TWI683910B - 熱電合金及其製作方法與熱電合金複合物 - Google Patents

熱電合金及其製作方法與熱電合金複合物 Download PDF

Info

Publication number
TWI683910B
TWI683910B TW107136813A TW107136813A TWI683910B TW I683910 B TWI683910 B TW I683910B TW 107136813 A TW107136813 A TW 107136813A TW 107136813 A TW107136813 A TW 107136813A TW I683910 B TWI683910 B TW I683910B
Authority
TW
Taiwan
Prior art keywords
thermoelectric
thermoelectric alloy
quartz tube
alloy
material composition
Prior art date
Application number
TW107136813A
Other languages
English (en)
Other versions
TW202016326A (zh
Inventor
吳欣潔
顏婉婷
魏百駿
蔡挹芬
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW107136813A priority Critical patent/TWI683910B/zh
Priority to CN201811540147.4A priority patent/CN111081859B/zh
Priority to EP18213379.3A priority patent/EP3640361B1/en
Priority to JP2018237243A priority patent/JP2020065035A/ja
Priority to US16/234,535 priority patent/US10975456B2/en
Application granted granted Critical
Publication of TWI683910B publication Critical patent/TWI683910B/zh
Publication of TW202016326A publication Critical patent/TW202016326A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/44Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/58Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/78Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes more than one element being applied in more than one step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本發明有關於一種熱電合金及其製作方法。此熱電合金之製作方法係先提供起始材料,並對起始材料進行氧化製程,以獲得氧化材料組成物。然後,將氧化材料組成物與滲碳劑加入石英管中,並進行封管製程。接著,對封閉之石英管進行滲碳製程,即可製得具有良好熱電優值之熱電合金。

