EP1778598A2 - Revetements resistants a l'abrasion et aux rayures, ayant un indice de refraction faible, appliques sur un substrat - Google Patents

Revetements resistants a l'abrasion et aux rayures, ayant un indice de refraction faible, appliques sur un substrat

Info

Publication number
EP1778598A2
EP1778598A2 EP05752553A EP05752553A EP1778598A2 EP 1778598 A2 EP1778598 A2 EP 1778598A2 EP 05752553 A EP05752553 A EP 05752553A EP 05752553 A EP05752553 A EP 05752553A EP 1778598 A2 EP1778598 A2 EP 1778598A2
Authority
EP
European Patent Office
Prior art keywords
substrate
metal
coating
precursor
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05752553A
Other languages
German (de)
English (en)
Inventor
Heike Arndt
Mohammad Jilavi
Martin Mennig
Peter William Oliveira
Helmut Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEIBNIZ-INSTITUT fur NEUE MATERIALIEN GEMEINNUETZ
Original Assignee
Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH filed Critical Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Publication of EP1778598A2 publication Critical patent/EP1778598A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/285Fluorides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Definitions

  • the invention relates to a substrate with an abrasion and scratch-resistant coating with a low refractive index, comprising magnesium fluoride and at least one metal or semimetal oxide, a process for its production and its use and the coating composition used for the process and its production.
  • magnesium fluoride MgF 2
  • MgF 2 magnesium fluoride
  • These materials are used both as components in multilayer systems and as single layers.
  • Magnesium fluoride is used in particular as the ⁇ / 4 anti-reflective single layer.
  • thin MgF 2 layers are produced using complex and expensive PVD and CVD processes or sputtering.
  • the disadvantage of this method is that the coating of large substrates becomes very tedious and expensive and curved substrates cannot be coated homogeneously. In addition, good abrasion resistance cannot be achieved.
  • the transmission of the coated glasses is only 94.05% (550 nm) compared to 91.61% (550 nm) for the uncoated glass.
  • the inadequate antireflection effect of these layers is a disadvantage.
  • JP-A-2026824 produces magnesium fluoride brine.
  • aqueous magnesium salt solutions are mixed with aqueous fluoride solutions and heated.
  • by-product salts have to be removed by means of ultrafiltration.
  • thin layers with a refractive index of n 1.16 (193 nm) on optical substrates lead to a transmission loss of less than 0.5%.
  • the layers are produced by applying an MgF 2 sol.
  • the MgF 2 sol is obtained by reacting magnesium acetate with hydrofluoric acid in methanol and then autoclaved.
  • magnesium is dissolved in an anhydrous solvent and converted to the fluoroalkoxide with fluorinated alcohols. After filtering the solution, the Mg alkoxides are hydrolysed.
  • this process has the advantage that non-toxic, harmless starting materials are assumed, starting materials such as anhydrous solvents and fluorinated alcohols are expensive.
  • this patent application does not contain any information about the optical or mechanical properties of layers which can be obtained by immersion application, for example on glass of the brine described above.
  • Magnesium fluoride layers are produced there by the thermal disproportionation of fluorine-containing magnesium compounds such as magnesium trifluoroacetate, magnesium t ⁇ ' fluoroacetylacetonate or magnesium hexafluoroacetylacetonate.
  • fluorine-containing magnesium compounds such as magnesium trifluoroacetate, magnesium t ⁇ ' fluoroacetylacetonate or magnesium hexafluoroacetylacetonate.
  • the compounds mentioned are dissolved in organic solvents such as butyl acetate or ethylene glycol monoethyl ether, applied to substrates (glass, quartz glass) by spinning, spraying or dipping and cured at at least 300 ° C. for at least 1 min.
  • the layers obtained in this way have a refractive index of 1.36 to 1.38 and are therefore in the range of the bulk material. Glass substrates coated in this way nevertheless show a residual reflection of 0.5%.
  • Magnesium fluoride layers are produced in a similar manner according to S. Fujihara et al., Journal of Sol-Gel-Science and Technology 19 (2000) 311-314.
  • One route includes the conversion of magnesium acetate with trifluoroacetic acid (TFA) and water in 2-propanol.
  • TFA trifluoroacetic acid
  • n 1.2
  • magnesium ethanolate (Mg (OEt) 2 ) is reacted with trifluoroacetic acid (TFA) in 2-propanol to magnesium trifluoroacetate
  • TFA trifluoroacetic acid
  • the brine produced in this way was applied by spinning onto quartz glass and cured at temperatures from 300 ° C. to 600 ° C. for 10 minutes.
  • the substrates coated in this way have a relatively low transmission of a maximum of approximately 96.6%. Information on the refractive index of these layers is missing.
  • sols of metal or semi-metal oxides for layers made of metal or semi-metal oxides such as ZrO 2 , Al 2 O 3, TiO 2 , Ta 2 O 5 or SiO 2 layers, give coatings with good optical quality can, but their refractive index is significantly higher (1.46 to 2.3) than that of MgF 2 layers.
  • the object of the invention was to provide a wet-chemical synthesis route for low-refractive optical layers using non-toxic or only slightly toxic starting materials, which are characterized by good optical quality and in particular a low refractive index.
  • these layers should have an abrasion resistance that goes beyond the state of the art.
  • the object was achieved by a coating composition comprising magnesium fluoride or a precursor thereof and at least one metal or semimetal oxide or a precursor thereof.
  • the coating composition according to the invention can easily be applied wet-chemically to a substrate and hardened or compacted by heat treatment.
  • the invention thus also provides a substrate with an abrasion and scratch resistant coating with a low refractive index, comprising magnesium fluoride and at least one metal or semimetal oxide.
  • the coating composition comprises magnesium fluoride or a precursor thereof and at least one metal or semimetal oxide or a precursor thereof.
  • the at least one metal or semimetal oxide or a precursor thereof is present in the coating composition as a sol, i.e. the coating composition is preferably a coating sol.
  • the magnesium fluoride or a precursor thereof can be in the form of a sol or as a solution.
  • the coating composition is preferably prepared by mixing a sol or a solution of magnesium fluoride or a precursor thereof and a sol of at least one metal or semimetal oxide or a precursor thereof.
  • the sol or solution of magnesium fluoride or a precursor thereof can be prepared in any manner known in the art, some of which have been listed above.
