efficiency and exhibit a suitable property profile for different fields of application.
  • a 1 .... A n are different from one another and are selected from the group of the elements Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Al, Ga, In, Tl, Si, Ge, Sn As, Sb, Bi, S, Se, Br, I, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co , Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, preferably different from each other and selected from the group of elements
  • n 1
  • n is preferably 2, 3 or 4, particularly preferably 2 or 3, in particular 2. Then it is an at least quaternary compound.
  • Pb or Te is replaced by one or at least two dopants starting from PbTe or one or at least two dopants are added to PbTe or one or at least two dopants take over parts of the Pb or Te positions. in each case the ratio of Pb: Te - starting from 1: 1 - changes.
  • Seebeck coefficients in the range of generally 150 to 400 .mu.V / K for p-type conductors and generally in the range of -150 to -400 .mu.V / K for n-type conductors with a pronounced temperature difference of 270 0 C, wherein the hot side is 300 0 C reached.
  • the achieved power factors at room temperature are generally at least 20 ⁇ W / K xm.
  • the materials may also contain other compounds or dopants, as far as the aforementioned Seebeck coefficients and power factors are retained.
  • the compound may also contain other compounds or dopants, as far as the aforementioned Seebeck coefficients and power factors are retained.
  • the materials of the invention are generally prepared by reactive milling or, preferably, by fusing and reaction of mixtures of the respective constituent elements or their alloys.
  • a reaction time of the reactive grinding or, preferably, melting together of at least one hour has proven to be advantageous.
  • the melting together and reacting are preferably carried out for a period of at least 1 hour, more preferably at least 6 hours, especially at least 10 hours.
  • the melting process can be carried out with or without mixing the starting mixture. If the starting mixture is mixed, then in particular a turning or tilting furnace is suitable for ensuring the homogeneity of the mixture. If no mixture is made, generally longer melt times are required to obtain a homogeneous material. If a mixture is made, the homogeneity in the mixture is obtained earlier.
  • the melting time is generally 2 to 50 hours, especially 30 to 50 hours.
  • Melting generally occurs at a temperature at which at least one component of the mixture has already melted and the material is already in the molten state.
  • the melting temperature is at least 800 ° C., preferably at least 950 ° C.
  • the melting temperature is in a temperature range from 800 to 1100 ° C., preferably 950 to 1050 ° C.
  • the molten mixture After cooling, the molten mixture, it is advantageous to anneal the material at a temperature of generally at least 100 0 C, preferably at least 200 0 C, lower than the melting point of the resulting semiconductor material.
  • the temperature is 450 to 750 0 C, preferably 550 and 700 0 C.
  • the annealing is carried out for a period of preferably at least 1 hour, particularly preferably at least 2 hours, in particular at least 4 hours. Usually, the annealing time is 1 to 8 hours, preferably 6 to 8 hours. In one embodiment of the present invention, the annealing is carried out at a temperature which is 100 to 500 0 C lower than the melting temperature for the re- sulting semiconductor material. A preferred temperature range is 150 to 350 ° C. lower than the melting point of the resulting semiconductor material.
  • thermoelectric materials according to the invention is generally carried out in a heatable quartz tube.
  • a mixing of the components involved can be ensured by using a rotatable and / or tiltable furnace. After completion of the reaction, the furnace is cooled. Subsequently, the quartz tube is removed from the oven and sliced in the form of blocks semiconductor material. These disks are now cut into pieces of about 1 to 5 mm in length, from which thermoelectric modules can be produced.
  • a quartz tube it is also possible to use tubes made of other materials inert to the semiconductor material, for example of tantalum. This is preferred because the thermal conductivity of this material is higher than that of quartz.
  • tubes other containers of suitable shape can be used.
  • Other materials such as graphite, may also be used as the container material if inert to the semiconductor material.
  • the cooled material can be ground wet, dry or in another suitable manner at a suitable temperature, so that the semiconductor material according to the invention is obtained in customary particle sizes of less than 10 ⁇ m.
  • the milled material according to the invention is then extruded hot or cold or preferably hot or cold pressed into moldings having the desired shape.
  • the bulk density of the moldings pressed in this way should preferably be greater than 50%, particularly preferably greater than 80%, than the bulk density of the raw material in the uncompressed state.
  • Compounds which improve the densification of the material according to the invention can be added in quantities of preferably 0.1 to 5% by volume, more preferably 0.2 to 2% by volume, based in each case on the powdered material according to the invention.
  • Additives which are added to the materials of the invention should preferably be inert to the semiconductor material and preferably to be dissolved out of the inventive material during heating to temperatures below the sintering temperature of the materials of the invention, optionally under inert conditions and / or vacuum. After pressing, the pressed parts are preferably placed in a sintering furnace in which they are heated to a temperature of preferably at most 20 0 C below the melting point.
  • the pressed parts are sintered at a temperature of generally at least 100 0 C, preferably at least 200 0 C lower than the melting point of the resulting HaIb- conductor material.
  • the sintering temperature is 350 to 750 0 C, preferably 600 to 700 0 C. It can be carried out also a spark plasma sintering (SPS) or microwave sintering.
  • the sintering is carried out for a period of preferably at least 0.5 hours, more preferably at least 1 hour, in particular at least 2 hours.
  • the sintering time is 0.5 to 5 hours, preferably 1 to 3 hours.
  • the sintering is carried out at a temperature which is 100 to 600 0 C lower than the melting temperature of the resulting semiconductor material.
  • a preferred temperature range is 150 to 350 ° C. lower than the melting point of the resulting semiconductor material.
  • the sintering is preferably carried out under hydrogen or a protective gas atmosphere, for example of argon.
  • the pressed parts are preferably sintered to 95 to 100% of their theoretical bulk density.
  • Another object of the present invention is the use of the semiconductor material described above and the semiconductor material obtainable by the method described above as a thermoelectric generator or Peltier arrangement.
  • thermoelectric generators or Peltier arrangements which contain the semiconductor material described above and / or the semiconductor material obtainable by the method described above.
  • Another object of the present invention is a method for producing thermoelectric generators or Peltier arrangements, in which series-connected thermo-electrically active building blocks (“legs”) are used with thin layers of the previously described thermoelectric materials.
  • thermoelectric generators or Peltier arrangements takes place as follows:
  • the semiconductors of the invention according to a first conductivity type (p- or n-doped) are applied to a substrate by means of conventional semiconductor fabrication techniques, in particular CVD, sputtering technique or molecular beam epitaxy.
  • the semiconductors according to the invention are likewise applied to a further substrate by means of sputtering technique or molecular beam epitaxy, but the conductivity type of this semiconductor material is inverse to the first-used semiconductor material (n- or p-doped).
  • thermoelectrically active building blocks each of a different charge type are arranged alternately.
  • thermoelectrically active building blocks have a diameter of preferably less than 100 .mu.m, more preferably less than 50 .mu.m, in particular less than 20 microns and a thickness of preferably 5 to 100 .mu.m, more preferably 10 to 50 .mu.m, in particular 15 to
