CN111081859A - 热电合金及其制作方法与热电合金复合物 - Google Patents

热电合金及其制作方法与热电合金复合物 Download PDF

Info

Publication number
CN111081859A
CN111081859A CN201811540147.4A CN201811540147A CN111081859A CN 111081859 A CN111081859 A CN 111081859A CN 201811540147 A CN201811540147 A CN 201811540147A CN 111081859 A CN111081859 A CN 111081859A
Authority
CN
China
Prior art keywords
thermoelectric
thermoelectric alloy
alloy
quartz tube
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811540147.4A
Other languages
English (en)
Other versions
CN111081859B (zh
Inventor
吴欣潔
颜婉婷
魏百骏
蔡挹芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Publication of CN111081859A publication Critical patent/CN111081859A/zh
Application granted granted Critical
Publication of CN111081859B publication Critical patent/CN111081859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/44Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/58Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/78Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes more than one element being applied in more than one step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明有关于一种热电合金及其制作方法与热电合金复合物。此热电合金的制作方法是先提供起始材料,并对起始材料进行氧化制程,以获得氧化材料组成物。然后,将氧化材料组成物与渗碳剂加入石英管中,并进行封管制程。接着,对封闭的石英管进行渗碳制程,即可制得具有良好热电优值的热电合金。

Description

热电合金及其制作方法与热电合金复合物
技术领域
本发明是有关一种热电合金,特别是提供一种具有高热电优值的热电合金及其制作方法。
背景技术
热电材料可有效地直接转换热能与电能。依据其转换机制的差异,热电材料的热电现象可为塞贝克效应(Seebeck effect)、帕尔帖效应(Peltier effect)或汤姆森效应(Thomson effect)。其中,当热电材料的材料两端具有温度差或电压差时,材料两端会相应产生电压差,或者形成一端吸热一端放热的现象。
据此,通过前述的热电现象,热电材料一般可应用于废热回收发电(waste heatrecovery)或热电致冷(thermoelectric cooler)。
其次,热电材料的热电现象是取决于材料的热电优值(thermoelectric figure-of-merit),且热电优值是以下式(I)来表示。
Figure BDA0001907869620000011
其中,zT代表热电优值;S代表Seekbeck系数;ρ代表电阻率;S2/ρ代表材料的功率因子(power factor);κ代表热传导系数;且T为绝对温度(K)。
当热电优值越高时,热电材料的热电转换效率越好。然而,目前商业化的热电材料的热电优值约为1.0,故一般的热电材料仍无法取代用来散热的压缩机(热电优值约为3.5),而局限其应用范围。
有鉴于此,亟须提供一种热电合金及其制作方法,以改进习知热电合金的缺陷。
发明内容
因此,本发明的一态样是在提供一种热电合金的制作方法,其通过渗碳制程所施加的高温,使渗碳剂分解产生活性碳原子,且活性碳原子可渗入熔融的热电合金材料中,而可提升所制得热电合金的热电性质。
本发明的另一态样是在提供一种热电合金,其是通过前述的方法所制得。