  • the sol or solution is preferably obtained from the reaction of a magnesium compound, preferably a hydrolyzable magnesium compound, with a fluorinated organic compound, the reaction usually being carried out in an organic solvent.
  • Hydrolyzable here also means the hydration ability of the Mg compound.
  • a preliminary stage here means, in particular, compounds of magnesium which can be converted into MgF 2 , in particular under the conditions for producing the substrate according to the invention, such as in the heat treatment.
  • magnesium compounds or complexes of fluorinated organic compounds can be converted into magnesium fluoride by a thermal disproportionation reaction. If necessary, disproportionation reactions or the conversion into MgF 2 take place already at room temperature, so that MgF 2 can already be contained in the sol or the solution.
  • the mixture of magnesium compound and fluorinated compound can also be heated, for example in order to promote the conversion into MgF 2 in the sol or the solution.
  • All compounds which can be reacted with a fluorinated organic compound, in particular hydrolyzable magnesium compounds, are suitable as the magnesium compound.
  • examples are magnesium alkoxides.
  • the alkoxy group of the magnesium alkoxide preferably has 1 to 12 carbon atoms, with magnesium methoxide, magnesium ethoxide, magnesium propoxide and magnesium butoxide being preferred.
  • the most preferred compound is magnesium ethanolate (Mg (OEt) 2 ).
  • the alkoxide can be linear or branched, for example n-propanolate or isopropanolate.
  • Any suitable solvent may be used as the solvent, e.g. one of those listed below for the manufacture of the metal or semimetal oxides.
  • Alcohols examples are ethanol, n-propanol, 2-propanol or butanol.
  • a preferred production route for the sol or the solution with magnesium fluoride or a precursor thereof can be described as follows.
  • a hydrolyzable magnesium compound preferably magnesium alcoholate, particularly preferably magnesium ethylate
  • an organic solvent preferably an alcohol, particularly preferably 2-propanol
  • ketones and carboxylic acid, in particular trifluoroacetic acid, containing CF 3 groups are preferably used. Any undissolved constituents that may be present are then filtered off.
  • All oxides of metals or semimetals can be used as metal or semimetal oxides.
  • Preferred metals or semimetals M for the metal or semimetal oxides are, for example, B, Al, Ga, In, Si, Ge, Sn, Pb, Y, Ti, Zr, V, Nb, Ta, Mo, W, Fe, Cu, Ag , Zn, Cd, Ce and La or mixed oxides thereof.
  • a type of oxide or a mixture of oxides can be used.
  • oxides which can optionally be hydrated are ZnO, CdO, SiO 2 , GeO 2 , TiO 2 , ZrO 2 , CeO 2 , SnO 2 , Al 2 O 3 (boehmite, AIO (OH), also as aluminum hydroxide), B 2 O 3l ln 2 O 3 , La 2 O 3 , Fe 2 O 3 , Fe 3 O, Cu 2 O, Ta 2 O 5 , Nb 2 O 5 , V 2 O 5 , M0O3 or WO 3 .
  • silicates, zirconates, aluminates, stannates of metals or semimetals, and mixed oxides such as indium tin oxide (ITO), antimony tin oxide (ATO), fluorine-doped tin oxide (FTO), luminous pigments with Y or Eu- containing compounds, spinels, ferrites or mixed oxides with a perovskite structure such as BaTi ⁇ 3 and PbTiO 3 can be used.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • FTO fluorine-doped tin oxide
  • luminous pigments with Y or Eu- containing compounds such as spinels, ferrites or mixed oxides with a perovskite structure such as BaTi ⁇ 3 and PbTiO 3
  • a perovskite structure such as BaTi ⁇ 3 and PbTiO 3
  • semimetal or metal oxides which are optionally hydrated (oxide hydrate), of Si, Ge, Al, B, Zn, Cd, Ti, Zr, Ce, Sn, In, La, Fe, Cu, Ta, Nb, V, Mo or W.
  • SiO 2 , Al 2 O 3 , Ta 2 Os, ZrO 2 and TiO 2 are particularly preferred.
  • the sol of at least one semimetal or metal oxide can be produced by dispersing produced particles, in particular nanoscale particles, in a solvent or in situ.
  • the particles can usually be made in various ways, e.g. through flame pyrolysis, plasma processes, colloid techniques, sol-gel processes, controlled germination and growth processes, MOCVD processes and emulsion processes. These methods are described in detail in the literature.
  • the sol of at least one semimetal or metal oxide is preferably produced by a sol-gel process.
  • hydrolyzable compounds are usually hydrolyzed with water, if appropriate with acidic or basic catalysis, and, if appropriate, at least partially condensed.
  • the Hydrolysis and / or condensation reactions lead to the formation of compounds or condensates with hydroxyl, oxo groups and / or oxo bridges, which serve as precursors.
  • the sol containing the oxides or precursors can be obtained by suitably setting the parameters, for example degree of condensation, solvent, temperature, water concentration, duration or pH.
  • the precursors of the oxides mean in particular the condensation products mentioned.
  • sol-gel process Further details of the sol-gel process are available, for example, from CJ Brinker, GW Scherer: "Sol-Gel Science - The Physics and Chemistry of Sol-Gel-Processi ⁇ g", Academic Press, Boston, San Diego, New York, Sydney (1990) described.
  • the hydrolysis and condensation can be carried out in a solvent, but they can also be carried out without a solvent, with the hydrolysis being able to form solvents or other liquid constituents.
  • Suitable solvents are both water and organic solvents or mixtures. These are the usual solvents used in the field of coating.
  • suitable organic solvents are alcohols, preferably lower aliphatic alcohols (Ci-Cs alcohols), such as methanol, ethanol, 1-propanol, isopropanol and 1-butanol, ketones, preferably lower dialkyl ketones, such as acetone and methyl isobutyl ketone, ethers, preferably lower Dialkyl ethers, such as diethyl ether, or diol monoethers, amides, such as dimethylformamide, tetrahydrofuran, dioxane, sulfoxides, sulfones or butyl glycol and mixtures thereof. Alcohols are preferably used. High-boiling solvents can also be used. In the sol-gel process, the solvent can optionally be an alcohol formed from the alcoholate compounds during the hydrolysis.
  • hydrolyzable metal or semimetal compounds for example the metals and semimetals M listed above, are suitable as hydrolyzable compounds.
  • One or more hydrolyzable compounds can be used.
  • the hydrolyzable metal or semimetal compound is preferably a compound of the general formula MX n (1), in which M is the metal or semimetal defined above, X is a hydrolyzable group which can be identical or different, two groups X being by a bidentate hydrolyzable group or an oxo group can be replaced or three groups X can be replaced by a tridentate hydrolyzable group, and n corresponds to the valence of the element when X has a charge of 1 and is often 3 or 4.
  • the hydrolyzable compound can also have non-hydrolyzable groups which partially replace the hydrolyzable groups.
  • hydrolyzable groups X which can be identical or different, are hydrogen, halogen (F, Cl, Br or I, in particular Cl or Br), alkoxy (for example C 1-6 alkoxy, for example methoxy, ethoxy, n-propoxy, i-propoxy and n-, i-, sec.- or tert-butoxy), aryloxy (preferably C ⁇ -io-aryloxy, such as phenoxy), alkaryloxy, e.g. benzoyloxy, acyloxy (e.g.