  • the area occupied by a thermoelectrically active building block is preferably less than 1 mm, particularly preferably less than 0.5 mm, in particular less than 0.4 mm 2 .
  • thermoelectric generators or Peltier arrangements are produced in such a way that layers of inventive semiconductor materials of different charge type (p- and n-doped) are alternately produced on a substrate by suitable deposition methods, for example molecular beam epitaxy.
  • the layer thickness is in each case preferably 5 to 100 nm, more preferably 5 to 50 nm, in particular 5 to 20 nm.
  • thermoelectric generators or Peltier arrangements which are known per se to the person skilled in the art and are described, for example, in WO 98/44562, US Pat. No. 5,448,109, EP-A-1 102 334 or US Pat. No. 5,439,528.
  • thermoelectric generators or Peltier arrangements according to the invention generally expand the available range of thermoelectric generators and Peltier arrangements. By varying the chemical composition of the thermoelectric generators or Peltier arrangements, it is possible to provide different systems which meet different requirements in a multiplicity of possible applications. Thus, the thermoelectric generators or Peltier arrangements according to the invention expand the range of application of these systems.
  • the present invention also relates to the use of a thermoelectric generator according to the invention or a Peltier arrangement according to the invention.
  • the present invention relates to a heat pump, a refrigerator, a (laundry) dryer or a generator for using heat sources, comprising at least one thermoelectric generator according to the invention or a Peltier arrangement according to the invention, over the one or more in the (laundry) dryer to be dried
  • the material is heated directly or indirectly and is directly or indirectly cooled by means of which the water or solvent vapor obtained during the drying is cooled.
  • the dryer is a clothes dryer and the material to be dried is laundry.
  • the Seebeck coefficient is determined by placing the material to be tested between a hot and a cold contact, each of which is electrically tempered, the hot contact having a temperature of 200 to 300 ° C.
  • the cold side is kept at room temperature to give an AT of typically 150 to 280 ° C.
  • the measured voltage at the respective temperature difference between see hot and cold contact provides the respective specified Seebeck- coefficient.
  • the electrical conductivity is determined at room temperature by a four-point measurement.
  • the process is known to the person skilled in the art.
  • Element powders in quantities according to the composition Pbo, 99 2 Geo, oo5Tio, oo3Te 1; Oo3 (purity: Pb> 99.999%, Te> 99.999%, Ge> 99.999%, Ti> 99.99%) was weighed into a quartz ampoule, inner diameter 1 cm. The sample amount was 20 g. The ampoule was evacuated and sealed. Subsequently, the vial was in the furnace at 500 K h "1 at 980 0 C. and held at that temperature for 6 h. The contents of the vial was continuously mixed by tilting the furnace. After the reaction time was h at 100 K" 1 cooled in an upright furnace position to 600 0 C, and the material was annealed at this temperature for 24 h. It was then cooled to room temperature with 60 K h -1 .
  • Elemental powder in amounts of the composition Pbo, 99 2 Geo, oo5Zro, oo3Te 1; oo3 ⁇ e ⁇ n 'units: Pb> 99.999%, Te> 99.999%, Ge> 99.999%, Zr> 99.95%) was weighed into a quartz vial, internal diameter 1 cm. The sample amount was 20 g. The ampoule was evacuated and sealed.
  • the ampoule was heated in the oven with 500 K h "1 to 980 0 C and held at this temperature for 6 h., The contents of the ampoule was continuously mixed by tilting movements of the furnace After the reaction time was with 100 K h " 1 in cooled to 600 0 C and the material was annealed at this temperature for 24 h. It was then cooled to room temperature with 60 K h -1 .
  • Element powder in amounts according to the composition (Purities: Pb> 99.999%, Te> 99.999%, Al> 99.999%, Bi> 99.998%) was weighed into a quartz ampoule, inner diameter 1 cm. The sample amount was 20 g. The ampoule was evacuated and sealed. Subsequently, the ampoule was heated in the oven with 100 K h "1 to 1000 0 C and kept at this temperature for 15 h Ampoule continuously mixed by tilting movements of the furnace. After the reaction time was cooled by switching off the upright furnace to room temperature.
  • Element powder in amounts according to the composition (Purities: Pb> 99.999%, Te> 99.999%, Ge> 99.999%, Ag> 99.9999%) was weighed into a quartz ampoule, inner diameter 1 cm. The sample amount was 20 g. The ampoule was evacuated and sealed. Subsequently, the ampoule was heated in the oven with 500 K h "1 to 980 0 C and held at this temperature for 6 h., The contents of the ampoule was continuously mixed by tilting movements of the furnace After the reaction time was with 100 K h " 1 in cooled to 600 0 C upright furnace position, and the material was annealed at this temperature for 24 h. It was then cooled to room temperature with 60 K h -1 .
  • Element powder in amounts according to the composition (Purity: Pb> 99.999%, Te> 99.999%, Ge> 99.999%, Sn> 99.985%) was weighed into a quartz ampoule, inner diameter 1 cm. The sample amount was 20 g. The ampoule was evacuated and sealed. Subsequently, the vial was in the furnace at 500 K h "1 at 980 0 C. and held at that temperature for 6 h. The contents of the vial was continuously mixed by tilting the furnace. After the reaction time was h at 100 K" 1 cooled in an upright furnace position to 600 0 C, and annealed the material at this temperature for 24 h. It was then cooled to room temperature with 60 K h -1 .
  • Elemental powder in amounts according to the composition Pbo, 99 7 Zro, oo3Te 1; oo3 (purities: Pb> 99.999%, Te> 99.999%, Zr> 99.95%) was weighed into a quartz ampoule, inner diameter 1 cm. The sample amount was 20 g.
  • the ampoule was evacuated and closed. Subsequently, the ampoule was heated in the oven with 500 K h "1 to 980 0 C and held at this temperature for 6 h., The contents of the ampoule was continuously mixed by tilting movements of the furnace After the reaction time was with 100 K h " 1 in cooled to 600 0 C upright furnace position, and the material was annealed at this temperature for 24 h.
  • Element powder in amounts according to the composition (Purities: Pb> 99.999%, Te> 99.999%, Zr> 99.95%) was weighed into a quartz ampoule, inner diameter 1 cm. The sample amount was 20 g. The ampoule was evacuated and sealed. Subsequently, the ampoule was heated in the oven with 500 K h "1 to 980 0 C and held at this temperature for 6 h., The contents of the ampoule was continuously mixed by tilting movements of the furnace After the reaction time was with 100 K h " 1 in cooled to 600 0 C upright furnace position and the material was annealed at this temperature for 24 h. It was then cooled to room temperature with 60 K h -1 .
  • Element powders in amounts according to the composition Pbo, 999Ago, ooiTei, oo3 (purities: Pb> 99.999%, Te> 99.999%, Ag> 99.9999%) were weighed into a quartz ampoule, inner diameter 1 cm. The sample amount was 20 g. The ampoule was evacuated and sealed. Subsequently, the ampoule was in the oven with 500 K h "1 to 980 0 C. heated and held at this temperature for 6 h. The content of the ampoule was continuously mixed by tilting movements of the furnace. After the reaction time "1 cooled in an upright position oven at 600 0 C, and the material was annealed at this temperature h for 24 hours. Subsequently, 60 h with K" was charged with 100 K h cooled structure on Hauttempera-. 1
  • Element powder in amounts according to the composition (Purities: Pb> 99.999%, Te> 99.999%, Cu electrolytic purity) was weighed into a quartz ampoule, inner diameter 1 cm. The sample amount was 20 g. The ampoule was evacuated and sealed. Subsequently, the ampoule was heated in the oven with 500 K h "1 to 980 0 C and held at this temperature for 6 h., The contents of the ampoule was continuously mixed by tilting movements of the furnace After the reaction time was with 100 K h " 1 in cooled to 600 0 C upright furnace position, and the material was annealed at this temperature for 24 h. It was then cooled to room temperature with 60 K h -1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Lubricants (AREA)
  • Catalysts (AREA)