Description

熱電合金及其製作方法與熱電合金複合 物
本發明係有關一種熱電合金,特別是提供一種具有高熱電優值之熱電合金及其製作方法。
熱電材料可有效地直接轉換熱能與電能。依據其轉換機制之差異,熱電材料之熱電現象可為塞貝克效應(Seebeck effect)、帕爾帖效應(Peltier effect)或湯姆森效應(Thomson effect)。其中,當熱電材料之材料兩端具有溫度差或電壓差時,材料兩端會相應產生電壓差,或者形成一端吸熱一端放熱之現象。
據此,藉由前述之熱電現象,熱電材料一般可應用於廢熱回收發電(waste heat recovery)或熱電致冷(thermoelectric cooler)。
其次,熱電材料之熱電現象係取決於材料之熱電優值(thermoelectric figure-of-merit),且熱電優值係以下式(I)來表示。
Figure 107136813-A0101-12-0002-1
其中,zT代表熱電優值;S代表Seekbeck係數;ρ代表電阻率;S 2 /ρ代表材料之功率因子(power factor);κ代表熱傳導係數;且T為絕對溫度(K)。
當熱電優值越高時,熱電材料之熱電轉換效率係越好。然而,目前商業化之熱電材料的熱電優值約為1.0,故一般之熱電材料仍無法取代用來散熱之壓縮機(熱電優值約為3.5),而侷限其應用範圍。
有鑑於此,亟須提供一種熱電合金及其製作方法,以改進習知熱電合金的缺陷。
因此,本發明之一態樣是在提供一種熱電合金之製作方法,其藉由滲碳製程所施加之高溫,使滲碳劑分解產生活性碳原子,且活性碳原子可滲入熔融之熱電合金材料中,而可提升所製得熱電合金之熱電性質。
本發明之另一態樣是在提供一種熱電合金,其係藉由前述之方法所製得。
本發明之又一態樣是在提供一種熱電合金複合物,其包含前述之熱電合金。
根據本發明之一態樣,提出一種熱電合金之製作方法。此製作方法係先提供起始材料,並進行氧化製程,以製得氧化材料組成物。其中,基於氧化材料組成物為100 原子百分比,氧化材料組成物之氧含量係0.001原子百分比至10原子百分比。然後,將氧化材料組成物與滲碳劑加入石英管中,並進行封管製程,以製得封閉石英管。接著,對封閉石英管進行滲碳製程,即可製得本發明之熱電合金。
依據本發明之一實施例,前述之起始材料包含鍺、碲、鉍、鋅、銻、硒、銅、銦、鎵、銀、鈷、鐵及/或鉛。
依據本發明之另一實施例,前述之滲碳劑包含固體碳源、液體碳源、氣體碳源及/或電漿碳源。
依據本發明之又一實施例,前述將氧化材料組成物與滲碳劑加入石英管中之操作包含利用滲碳劑進行鍍碳製程,以於石英管之內壁形成碳膜,並加入氧化材料組成物至具有碳膜的石英管中。
依據本發明之再一實施例,前述封閉石英管之真空度不大於0.03mbar。
依據本發明之又另一實施例,前述之滲碳製程包含升溫步驟,且升溫步驟係由200℃升溫至起始材料之熔點。
依據本發明之再另一實施例,前述滲碳製程之冷卻速率為2℃/小時至10℃/小時。
依據本發明之更另一實施例,於進行前述之滲碳製程後,此製作方法更進一步對熱電合金進行長晶製程。
根據本發明之另一態樣,提出一種熱電合金,其係藉由前述之方法所製得。其中,基於熱電合金為100重 量百分比,熱電合金之碳含量為0.005重量百分比至0.05重量百分比。
依據本發明之一實施例,前述之熱電合金包含P型熱電合金與N型熱電合金。
根據本發明之又一態樣,提出一種熱電合金複合物,其包含前述之熱電合金。其中,基於熱電合金複合物之含量為100重量百分比,熱電合金之含量不小於10重量百分比。
應用本發明之熱電合金及其製作方法,其藉由進行滲碳製程,使所加入之滲碳劑分解產生活性碳原子,而可促使活性碳原子滲入熔融之氧化材料組成物中,進而提升所製得熱電合金之熱電性質。
100‧‧‧方法
110/120/130/140/150‧‧‧步驟
為了對本發明之實施例及其優點有更完整之理解,現請參照以下之說明並配合相應之圖式。必須強調的是,各種特徵並非依比例描繪且僅係為了圖解目的。相關圖式內容說明如下:〔圖1〕係繪示依照本發明之一實施例之熱電合金之製作方法的流程圖。
〔圖2A〕係繪示依照本發明之實施例1與比較例1之熱電合金的熱電優值對溫度之折線圖。
〔圖2B〕係繪示依照本發明之實施例2與比較例2之熱電合金的熱電優值對溫度之折線圖。
以下仔細討論本發明實施例之製造和使用。然而,可以理解的是,實施例提供許多可應用的發明概念,其可實施於各式各樣的特定內容中。所討論之特定實施例僅供說明,並非用以限定本發明之範圍。
一般而言,熱電合金中之雜質元素的含量越少時,熱電合金之電阻值越低,故其熱電優值越高,而具有較佳之熱電性質。據此,為降低其他雜質元素對熱電性質的影響,熱電合金所選用之起始材料均係選用高純度之材料,或係藉由一系列之純化製程來處理起始材料,以去除其中之雜質元素。舉例而言,當熱電合金之氧原子含量越高時,熱電合金之電阻值越高,故其熱電性質越差。據此,起始材料之純度要求係嚴苛的。再者,為避免起始材料於儲放時被氧化,起始材料均須妥善保存。然而,一般熱電合金之熱電優值仍未有顯著之進步。