  • C ⁇ -6 - Acyloxy preferably -C -4 -acyloxy, such as acetoxy or propionyloxy
  • amino and alkylcarbonyl eg C 2-7 alkylcarbonyl such as acetyl
  • complexing agents such as ß-dicarbonyls (eg acetyl acetonato).
  • the groups mentioned can optionally contain substituents, such as halogen or alkoxy.
  • Preferred hydrolyzable radicals X are halogen, alkoxy groups and acyloxy groups, with alcoholates being particularly preferred.
  • the compounds can also be stabilized with additional complexing compounds.
  • titanium compounds of the formula 1X 4 are TiCl 4 , Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (pentoxy) 4 , Ti (hexoxy), Ti (2-ethylhexoxy), Ti (n-OC 3 H 7 ) or Ti (i-OC 3 H 7 ) 4 .
  • ⁇ -diketone and (meth) acrylic residues are examples of usable hydrolyzable compounds of elements M.
  • usable hydrolyzable compounds of elements M are AI (OCH 3 ) 3 , AI (OC 2 H 5 ) 3 , AI (OnC 3 H 7 ) 3 , AI (OiC 3 H 7 ) 3 , AI (OnC 4 H 9 ) 3 , AI (O-sec.-C 4 H 9 ) 3 , AICI 3 , AICI (OH) 2 , AI (OC 2 H 4 OC 4 H 9 ) 3 , ZrCI 4 , Zr (OC 2 H 5 ) 4 , Zr (OnC 3 H 7 ) 4 , Zr (0-iC 3 H 7 ) 4 , Zr (OC Hg), ZrOCI, Zr (pentoxy) 4 , Zr (hexoxy) 4 , Zr (2-ethylhexoxy) 4 , and Zr compounds that have complexing residues, such as, for example,
  • silanes of the formula SiX 4 are Si (OCH 3 ), Si (OC 2 H 5 ) 4, Si (0-n- or -iC 3 H 7 ) 4 , Si (OC 4 H 9 ) 4 , SiCl 4 , HSiCI 3 , Si (OOCCH 3 ) 4 .
  • Si (OCH 3 ) 4 is preferred tetraalkoxysilanes, with those having CC alkoxy being particularly preferred, in particular tetramethoxysilane and tetraethoxysilane (TEOS).
  • the semimetal or metal oxides can also be prepared in the presence of a complexing agent.
  • suitable complexing agents are e.g. unsaturated carboxylic acids and ß-dicarbonyl compounds, e.g. (Meth) acrylic acid, acetylacetone and ethyl acetoacetate.
  • an adhesion promoter can be used, which usually interacts or is bound or complexed with the particle of semimetal or metal oxide or the precursor thereof and thereby surface-modifies the particle and thereby promotes adhesion to the substrate.
  • the adhesion promoter preferably has another functional group.
  • Complexing agents can also be suitable as adhesion promoters.
  • an adhesion promoter examples include unsaturated carboxylic acids such as (meth) acrylic acid and a hydrolyzable silane with at least one non-hydrolyzable group, the silane being particularly suitable for sols of SiO 2 .
  • hydrolyzable silanes with at least one non-hydrolyzable group as adhesion promoters are compounds of the formula RSiX 3 (II), in which X is as defined in formula (I).
  • the non-hydrolyzable radical R can be non-hydrolyzable radicals R without a functional group or preferably with a functional group.
  • Examples of the functional groups of the radical R are the epoxy, hydroxy, ether, amino, monoalkylamino, dialkylamino, amide, carboxy, vinyl, acryloxy, Methacryloxy, cyano, halogen, aldehyde, alkylcarbonyl, and phosphoric acid groups. These functional groups are bonded to the silicon atom via alkylene, alkenylene or arylene bridge groups, which can be interrupted by oxygen or -NH groups.
  • the bridge groups mentioned are derived, for example, from the alkyl, alkenyl or aryl radicals mentioned above.
  • the radicals R having a functional group preferably contain 1 to 18, in particular 1 to 8, carbon atoms.
  • silanes of the formula (II) are hydrolyzable silanes with a glycidyloxy group, amino group or (meth) acryloxy groups, such as ⁇ -glycidyloxypropyltrimethoxysilane, ⁇ -glycidyloxypropyltriethoxysilane, 3- (meth) acryloxypropyltri (m) ethoxysilane, 3- (meth ) acryloxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2-aminoethyl-3-aminopropyltrimethoxysilane, trimethoxysilylpropyldiethylenetriamine.
  • a glycidyloxy group, amino group or (meth) acryloxy groups such as ⁇ -glycidyloxypropyltrimethoxysilane, ⁇ -glycidyloxypropyltriethoxysilane, 3- (meth
  • (Meth) acrylic stands for methacrylic or acrylic. Further specific examples of hydrolyzable silanes with non-hydrolyzable groups can e.g. can be found in EP-A-195493.
  • the surface modification of nanoscale particles is a known method, as described by the applicant e.g. in WO 93/21127 (DE 4212633) or WO 96/31572.
  • the semimetal or metal oxide sol is thus preferably synthesized from the corresponding hydrolyzable compound, preferably from the metal alkoxide, by hydrolysis, optionally in the presence of a catalyst and / or complexing agent.
  • ZrO 2 sols are preferably used, the z. B. from zirconium tetra- ⁇ -propylate can be prepared by reaction with hydrochloric acid in the presence of acetylacetone.
  • the sol from the at least one metal or semimetal oxide or its precursors are then mixed with the solution or the sol of magnesium fluoride or its precursors.
  • the ratio can vary widely. In general, however, the amounts are chosen such that the molar ratio of the amount of magnesium (Mg) in magnesium fluoride or its precursors to metal or semimetal (M) in the at least one metal or semimetal oxide or its precursors Mg / M in the coating composition in the range of 1: 0.01 to 1: 1.8, more preferably in the range from 1: 0.05 to 1: 0.5 or 1: 0.1 to 1: 0.5 and particularly preferably from 1: 0.1 to 1 : 0.2 lies.
  • the coating composition preferably comprises essentially no further components. However, it is conceivable to add other additives.
  • magnesium fluoride or its precursors and the at least one metal or semimetal oxide or its precursors preferably make up at least 80% by weight, more preferably at least 90% by weight and particularly preferably at least 95% by weight of the solids content of the coating composition.
  • the proportion of magnesium fluoride or its precursors is preferably at least 10% by weight, more preferably at least 20% by weight and particularly preferably at least 30% by weight, based on the solids content of the coating composition.
  • the coating composition is applied to a substrate.
  • substrates come into consideration.
  • a suitable substrate are substrates made of metal, semiconductor, glass, ceramic, glass ceramic, plastic, crystalline substrates or inorganic-organic composite materials.
  • substrates are used which are stable to a thermal treatment of the coating.
  • the substrates can be pretreated, e.g. for cleaning, through a corona treatment or with a pre-coating (e.g. a paint or a metallized surface).
  • the layers obtained are used in particular for optical coatings or optical or optoelectronic applications.
  • Preferred substrates are in particular those which are translucent at least in a certain region or in certain regions of the light spectrum from UV light to visible light to infrared light.
  • Transparent substrates with translucency in the range of visible light are particularly useful.