Abstract

Ein p- oder n-leitendes Halbleitermaterial enthält eine Verbindung der allgemeinen Formel Pb<SUB>1-(</SUB> <SUB>x</SUB>

Description

Dotierte Bleitelluride für thermoelektrische Anwendungen
Die vorliegende Erfindung betrifft Halbleitermaterialien, enthaltend Blei und Tellur sowie mindestens einen oder zwei weitere Dopanden, sowie diese enthaltende thermoelektrische Generatoren und Peltier- Anordnungen.
Thermoelektrische Generatoren und Peltier- Anordnungen als solche sind seit langem be- kannt. p- und n-dotierte Halbleiter, die auf einer Seite erhitzt und auf der anderen Seite gekühlt werden, transportieren elektrische Ladungen durch einen äußeren Stromkreis, wobei an einem Verbraucher im Stromkreis elektrische Arbeit verrichtet werden kann. Der dabei erzielte Wirkungsgrad der Konversion von Wärme in elektrische Energie wird thermody- namisch durch den C arnot- Wirkungsgrad limitiert. Somit wäre bei einer Temperatur von 1000 K auf der heißen und 400 K auf der "kalten" Seite ein Wirkungsgrad von (1000 - 400) : 1000 = 60 % möglich. Bis heute werden jedoch nur Wirkungsgrade bis 10 % erzielt.
Legt man andererseits einen Gleichstrom an eine derartige Anordnung an, so wird Wärme von einer Seite zur anderen Seite transportiert. Eine derartige Peltier-Anordnung arbeitet als Wärmepumpe und eignet sich deshalb zur Kühlung von Apparateteilen, Fahrzeugen oder Gebäuden. Auch die Heizung über das Peltier-Prinzip ist günstiger als eine herkömmliche Heizung, weil immer mehr Wärme transportiert wird als dem zugeführten Energieäquivalent entspricht.
Einen guten Überblick über Effekte und Materialien gibt z.B. Cronin B. Vining, ITS Short Course on Thermoelectricity, Nov. 8, 1993, Yokohama, Japan.
Gegenwärtig werden thermoelektrische Generatoren in Raumsonden zur Erzeugung von Gleichströmen, für den kathodischen Korrosionsschutz von Pipelines, zur Energie- Versorgung von Leucht- und Funkbojen, zum Betrieb von Radios und Fernsehapparaten eingesetzt. Die Vorteile der thermoelektrischen Generatoren liegen in ihrer äußersten Zuverlässigkeit. So arbeiten sie unabhängig von atmosphärischen Bedingungen wie Luftfeuchte; es erfolgt kein störungsanfälliger Stofftransport, sondern nur ein Ladungstransport; der Betriebsstoff wird kontinuierlich - auch katalytisch ohne freie Flamme - verbrannt, wodurch nur geringe Mengen an CO, NOx und unverbranntem Betriebsstoff frei werden; es sind be- liebige Betriebsstoffe einsetzbar von Wasserstoff über Erdgas, Benzin, Kerosin, Dieselkraftstoff bis zu biologisch erzeugten Kraftstoffen wie Rapsölmethylester.
Damit passt sich die thermoelektrische Energiewandlung äußerst flexibel in künftige Be- dürfnisse wie Wasserstoffwirtschaft oder Energieerzeugung aus regenerativen Energien ein.
Eine besonders attraktive Anwendung wäre der Einsatz zur Wandlung in elektrische Energie in elektrisch betriebenen Fahrzeugen. Hierfür brauchte keine Änderung am vorhandenen Tankstellennetz vorgenommen zu werden. Allerdings sind für eine derartige Anwendung Wirkungsgrade größer als 30 % erforderlich.
Auch die Umwandlung solarer Energie direkt in elektrische Energie wäre sehr attraktiv. Konzentratoren wie Parabolrinnen können mit Wirkungsgraden um 95 bis 97 % die Son- nenenergie auf thermoelektrische Generatoren bündeln, wodurch elektrische Energie erzeugt wird.
Aber auch zur Nutzung als Wärmepumpe sind höhere Wirkungsgrade notwendig.
Thermoelektrisch aktive Materialien werden im Wesentlichen anhand ihres Wirkungsgrades bewertet. Kennzeichnend für thermoelektrische Materialien ist diesbezüglich der so genannte Z-Faktor (figure of merit):
Z =
K
mit dem Seebeck-Koeffizienten S, der elektrischen Leitfähigkeit σ und der Wärmeleitfähigkeit K. Bevorzugt sind thermoelektrische Materialien, die eine möglichst geringe Wärmeleitfähigkeit, eine möglichst große elektrische Leitfähigkeit und einen möglichst großen Seebeck-Koeffizienten aufweisen, so dass der figure of merit einen möglichst hohen Wert an- nimmt.
Das Produkt S2σ wird als Powerfaktor bezeichnet und dient dem Vergleich der thermoelekt- rischen Materialien. Zu Vergleichszwecken wird darüber hinaus oftmals das dimensionslose Produkt Z T angegeben. Bisher bekannte thermoelektrische Materialien weisen maximale Werte von Z-T von ungefähr 1 bei einer optimalen Temperatur auf. Jenseits dieser optimalen Temperatur sind die Werte von Z-T oft niedriger als 1.
Eine genauere Analyse ergibt, dass der Wirkungsgrad η sich ergibt aus
^- hoch ~ 1 niedrig M ~ \ η =
T h1och T,
M + niedrig
1 hoch
mit
M = I -I (T + T )
1 τ ,-. V hoch τ λ niedrig )
(siehe auch Mat. Sei. and Eng. B29 (1995) 228).
Das Ziel ist damit, ein thermoelektrisch aktives Material bereitzustellen, welches einen möglichst hohen Wert für Z und eine hohe realisierbare Temperaturdifferenz aufweist. Aus der Sicht der Festkörperphysik sind hierbei viele Probleme zu bewältigen:
Ein hohes σ bedingt eine hohe Elektronenbeweglichkeit im Material, d.h. Elektronen (oder Löcher bei p-leitenden Materialien) dürfen nicht stark an die Atomrümpfe gebunden sein. Materialien mit hoher elektrischer Leitfähigkeit σ weisen meist gleichzeitig eine hohe Wärmeleitfähigkeit auf (Wiedemann - Franzsches Gesetz), wodurch Z nicht günstig beeinflusst werden kann. Gegenwärtig eingesetzte Materialien wie Bi2Te3 stellen schon Kompromisse dar. So wird die elektrische Leitfähigkeit durch Legieren weniger herabgesetzt als die Wärmeleitfähigkeit. Deshalb setzt man vorzugsweise Legierungen ein wie z.B. (Bi2Te3)9o(Sb2Te3)s(Sb2Se3)5 oder BiI2Sb23Te65, wie sie in der US 5,448,109 beschrieben sind.
Für thermoelektrische Materialien mit hohem Wirkungsgrad sind vorzugsweise noch weitere Randbedingungen zu erfüllen. Vor allem müssen sie hinreichend temperaturstabil sein, um unter Betriebsbedingungen über Jahre hinweg ohne wesentlichen Wirkungsgradverlust arbeiten zu können. Dies bedingt eine hochtemperaturstabile Phase an sich, eine stabile Phasenzusammensetzung und eine zu vernachlässigende Diffusion von Legierungsbestandteilen in die anliegenden Kontaktmaterialien.
In der neueren Patentliteratur finden sich Beschreibungen von thermoelektrischen Materialien, beispielsweise in US 6,225,550 und EP-A-I 102 334.
Die US 6,225,550 betrifft im Wesentlichen Materialien aus MgxSb2, die mit einem weiteren Element, vorzugsweise einem Übergangsmetall, dotiert sind.
Die EP-A-I 102 334 offenbart p- oder n-dotierte Halbleitermaterialien, die ein mindestens ternäres Material aus den Stoffklassen der Suizide, Boride, Germanide, Telluride, Sulfide, Selenide, Antimonide, Plumbide und halbleitenden Oxiden enthalten.
Der Artikel „Thermoelectric properties of n-type (Pbi-xGex)Te fabricated by hot pressing method", Proceedings ICT, XVI. International Conference on Thermoelectrics, 26. - 29. August 1997, Dresden, Seiten 228 bis 231 beschreibt ein Verfahren zur Herstellung ternärer Verbindungen der Formel (Pbi-xGex)Te mit x = 0 bis 0,15, wobei das System mit 0,3 % Bi dotiert ist. Das Material wird durch Beladen der entsprechenden Menge an Pb, Ge, Te und Bi in ein Quarzrohr, welches auf der Innenseite mit Kohlenstoff beschichtet ist, anschließendem Evakuieren, Verschließen und Erwärmen auf 1000 0C für 2 Stunden in einem Drehofen erhalten. Anschließend wird das System auf Raumtemperatur abgekühlt. Die (Pbi_ xGex)Te-Blöcke werden dann in einem Schmelzzonenofen bei 1000 0C mit einer Wachstumsgeschwindigkeit von 1 mm/min erzeugt. Die Blöcke werden anschließend zu einem Pulver mit einer Größe von 90 bis 250 μm vermählen. Hieran schließt sich eine Reduktionsbehandlung bei 400 0C für 24 Stunden in einer H2ZAr- Atmosphäre an. Die Pulver werden kalt und anschließend im Vakuum bei 650 0C und 750 0C heiß gepresst. Anhand der so erhaltenen Materialien wurde festgestellt, dass der Seebeck-Koeffizient und der elektrische Widerstand der thermoelektrischen Materialien mit dem GeTe- Anteil x im Halbleitermateri- al steigt, während die thermische Leitfähigkeit sich mit dem Anstieg des GeTe-Anteils x im Halbleitermaterial erniedrigt. Der beste erhaltene Seebeck-Koeffizienten liegt ungefähr bei - 150 μV/K, wobei der elektrische Widerstand 1 mΩ-cm beträgt. Die thermische Leitfähigkeit beträgt im Minimum 2 W/(m-K). Ausgehend von diesem Stand der Technik ist es die Aufgabe der vorliegenden Erfindung, Halbleitermaterialien (thermoelektrisch aktive Materialien), die einen hohen Wirkungsgrad aufweisen und für unterschiedliche Anwendungsbereiche ein geeignetes Eigenschaftsprofil zeigen, bereitzustellen.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Halbleitermaterial, enthaltend eine Verbindung der allgemeinen Formel (I)