本发明的又一态样是在提供一种热电合金复合物,其包含前述的热电合金。
根据本发明的一态样,提出一种热电合金的制作方法。此制作方法是先提供起始材料,并进行氧化制程,以制得氧化材料组成物。其中,基于氧化材料组成物为100原子百分比,氧化材料组成物的氧含量是0.001原子百分比至10原子百分比。然后,将氧化材料组成物与渗碳剂加入石英管中,并进行封管制程,以制得封闭石英管。接着,对封闭石英管进行渗碳制程,即可制得本发明的热电合金。
依据本发明的一实施例,前述的起始材料包含锗、碲、铋、锌、锑、硒、铜、铟、镓、银、钴、铁及/或铅。
依据本发明的另一实施例,前述的渗碳剂包含固体碳源、液体碳源、气体碳源及/或电浆碳源。
依据本发明的又一实施例,前述将氧化材料组成物与渗碳剂加入石英管中的操作包含利用渗碳剂进行镀碳制程,以于石英管的内壁形成碳膜,并加入氧化材料组成物至具有碳膜的石英管中。
依据本发明的再一实施例,前述封闭石英管的真空度不大于0.03mbar。
依据本发明的又另一实施例,前述的渗碳制程包含升温步骤,且升温步骤是由200℃升温至起始材料的熔点。
依据本发明的再另一实施例,前述渗碳制程的冷却速率为2℃/小时至10℃/小时。
依据本发明的更另一实施例,于进行前述的渗碳制程后,此制作方法更进一步对热电合金进行长晶制程。
根据本发明的另一态样,提出一种热电合金,其是通过前述的方法所制得。其中,基于热电合金为100重量百分比,热电合金的碳含量为0.005重量百分比至0.05重量百分比。
依据本发明的一实施例,前述的热电合金包含P型热电合金与N型热电合金。
根据本发明的又一态样,提出一种热电合金复合物,其包含前述的热电合金。其中,基于热电合金复合物的含量为100重量百分比,热电合金的含量不小于10重量百分比。
应用本发明的热电合金及其制作方法,其通过进行渗碳制程,使所加入的渗碳剂分解产生活性碳原子,而可促使活性碳原子渗入熔融的氧化材料组成物中,进而提升所制得热电合金的热电性质。
附图说明
为了对本发明的实施例及其优点有更完整的理解,现请参照以下的说明并配合相应的附图。必须强调的是,各种特征并非依比例描绘且仅是为了图解目的。相关附图内容说明如下:
图1是绘示依照本发明的一实施例的热电合金的制作方法的流程图;
图2A是绘示依照本发明的实施例1与比较例1的热电合金的热电优值对温度的折线图;
图2B是绘示依照本发明的实施例2与比较例2的热电合金的热电优值对温度的折线图。
具体实施方式
以下仔细讨论本发明实施例的制造和使用。然而,可以理解的是,实施例提供许多可应用的发明概念,其可实施于各式各样的特定内容中。所讨论的特定实施例仅供说明,并非用以限定本发明的范围。
一般而言,热电合金中的杂质元素的含量越少时,热电合金的电阻值越低,故其热电优值越高,而具有较佳的热电性质。据此,为降低其他杂质元素对热电性质的影响,热电合金所选用的起始材料均是选用高纯度的材料,或是通过一系列的纯化制程来处理起始材料,以去除其中的杂质元素。举例而言,当热电合金的氧原子含量越高时,热电合金的电阻值越高,故其热电性质越差。据此,起始材料的纯度要求是严苛的。再者,为避免起始材料于储放时被氧化,起始材料均须妥善保存。然而,一般热电合金的热电优值仍未有显著的进步。
据此,为有效提升热电合金的热电优值,本发明通过先对热电合金的起始材料进行氧化,以增加起始材料的氧含量,并进一步进行渗碳制程,以通过还原氧化后的起始材料来提升碳渗入所制得的热电合金中的含量,进而降低其热传导系数且增加功率因子,因此提升本发明热电合金的热电性质。
请参照图1,其是绘示依照本发明的一实施例的热电合金的制作方法的流程图。方法100是先提供起始材料,并对起始材料进行氧化制程,以制得氧化材料组成物,如步骤110与步骤120所示。依据所欲制得的热电合金的化学组成,起始材料具有相应的组成与比例。在一些实施例中,起始材料为一混合物。在这些实施例中,此混合物可包含金属材料及/或非金属材料。在一些实施例中,起始材料可包含但不限于锗、碲、铋、锌、锑、硒、铜、铟、镓、银、钴、铁、铅、其他适当的热电材料,或上述材料的任意混合。在一些实施例中,为制得具有良好性质的热电合金,起始材料中的各材料的纯度较佳不小于4N。
基于步骤120所制得的氧化材料组成物为100原子百分比,氧化材料组成物的氧含量可为0.001原子百分比至10原子百分比。在一些实施例中,氧化材料组成物的氧含量较佳可为1原子百分比至6原子百分比,且更佳为2原子百分比至5原子百分比。
然后,将氧化材料组成物与渗碳剂加入石英管中,并进行封管制程,以制得封闭石英管,如步骤130所示。在一些实施例中,所加入的渗碳剂并没有特别的限制,其仅须可于后续的渗碳制程作为碳源即可。在一些实施例中,渗碳剂的主要组成为碳原子,且其较佳不包含其他杂质元素,以避免所制得热电合金的组成无法满足需求。在一些实施例中,渗碳剂可包含但不限于固体碳源、液体碳源、气体碳源、电浆碳源、其他适当型态的碳源,或上述材料的任意混合。举例而言,渗碳剂可包含但不限于碳粉、石墨粉、石墨烯、钻石、碳奈米管、无定型碳、富勒烯、其他适当的材料,或上述材料的任意混合。