  • plastic substrates are polycarbonate, polymethyl methacrylate, polyacrylate, polyethylene terephthalate.
  • Transparent plastics, glasses e.g. silicate glasses, such as window glass or optical glasses, silica glass, quartz glass, borosilicate glass or soda lime silicate glass, chalcogenide and halide glasses etc.
  • crystalline substrates e.g. sapphire, silicon or lithium niobate
  • Suitable substrates for optical applications are e.g. Flat glasses, watch glasses, instrument covers, lenses and other optical elements, plastic films or transparent containers.
  • All common wet chemical methods for producing optical layers such as, for. B. dipping, spinning, spraying, roll coating techniques or combinations of these, as well as common printing processes, eg. B. screen printing, flexographic printing or pad printing can be used.
  • Other coating processes are knife coating, casting, brushing, flood coating, slot coating, meniscus coating or curtain coating.
  • the coating is subjected to a thermal aftertreatment, for example above 50 ° C.
  • the temperature used can vary within wide ranges, preferably a heat treatment in the temperature range from 100 ° C. and 600 ° C., more preferably from 300 to 500 ° C., particularly preferably from 400 to 450 ° C.
  • the optical properties (eg reflection, refractive index) and the mechanical properties can be controlled by the choice of temperature. They depend on the optical properties of the substrate (refractive index), on the intended optical purpose (anti-reflective coating, interference layer package), on the thermal resistance of the substrate and on the desired application (outdoor application, indoor application).
  • the heat treatment can, for example, harden or densify and / or convert the precursors into MgF 2 or the oxide.
  • the ratio of Mg to metal or semimetal in the finished view corresponds at least approximately to the ratio in the coating composition.
  • the ratio can vary widely.
  • the material Quantity ratio of magnesium (Mg) in magnesium fluoride to metal or semimetal (M) in the at least one metal or semimetal oxide in the coating in the range from 1: 0.01 to 1: 1.8, more preferably in the range from 1: 0.05 to 1: 0.5 or 1: 0.1 to 1: 0.5 and particularly preferably from 1: 0.1 to 1: 0.2.
  • the layers preferably consist essentially of MgF 2 and the at least one semimetal or metal oxide. If necessary, the above-mentioned complexing agents or adhesion promoters or other additives can be contained in the finished coating in relatively small amounts. Organic components used, such as complexing agents or from the adhesion promoter, can optionally be volatile during the heat treatment or burned out. It is usually mostly or essentially inorganic layers.
  • Magnesium fluoride and the at least one metal or semimetal oxide preferably make up at least 80% by weight, more preferably at least 90% by weight and particularly preferably at least 95% by weight of the coating.
  • the proportion of magnesium fluoride in the coating is preferably at least 10% by weight, more preferably at least 20% by weight and particularly preferably at least 30% by weight.
  • the layer thickness can vary within wide ranges, but is usually in the range from 20 nm to 1 ⁇ m, preferably 30 to 500 nm and particularly preferably 50 to 250 nm.
  • the coating according to the invention can be used as a single layer or as a layer from a multi-layer package.
  • the other layers can be the same, possibly with different ratios, or different, usually also optical layers. Accordingly, further layers can be applied to the substrate in a conventional manner before and / or after the coating.
  • the coating is used as an optical coating.
  • the coating is particularly suitable for anti-reflective coatings, in particular as a single layer, and for interference layer packages. These antireflective and interference boundary layers are preferably used on transparent substrates or substrates which are translucent in at least one region of the wavelength range from UV light to IR light.
  • MgF 2 sol The solution or sol with MgF 2 or its precursors is simply called MgF 2 sol, even if it is a solution of MgF 2 precursors.
  • MgF 2 sol At room temperature, 25.396 g (0.22 mol) of magnesium ethylate are added to 522.810 g of 2-propanol. 51.016 g (0.35 mol) of trifluoroacetic acid (TFA) are added to the stirred dispersion and the mixture is stirred at room temperature. A slight warming of the reaction mixture is observed at the start of the reaction. As the reaction progresses, the reaction mixture becomes increasingly clear. After 2 hours, any insoluble constituents present are separated off using a syringe filter (1.2 ⁇ m) and the reaction mixture is then left to stand at room temperature. A colorless precipitate forms overnight, which is separated off using a pleated filter. The filtrate is filtered again through a 1.2 ⁇ m syringe filter and a yellow solution results. The coating composition is stable in storage at room temperature for at least 4 weeks.
  • TFA trifluoroacetic acid
  • SiO 2 sol At room temperature, 13.29 g (87.3 mmol) of tetramethoxysilane (TMOS) are dissolved in 11.80 g of ethanol. A mixture of 13.40 g (744.4 mmol) of water, 0.30 g of hydrochloric acid (37%) and 11.80 g of ethanol is added with stirring. The mixture is stirred at room temperature for at least 2 h (brief heating of the reaction mixture after addition) and diluted with 130 g of 2-propanol.
  • TMOS tetramethoxysilane
  • Al 2 O 3 sol 40 g (0.16 mol) of aluminum tri-sec-butoxide are dissolved in 240 g of 2-propanol at room temperature with stirring. 8 g (0.08 mol) of acetyl acetone and 3.2 g (0.18 mol) of water are added with stirring. The mixture is stirred at room temperature for 1 h and filtered through a 0.45 ⁇ m syringe filter. The result is a yellow, clear sol.
  • Zr0 2 sol 24 g (51.3 mmol) of zirconium tetra-n-propylate (70% by weight in 1-propanol) are dissolved in 240 g of 2-propanol at room temperature. 2.553 g (25.5 mmol) of acetylacetone are added with stirring and the mixture is stirred for 10 min. Then 1.8 g of concentrated salsic acid are added and the mixture is stirred at room temperature for 1 h. Filtration through a 5 ⁇ m syringe filter results in a yellow, clear sol.
  • MgF 2 composite sols are produced.
  • Lime sodium silicate glass panes are cleaned by rubbing them with ethanol and coated with the respective sol using the immersion process (3.5 mm / s). The coating is cured at 450 ° C. for 30 minutes.
  • the scratch resistance is tested with a steel wool test (steel wool 0000, 250 g / 1 cm 2 , 10 cycles).
  • the damage (number of scratches generated) is assessed using light microscopy.
  • the reflectivity is determined spectroscopically.
  • a significant improvement in scratch resistance is achieved with a mixing ratio of MgF 2 sol / SiO 2 sol of 50/60.
  • the transmission is higher than in the case of the uncoated glass and also higher than in the case of a pure SiO 2 layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