Pbi.(;d+;t2+ tajA jiA X2... An OTTei+z (I),
mit der Bedeutung jeweils unabhängig
n Anzahl der von Pb und Te unterschiedlichen chemischen Elemente
-0,05 ≤ z ≤ 0,05 und n ≥ 2
A1 .... An voneinander verschieden und ausgewählt aus der Gruppe der Elemente Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Al, Ga, In, Tl, Si, Ge, Sn, As, Sb, Bi, S, Se, Br, I, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, vorzugsweise voneinander verschieden und ausgewählt aus der Gruppe der Elemente
Al, In, Si, Ge, Sn, Sb, Bi, Se, Ti, Zr, Hf, Nb, Ta, Cu, Ag, Au,
insbesondere voneinander verschieden und ausgewählt aus der Gruppe der Elemente
In, Ge, Ti, Zr, Hf, Nb, Ta, Cu, Ag
oder n = 1 A1 ausgewählt aus Ti, Zr, Ag, Hf, Cu, Gr, Nb, Ta. n ist vorzugsweise 2, 3 oder 4, besonders bevorzugt 2 oder 3, insbesondere 2. Dann handelt es sich um eine mindestens quarternäre Verbindung. Im Fall n = 1 handelt es sich um eine ternäre Verbindung z. B. oder bevorzugt des Typs (Pb, Ti) Te, (Pb, Zr) Te oder (Pb, Ag) Te.
Gemäß der vorliegenden Erfindung ist somit vorgesehen, dass ausgehend von PbTe formal Pb oder Te durch einen oder mindestens zwei Dopanden ersetzt werden oder ein oder mindestens zwei Dopanden zu PbTe zugegeben werden oder ein oder mindestens zwei Dopanden Teile der Pb- oder Te-Positionen überneh- men, wobei jeweils das Verhältnis von Pb:Te - ausgehend von 1:1 - sich ändert.
Für die erfindungsgemäßen Materialien der Serie werden für p-Leiter Seebeck- Koeffizienten im Bereich von im Allgemeinen 150 bis 400 μV/K, und für n-Leiter im AIl- gemeinen von -150 bis -400 μV/K bei einer ausgeprägten Temperaturdifferenz von 270 0C, wobei die heiße Seite 300 0C beträgt, erreicht. Die erzielten Powerfaktoren bei Raumtemperatur betragen im Allgemeinen wenigstens 20 μW / K xm.
Erfindungsgemäß können die Materialien auch weitere Verbindungen oder Dotierungsmittel enthalten, soweit die zuvor erwähnten Seebeck-Koeffizienten und Powerfaktoren erhalten bleiben. Beispielsweise ist es möglich, dass 0 bis 10 Gew.-% der Verbindung durch andere Metalle oder Metallverbindungen, welche ebenfalls als p- oder n-Dotierungsmittel fungieren, substituiert sind.
Die erfindungsgemäßen Materialien werden im Allgemeinen durch Reaktivmahlen oder bevorzugt durch Zusammenschmelzen und Reaktion von Mischungen der jeweiligen Elementbestandteile oder deren Legierungen hergestellt. Dabei hat sich im Allgemeinen eine Reaktionszeit des Reaktivmahlens oder bevorzugt Zusammenschmelzens von mindestens einer Stunde als vorteilhaft herausgestellt.
Das Zusammenschmelzen und Reagieren erfolgt vorzugsweise während eines Zeitraumes von mindestens 1 Stunde, besonders bevorzugt mindestens 6 Stunden, insbesondere mindestens 10 Stunden. Der Schmelzprozess kann mit oder ohne Vermischung der Ausgangsmischung erfolgen. Wenn die Ausgangsmischung vermischt wird, so eignet sich hierfür insbe- sondere ein Dreh- oder Kippofen, um die Homogenität der Mischung zu gewährleisten. Falls keine Mischung vorgenommen wird, so sind im Allgemeinen längere Schmelzzeiten erforderlich, um ein homogenes Material zu erhalten. Falls eine Mischung vorgenommen wird, so wird die Homogenität in der Mischung bereits früher erhalten.
Ohne zusätzliches Mischen der Ausgangsmischungen beträgt die Schmelzzeit im Allgemeinen 2 bis 50 Stunden, insbesondere 30 bis 50 Stunden.
Das Zusammenschmelzen erfolgt im Allgemeinen bei einer Temperatur, bei der mindestens ein Bestandteil der Mischung bereits geschmolzen ist und sich das Material bereits im geschmolzenen Zustand befindet. Im Allgemeinen beträgt die Schmelztemperatur mindestens 800 0C, vorzugsweise mindestens 950 0C. Üblicherweise liegt die Schmelztemperatur in einem Temperaturbereich von 800 bis 1100 0C, vorzugsweise 950 bis 1050 0C.
Nach dem Abkühlen der geschmolzenen Mischung ist es vorteilhaft, das Material bei einer Temperatur von im Allgemeinen mindestens 100 0C, vorzugsweise mindestens 200 0C, niedriger als der Schmelzpunkt des resultierenden Halbleitermaterials zu tempern. Üblicherweise beträgt die Temperatur 450 bis 750 0C, vorzugsweise 550 bis 700 0C.
Das Tempern wird während eines Zeitraumes von vorzugsweise mindestens 1 Stunde, besonders bevorzugt mindestens 2 Stunden, insbesondere mindestens 4 Stunden, durchgeführt. Üblicherweise beträgt die Temperzeit 1 bis 8 Stunden, vorzugsweise 6 bis 8 Stunden. In einer Ausführungsform der vorliegenden Erfindung wird das Tempern bei einer Temperatur durchgeführt, welche 100 bis 500 0C niedriger ist als die Schmelztemperatur des resultie- renden Halbleitermaterials. Ein bevorzugter Temperaturbereich ist 150 bis 350 0C niedriger als der Schmelzpunkt des resultierenden Halbleitermaterials.
Die Herstellung der erfindungsgemäßen thermoelektrischen Materialien erfolgt im Allgemeinen in einem heizbaren Quarzrohr. Eine Vermischung der beteiligten Komponenten kann durch Verwendung eines dreh- und/oder kippbaren Ofens gewährleistet werden. Nach Vervollständigung der Umsetzung wird der Ofen abgekühlt. Im Anschluss wird das Quarzrohr aus dem Ofen entnommen und das in Form von Blöcken vorliegende Halbleitermaterial in Scheiben geschnitten. Diese Scheiben werden nunmehr in Stücke von ungefähr 1 bis 5 mm Länge geschnitten, woraus thermoelektrischen Module erzeugt werden können. Anstelle eines Quarzrohres können auch Rohre aus anderen gegenüber dem Halbleitermaterial inerten Materialien, beispielsweise aus Tantal, verwendet werden. Dieses ist bevorzugt, da die thermische Leitfähigkeit dieses Materials höher ist als diejenige von Quarz.
Anstelle von Rohren können auch andere Behälter geeigneter Form verwendet werden. Auch andere Materialien, beispielsweise Graphit, können als Behältermaterial verwendet werden, sofern inert gegenüber dem Halbleitermaterial.
In einer Ausführungsform der vorliegenden Erfindung kann das abgekühlte Material bei geeigneter Temperatur nass, trocken oder in anderer geeigneter Weise gemahlen werden, so dass das erfindungsgemäße Halbleitermaterial in üblichen Partikelgrößen kleiner als 10 μm erhalten wird. Das gemahlene erfindungsgemäße Material wird dann heiß oder kalt extru- diert oder vorzugsweise zu Formteilen heiß oder kalt verpresst, welche die gewünschte Form haben. Die Rohdichte der dergestalt gepressten Formteile sollte vorzugsweise größer als 50 %, besonders bevorzugt größer als 80 %, als die Rohdichte des Rohmaterials im un- gepressten Zustand sein. Verbindungen, welche die Verdichtung des erfindungsgemäßen Materials verbessern, können in Mengen von vorzugsweise 0,1 bis 5 Vol.-%, besonders bevorzugt 0,2 bis 2 Vol.-%, jeweils bezogen auf das gepulverte erfindungsgemäße Material, hinzu gegeben werden. Additive, welche zu den erfindungsgemäßen Materialien zugegeben werden, sollten vorzugsweise inert gegenüber dem Halbleitermaterial sein und vorzugsweise während dem Erwärmen auf Temperaturen unterhalb der Sintertemperatur der erfindungsgemäßen Materialien, gegebenenfalls unter inerten Bedingungen und/oder Vakuum, sich aus dem erfindungsgemäßen Material herauslösen. Nach dem Pressen werden die ge- pressten Teile vorzugsweise in einen Sinterofen gegeben, in dem sie auf eine Temperatur von vorzugsweise maximal 20 0C unterhalb des Schmelzpunktes erwärmt werden.
Die gepressten Teile werden bei einer Temperatur von im Allgemeinen mindestens 100 0C, vorzugsweise mindestens 200 0C, niedriger als der Schmelzpunkt des resultierenden HaIb- leitermaterials gesintert. Üblicherweise beträgt die Sintertemperatur 350 bis 750 0C, vorzugsweise 600 bis 700 0C. Es kann auch ein Spark-Plasma-Sintern (SPS) oder Mikrowellensintern durchgeführt werden.
Das Sintern wird während einem Zeitraum von vorzugsweise mindestens 0,5 Stunden, be- sonders bevorzugt mindestens 1 Stunde, insbesondere mindestens 2 Stunden, durchgeführt.
Üblichweise beträgt die Sinterzeit 0,5 bis 5 Stunden, vorzugsweise 1 bis 3 Stunden. In einer Ausfiihrungsform der vorliegenden Erfindung wird das Sintern bei einer Temperatur durchgeführt, welche 100 bis 600 0C niedriger ist als die Schmelztemperatur des resultierenden Halbleitermaterials. Ein bevorzugter Temperaturbereich ist 150 bis 350 0C niedriger als der Schmelzpunkt des resultierenden Halbleitermaterials. Bevorzugt wird das Sintern unter Wasserstoff oder einer Schutzgasatmosphäre, beispielsweise aus Argon, durchgeführt.
Somit werden die gepressten Teile vorzugsweise auf 95 bis 100 % ihrer theoretischen BuIk- dichte gesintert.
Insgesamt ergibt sich damit als bevorzugte Ausführungsform des vorliegenden erfindungsgemäßen Verfahrens ein Verfahren, welches durch die folgenden Verfahrensschritte gekennzeichnet ist:
(1) Zusammenschmelzen von Mischungen der jeweiligen Elementbestandteile oder deren Legierungen der mindestens quaternären bzw. ternären Verbindung;
(2) Mahlen des in Verfahrensschritt (1) erhaltenen Materials;
(3) Pressen des in Verfahrensschritt (2) erhaltenen Materials zu Formkörpern und
(4) Sintern der in Verfahrensschritt (3) erhaltenen Formkörper.
Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des zuvor beschriebenen Halbleitermaterials und des nach dem zuvor beschriebenen Verfahren erhältlichen Halbleitermaterials als thermoelektrischer Generator oder Peltier- Anordnung.
Weiterer Gegenstand der vorliegenden Erfindung sind thermoelektrische Generatoren oder Peltier-Anordnungen, welche das zuvor beschriebene Halbleitermaterial und/oder das nach dem zuvor beschriebenen Verfahren erhältliche Halbleitermaterial enthalten.
Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung thermoelektrischer Generatoren oder Peltier-Anordnungen, bei denen in Reihe geschaltete thermo- elektrisch aktive Bausteine („legs") mit dünnen Schichten der zuvor beschriebenen thermo- elektrischen Materialien verwendet werden.
In einer ersten Ausführungsform dieses Verfahrens erfolgt die Herstellung der thermoelekt- rischen Generatoren oder Peltier-Anordnungen wie folgt: Die erfindungsgemäßen Halbleiter gemäß einem ersten Leitungstyp (p- oder n-dotiert) werden mittels herkömmlicher Halbleiter-Fertigungstechniken, insbesondere CVD, Sputter- Technik oder Molekularstrahlepitaxie, auf einem Substrat aufgetragen.
Auf einem weiteren Substrat werden ebenfalls mittels Sputter-Technik oder Molekularstrahlepitaxie ebenfalls die erfindungsgemäßen Halbleiter aufgetragen, wobei jedoch der Leitungstyp dieses Halbleitermaterials invers zu dem zuerst verwendeten Halbleitermaterial ist (n- oder p-dotiert).
Die beiden Substrate werden nunmehr sandwichartig aufeinander angeordnet, so dass ther- moelektrisch aktive Bausteine („legs") aus jeweils einem unterschiedlichen Ladungstyp alternierend angeordnet sind.
Die einzelnen thermoelektrisch aktiven Bausteine („legs") haben dabei einen Durchmesser von vorzugsweise kleiner 100 μm, besonders bevorzugt kleiner 50 μm, insbesondere kleiner 20 μm und eine Dicke von vorzugsweise 5 bis 100 μm, besonders bevorzugt 10 bis 50 μm, insbesondere 15 bis 30 μm. Die eingenommene Fläche eines thermoelektrisch aktiven Bausteins ist vorzugsweise kleiner als 1 mm , besonders bevorzugt kleiner als 0,5 mm , insbe- sondere kleiner als 0,4 mm2.
In einer zweiten Ausführungsform erfolgt die Herstellung der thermoelektrischen Generatoren oder Peltier- Anordnungen derart, dass durch geeignete Abscheidemethoden, beispielsweise Molekularstrahlepitaxie, alternierend Schichten von erfindungsgemäßen Halbleiter- materialien unterschiedlichen Ladungstyps (p- und n-dotiert) auf einem Substrat erzeugt werden. Die Schichtdicke beträgt dabei jeweils vorzugsweise 5 bis 100 nm, besonders bevorzugt 5 bis 50 nm, insbesondere 5 bis 20 nm.
Die erfindungsgemäßen Halbleitermaterialien können auch nach Methoden zu thermoelekt- rischen Generatoren oder Peltier-Anordnungen zusammengefügt werden, welche dem Fachmann an sich bekannt sind und beispielsweise in WO 98/44562, US 5,448,109, EP-A- 1 102 334 oder US 5,439,528 beschrieben sind.
Die erfindungsgemäßen thermoelektrischen Generatoren oder Peltier-Anordnungen erwei- tern im Allgemeinen die vorhandene Bandbreite an thermoelektrischen Generatoren und Peltier-Anordnungen. Durch Variation der chemischen Zusammensetzung der thermoelekt- rischen Generatoren oder Peltier-Anordnungen ist es möglich, unterschiedliche Systeme bereitzustellen, welche unterschiedlichen Anforderungen in einer Vielzahl an Anwen- dungsmöglichkeiten gerecht werden. Damit erweitern die erfindungsgemäßen thermoelekt- rischen Generatoren oder Peltier-Anordnungen das Anwendungsspektrum dieser Systeme.
Die vorliegende Erfindung betrifft auch die Verwendung eines erfindungsgemäßen thermo- elektrischen Generators oder einer erfindungsgemäßen Peltier- Anordnung.
• als Wärmepumpe
• zur Klimatisierung von Sitzmöbeln, Fahrzeugen und Gebäuden
• in Kühlschränken und (Wäsche)trocknern
• zur simultanen Heizung und Kühlung von Stoffströmen bei Verfahren der Stoff- trennung wie
- Absorption
- Trocknung
- Kristallisation
- Verdampfung - Destillation
• als Generator zur Nutzung von Wärmequellen wie
- solarer Energie
- Erdwärme
- Verbrennungswärme fossiler Brennstoffe - von Abwärmequellen in Fahrzeugen und stationären Anlagen
- von Wärmesenken beim Verdampfen flüssiger Stoffe
- biologischer Wärmequellen
• zur Kühlung elektronischer Bauteile
Des Weiteren betrifft die vorliegende Erfindung eine Wärmepumpe, einen Kühlschrank, einen (Wäsche)trockner oder einen Generator zur Nutzung von Wärmequellen, enthaltend mindestens einen erfindungsgemäßen thermoelektrischen Generator oder eine erfindungsgemäße Peltier-Anordnung, über den oder die beim (Wäsche)trockner ein zu trocknendes Material direkt oder indirekt aufgeheizt und über den oder die der bei der Trocknung anfal- lende Wasser- oder Lösungsmitteldampf direkt oder indirekt abgekühlt wird. In einer bevorzugten Ausführungsform ist der Trockner ein Wäschetrockner und das zu trocknende Material ist Wäsche.
Die vorliegende Erfindung wird anhand der nachfolgend beschriebenen Beispiele näher erläutert.
Ausführungsbeispiele
Der Seebeck-Koeffizient wird dadurch bestimmt, dass das zu untersuchende Material zwischen einen heißen und einen kalten Kontakt, welche jeweils elektrisch temperiert werden, gelegt wird, wobei der heiße Kontakt eine Temperatur von 200 bis 300 0C aufweist. Die kalte Seite wird auf Raumtemperatur gehalten, so dass ein AT von typischerweise 150 bis 280 0C resultiert. Die gemessene Spannung bei der jeweiligen Temperaturdifferenz zwi- sehen heißem und kaltem Kontakt liefert den jeweils angegebenen Seebeck- Koeffizienten.
Die elektrische Leitfähigkeit wird bei Raumtemperatur durch eine Vierpunkt-Messung bestimmt. Das Verfahren ist dem Fachmann bekannt.
Quaternäre Materialien
Beispiel 1
Elementpulver in Mengen gemäß der Zusammensetzung Pbo,992Geo,oo5Tio,oo3Te1;oo3 (Reinhei- ten: Pb > 99,999 %, Te > 99,999 %, Ge > 99,999 %, Ti > 99,99 %) wurde in eine Quarzampulle, Innendurchmesser 1 cm, eingewogen. Die Probenmenge betrug 20 g. Die Ampulle wurde evakuiert und verschlossen. Anschließend wurde die Ampulle im Ofen mit 500 K h"1 auf 980 0C erhitzt und bei dieser Temperatur für 6 h gehalten. Dabei wurde der Inhalt der Ampulle durch Kippbewegungen des Ofens kontinuierlich vermischt. Nach der Reaktions- zeit wurde mit 100 K h"1 in aufrechter Ofenposition auf 600 0C abgekühlt, und das Material wurde bei dieser Temperatur für 24 h getempert. Anschließend wurde mit 60 K h"1 auf Raumtemperatur abgekühlt.
Es wurde ein kompakter, silberglänzender Regulus erhalten, der problemlos der Ampulle entnommen werden konnte. Mit einer Diamantdrahtsäge wurde aus dem Regulus eine ca. 2 mm dicke Scheibe geschnitten, und daran wurden zunächst die elektrische Leitfähigkeit bei Raumtemperatur und anschließend der Seebeck- Koeffizient gemessen.
Die elektrische Leitfähigkeit betrug σ = 1641,4 S cm"1, der Seebeck- Koeffizient S = -165,4 μV K"1 (gemessen über 7Wt = 50 0C, Thsιli = 280 0C), entsprechend einem Powerfaktor von S2G = 44,9 μW K"2 cm"1.
Beispiel 2
Elementpulver in Mengen gemäß der Zusammensetzung Pbo,992Geo,oo5Zro,oo3Te1;oo3 ^e^n' heiten: Pb > 99,999 %, Te > 99,999 %, Ge > 99,999 %, Zr > 99,95 %) wurde in eine Quarzampulle, Innendurchmesser 1 cm, eingewogen. Die Probenmenge betrug 20 g. Die Ampulle wurde evakuiert und verschlossen. Anschließend wurde die Ampulle im Ofen mit 500 K h"1 auf 980 0C erhitzt und bei dieser Temperatur für 6 h gehalten. Dabei wurde der Inhalt der Ampulle durch Kippbewegungen des Ofens kontinuierlich vermischt. Nach der Reaktionszeit wurde mit 100 K h"1 in aufrechter Ofenposition auf 600 0C abgekühlt und das Material wurde bei dieser Temperatur für 24 h getempert. Anschließend wurde mit 60 K h"1 auf Raumtemperatur abgekühlt.
Es wurde ein kompakter, silberglänzender Regulus erhalten, der problemlos der Ampulle entnommen werden konnte. Mit einer Diamantdrahtsäge wurde aus dem Regulus eine ca. 2 mm dicke Scheibe geschnitten, und daran wurden zunächst die elektrische Leitfähigkeit bei Raumtemperatur und anschließend der Seebeck-Koeffizient gemessen.
Die elektrische Leitfähigkeit betrug σ = 2485,9 S cm"1, der Seebeck-Koeffizient S = -132,1 μV K"1 (gemessen über 7Wt = 50 0C, Theiß = 285 0C), entsprechend einem Powerfaktor von S2G = 43,4 μW K"2 cm"1.