據此,為有效提升熱電合金之熱電優值,本發明藉由先對熱電合金之起始材料進行氧化,以增加起始材料之氧含量,並進一步進行滲碳製程,以藉由還原氧化後之起始材料來提升碳滲入所製得之熱電合金中的含量,進而降低其熱傳導係數且增加功率因子,因此提升本發明熱電合金之熱電性質。
請參照圖1,其係繪示依照本發明之一實施例之熱電合金之製作方法的流程圖。方法100係先提供起始材 料,並對起始材料進行氧化製程,以製得氧化材料組成物,如步驟110與步驟120所示。依據所欲製得之熱電合金的化學組成,起始材料具有相應之組成與比例。在一些實施例中,起始材料為一混合物。在此些實施例中,此混合物可包含金屬材料及/或非金屬材料。在一些實施例中,起始材料可包含但不限於鍺、碲、鉍、鋅、銻、硒、銅、銦、鎵、銀、鈷、鐵、鉛、其他適當之熱電材料,或上述材料之任意混合。在一些實施例中,為製得具有良好性質之熱電合金,起始材料中之各材料的純度較佳不小於4N。
基於步驟120所製得之氧化材料組成物為100原子百分比,氧化材料組成物的氧含量可為0.001原子百分比至10原子百分比。在一些實施例中,氧化材料組成物的氧含量較佳可為1原子百分比至6原子百分比,且更佳為2原子百分比至5原子百分比。
然後,將氧化材料組成物與滲碳劑加入石英管中,並進行封管製程,以製得封閉石英管,如步驟130所示。在一些實施例中,所加入之滲碳劑並沒有特別之限制,其僅須可於後續之滲碳製程作為碳源即可。在一些實施例中,滲碳劑之主要組成為碳原子,且其較佳不包含其他雜質元素,以避免所製得熱電合金之組成無法滿足需求。在一些實施例中,滲碳劑可包含但不限於固體碳源、液體碳源、氣體碳源、電漿碳源、其他適當型態之碳源,或上述材料之任意混合。舉例而言,滲碳劑可包含但不限於碳粉、石墨粉、石墨烯、 鑽石、碳奈米管、無定型碳、富勒烯、其他適當之材料,或上述材料之任意混合。
在一些實施例中,滲碳劑可與氧化材料組成物同時加入石英管中。在其他實施例中,滲碳劑可於加入氧化材料組成物之前,預先形成於石英管中,或者加至石英管中。舉例而言,石英管可先進行鍍碳製程,以預先使滲碳劑形成於石英管內壁上,而形成內壁具有碳膜之石英管。然後,氧化材料組成物即可加入至具有碳膜之石英管中,並進行接續之封管製程。
當進行封管製程時,利用抽氣泵浦抽去石英管中之空氣,並利用氧氣-瓦斯火焰槍燒熔石英管之管口,以封閉石英管。其中,封閉石英管中之真空度不大於0.03mbar。
進行封管製程後,對所獲得之封閉石英管進行滲碳製程,即可製得本發明之熱電合金,如步驟140與步驟150所示。當進行滲碳製程時,封閉石英管中之滲碳劑(或碳原子)可還原氧化材料組成物,且隨著滲碳製程之進行,活性碳原子可滲入熔融之氧化材料組成物中,而可提升所製得熱電合金之性質。在一些實施例中,基於所製得之熱電合金為100重量百分比,熱電合金之碳含量可為0.005重量百分比至0.05重量百分比。在一些實施例中,所製得之熱電合金較佳不包含氧原子。若熱電合金包含氧原子時,熱電合金之電阻值將上升,而降低其熱電優值。
為促使滲碳劑分解出活性碳原子,並使活性碳原子有效地滲入熱電合金中,滲碳製程包含升溫步驟,且升溫步驟係由200℃升溫至前述起始材料之熔點,以使碳原子滲入氧化材料組成物中,並熔融氧化材料組成物。其中,升溫步驟係升溫至所有氧化材料組成物均可熔融為佳。換言之,於升溫至設定溫度時,氧化材料組成物均被熔融。在一些實施例中,升溫步驟較佳係由200℃升溫至1100℃,且更佳為由200℃升溫至950℃。在一些實施例中,當進行滲碳製程時,加熱爐係先由室溫加熱至200℃,再將封閉石英管放置至200℃之加熱爐中。在一些實施例中,於滲碳製程之升溫階段的期間,碳原子可先滲入氧化材料組成物中,以還原氧化材料組成物。接著,被還原之氧化材料組成物可熔融結合為液態之熱電合金。在一些實施例中,於滲碳製程之升溫階段的期間,氧化材料組成物可先熔融為液體,且碳原子滲入還原此些液態之氧化材料組成物。接著,被還原之氧化材料組成物結合為熱電合金。在一些實施例中,於滲碳製程之升溫階段的期間,氧化材料組成物可先熔融結合為液態之熱電合金。然後,碳原子可滲入液態之熱電合金,並還原其中之氧原子。
於滲碳製程中,若前述所製得氧化材料組成物之氧含量小於0.001原子百分比時,由於氧化材料組成物之氧化程度過低,故受熱所分解之活性碳原子不易滲入熱電合金中,而降低熱電合金之碳含量,因此降低所製得熱電合金之熱電性質。若氧化材料組成物之氧含量大於10原子百分 比時,部分之氧化材料將無法被還原,而使所製得之熱電材料仍含有氧原子,進而提升熱電材料之電阻值,因此降低其熱電性質。
另外,於滲碳製程中,當封閉石英管之真空度為前述之範圍時,封閉石英管之內部可為低氧環境。故,滲碳製程所產生之活性碳原子可更有效地還原氧化材料組成物,並滲入熔融之氧化材料組成物中,而不被環境中之氧原子所干擾,進而降低所製得熱電合金之熱傳導係數且增加功率因子。因此,所製得之熱電合金具有較佳之熱電性質。
當高溫之滲碳製程進行完畢後,滲碳製程之冷卻速率可為2℃/小時至10℃/小時。當冷卻速率為前述之範圍時,熔融之被還原的氧化材料組成物可緩慢冷卻,而具有較緻密之結構與較佳之結晶性質,進而提升所製得熱電合金之性質。在一些實施例中,滲碳製程之冷卻速率較佳可為3℃/小時至8℃/小時,且更佳可為5℃/小時至7℃/小時。