La présente invention concerne un substrat présentant un revêtement résistant à l'abrasion et aux rayures, ayant un indice de réfraction faible, et comprenant du fluorure de magnésium et au moins un oxyde de métal ou de semi-métal. Le revêtement peut être obtenu par application d'une composition de revêtement comprenant du fluorure de magnésium ou un précurseur de celui-ci, et au moins un oxyde de métal ou de semi-métal ou un précurseur de celui-ci, sur un substrat, suivie d'un traitement thermique. Le revêtement est adapté à des couches optiques, en particulier sur des substrat transparent à la lumière. Des applications appropriées sont par exemple des couches anti-réfléchissantes et des paquets de couches d'interférence.
EP05752553A 2004-06-08 2005-06-07 Revetements resistants a l'abrasion et aux rayures, ayant un indice de refraction faible, appliques sur un substrat Withdrawn EP1778598A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004027842A DE102004027842A1 (de) 2004-06-08 2004-06-08 Abrieb- und kratzfeste Beschichtungen mit niedriger Brechzahl auf einem Substrat
PCT/EP2005/006113 WO2005120154A2 (fr) 2004-06-08 2005-06-07 Revetements resistants a l'abrasion et aux rayures, ayant un indice de refraction faible, appliques sur un substrat

Publications (1)