在一些实施例中,渗碳剂可与氧化材料组成物同时加入石英管中。在其他实施例中,渗碳剂可于加入氧化材料组成物之前,预先形成于石英管中,或者加至石英管中。举例而言,石英管可先进行镀碳制程,以预先使渗碳剂形成于石英管内壁上,而形成内壁具有碳膜的石英管。然后,氧化材料组成物即可加入至具有碳膜的石英管中,并进行接续的封管制程。
当进行封管制程时,利用抽气泵浦抽去石英管中的空气,并利用氧气-瓦斯火焰枪烧熔石英管的管口,以封闭石英管。其中,封闭石英管中的真空度不大于0.03mbar。
进行封管制程后,对所获得的封闭石英管进行渗碳制程,即可制得本发明的热电合金,如步骤140与步骤150所示。当进行渗碳制程时,封闭石英管中的渗碳剂(或碳原子)可还原氧化材料组成物,且随着渗碳制程的进行,活性碳原子可渗入熔融的氧化材料组成物中,而可提升所制得热电合金的性质。在一些实施例中,基于所制得的热电合金为100重量百分比,热电合金的碳含量可为0.005重量百分比至0.05重量百分比。在一些实施例中,所制得的热电合金较佳不包含氧原子。若热电合金包含氧原子时,热电合金的电阻值将上升,而降低其热电优值。
为促使渗碳剂分解出活性碳原子,并使活性碳原子有效地渗入热电合金中,渗碳制程包含升温步骤,且升温步骤是由200℃升温至前述起始材料的熔点,以使碳原子渗入氧化材料组成物中,并熔融氧化材料组成物。其中,升温步骤是升温至所有氧化材料组成物均可熔融为佳。换言之,于升温至设定温度时,氧化材料组成物均被熔融。在一些实施例中,升温步骤较佳是由200℃升温至1100℃,且更佳为由200℃升温至950℃。在一些实施例中,当进行渗碳制程时,加热炉是先由室温加热至200℃,再将封闭石英管放置至200℃的加热炉中。在一些实施例中,于渗碳制程的升温阶段的期间,碳原子可先渗入氧化材料组成物中,以还原氧化材料组成物。接着,被还原的氧化材料组成物可熔融结合为液态的热电合金。在一些实施例中,于渗碳制程的升温阶段的期间,氧化材料组成物可先熔融为液体,且碳原子渗入还原这些液态的氧化材料组成物。接着,被还原的氧化材料组成物结合为热电合金。在一些实施例中,于渗碳制程的升温阶段的期间,氧化材料组成物可先熔融结合为液态的热电合金。然后,碳原子可渗入液态的热电合金,并还原其中的氧原子。
于渗碳制程中,若前述所制得氧化材料组成物的氧含量小于0.001原子百分比时,由于氧化材料组成物的氧化程度过低,故受热所分解的活性碳原子不易渗入热电合金中,而降低热电合金的碳含量,因此降低所制得热电合金的热电性质。若氧化材料组成物的氧含量大于10原子百分比时,部分的氧化材料将无法被还原,而使所制得的热电材料仍含有氧原子,进而提升热电材料的电阻值,因此降低其热电性质。
另外,于渗碳制程中,当封闭石英管的真空度为前述的范围时,封闭石英管的内部可为低氧环境。故,渗碳制程所产生的活性碳原子可更有效地还原氧化材料组成物,并渗入熔融的氧化材料组成物中,而不被环境中的氧原子所干扰,进而降低所制得热电合金的热传导系数且增加功率因子。因此,所制得的热电合金具有较佳的热电性质。
当高温的渗碳制程进行完毕后,渗碳制程的冷却速率可为2℃/小时至10℃/小时。当冷却速率为前述的范围时,熔融的被还原的氧化材料组成物可缓慢冷却,而具有较致密的结构与较佳的结晶性质,进而提升所制得热电合金的性质。在一些实施例中,渗碳制程的冷却速率较佳可为3℃/小时至8℃/小时,且更佳可为5℃/小时至7℃/小时。
于进行前述的渗碳制程后,此制作方法可选择性地对所获得的热电合金进行长晶制程,而可进一步提升所制得热电合金的结晶性质,因此提升长晶制程所制得热电合金块材的热电性质。
在一具体例中,依据所选用的起始材料的用量与组成,利用前述方法所制得的热电合金可为P型热电合金与N型热电合金。
在一些具体例中,所制得的热电合金可具有M1x1(B1y1C1z1)的组成。其中,M1代表掺杂的金属元素,且M1可代表Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Cu、Ag、Au、Zn、Mn、Fe、Co、Ni、La、Ce、Pr、Nd、Yb、其他适当的元素,或上述元素的任意混合;B1可代表Al、Ga、In、Sb、Bi、其他适当的元素,或上述元素的任意混合;C1可代表O、S、Se、Te、F、Cl、Br、I、其他适当的元素,或上述元素的任意混合;x1代表大于0且小于1的数值;y1代表大于1.5且小于2.5的数值;z1代表大于2.3且小于3.7的数值。此种热电合金可例如为以M1掺杂的Bi2Te3