於進行前述之滲碳製程後,此製作方法可選擇性地對所獲得之熱電合金進行長晶製程,而可進一步提升所製得熱電合金之結晶性質,因此提升長晶製程所製得熱電合金塊材的熱電性質。
在一具體例中,依據所選用之起始材料的用量與組成,利用前述方法所製得之熱電合金可為P型熱電合金與N型熱電合金。
在一些具體例中,所製得之熱電合金可具有M1x1(B1y1C1z1)之組成。其中,M1代表摻雜之金屬元素, 且M1可代表Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Cu、Ag、Au、Zn、Mn、Fe、Co、Ni、La、Ce、Pr、Nd、Yb、其他適當之元素,或上述元素之任意混合;B1可代表Al、Ga、In、Sb、Bi、其他適當之元素,或上述元素之任意混合;C1可代表O、S、Se、Te、F、Cl、Br、I、其他適當之元素,或上述元素之任意混合;x1代表大於0且小於1之數值;y1代表大於1.5且小於2.5之數值;z1代表大於2.3且小於3.7之數值。此種熱電合金可例如為以M1摻雜之Bi2Te3
在一些具體例中,所製得之熱電合金可具有M2x2(B2y2C2z2)之組成。其中,M2代表摻雜之金屬元素,且可代表Li、Na、K、Rb、Sr、Mg、Ca、Sr、Ba、Cu、Ag、Au、Zn、Al、Ga、In、As、Sb、Bi、Br、I、其他適當之元素,或上述元素之任意混合;B2可代表Si、Ge、Sn、Pb、其他適當之元素,或上述元素之任意混合;C2可代表N、P、As、Sb、Bi、Te、其他適當之元素,或上述元素之任意混合;x2代表大於0.02且小於0.2之數值;y2可代表大於0.7且小於1.3之數值;z2可代表大於0.7且小於1.3之數值。此種熱電合金可例如為以M2摻雜之PbTe或GeTe。
在一些具體例中,所製得之熱電合金可具有M3x3(B3y3C3z3)之組成。其中,M3代表摻雜之金屬元素,且可代表Li、Na、K、Cs、Mg、Ca、Sr、Ba、Cu、Ag、Au、Zn、La、Ce、Mn、Fe、Co、Ni、其他適當之元素, 或上述元素之任意混合;B3可代表Al、Ga、In、Zn、Cd、其他適當之元素,或上述元素之任意混合;C3可代表N、P、As、Sb、Bi、Se、其他適當之元素,或上述元素之任意混合;x3代表大於0且小於0.5之數值;y3代表大於2.7且小於4.4之數值;z3代表大於2.5且小於3.5之數值。此種熱電合金可例如為以M3摻雜之ZnSb、Zn4Sb3、In4Se3或InSb。
在一些具體例中,所製得之熱電合金可具有M4x4(B4y4C4z4)之組成。其中,M4代表摻雜之金屬元素,且可代表Li、Cs、Rb、Ba、Ga、In、Tl、La、Ce、Pr、Nd、Yb、其他適當之元素,或上述元素之任意混合;B4可代表Fe、Co、Ni、Ru、Rh、Pd、其他適當之元素,或上述元素之任意混合;C4可代表As、Sb、其他適當之元素,或上述元素之任意混合;x4代表大於0且小於0.4之數值;y4代表大於0.7且小於1.3之數值;z4代表大於2.5且小於3.5之數值。此種熱電合金可例如為以M4摻雜之FeCoSb3
在一些具體例中,所製得之熱電合金可具有M5x5(A5p5B5y5C5z5)之組成。其中,M5代表摻雜之金屬元素,且可代表Li、Na、K、Cs、Cl、Br、I、其他適當之元素,或上述元素之任意混合;A5可代表Cu、Ag、Au、其他適當之元素,或上述元素之任意混合;B5可代表Ga、In、Ge、Sn、As、Sb、Bi、其他適當之元素,或上述元素之任意混合;C5可代表S、Se、Te、其他適當之元素,或上述元素之任意混合;x5代表大於0且小於0.2之數值;p5代表大於0.7且小於1.3之數值;y5代表大於0.7且小於1.3 之數值;z5代表大於1.7且小於2.3之數值。此種熱電合金可例如為以M5摻雜之AgSbTe2或CuInSe2
在一些具體例中,本發明所製得之熱電合金可與一般熱電合金混合,而形成熱電合金複合物,且此熱電合金複合物即可具有良好之熱電優值。其中,基於熱電合金複合物為100重量百分比,本發明所製得之熱電合金的含量係不小於10重量百分比,較佳為10重量百分比至80重量百分比,且更佳為50重量百分比至60重量百分比。
於進行前述之滲碳製程時,由於受熱分解之活性碳原子可滲入熔融之氧化材料組成物中,而降低所製得熱電合金之熱傳導係數,或增加其功率因子(power factor),因此所製得之熱電合金具有較佳之熱電性質。
以下利用實施例以說明本發明之應用,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。
製備熱電合金 實施例1
首先,提供純度為4N以上之銅金屬(Cu)、鉍金屬(Bi)與碲金屬(Te),並對此些金屬進行氧化製程,以分別製得包含氧化銅、氧化鉍與氧化碲之氧化材料組成物,其中氧化材料組成物的氧含量為4原子百分比。然後,進行鍍碳製程,即可於石英管內壁形成碳膜。接著,將前述之氧化材 料組成物放入內壁具有碳膜之石英管中,並利用抽氣泵浦抽氣,以降低石英管之真空度。
待石英管之真空度不大於0.03mbar時,對石英管進行封管製程,以形成封閉石英管。接著,以2℃/分鐘至5℃/分鐘之升溫速率加熱封閉石英管,直至封閉石英管之溫度為950℃,以使碳膜可受熱產生活性碳原子,而可進行滲碳製程。