Publication Number Publication Date
EP1778598A2 true EP1778598A2 (fr) 2007-05-02

Family

ID=35457359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05752553A Withdrawn EP1778598A2 (fr) 2004-06-08 2005-06-07 Revetements resistants a l'abrasion et aux rayures, ayant un indice de refraction faible, appliques sur un substrat

Country Status (5)

Country Link
US (2) US20080261053A1 (fr)
EP (1) EP1778598A2 (fr)
JP (1) JP2008501557A (fr)
DE (1) DE102004027842A1 (fr)
WO (1) WO2005120154A2 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262828A (ja) * 1985-09-13 1987-03-19 Toray Ind Inc 被覆エポキシ系球状微粒子
JP4858170B2 (ja) 2004-09-16 2012-01-18 株式会社ニコン 非晶質酸化珪素バインダを有するMgF2光学薄膜の製造方法
FR2893320B1 (fr) 2005-11-17 2009-05-29 Univ Paris Curie Oxyfluorure poreux nanostructure
WO2007060816A1 (fr) * 2005-11-25 2007-05-31 Murata Manufacturing Co., Ltd. Céramique transparente, son processus de fabrication, pièce optique et appareil optique
JPWO2008001675A1 (ja) 2006-06-27 2009-11-26 株式会社ニコン 光学多層薄膜、光学素子、及び光学多層薄膜の製造方法
DE102006040200B4 (de) * 2006-08-28 2008-09-04 Webasto Ag Verfahren zum Beschichten eines Kunststoffteils
FR2907112B1 (fr) 2006-10-16 2009-10-02 Eurokera S N C Sa Plaque vitroceramique et son procede de fabrication
JP5029818B2 (ja) * 2007-04-24 2012-09-19 日産化学工業株式会社 コーティング組成物及び光学部材
DE102007025590A1 (de) 2007-05-31 2008-12-04 Ferro Gmbh Einbrennbare siebdruckfähige Antireflexbeschichtung für Glas
US8636845B2 (en) 2008-06-25 2014-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films
US20100180939A1 (en) * 2009-01-22 2010-07-22 Sharma Pramod K Heat treatable magnesium fluoride inclusive coatings, coated articles including heat treatable magnesium fluoride inclusive coatings, and methods of making the same
EP2325675A2 (fr) * 2009-07-30 2011-05-25 Canon Kabushiki Kaisha Procédé de production de film optique, film optique et composant optique
DE102009056933A1 (de) * 2009-12-04 2011-06-09 Giesecke & Devrient Gmbh Sicherheitselement mit Farbfilter, Wertdokument mit so einem solchen Sicherheitselement sowie Herstellungsverfahren eines solchen Sicherheitselementes
JP5683146B2 (ja) 2010-06-24 2015-03-11 キヤノン株式会社 光学膜の製造方法および光学素子の製造方法
JP5641851B2 (ja) 2010-09-30 2014-12-17 キヤノン株式会社 光学膜製造用塗布液、その製造方法および光学膜の製造方法
JP2012230968A (ja) * 2011-04-25 2012-11-22 Hitachi Chem Co Ltd 封止材シート及び太陽電池モジュール
JP6097754B2 (ja) 2011-09-27 2017-03-15 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ニッケル含有膜を堆積させる方法、及びニッケルケイ化物膜を堆積させるald方法
JP2016522775A (ja) 2013-03-28 2016-08-04 セラムテック−イーテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec−Etec GmbH 機能性被覆を有するセラミック
DE102013010105A1 (de) 2013-06-18 2014-12-18 Ferro Gmbh Verfahren zur Herstellung einer wässrigen Zusammensetzung umfassend ein Kondensat auf Basis von Silicium-Verbindungen zur Herstellung von Antireflexionsbeschichtungen
AR100953A1 (es) 2014-02-19 2016-11-16 Tenaris Connections Bv Empalme roscado para una tubería de pozo de petróleo
US10295707B2 (en) 2014-02-27 2019-05-21 Corning Incorporated Durability coating for oxide films for metal fluoride optics
EP3146368A1 (fr) * 2014-05-23 2017-03-29 Corning Incorporated Articles antiréfléchissants à faible contraste présentant une visibilité réduite des rayures et des empreintes digitales
CN104118995B (zh) * 2014-08-07 2016-06-22 威海金太阳光热发电设备有限公司 一种适用于集热管的自清洁减反射膜制备方法
DE102015200948A1 (de) 2015-01-21 2016-07-21 Automotive Lighting Reutlingen Gmbh Verfahren zum Beschichten eines Kunststoffteils mit einem Lack, Lackieranlage zur Ausführung des Verfahrens und Abdeckscheibe einer Kraftfahrzeugbeleuchtungseinrichtung, die nach dem Verfahren beschichtet worden ist
CN104927416B (zh) * 2015-06-09 2017-08-29 中国南玻集团股份有限公司 硅镁铝溶胶和掺杂核壳二氧化硅微球镀膜液及制备应用
CN105198235B (zh) * 2015-10-28 2018-06-26 浙江鼎昇新材料科技股份有限公司 一种憎水疏油自洁玻璃的制备方法
JP6768346B2 (ja) * 2016-05-12 2020-10-14 キヤノン株式会社 光学膜
JP6961775B2 (ja) * 2016-05-12 2021-11-05 キヤノン株式会社 光学膜
JP6818433B2 (ja) * 2016-05-12 2021-01-20 キヤノン株式会社 トリフルオロ酢酸マグネシウムゾル溶液
JP2018049074A (ja) * 2016-09-20 2018-03-29 キヤノンファインテックニスカ株式会社 光学膜、該光学膜を備えた基材、及び該基材を有する光学デバイス
WO2018198935A1 (fr) * 2017-04-27 2018-11-01 日本板硝子株式会社 Article en verre à revêtement faiblement réfléchissant
CN108648883B (zh) * 2018-05-15 2020-08-25 华东师范大学 一种双层减反结构与石墨烯复合的透明导电薄膜制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146093A1 (fr) * 1998-12-09 2001-10-17 Nippon Kayaku Kabushiki Kaisha Materiau de revetement dur et film obtenu au moyen de celui-ci
US20040006249A1 (en) * 2002-07-08 2004-01-08 Showa Denko K.K., Nikon Corporation Fluorination treatment apparatus, process for producing fluorination treated substance, and fluorination treated substance