在一些具体例中,所制得的热电合金可具有M2x2(B2y2C2z2)的组成。其中,M2代表掺杂的金属元素,且可代表Li、Na、K、Rb、Sr、Mg、Ca、Sr、Ba、Cu、Ag、Au、Zn、Al、Ga、In、As、Sb、Bi、Br、I、其他适当的元素,或上述元素的任意混合;B2可代表Si、Ge、Sn、Pb、其他适当的元素,或上述元素的任意混合;C2可代表N、P、As、Sb、Bi、Te、其他适当的元素,或上述元素的任意混合;x2代表大于0.02且小于0.2的数值;y2可代表大于0.7且小于1.3的数值;z2可代表大于0.7且小于1.3的数值。此种热电合金可例如为以M2掺杂的PbTe或GeTe。
在一些具体例中,所制得的热电合金可具有M3x3(B3y3C3z3)的组成。其中,M3代表掺杂的金属元素,且可代表Li、Na、K、Cs、Mg、Ca、Sr、Ba、Cu、Ag、Au、Zn、La、Ce、Mn、Fe、Co、Ni、其他适当的元素,或上述元素的任意混合;B3可代表Al、Ga、In、Zn、Cd、其他适当的元素,或上述元素的任意混合;C3可代表N、P、As、Sb、Bi、Se、其他适当的元素,或上述元素的任意混合;x3代表大于0且小于0.5的数值;y3代表大于2.7且小于4.4的数值;z3代表大于2.5且小于3.5的数值。此种热电合金可例如为以M3掺杂的ZnSb、Zn4Sb3、In4Se3或InSb。
在一些具体例中,所制得的热电合金可具有M4x4(B4y4C4z4)的组成。其中,M4代表掺杂的金属元素,且可代表Li、Cs、Rb、Ba、Ga、In、Tl、La、Ce、Pr、Nd、Yb、其他适当的元素,或上述元素的任意混合;B4可代表Fe、Co、Ni、Ru、Rh、Pd、其他适当的元素,或上述元素的任意混合;C4可代表As、Sb、其他适当的元素,或上述元素的任意混合;x4代表大于0且小于0.4的数值;y4代表大于0.7且小于1.3的数值;z4代表大于2.5且小于3.5的数值。此种热电合金可例如为以M4掺杂的FeCoSb3
在一些具体例中,所制得的热电合金可具有M5x5(A5p5B5y5C5z5)的组成。其中,M5代表掺杂的金属元素,且可代表Li、Na、K、Cs、Cl、Br、I、其他适当的元素,或上述元素的任意混合;A5可代表Cu、Ag、Au、其他适当的元素,或上述元素的任意混合;B5可代表Ga、In、Ge、Sn、As、Sb、Bi、其他适当的元素,或上述元素的任意混合;C5可代表S、Se、Te、其他适当的元素,或上述元素的任意混合;x5代表大于0且小于0.2的数值;p5代表大于0.7且小于1.3的数值;y5代表大于0.7且小于1.3的数值;z5代表大于1.7且小于2.3的数值。此种热电合金可例如为以M5掺杂的AgSbTe2或CuInSe2
在一些具体例中,本发明所制得的热电合金可与一般热电合金混合,而形成热电合金复合物,且此热电合金复合物即可具有良好的热电优值。其中,基于热电合金复合物为100重量百分比,本发明所制得的热电合金的含量是不小于10重量百分比,较佳为10重量百分比至80重量百分比,且更佳为50重量百分比至60重量百分比。
于进行前述的渗碳制程时,由于受热分解的活性碳原子可渗入熔融的氧化材料组成物中,而降低所制得热电合金的热传导系数,或增加其功率因子(power factor),因此所制得的热电合金具有较佳的热电性质。
以下利用实施例以说明本发明的应用,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。
制备热电合金
实施例1
首先,提供纯度为4N以上的铜金属(Cu)、铋金属(Bi)与碲金属(Te),并对这些金属进行氧化制程,以分别制得包含氧化铜、氧化铋与氧化碲的氧化材料组成物,其中氧化材料组成物的氧含量为4原子百分比。然后,进行镀碳制程,即可于石英管内壁形成碳膜。接着,将前述的氧化材料组成物放入内壁具有碳膜的石英管中,并利用抽气泵浦抽气,以降低石英管的真空度。
待石英管的真空度不大于0.03mbar时,对石英管进行封管制程,以形成封闭石英管。接着,以2℃/分钟至5℃/分钟的升温速率加热封闭石英管,直至封闭石英管的温度为950℃,以使碳膜可受热产生活性碳原子,而可进行渗碳制程。
待石英管内的材料均匀化后,冷却至室温,并将凝固样品放入长晶炉中,以4℃/小时的速度进行长晶,即可制得实施例1的热电合金。所得的热电合金以下述热电优值的评价方式进行评价,其评价结果容后再述。
实施例2
首先,提供纯度为4N以上的锑金属(Sb)、锗金属(Ge)与碲金属(Te),并对这些金属进行氧化制程,以分别制得包含氧化锑、氧化锗与氧化碲的氧化材料组成物,其中氧化材料组成物的氧含量为10原子百分比。然后,进行镀碳制程,即可于石英管内壁形成碳膜。接着,将前述的氧化材料组成物放入内壁具有碳膜的石英管中,并利用抽气泵浦抽气,以降低石英管的真空度。