待石英管內之材料均勻化後,冷卻至室溫,並將凝固樣品放入長晶爐中,以4℃/小時之速度進行長晶,即可製得實施例1之熱電合金。所得之熱電合金以下述熱電優值之評價方式進行評價,其評價結果容後再述。
實施例2
首先,提供純度為4N以上之銻金屬(Sb)、鍺金屬(Ge)與碲金屬(Te),並對此些金屬進行氧化製程,以分別製得包含氧化銻、氧化鍺與氧化碲之氧化材料組成物,其中氧化材料組成物的氧含量為10原子百分比。然後,進行鍍碳製程,即可於石英管內壁形成碳膜。接著,將前述之氧化材料組成物放入內壁具有碳膜之石英管中,並利用抽氣泵浦抽氣,以降低石英管之真空度。
待石英管之真空度不大於0.03mbar時,對石英管進行封管製程,以形成封閉石英管。接著,以2℃/分鐘至5℃/分鐘之升溫速率加熱封閉石英管,直至封閉石英管之溫度為950℃,以使碳膜可受熱產生活性碳原子,而可進行滲碳製程。
待石英管內之材料均勻化後,以5℃/小時至10℃/小時之冷卻速率降溫至室溫,即可製得實施例2之熱電合金。所得之熱電合金以下述熱電優值之評價方式進行評價,其評價結果容後再述。
比較例1
比較例1之熱電合金係使用與實施例1之熱電合金的起始材料相同之組成含量。然而,比較例1係直接將此些起始材料放入石英管中,並進行封管製程,以獲得封閉石英管。
接著,對封閉石英管進行熔融製程。待石英管內之材料均勻化後,冷卻至室溫,並將凝固樣品放入長晶爐中,以4℃/小時之速度進行長晶,即可製得比較例1之熱電合金。所得之熱電合金以下述熱電優值之評價方式進行評價,其評價結果容後再述。
比較例2
比較例2之熱電合金係使用與實施例2之熱電合金的起始材料相同之組成含量。然而,比較例2係直接將此些起始材料放入石英管中,並進行封管製程,以獲得封閉石英管。
接著,對封閉石英管進行熔融製程。待石英管內之材料均勻化後,以5℃/小時至10℃/小時之冷卻速率降溫至室溫,即可製得比較例2之熱電合金。所得之熱電合金以下述熱電優值之評價方式進行評價,其評價結果容後再述。
評價方式 熱電優值
實施例1至2與比較例1至2所製得之熱電合金分別係利用賽貝克係數與電導率變溫量測系統(ULVAC-RIKO製造,且其型號為ZEM-3之量測系統)量測電阻率(ρ)與賽貝克(Seekbeck)係數(S)。於此量測系統中,利用兩鎳製電極來固定熱電合金之試片,並設置兩根熱電耦,以量測試片之溫差,其中溫差值分別設定為7K、10K、13K與16K。然後,將量測腔體之壓力降低至10-2torr,並通入6N之惰性氣體。反覆進行數次後,通入微量之高純度氦氣,以避免試片於高溫產生氧化反應。接著,將試驗電壓設定為固定值,並依據試片電阻調整試驗電流,即可藉由電腦軟體計算測得電阻率(ρ)與賽貝克係數(S),其中試驗電流之最大值為130mA。
然後,利用閃光法熱傳導儀(Netzsch製作,且其型號為LFA 457)量測熱電合金之熱傳導係數(κ)。於熱傳導儀中,以雷射光加熱熱電合金之試片的一側,並利用紅外線感測器(或熱電耦)量測試片之另一側的溫度。因此,試片於特定時間內的溫度變化可被測得。其中,熱電合金之試片係直徑為7毫米,且厚度為1.5毫米至2毫米的圓餅試片。然後,以下式(II)計算獲得實施例1至2及比較例1至2之熱電合金的熱傳導係數(κ): κ=DC p d (II)
於式(II)中,D代表試片之溫度變化,C p 為試片之比熱(其中
Figure 107136813-A0101-12-0016-2
R為常數8.314J/g-mol * K,且M為分子量),且d為試片密度。
依據前述所測得之電阻率(ρ)、賽貝克係數(S)與熱傳導係數(κ),實施例1至2與比較例1至2之熱電合金於各溫度下的熱電優值可藉由前述之式(I)計算獲得。
請參照圖2A與圖2B,其中圖2A係繪示依照本發明之實施例1與比較例1之熱電合金的熱電優值對溫度之折線圖,且圖2B係繪示依照本發明之實施例2與比較例2之熱電合金的熱電優值對溫度之折線圖。
依據圖2A所繪示之內容可知,於300K(約為26.85℃)時,實施例1所製得之熱電合金的熱電優值為1.7,且比較例1之熱電合金的熱電優值僅為1.2。其次,於各個量測溫度下,實施例1所製得之熱電合金均具有較高之熱電優值。
另外,相較於商用之熱電合金(n型Bi摻雜之TeSe熱電材料,且其熱電優值約為0.85至1.04),於300K時,實施例1之熱電合金的熱電優值約為其2倍。
依據圖2B所繪示之內容可知,於723K(約為449.85℃)時,實施例2所製得之熱電合金的熱電優值為 2.5,且比較例2之熱電合金的熱電優值約為1.0。相同地,於各個量測溫度下,相較於比較例2所製得之熱電合金,實施例2之熱電合金均具有較高之熱電優值。
故,依據實施例1至實施例2與比較例1至比較例2之評價結果可知,本案之製作方法藉由氧化製程,使所使用之起始材料形成氧化態,而可於後續之滲碳製程被所產生之活性碳原子所還原,並使此些活性碳原子滲入熔融之氧化材料組成物中,進而降低所製得熱電合金之熱傳導係數且增加其功率因子,因此可提升熱電合金之熱電性質。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧方法
110/120/130/140/150‧‧‧步驟