Beispiel 3
Elementpulver in Mengen gemäß der Zusammensetzung (Reinheiten: Pb > 99,999 %, Te > 99,999 %, Al > 99,999 %, Bi > 99,998 %) wurde in eine Quarzampulle, Innendurchmesser 1 cm, eingewogen. Die Probenmenge betrug 20 g. Die Ampulle wurde evakuiert und verschlossen. Anschließend wurde die Ampulle im Ofen mit 100 K h"1 auf 1000 0C erhitzt und bei dieser Temperatur für 15 h gehalten. Dabei wurde der Inhalt der Ampulle durch Kippbewegungen des Ofens kontinuierlich vermischt. Nach der Reaktionszeit wurde durch Abschalten des aufrecht gestellten Ofens auf Raumtemperatur abgekühlt.
Es wurde ein kompakter, matt silberglänzender Regulus erhalten, der problemlos der Am- pulle entnommen werden konnte. Mit einer Diamantdrahtsäge wurde aus dem Regulus eine ca. 2 mm dicke Scheibe geschnitten, und daran zunächst die elektrische Leitfähigkeit bei Raumtemperatur und anschließend der Seebeck- Koeffizient gemessen.
Die elektrische Leitfähigkeit betrug σ = 992,0 S cm"1, der Seebeck- Koeffizient S = -154,6 μV K"1 (gemessen über 7Wt = 40 0C, Thsιli = 280 0C), entsprechend einem Powerfaktor von S2G = 23,7 μW K"2 cm"1.
Beispiel 4
Elementpulver in Mengen gemäß der Zusammensetzung (Reinheiten: Pb > 99,999 %, Te > 99,999 %, Ge > 99,999 %, Ag > 99,9999 %) wurde in eine Quarzampulle, Innendurchmesser 1 cm, eingewogen. Die Probenmenge betrug 20 g. Die Ampulle wurde evakuiert und verschlossen. Anschließend wurde die Ampulle im Ofen mit 500 K h"1 auf 980 0C erhitzt und bei dieser Temperatur für 6 h gehalten. Dabei wurde der Inhalt der Ampulle durch Kippbewegungen des Ofens kontinuierlich vermischt. Nach der Reaktionszeit wurde mit 100 K h"1 in aufrechter Ofenposition auf 600 0C abgekühlt, und das Material wurde bei dieser Temperatur für 24 h getempert. Anschließend wurde mit 60 K h"1 auf Raumtemperatur abgekühlt.
Es wurde ein kompakter, silberglänzender Regulus erhalten, der problemlos der Ampulle entnommen werden konnte. Mit einer Diamantdrahtsäge wurde aus dem Regulus eine ca. 2 mm dicke Scheibe geschnitten, und daran zunächst die elektrische Leitfähigkeit bei Raumtemperatur und anschließend der Seebeck- Koeffizient gemessen.
Die elektrische Leitfähigkeit betrug σ = 407,3 S cm"1, der Seebeck- Koeffizient S = 326,5 μV K"1 (gemessen über 7Wt = 50 0C, Theiß = 290 0C), entsprechend einem Powerfaktor von S2G = 43,4 μW K"2 cm"1. Beispiel 5
Elementpulver in Mengen gemäß der Zusammensetzung (Reinhei- ten: Pb > 99,999 %, Te > 99,999 %, Ge > 99,999 %, Sn > 99,9985 %) wurde in eine Quarzampulle, Innendurchmesser 1 cm, eingewogen. Die Probenmenge betrug 20 g. Die Ampulle wurde evakuiert und verschlossen. Anschließend wurde die Ampulle im Ofen mit 500 K h"1 auf 980 0C erhitzt und bei dieser Temperatur für 6 h gehalten. Dabei wurde der Inhalt der Ampulle durch Kippbewegungen des Ofens kontinuierlich vermischt. Nach der Reaktions- zeit wurde mit 100 K h"1 in aufrechter Ofenposition auf 600 0C abgekühlt, und das Material bei dieser Temperatur für 24 h getempert. Anschließend wurde mit 60 K h"1 auf Raumtemperatur abgekühlt.
Es wurde ein kompakter, silberglänzender Regulus erhalten, der problemlos der Ampulle entnommen werden konnte. Mit einer Diamantdrahtsäge wurde aus dem Regulus eine ca. 2 mm dicke Scheibe geschnitten, und daran zunächst die elektrische Leitfähigkeit bei Raumtemperatur und anschließend der Seebeck- Koeffizient gemessen.
Die elektrische Leitfähigkeit betrug σ = 249,4 S cm"1, der Seebeck- Koeffizient S = 290,4 μV K"1 (gemessen über 7kait = 40 0C, Ikeiß = 285 0C), entsprechend einem Powerfaktor von S2G = 21 ,0 μW K"2 cm"1.
Ternäre Materialien
Beispiel 1
Elementpulver in Mengen gemäß der Zusammensetzung Pbo,997Zro,oo3Te1;oo3 (Reinheiten: Pb > 99,999 %, Te > 99,999 %, Zr > 99,95 %) wurde in eine Quarzampulle, Innendurchmesser 1 cm, eingewogen. Die Probenmenge betrug 20 g. Die Ampulle wurde evakuiert und ver- schlössen. Anschließend wurde die Ampulle im Ofen mit 500 K h"1 auf 980 0C erhitzt und bei dieser Temperatur für 6 h gehalten. Dabei wurde der Inhalt der Ampulle durch Kippbewegungen des Ofens kontinuierlich vermischt. Nach der Reaktionszeit wurde mit 100 K h"1 in aufrechter Ofenposition auf 600 0C abgekühlt, und das Material wurde bei dieser Temperatur für 24 h getempert. Anschließend wurde mit 60 K h"1 auf Raumtemperatur abgekühlt. Es wurde ein kompakter, silberglänzender Regulus erhalten, der problemlos der Ampulle entnommen werden konnte. Mit einer Diamantdrahtsäge wurde aus dem Regulus eine ca. 2 mm dicke Scheibe geschnitten, und daran wurden zunächst die elektrische Leitfähigkeit bei Raumtemperatur und anschließend der Seebeck-Koeffizient gemessen.
Die elektrische Leitfähigkeit betrug σ = 3895,7 S cm"1, der Seebeck- Koeffizient S = -139,4 μV K"1 (gemessen über 7Wt = 50 0C, rheiß = 280 0C), entsprechend einem Powerfaktor von S2G = 75,7 μW K"2 cm"1.
Beispiel 2
Elementpulver in Mengen gemäß der Zusammensetzung (Reinheiten: Pb > 99,999 %, Te > 99,999 %, Zr > 99,95 %) wurde in eine Quarzampulle, Innendurchmesser 1 cm, eingewogen. Die Probenmenge betrug 20 g. Die Ampulle wurde evakuiert und verschlossen. Anschließend wurde die Ampulle im Ofen mit 500 K h"1 auf 980 0C erhitzt und bei dieser Temperatur für 6 h gehalten. Dabei wurde der Inhalt der Ampulle durch Kippbewegungen des Ofens kontinuierlich vermischt. Nach der Reaktionszeit wurde mit 100 K h"1 in aufrechter Ofenposition auf 600 0C abgekühlt, und das Material wurde bei dieser Tempe- ratur für 24 h getempert. Anschließend wurde mit 60 K h"1 auf Raumtemperatur abgekühlt.
Es wurde ein kompakter, silberglänzender Regulus erhalten, der problemlos der Ampulle entnommen werden konnte. Mit einer Diamantdrahtsäge wurde aus dem Regulus eine ca. 2 mm dicke Scheibe geschnitten, und daran wurden zunächst die elektrische Leitfähigkeit bei Raumtemperatur und anschließend der Seebeck-Koeffizient gemessen.
Die elektrische Leitfähigkeit betrug σ = 3587,4 S cm"1, der Seebeck- Koeffizient S = -137,7 μV K"1 (gemessen über 7Wt = 50 0C, rheiß = 280 0C), entsprechend einem Powerfaktor von S2G = 68,0 μW K"2 cm"1.
Beispiel 3
Elementpulver in Mengen gemäß der Zusammensetzung Pbo,999Ago,ooiTei,oo3 (Reinheiten: Pb > 99,999 %, Te > 99,999 %, Ag > 99,9999 %) wurde in eine Quarzampulle, Innen- durchmesser 1 cm, eingewogen. Die Probenmenge betrug 20 g. Die Ampulle wurde evakuiert und verschlossen. Anschließend wurde die Ampulle im Ofen mit 500 K h"1 auf 980 0C erhitzt und bei dieser Temperatur für 6 h gehalten. Dabei wurde der Inhalt der Ampulle durch Kippbewegungen des Ofens kontinuierlich vermischt. Nach der Reaktionszeit wurde mit 100 K h"1 in aufrechter Ofenposition auf 600 0C abgekühlt, und das Material wurde bei dieser Temperatur für 24 h getempert. Anschließend wurde mit 60 K h"1 auf Raumtempera- tur abgekühlt.
Es wurde ein kompakter, silberglänzender Regulus erhalten, der problemlos der Ampulle entnommen werden konnte. Mit einer Diamantdrahtsäge wurde aus dem Regulus eine ca. 2 mm dicke Scheibe geschnitten, und daran wurden zunächst die elektrische Leitfähigkeit bei Raumtemperatur und anschließend der Seebeck-Koeffizient gemessen.
Die elektrische Leitfähigkeit betrug σ = 451,2 S cm"1, der Seebeck- Koeffizient S = -314,5 μV K"1 (gemessen über 7Wt = 50 0C, TWβ = 280 0C), entsprechend einem Powerfaktor von S2G = 44,6 μW K"2 cm"1.
Beispiel 4
Elementpulver in Mengen gemäß der Zusammensetzung (Reinheiten: Pb > 99,999 %, Te > 99,999 %, Cu elektrolytischer Reinheit) wurde in eine Quarzampulle, Innendurchmesser 1 cm, eingewogen. Die Probenmenge betrug 20 g. Die Ampulle wurde evakuiert und verschlossen. Anschließend wurde die Ampulle im Ofen mit 500 K h"1 auf 980 0C erhitzt und bei dieser Temperatur für 6 h gehalten. Dabei wurde der Inhalt der Ampulle durch Kippbewegungen des Ofens kontinuierlich vermischt. Nach der Reaktionszeit wurde mit 100 K h"1 in aufrechter Ofenposition auf 600 0C abgekühlt, und das Material wurde bei dieser Temperatur für 24 h getempert. Anschließend wurde mit 60 K h"1 auf Raumtemperatur abgekühlt.
Es wurde ein kompakter, silberglänzender Regulus erhalten, der problemlos der Ampulle entnommen werden konnte. Mit einer Diamantdrahtsäge wurde aus dem Regulus eine ca. 2 mm dicke Scheibe geschnitten, und daran wurden zunächst die elektrische Leitfähigkeit bei Raumtemperatur und anschließend der Seebeck-Koeffizient gemessen.
Die elektrische Leitfähigkeit betrug σ = 1936,5 S cm"1, der Seebeck- Koeffizient S = -136,7 μV K"1 (gemessen über 7Wt = 50 0C, rheiß = 280 0C), entsprechend einem Powerfak- tor von S2G = 36,2 μW K"2 cm"1.