待石英管的真空度不大于0.03mbar时,对石英管进行封管制程,以形成封闭石英管。接着,以2℃/分钟至5℃/分钟的升温速率加热封闭石英管,直至封闭石英管的温度为950℃,以使碳膜可受热产生活性碳原子,而可进行渗碳制程。
待石英管内的材料均匀化后,以5℃/小时至10℃/小时的冷却速率降温至室温,即可制得实施例2的热电合金。所得的热电合金以下述热电优值的评价方式进行评价,其评价结果容后再述。
比较例1
比较例1的热电合金是使用与实施例1的热电合金的起始材料相同的组成含量。然而,比较例1是直接将这些起始材料放入石英管中,并进行封管制程,以获得封闭石英管。
接着,对封闭石英管进行熔融制程。待石英管内的材料均匀化后,冷却至室温,并将凝固样品放入长晶炉中,以4℃/小时的速度进行长晶,即可制得比较例1的热电合金。所得的热电合金以下述热电优值的评价方式进行评价,其评价结果容后再述。
比较例2
比较例2的热电合金是使用与实施例2的热电合金的起始材料相同的组成含量。然而,比较例2是直接将这些起始材料放入石英管中,并进行封管制程,以获得封闭石英管。
接着,对封闭石英管进行熔融制程。待石英管内的材料均匀化后,以5℃/小时至10℃/小时的冷却速率降温至室温,即可制得比较例2的热电合金。所得的热电合金以下述热电优值的评价方式进行评价,其评价结果容后再述。
评价方式
热电优值
实施例1至2与比较例1至2所制得的热电合金分别是利用赛贝克系数与电导率变温量测系统(ULVAC-RIKO制造,且其型号为ZEM-3的量测系统)量测电阻率(ρ)与赛贝克(Seekbeck)系数(S)。于此量测系统中,利用两镍制电极来固定热电合金的试片,并设置两根热电耦,以量测试片的温差,其中温差值分别设定为7K、10K、13K与16K。然后,将量测腔体的压力降低至10-2torr,并通入6N的惰性气体。反复进行数次后,通入微量的高纯度氦气,以避免试片于高温产生氧化反应。接着,将试验电压设定为固定值,并依据试片电阻调整试验电流,即可通过电脑软体计算测得电阻率(ρ)与赛贝克系数(S),其中试验电流的最大值为130mA。
然后,利用闪光法热传导仪(Netzsch制作,且其型号为LFA 457)量测热电合金的热传导系数(κ)。于热传导仪中,以雷射光加热热电合金的试片的一侧,并利用红外线感测器(或热电耦)量测试片的另一侧的温度。因此,试片于特定时间内的温度变化可被测得。其中,热电合金的试片是直径为7毫米,且厚度为1.5毫米至2毫米的圆饼试片。然后,以下式(II)计算获得实施例1至2及比较例1至2的热电合金的热传导系数(κ):
κ=DCpd (II)
于式(II)中,D代表试片的温度变化,Cp为试片的比热(其中
Figure BDA0001907869620000101
R为常数8.314J/g-mol*K,且M为分子量),且d为试片密度。
依据前述所测得的电阻率(ρ)、赛贝克系数(S)与热传导系数(κ),实施例1至2与比较例1至2的热电合金于各温度下的热电优值可通过前述的式(I)计算获得。
请参照图2A与图2B,其中图2A是绘示依照本发明的实施例1与比较例1的热电合金的热电优值对温度的折线图,且图2B是绘示依照本发明的实施例2与比较例2的热电合金的热电优值对温度的折线图。
依据图2A所绘示的内容可知,于300K(约为26.85℃)时,实施例1所制得的热电合金的热电优值为1.7,且比较例1的热电合金的热电优值仅为1.2。其次,于各个量测温度下,实施例1所制得的热电合金均具有较高的热电优值。
另外,相较于商用的热电合金(n型Bi掺杂的TeSe热电材料,且其热电优值约为0.85至1.04),于300K时,实施例1的热电合金的热电优值约为其2倍。
依据图2B所绘示的内容可知,于723K(约为449.85℃)时,实施例2所制得的热电合金的热电优值为2.5,且比较例2的热电合金的热电优值约为1.0。相同地,于各个量测温度下,相较于比较例2所制得的热电合金,实施例2的热电合金均具有较高的热电优值。
故,依据实施例1至实施例2与比较例1至比较例2的评价结果可知,本案的制作方法通过氧化制程,使所使用的起始材料形成氧化态,而可于后续的渗碳制程被所产生的活性碳原子所还原,并使这些活性碳原子渗入熔融的氧化材料组成物中,进而降低所制得热电合金的热传导系数且增加其功率因子,因此可提升热电合金的热电性质。
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,在本发明所属技术领域中任何具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视所附的权利要求书所界定的范围为准。