Claims (6)

  1. 一種熱電合金之製作方法,包含:提供一起始材料,其中該起始材料包含鍺、碲、鉍、鋅、銻、硒、銅、銦、鎵、銀、鈷、鐵及/或鉛;對該起始材料進行氧化製程,以製得氧化材料組成物,其中基於該氧化材料組成物為100原子百分比,該氧化材料組成物之氧含量係0.001原子百分比至10原子百分比;將該氧化材料組成物與一滲碳劑加入一石英管中,並進行一封管製程,以製得一封閉石英管;以及對該封閉石英管進行一滲碳製程,以製得該熱電合金,且該熱電合金不包含氧原子,其中該滲碳製程包含一升溫步驟,且該升溫步驟係由200℃升溫至該起始材料之熔點。
  2. 如申請專利範圍第1項所述之熱電合金之製作方法,其中該滲碳劑包含一固體碳源、一液體碳源、一氣體碳源及/或一電漿碳源。
  3. 如申請專利範圍第1項所述之熱電合金之製作方法,其中將該氧化材料組成物與該滲碳劑加入該石英管中之操作包含:利用該滲碳劑進行一鍍碳製程,以於該石英管之一內壁形成一碳膜;以及加入該氧化材料組成物至具有該碳膜的該石英管中。
  4. 如申請專利範圍第1項所述之熱電合金之製作方法,其中該封閉石英管之一真空度不大於0.03mbar。
  5. 如申請專利範圍第1項所述之熱電合金之製作方法,其中該滲碳製程之一冷卻速率為2℃/小時至10℃/小時。
  6. 如申請專利範圍第1項所述之熱電合金之製作方法,於進行該滲碳製程後,該製作方法更包含:對該熱電合金進行一長晶製程。
TW107136813A 2018-10-18 2018-10-18 熱電合金及其製作方法與熱電合金複合物 TWI683910B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW107136813A TWI683910B (zh) 2018-10-18 2018-10-18 熱電合金及其製作方法與熱電合金複合物
CN201811540147.4A CN111081859B (zh) 2018-10-18 2018-12-17 热电合金及其制作方法与热电合金复合物
EP18213379.3A EP3640361B1 (en) 2018-10-18 2018-12-18 Method for producing a thermoelectric alloy
JP2018237243A JP2020065035A (ja) 2018-10-18 2018-12-19 熱電合金及びその製造方法と熱電合金複合物
US16/234,535 US10975456B2 (en) 2018-10-18 2018-12-27 Thermoelectric alloy, method for producing the same and thermoelectric alloy composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107136813A TWI683910B (zh) 2018-10-18 2018-10-18 熱電合金及其製作方法與熱電合金複合物