Claims

Patentansprüche
1. p- oder n- leitendes Halbleitermaterial, enthaltend eine Verbindung der allgemeinen Formel (I)
^2- "A OTTei+z (I),
mit der Bedeutung: jeweils unabhängig n Anzahl der von Pb und Te unterschiedlichen chemischen Elemente
-0,05 ≤ z ≤ 0,05 und n ≥ 2
A1 .... An voneinander verschieden und ausgewählt aus der Gruppe der Elemente Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Al, Ga, In, Tl, Si, Ge, Sn, As, Sb, Bi, S, Se, Br, I, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd,
Pt, Cu, Ag, Au, Zn, Cd, Hg, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
oder n=l
A1 ausgewählt aus Ti, Zr, Ag, Hf, Cu, Gr, Nb, Ta.
2. Halbleitermaterial gemäß Anspruch 1, dadurch gekennzeichnet, dass A1 ... An voneinander verschieden und ausgewählt aus der Gruppe der Elemente
Al, In, Si, Ge, Sn, Sb, Bi, Se, Ti, Zr, Hf, Nb, Ta, Cu, Ag, Au sind.
3. Halbleitermaterial gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass A1 ....An voneinander verschieden und ausgewählt aus der Gruppe der Elemente
In, Ge, Ti, Zr, Hf, Nb, Ta, Cu, Ag
sind.
4. Verfahren zur Herstellung eines Halbleitermaterials gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Verbindung durch Reaktivmahlen oder Zusammenschmelzen von Mischungen der jeweiligen Elementbestandteile oder deren Legierungen hergestellt wird.
5. Verfahren nach Anspruch 4, gekennzeichnet durch die folgenden Verfahrensschritte:
(1) Zusammenschmelzen von Mischungen der jeweiligen Elementbestandteile oder deren Legierungen der Verbindung;
(2) Mahlen des in Verfahrensschritt (1) erhaltenen Materials; (3) Pressen des in Verfahrensschritt (2) erhaltenen Materials zu Formkörpern und
(4) Sintern der in Verfahrensschritt (3) erhaltenen Formkörper.
6. Halbleitermaterial, erhältlich nach einem Verfahren gemäß einem der Ansprüche 4 oder 5.
7. Verwendung eines Halbleitermaterials gemäß einem der Ansprüche 1 bis 3 oder 6 als thermoelektrischer Generator oder Peltier- Anordnung.
8. Thermoelektrischer Generator oder Peltier- Anordnung, enthaltend ein Halbleitermate- rial gemäß einem der Ansprüche 1 bis 3 oder 6.
9. Verwendung eines thermoelektrischen Generators oder einer Peltier- Anordnung gemäß Anspruch 8 als Wärmepumpe, zur Klimatisierung von Sitzmöbeln, Fahrzeugen und Gebäuden, in Kühlschränken und (Wäsche)trocknern, zur simultanen Heizung und Kühlung von Stoffströmen bei Verfahren der Stofftrennung, als Generator zur
Nutzung von Wärmequellen oder zur Kühlung elektronischer Bauteile.
10. Wärmepumpe, Kühlschrank, (Wäsche)trockner, Generator zur Nutzung von Wärmequellen, enthaltend mindestens einen thermoelektrischen Generator oder eine PeI- tier-Anordnung gemäß Anspruch 8.
EP07704205A 2006-03-16 2007-01-29 Dotierte bleitelluride fuer thermoelektrische anwendungen Withdrawn EP1999066A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07704205A EP1999066A2 (de) 2006-03-16 2007-01-29 Dotierte bleitelluride fuer thermoelektrische anwendungen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06111281 2006-03-16
PCT/EP2007/050851 WO2007104601A2 (de) 2006-03-16 2007-01-29 Dotierte bleitelluride fuer thermoelektrische anwendungen
EP07704205A EP1999066A2 (de) 2006-03-16 2007-01-29 Dotierte bleitelluride fuer thermoelektrische anwendungen

Publications (1)

Publication Number Publication Date
EP1999066A2 true EP1999066A2 (de) 2008-12-10

Family

ID=38229098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07704205A Withdrawn EP1999066A2 (de) 2006-03-16 2007-01-29 Dotierte bleitelluride fuer thermoelektrische anwendungen

Country Status (10)