Claims (10)

1.一种热电合金的制作方法,其特征在于,该制作方法包含:
提供一起始材料,其中该起始材料包含锗、碲、铋、锌、锑、硒、铜、铟、镓、银、钴、铁及/或铅;
对该起始材料进行氧化制程,以制得氧化材料组成物,其中基于该氧化材料组成物为100原子百分比,该氧化材料组成物的氧含量是0.001原子百分比至10原子百分比;
将该氧化材料组成物与一渗碳剂加入一石英管中,并进行一封管制程,以制得一封闭石英管;以及
对该封闭石英管进行一渗碳制程,以制得该热电合金。
2.根据权利要求1所述的热电合金的制作方法,其特征在于,该渗碳剂包含一固体碳源、一液体碳源、一气体碳源及/或一电浆碳源。
3.根据权利要求1所述的热电合金的制作方法,其特征在于,将该氧化材料组成物与该渗碳剂加入该石英管中的操作包含:
利用该渗碳剂进行一镀碳制程,以于该石英管的一内壁形成一碳膜;以及
加入该氧化材料组成物至具有该碳膜的该石英管中。
4.根据权利要求1所述的热电合金的制作方法,其特征在于,该封闭石英管的一真空度不大于0.03mbar。
5.根据权利要求1所述的热电合金的制作方法,其特征在于,该渗碳制程包含一升温步骤,且该升温步骤是由200℃升温至该起始材料的熔点。
6.根据权利要求5所述的热电合金的制作方法,其特征在于,该渗碳制程的一冷却速率为2℃/小时至10℃/小时。
7.根据权利要求1所述的热电合金的制作方法,其特征在于,于进行该渗碳制程后,该制作方法还包含:
对该热电合金进行一长晶制程。
8.一种热电合金,其特征在于,该热电合金是通过如权利要求1至7中的任一项所述的方法所制得,其中,基于该热电合金为100重量百分比,该热电合金的碳含量为0.005重量百分比至0.05重量百分比。
9.根据权利要求8所述的热电合金,其特征在于,该热电合金包含P型热电合金与N型热电合金。
10.一种热电合金复合物,其特征在于,该热电合金复合物包含:
如权利要求8或9所述的热电合金,其中基于该热电合金复合物的含量为100重量百分比,该热电合金的含量不小于10重量百分比。
CN201811540147.4A 2018-10-18 2018-12-17 热电合金及其制作方法与热电合金复合物 Active CN111081859B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107136813 2018-10-18
TW107136813A TWI683910B (zh) 2018-10-18 2018-10-18 熱電合金及其製作方法與熱電合金複合物