Publications (2)

Publication Number Publication Date
TWI683910B true TWI683910B (zh) 2020-02-01
TW202016326A TW202016326A (zh) 2020-05-01

Family

ID=65351841

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136813A TWI683910B (zh) 2018-10-18 2018-10-18 熱電合金及其製作方法與熱電合金複合物

Country Status (5)

Country Link
US (1) US10975456B2 (zh)
EP (1) EP3640361B1 (zh)
JP (1) JP2020065035A (zh)
CN (1) CN111081859B (zh)
TW (1) TWI683910B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022054577A1 (zh) * 2020-09-10 2022-03-17
CN113421960B (zh) * 2021-07-09 2022-12-06 合肥工业大学 一种共掺杂Cu和Bi提高n型PbTe基热电材料性能的方法
CN113956042B (zh) * 2021-09-18 2023-02-03 深圳大学 一种菱方相GeSe基热电材料及其制备方法
CN115403016A (zh) * 2022-10-09 2022-11-29 合肥工业大学 一种高性能黄铜矿体系热电材料及其制备方法
CN115915895B (zh) * 2023-02-09 2023-10-03 北京航空航天大学 一种基于P型SnSe晶体的热电制冷材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369625A (zh) * 2003-08-26 2009-02-18 京瓷株式会社 热电材料、热电元件及热电模块及它们的制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061505A (en) * 1971-10-08 1977-12-06 Minnesota Mining And Manufacturing Company Rare-earth-metal-based thermoelectric compositions
US6043424A (en) * 1996-07-03 2000-03-28 Yamaha Corporation Thermoelectric alloy achieving large figure of merit by reducing oxide and process of manufacturing thereof
KR100340997B1 (ko) * 2000-09-08 2002-06-20 박호군 수율을 향상시킨 피형 열전재료의 제조방법.
JP2006222161A (ja) * 2005-02-08 2006-08-24 Mitsui Mining & Smelting Co Ltd 熱電変換材料およびその製造方法
UA92213C2 (ru) * 2006-03-16 2010-10-11 Басф Се Полупроводниковый материал для термоэлектрического применения и термоэлектрический генератор, включающий его
US20100163091A1 (en) 2008-12-30 2010-07-01 Industrial Technology Research Institute Composite material of complex alloy and generation method thereof, thermoelectric device and thermoelectric module
WO2011022189A2 (en) 2009-08-17 2011-02-24 Laird Technologies, Inc. Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
CN102031416B (zh) * 2009-09-28 2012-08-29 中国科学院上海硅酸盐研究所 一种填充方钴矿基复合材料及其制备方法
CN102373348B (zh) * 2010-08-20 2013-10-16 中国科学院上海硅酸盐研究所 p型方钴矿材料及其制备方法
CN102881814B (zh) * 2011-07-12 2015-11-25 中国科学院上海硅酸盐研究所 空穴补偿型方钴矿热电材料及其制备方法
TWI452142B (zh) 2011-11-22 2014-09-11 中原大學 Tin and antimony ternary compounds and their application and forming methods
WO2014143361A1 (en) * 2013-03-15 2014-09-18 United Technologies Corporation Process for treating steel alloys for gears
JP5976604B2 (ja) 2013-03-29 2016-08-23 富士フイルム株式会社 熱電変換材料、熱電変換素子、熱電発電用物品及びセンサー用電源
KR102109500B1 (ko) * 2013-07-18 2020-05-12 에스케이이노베이션 주식회사 산화물 나노입자가 분산된 칼코겐화합물 기반 상분리 복합 열전소재
JP6277553B2 (ja) * 2014-06-20 2018-02-14 パナソニックIpマネジメント株式会社 熱電変換素子
CN106997919A (zh) * 2017-03-06 2017-08-01 宁波工程学院 n‑型Cu4In9Se16基中高温热电半导体及其合成工艺
CN107010609B (zh) * 2017-03-10 2019-01-04 宁波工程学院 一种p-型Cu4Ga6Te11基中温热电半导体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369625A (zh) * 2003-08-26 2009-02-18 京瓷株式会社 热电材料、热电元件及热电模块及它们的制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王 祈," 添加銅元素對 P 型鋇鎵鍺晶籠材料熱電特性之影響", 國立中興大學材料科學與工程學系碩士學位論文,103年7月,第1~91頁 *
王 祈," 添加銅元素對 P 型鋇鎵鍺晶籠材料熱電特性之影響", 國立中興大學材料科學與工程學系碩士學位論文,103年7月,第1~91頁。

Also Published As

Publication number Publication date
EP3640361A1 (en) 2020-04-22
CN111081859A (zh) 2020-04-28
EP3640361B1 (en) 2023-03-01
US20200123637A1 (en) 2020-04-23
JP2020065035A (ja) 2020-04-23
CN111081859B (zh) 2022-03-22
US10975456B2 (en) 2021-04-13
TW202016326A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
TWI683910B (zh) 熱電合金及其製作方法與熱電合金複合物
JP6219386B2 (ja) 熱電装置のための四面銅鉱構造に基づく熱電材料
JP5680090B2 (ja) Gasb充填スクッテルダイト複合材料、およびその製造方法
Kuropatwa et al. Thermoelectric properties of stoichiometric compounds in the (SnTe) x (Bi2Te3) y system
JP2009253301A (ja) ジカルコゲナイド熱電材料
JP7344531B2 (ja) 熱電変換材料、及びその製造方法
JP2016529699A (ja) 熱電素子のための四面銅鉱構造に基づく熱電材料
CN108238796A (zh) 铜硒基固溶体热电材料及其制备方法
JP6054606B2 (ja) 熱電半導体
Mukherjee et al. Microstructure and thermoelectric properties of Cu2Te-Sb2Te3 pseudo-binary system
Lee et al. Improved carrier transport properties by I-doping in n-type Cu0. 008Bi2Te2. 7Se0. 3 thermoelectric alloys
CN108807654B (zh) 高性能低成本MnGeTe2基热电材料及其制备
JP2012244001A (ja) ナノコンポジット熱電材料およびその製造方法
KR20110078316A (ko) 외생삽입을 통한 AgSbTe₂나노돗이 형성된 Te계 열전재료의 제조방법
Upadhyay et al. Solvothermal assisted synthesis of CoSb3 phase evolution: Morphology and electrical study for thermoelectric applications
TWI507534B (zh) 碲化鉍複合合金粉體、其塊體合金及其製造方法
CN109103323A (zh) 一种通过填充Ga、Te替换Sb提高基方钴矿材料热电性能的方法
Yu et al. Unique surface structure resulting in the excellent long-term thermal stability of Fe4Sb12-based filled skutterudites
JP2005217310A (ja) クラスレート化合物、熱電変換素子及びその製造方法
JP3562296B2 (ja) P型熱電変換材料およびその製造方法
Park et al. Electrical, Thermal, and Thermoelectric Transport Properties of Co-Doped n-type Cu 0.008 Bi 2 Te 2.6 Se 0.4 Polycrystalline Alloys
KR102612880B1 (ko) 셀레늄 증기 열처리를 이용한 P형 Ag-Bi-Se계 열전소재의 제조방법 및 이를 이용하여 제조된 P형 Ag-Bi-Se계 열전소재 및 열전소자
CN114477104B (zh) (Sb2Te3)n(GeTe)m热电材料及其制备方法
JP2006057125A (ja) クラスレート化合物、クラスレート化合物の製造方法及び熱電変換素子
JP2000261046A (ja) 熱電変換材料とその製造方法