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2869227A (en) * 1955-07-01 1959-01-20 Armour Res Found Process of coating and hot working of metals
US3356523A (en) * 1964-02-10 1967-12-05 Mc Donnell Douglas Corp Polystyrene film containing an antireflection coating
US3775161A (en) * 1971-12-23 1973-11-27 Gen Electric Electric lamp envelope having clear protective coating and method of making
JPS58118602A (ja) * 1982-01-08 1983-07-14 Asahi Optical Co Ltd プラスチツク製光学素材
JPS58208711A (ja) * 1982-05-31 1983-12-05 Shigeo Kubo 多層膜反射鏡
NL8301652A (nl) * 1983-05-10 1984-12-03 Philips Nv Werkwijze voor het aanbrengen van magnesiumfluoridelagen en antireflectieve lagen verkregen met deze werkwijze.
JPH0642003B2 (ja) * 1983-09-20 1994-06-01 オリンパス光学工業株式会社 光学部品の反射防止膜とその形成方法
DE3688093T2 (de) * 1985-03-22 1993-10-21 Toray Industries Durchsichtiger Gegenstand und Verfahren zu seiner Herstellung.
EP0416119A4 (en) * 1989-02-23 1992-08-12 Asahi Glass Company Ltd. Formation of thin magnesium fluoride film and low-reflection film
US5135808A (en) * 1990-09-27 1992-08-04 Diamonex, Incorporated Abrasion wear resistant coated substrate product
DE4212633A1 (de) * 1992-04-15 1993-10-21 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung oberflächenmodifizierter nanoskaliger keramischer Pulver
JP3343377B2 (ja) * 1992-11-30 2002-11-11 ダイセル化学工業株式会社 酸化物薄膜の作製方法
JPH0769620A (ja) * 1993-08-31 1995-03-14 Nissan Chem Ind Ltd フッ化ナトリウムマグネシウムゾル、微粉末及びその製造法
US5688608A (en) * 1994-02-10 1997-11-18 Industrial Technology Research Institute High refractive-index IR transparent window with hard, durable and antireflective coating
FR2727103B1 (fr) * 1994-11-23 1996-12-27 Kodak Pathe Procede de preparation des halogenures metalliques par voie sol-gel
ATE279490T1 (de) * 1995-03-20 2004-10-15 Toto Ltd Verwendung einer photokatalytisch superhydrophil gemachten oberfläche mit beschlaghindernder wirkung
DE19512427A1 (de) * 1995-04-03 1996-10-10 Inst Neue Mat Gemein Gmbh Kompositklebstoff für optische und optoelektronische Anwendungen
JPH0959042A (ja) * 1995-06-14 1997-03-04 Toto Ltd 防曇性コーティングを備えた透明基材
US5948481A (en) * 1996-11-12 1999-09-07 Yazaki Corporation Process for making a optical transparency having a diffuse antireflection coating
JP3729687B2 (ja) * 1999-08-04 2005-12-21 株式会社巴川製紙所 反射防止材料
JP2001141901A (ja) * 1999-11-12 2001-05-25 Seiko Epson Corp 反射防止膜付き光学部品
AU2001282547A1 (en) * 2000-08-30 2002-03-13 Nikon Corporation Method of forming optical thin film and optical element provided with optical thin film
US6747330B2 (en) * 2000-09-01 2004-06-08 Koninklijke Philips Electronics N.V. Current mirror circuit with interconnected control electrodies coupled to a bias voltage source
TWI249164B (en) * 2001-11-22 2006-02-11 Tdk Corp Optical recording medium
US6703343B2 (en) * 2001-12-18 2004-03-09 Caterpillar Inc Method of preparing doped oxide catalysts for lean NOx exhaust
JP4000448B2 (ja) * 2002-02-19 2007-10-31 Jsr株式会社 摺動部材用コーティング組成物および摺動部材
DE10208280A1 (de) * 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Keramische Membran auf Basis eines Polymer-oder Naturfasern ausweisenden Substrates, Verfahren zu deren Herstellung und Verwendung
DE10208208B4 (de) * 2002-02-26 2012-03-08 Eaton Industries Gmbh Bausatz aus mehreren Bausatzelementen und einer Welle
KR20050058356A (ko) * 2002-08-21 2005-06-16 제이에스알 가부시끼가이샤 코팅용 조성물
JP2004099879A (ja) * 2002-08-21 2004-04-02 Jsr Corp コーティング用組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146093A1 (fr) * 1998-12-09 2001-10-17 Nippon Kayaku Kabushiki Kaisha Materiau de revetement dur et film obtenu au moyen de celui-ci
US20040006249A1 (en) * 2002-07-08 2004-01-08 Showa Denko K.K., Nikon Corporation Fluorination treatment apparatus, process for producing fluorination treated substance, and fluorination treated substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2005120154A2 *

Also Published As

Publication number Publication date
WO2005120154A3 (fr) 2006-03-16
US20140017399A1 (en) 2014-01-16
DE102004027842A1 (de) 2006-01-12
JP2008501557A (ja) 2008-01-24
US20080261053A1 (en) 2008-10-23
WO2005120154A2 (fr) 2005-12-22

Similar Documents

Publication Publication Date Title
EP1778598A2 (fr) Revetements resistants a l'abrasion et aux rayures, ayant un indice de refraction faible, appliques sur un substrat
DE69611618T3 (de) Substrat mit einer photokatalytischen beschichtung auf basis titandioxyd
JP4550753B2 (ja) 表面処理された酸化チタンゾルの製造法
EP1681370B1 (fr) Procédé de fabrication de particules TiO2 photocatalytiquement actives et de substrats avec couche TiO2 photocatalytique
TWI411580B (zh) 氧化鋯一氧化錫之複合物溶膠、塗佈組成物及光學構件
KR101437200B1 (ko) 표면 피복된 이산화티탄졸, 그 제조법 및 그것을 포함한 코팅 조성물
EP1971446B1 (fr) Structures céramiques d'habillage mural présentant des propriétés de blindage électromagnétique
DE102008056792B4 (de) Verfahren zum Aufbringen einer porösen selbstreinigenden Entspiegelungsschicht sowie Glas mit dieser Entspiegelungsschicht und Verwendung einer selbstreinigenden porösen Entspiegelungsschicht
DE69816273T2 (de) Anorganisches polymermaterial auf der basis von tantaloxyd , insbesondere mit erhöhtem brechungsindex , mechanisch verschleissfest , sein verfahren zur herstellung
CN110809561B (zh) 含铁金红石型氧化钛微粒分散液的制造方法、含铁金红石型氧化钛微粒及其用途
DE4217432A1 (de) Verfahren zur Herstellung von Glas mit verbesserter Langzeitstandfähigkeit bei erhöhten Temperaturen
WO2006114321A1 (fr) Couche antireflet et procede de fabrication associe
DE102012109407A1 (de) Wetterstabile Perlglanzpigmente, Verfahren zu ihrer Herstellung und Verwendung
CN111684033A (zh) 包含含有含氮环的硅烷化合物的涂布组合物
WO2011107277A1 (fr) Procédé de revêtement multiple, ainsi que substrat de verre à revêtement multicouches
WO2021200135A1 (fr) Méthode de production de microparticules d'oxyde de titane revêtues de zircone, microparticules d'oxyde de titane revêtues de zircone et utilisation associée
EP1230187B1 (fr) Composition de revetement a base de condensats inorganiques modifies organiquement
DE19828231C2 (de) Verfahren zur Abscheidung poröser optischer Schichten
WO2011116980A1 (fr) Procédé pour appliquer une couche antireflet sur un module récepteur solaire et module récepteur solaire comportant une couche antireflet
Gálvez-Barboza et al. Effect of Ce doping on the structure and optical properties of HfO 2 films by the Pechini-type sol–gel method
DE102008010663A1 (de) Alkalimetall und/oder Erdalkalimetall dotierte Titanoxid-Nano-Partikel sowie Verfahren zu deren Herstellung
DE10235803A1 (de) Substrate mit photokatalytischer TIO2-Schicht
DE10223531A1 (de) Substrat mit einer Titanoxid/Ceroxid-Schutzschicht
CN111699157A (zh) 被包含含氮环的硅烷化合物被覆而成的无机氧化物粒子及涂布组合物
WO2023274610A1 (fr) Vitre ayant un revêtement sol-gel contenant des nano-inclusions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061117

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEIBNIZ-INSTITUT FUER NEUE MATERIALIEN GEMEINNUETZ

17Q First examination report despatched

Effective date: 20111229

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141210