Country Link
US (1) US8716589B2 (de)
EP (1) EP1999066A2 (de)
JP (1) JP5042245B2 (de)
KR (1) KR101364895B1 (de)
CN (1) CN101421185B (de)
CA (1) CA2646191A1 (de)
RU (1) RU2413042C2 (de)
TW (1) TW200737556A (de)
UA (1) UA92213C2 (de)
WO (1) WO2007104601A2 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200933940A (en) * 2007-12-28 2009-08-01 Basf Se Extrusion process for preparing improved thermoelectric materials
EP2250126A2 (de) * 2008-02-07 2010-11-17 Basf Se Dotierte zinntelluride für thermoelektrische anwendungen
KR101063938B1 (ko) * 2008-11-13 2011-09-14 한국전기연구원 중저온용 열전재료
RU2011142629A (ru) * 2009-03-24 2013-04-27 Басф Се Самоорганизующиеся термоэлектрические материалы
SG174559A1 (en) 2009-04-02 2011-10-28 Basf Se Thermoelectric module with insulated substrate
TW201042789A (en) 2009-04-02 2010-12-01 Basf Se Thermoelectric material coated with a protective layer
JP2010245492A (ja) * 2009-04-02 2010-10-28 繁 佐藤 熱発電素子構成手段と熱発電素子
CA2768978A1 (en) 2009-07-27 2011-02-03 Basf Se Method for producing thermoelectric semiconductor materials and branches
CN101656291B (zh) * 2009-09-21 2011-02-09 吉林大学 功能梯度热电材料n-PbTe及其制备方法
CN102403446A (zh) * 2011-11-08 2012-04-04 西华大学 一种在PbTe或PbSe中添加元素铝的热电材料
KR20130126035A (ko) * 2012-05-10 2013-11-20 삼성전자주식회사 왜곡된 전자 상태 밀도를 갖는 열전소재, 이를 포함하는 열전모듈과 열전 장치
CN102808215A (zh) * 2012-06-28 2012-12-05 北京工业大学 大尺寸多元稀土硼化物(Ce0.9Pr0.1)B6单晶体制备方法
KR101528589B1 (ko) * 2013-06-10 2015-06-16 연세대학교 산학협력단 열전 재료 제조 방법, 열전 재료 및 열전 발전기
US9444025B2 (en) 2013-06-10 2016-09-13 Industry-Academic Cooperation Foundation, Yonsei University Method of manufacturing thermoelectric material and thermoelectric material prepared by the method and thermoelectric generator
CN103397239A (zh) * 2013-08-08 2013-11-20 常熟市东方特种金属材料厂 高纯度的金属
WO2015050420A1 (ko) 2013-10-04 2015-04-09 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
KR101531011B1 (ko) * 2013-11-27 2015-06-25 한국전기연구원 Na이 첨가된 Ag 도핑 PbTe계 열전재료 및 그 제조방법
CN103762301A (zh) * 2014-01-26 2014-04-30 海安县申菱电器制造有限公司 一种内电极为缠绕在绝缘管上的金属线的热电转换器件
CN106575697B (zh) 2014-08-12 2019-06-25 密歇根州立大学董事会 热电设备及其加工和使用方法
CN105047808A (zh) * 2015-09-11 2015-11-11 广东雷子克热电工程技术有限公司 一种BiSbTeSe基热电材料
JP6873105B2 (ja) * 2016-03-31 2021-05-19 住友化学株式会社 化合物、熱電変換材料及び化合物の製造方法
WO2017170911A1 (ja) 2016-03-31 2017-10-05 住友化学株式会社 化合物及び熱電変換材料
CN105755348A (zh) * 2016-04-20 2016-07-13 苏州市相城区明达复合材料厂 一种铸造用光亮镀层合金
KR101816212B1 (ko) * 2016-09-12 2018-01-08 두산중공업 주식회사 연소물의 특성 요소의 영향도 분석 장치
CN106435329A (zh) * 2016-09-30 2017-02-22 无锡市明盛强力风机有限公司 一种金属合金导热材料及其制备方法
WO2018123899A1 (ja) * 2016-12-26 2018-07-05 国立大学法人名古屋大学 熱電変換材料および熱電変換素子
KR102573731B1 (ko) * 2018-08-24 2023-08-31 주식회사 엘지화학 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자
TWI683910B (zh) * 2018-10-18 2020-02-01 國立中山大學 熱電合金及其製作方法與熱電合金複合物
CN110299444A (zh) * 2019-05-30 2019-10-01 同济大学 一种EuCd2Sb2基热电材料及其制备方法
CN110218888B (zh) * 2019-06-20 2021-05-04 电子科技大学 一种新型Zintl相热电材料及其制备方法
CN110528081A (zh) * 2019-10-08 2019-12-03 西北工业大学 一种LiXSe2多晶化合物与单晶体的合成方法
CN111799360B (zh) * 2020-07-03 2022-08-05 中国科学院合肥物质科学研究院 一种n型PbTe基热电材料及其制备方法
CN112645710B (zh) * 2020-12-11 2022-08-02 哈尔滨石油学院 一种用Er和Ag共掺提高碲化铋基赝三元热电材料热电性能的方法
CN112885948B (zh) * 2021-01-14 2022-07-29 电子科技大学 一种具有高结构稳定性的铜硒基热电材料及其制备方法
CN112968120A (zh) * 2021-03-04 2021-06-15 杭州安誉科技有限公司 一种半导体制冷片及其在实时荧光定量pcr仪中的应用
CN114561687B (zh) * 2022-02-28 2023-11-17 福建师范大学 一种S掺杂MnBi2Te4单晶的制备方法
CN114524417B (zh) * 2022-03-07 2023-07-28 先导薄膜材料(广东)有限公司 一种高收率碲化铅的制备方法
CN114790569B (zh) * 2022-04-22 2023-07-07 福建师范大学 一种制备Se掺杂二维钒基单晶超导材料的方法
CN115650181B (zh) * 2022-10-20 2023-11-17 中国科学院合肥物质科学研究院 一种n型PbTe基热电材料及其制备方法
CN118274987B (zh) * 2024-04-09 2024-10-22 重庆材料研究院有限公司 传感器偶丝的材料及采用该材料制备的一体化多点式温度传感器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652421A (en) * 1968-08-01 1972-03-28 Gen Electric N-type lead telluride
US4447277A (en) * 1982-01-22 1984-05-08 Energy Conversion Devices, Inc. Multiphase thermoelectric alloys and method of making same
JP3170311B2 (ja) * 1991-07-29 2001-05-28 キヤノン株式会社 記録ヘッドおよび記録装置
JPH0685333A (ja) * 1992-09-03 1994-03-25 Idemitsu Petrochem Co Ltd 熱電変換材料の製造法
US6069312A (en) * 1994-01-28 2000-05-30 California Institute Of Technology Thermoelectric materials with filled skutterudite structure for thermoelectric devices
US5448109B1 (en) * 1994-03-08 1997-10-07 Tellurex Corp Thermoelectric module
JPH11152503A (ja) * 1997-11-19 1999-06-08 Kubota Corp Pb−Te系化合物粉末の製造方法
KR20000028741A (ko) * 1998-10-12 2000-05-25 안자키 사토루 열전반도체 재료 또는 소자의 제조방법 및 열전모듈의제조방법
US7002071B1 (en) * 1999-03-10 2006-02-21 Sumitomo Special Metals Co. Ltd. Thermoelectric conversion material and method of producing the same
US6225550B1 (en) * 1999-09-09 2001-05-01 Symyx Technologies, Inc. Thermoelectric material system
DE19955788A1 (de) 1999-11-19 2001-05-23 Basf Ag Thermoelektrisch aktive Materialien und diese enthaltende Generatoren
JP2003243734A (ja) * 2002-02-14 2003-08-29 Mitsui Mining & Smelting Co Ltd 熱電変換材料およびその製造方法
US7326851B2 (en) * 2003-04-11 2008-02-05 Basf Aktiengesellschaft Pb-Ge-Te-compounds for thermoelectric generators or Peltier arrangements
JP2007505028A (ja) * 2003-09-12 2007-03-08 ボード オブ トラスティース オペレイティング ミシガン ステイト ユニバーシティー 銀を含有する熱電気的な合成物
US20050150537A1 (en) * 2004-01-13 2005-07-14 Nanocoolers Inc. Thermoelectric devices
JP2005294478A (ja) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 熱電変換材料
DE102004025066A1 (de) * 2004-05-18 2005-12-08 Basf Ag Telluride mit neuen Eigenschaftskombinationen
EP1766698A2 (de) * 2004-06-14 2007-03-28 Delphi Technologies Inc. Thermoelektrische materialien mit nanoskaligen einschlüssen zur verstärkung des seebeck-koeffizienten
US7586033B2 (en) * 2005-05-03 2009-09-08 Massachusetts Institute Of Technology Metal-doped semiconductor nanoparticles and methods of synthesis thereof
EP2250126A2 (de) * 2008-02-07 2010-11-17 Basf Se Dotierte zinntelluride für thermoelektrische anwendungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007104601A2 *

Also Published As

Publication number Publication date
WO2007104601A3 (de) 2007-11-22
CA2646191A1 (en) 2007-09-20
UA92213C2 (ru) 2010-10-11
WO2007104601A2 (de) 2007-09-20
JP2009529799A (ja) 2009-08-20
JP5042245B2 (ja) 2012-10-03
KR20080104378A (ko) 2008-12-02
RU2413042C2 (ru) 2011-02-27
CN101421185A (zh) 2009-04-29
TW200737556A (en) 2007-10-01
KR101364895B1 (ko) 2014-02-19
RU2008140844A (ru) 2010-04-27
US8716589B2 (en) 2014-05-06
CN101421185B (zh) 2014-05-07
US20090084422A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
EP1999066A2 (de) Dotierte bleitelluride fuer thermoelektrische anwendungen
EP2227834B1 (de) Extrusionsverfahren zur herstellung verbesserter thermoelektrischer materialien
US8785762B2 (en) Self-organising thermoelectric materials
EP2250126A2 (de) Dotierte zinntelluride für thermoelektrische anwendungen
EP1102334B1 (de) Thermoelektrisch aktive Materialien und diese enthaltende Generatoren
DE102007014499A1 (de) Mit Zinn-Antimon-Telluriden dotierte Pb-Te-Verbindungen für thermoelektrische Generatoren oder Peltier-Anordnungen
EP2427589A1 (de) Verfahren zur herstellung von thermoelektrischen schichten
DE10142634A1 (de) Thermoelektrisch aktive Materialien und diese enthaltende Generatoren und Peltier-Anordnungen
WO2007104603A2 (de) Blei-germanium-telluride fuer thermoelektrische anwendungen
WO2006089938A1 (de) Halbleitende bismutsulfide mit neuen eigenschaftskombinationen und deren verwendung in der thermoelektrik und photovoltaik
WO2005114755A2 (de) Telluride mit neuen eigenschaftskombinationen
WO2008028852A2 (de) Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen
EP1289026A2 (de) Thermoelektrisch aktive Materialien und diese enthaltende Generatoren und Peltier-Anordnungen
WO2005114756A2 (de) Antimonide mit neuen eigenschaftskombinationen
EP1754266B1 (de) NEUE TERNÄRE HALBLEITENDE LEGIERUNGEN MIT BANDLÜCKEN KLEINER ALS 0,8 eV
WO2006089936A1 (de) Halbleitende kupfersulfide mit neuen eigenschaftskombinationen und deren verwendung in der thermoelektrik und photovoltaik
WO2006027232A2 (de) Pb-ge-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen
DE102004043786A1 (de) Thermoelektrisch aktive Mischoxide
DE10223743A1 (de) Thermoelektrisch aktive Materialien und diese enthaltende Generatoren und Peltier-Anordnungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081016

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090227

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 35/16 20060101ALI20150209BHEP

Ipc: C04B 35/547 20060101ALI20150209BHEP

Ipc: H01L 35/22 20060101ALI20150209BHEP

Ipc: C04B 35/515 20060101ALI20150209BHEP

Ipc: C01B 19/00 20060101AFI20150209BHEP

INTG Intention to grant announced

Effective date: 20150304

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150715