Publications (2)

Publication Number Publication Date
CN111081859A true CN111081859A (zh) 2020-04-28
CN111081859B CN111081859B (zh) 2022-03-22

Family

ID=65351841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811540147.4A Active CN111081859B (zh) 2018-10-18 2018-12-17 热电合金及其制作方法与热电合金复合物

Country Status (5)

Country Link
US (1) US10975456B2 (zh)
EP (1) EP3640361B1 (zh)
JP (1) JP2020065035A (zh)
CN (1) CN111081859B (zh)
TW (1) TWI683910B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956042A (zh) * 2021-09-18 2022-01-21 深圳大学 一种菱方相GeSe基热电材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469316B2 (ja) * 2019-08-30 2024-04-16 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュールおよび光センサ
WO2022054577A1 (ja) * 2020-09-10 2022-03-17 国立研究開発法人物質・材料研究機構 熱電材料、その製造方法、および、熱電発電素子
CN113421960B (zh) * 2021-07-09 2022-12-06 合肥工业大学 一种共掺杂Cu和Bi提高n型PbTe基热电材料性能的方法
CN115403016A (zh) * 2022-10-09 2022-11-29 合肥工业大学 一种高性能黄铜矿体系热电材料及其制备方法
CN115915895B (zh) * 2023-02-09 2023-10-03 北京航空航天大学 一种基于P型SnSe晶体的热电制冷材料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061505A (en) * 1971-10-08 1977-12-06 Minnesota Mining And Manufacturing Company Rare-earth-metal-based thermoelectric compositions
US6043424A (en) * 1996-07-03 2000-03-28 Yamaha Corporation Thermoelectric alloy achieving large figure of merit by reducing oxide and process of manufacturing thereof
CN101369625A (zh) * 2003-08-26 2009-02-18 京瓷株式会社 热电材料、热电元件及热电模块及它们的制造方法
JP2009529799A (ja) * 2006-03-16 2009-08-20 ビーエーエスエフ ソシエタス・ヨーロピア 熱電用途用のドープ処理テルル化鉛
CN102031416A (zh) * 2009-09-28 2011-04-27 中国科学院上海硅酸盐研究所 一种填充方钴矿基复合材料及其制备方法
CN102881814A (zh) * 2011-07-12 2013-01-16 中国科学院上海硅酸盐研究所 空穴补偿型方钴矿热电材料及其制备方法
JP2013541639A (ja) * 2010-08-20 2013-11-14 コーニング インコーポレイテッド p型スクッテルダイト材料およびその製造方法
CN106997919A (zh) * 2017-03-06 2017-08-01 宁波工程学院 n‑型Cu4In9Se16基中高温热电半导体及其合成工艺
CN107010609A (zh) * 2017-03-10 2017-08-04 宁波工程学院 一种p‑型Cu4Ga6Te11基中温热电半导体及其合成工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340997B1 (ko) * 2000-09-08 2002-06-20 박호군 수율을 향상시킨 피형 열전재료의 제조방법.
JP2006222161A (ja) * 2005-02-08 2006-08-24 Mitsui Mining & Smelting Co Ltd 熱電変換材料およびその製造方法
US20100163091A1 (en) 2008-12-30 2010-07-01 Industrial Technology Research Institute Composite material of complex alloy and generation method thereof, thermoelectric device and thermoelectric module
WO2011022189A2 (en) 2009-08-17 2011-02-24 Laird Technologies, Inc. Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
TWI452142B (zh) 2011-11-22 2014-09-11 中原大學 Tin and antimony ternary compounds and their application and forming methods
EP2971196B1 (en) * 2013-03-15 2018-08-22 United Technologies Corporation Process for treating steel alloy gears
JP5976604B2 (ja) 2013-03-29 2016-08-23 富士フイルム株式会社 熱電変換材料、熱電変換素子、熱電発電用物品及びセンサー用電源
KR102109500B1 (ko) * 2013-07-18 2020-05-12 에스케이이노베이션 주식회사 산화물 나노입자가 분산된 칼코겐화합물 기반 상분리 복합 열전소재
JP6277553B2 (ja) * 2014-06-20 2018-02-14 パナソニックIpマネジメント株式会社 熱電変換素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061505A (en) * 1971-10-08 1977-12-06 Minnesota Mining And Manufacturing Company Rare-earth-metal-based thermoelectric compositions
US6043424A (en) * 1996-07-03 2000-03-28 Yamaha Corporation Thermoelectric alloy achieving large figure of merit by reducing oxide and process of manufacturing thereof
CN101369625A (zh) * 2003-08-26 2009-02-18 京瓷株式会社 热电材料、热电元件及热电模块及它们的制造方法
JP2009529799A (ja) * 2006-03-16 2009-08-20 ビーエーエスエフ ソシエタス・ヨーロピア 熱電用途用のドープ処理テルル化鉛
CN102031416A (zh) * 2009-09-28 2011-04-27 中国科学院上海硅酸盐研究所 一种填充方钴矿基复合材料及其制备方法
JP2013541639A (ja) * 2010-08-20 2013-11-14 コーニング インコーポレイテッド p型スクッテルダイト材料およびその製造方法
CN102881814A (zh) * 2011-07-12 2013-01-16 中国科学院上海硅酸盐研究所 空穴补偿型方钴矿热电材料及其制备方法
CN106997919A (zh) * 2017-03-06 2017-08-01 宁波工程学院 n‑型Cu4In9Se16基中高温热电半导体及其合成工艺
CN107010609A (zh) * 2017-03-10 2017-08-04 宁波工程学院 一种p‑型Cu4Ga6Te11基中温热电半导体及其合成工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAE-SHIK CHOI等: "Thermoelectric properties of n-type (Pb1-xGex)Te fabricated by hot pressing method", 《IEEE,16TH INTERNATIONAL CONFERENCE ON THERMOELECTRICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956042A (zh) * 2021-09-18 2022-01-21 深圳大学 一种菱方相GeSe基热电材料及其制备方法
CN113956042B (zh) * 2021-09-18 2023-02-03 深圳大学 一种菱方相GeSe基热电材料及其制备方法

Also Published As

Publication number Publication date
EP3640361A1 (en) 2020-04-22
TWI683910B (zh) 2020-02-01
EP3640361B1 (en) 2023-03-01
CN111081859B (zh) 2022-03-22
US20200123637A1 (en) 2020-04-23
JP2020065035A (ja) 2020-04-23
TW202016326A (zh) 2020-05-01
US10975456B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
CN111081859B (zh) 热电合金及其制作方法与热电合金复合物
JP6219386B2 (ja) 熱電装置のための四面銅鉱構造に基づく熱電材料
Tyagi et al. Enhanced thermoelectric performance of spark plasma sintered copper-deficient nanostructured copper selenide
Kuropatwa et al. Thermoelectric properties of stoichiometric compounds in the (SnTe) x (Bi2Te3) y system
JP2009253301A (ja) ジカルコゲナイド熱電材料
JP5680090B2 (ja) Gasb充填スクッテルダイト複合材料、およびその製造方法
US9847469B2 (en) Natural-superlattice-structured thermoelectric material
JP4035572B2 (ja) 熱電変換材料、その製造方法及び熱電変換素子
JP6054606B2 (ja) 熱電半導体
JPWO2016185852A1 (ja) 熱電変換材料
Li et al. Thermoelectric properties of p-type (Bi2Te3) x (Sb2Te3) 1− x prepared by spark plasma sintering
JPWO2017170914A1 (ja) 化合物、熱電変換材料及び化合物の製造方法
US10115879B2 (en) Thermoelectric conversion material and method of production thereof
KR20110078316A (ko) 외생삽입을 통한 AgSbTe₂나노돗이 형성된 Te계 열전재료의 제조방법
KR102198207B1 (ko) 침입형 도핑재 첨가에 의한 복합결정구조가 형성된 Te계 열전소재
KR101959448B1 (ko) 열전재료, 상기 열전재료를 이용한 열전소자 및 그 제조방법
CN109103323A (zh) 一种通过填充Ga、Te替换Sb提高基方钴矿材料热电性能的方法
JP5784888B2 (ja) BiTe系熱電材料の製造方法
JP3562296B2 (ja) P型熱電変換材料およびその製造方法
JP2009111357A (ja) 熱電材料及びその製造方法
KR102612880B1 (ko) 셀레늄 증기 열처리를 이용한 P형 Ag-Bi-Se계 열전소재의 제조방법 및 이를 이용하여 제조된 P형 Ag-Bi-Se계 열전소재 및 열전소자
JP2007227755A (ja) 熱電材料
JP2023096415A (ja) 熱電変換材料、および、それを用いた熱電変換素子
WO2024060115A1 (zh) 一种含防护层的热电器件及制备方法
JP2000261046A (ja) 熱電変換材料とその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant