EP1753619B1 - Verfahren zur herstellung von flexodruckformen mittels laser-direktgravur - Google Patents

Verfahren zur herstellung von flexodruckformen mittels laser-direktgravur Download PDF

Info

Publication number
EP1753619B1
EP1753619B1 EP05749386A EP05749386A EP1753619B1 EP 1753619 B1 EP1753619 B1 EP 1753619B1 EP 05749386 A EP05749386 A EP 05749386A EP 05749386 A EP05749386 A EP 05749386A EP 1753619 B1 EP1753619 B1 EP 1753619B1
Authority
EP
European Patent Office
Prior art keywords
carbon atoms
process according
cleaning agent
radicals
esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05749386A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1753619A1 (de
Inventor
Uwe Stebani
Jens Schadebrodt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flint Group Germany GmbH
Original Assignee
Flint Group Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flint Group Germany GmbH filed Critical Flint Group Germany GmbH
Priority to PL05749386T priority Critical patent/PL1753619T3/pl
Publication of EP1753619A1 publication Critical patent/EP1753619A1/de
Application granted granted Critical
Publication of EP1753619B1 publication Critical patent/EP1753619B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/06Preparing for use and conserving printing surfaces by use of detergents

Definitions

  • the invention relates to a process for the production of flexographic printing plates by direct laser engraving by engraving a printing relief in the relief-forming layer by means of a laser and subsequent cleaning of the printing plate formed with a liquid cleaning agent.
  • a printing relief is engraved with a laser directly into the relief-forming layer of a flexographic printing element.
  • a subsequent development step as in the conventional process for the production of flexographic printing forms is no longer necessary.
  • the production of flexographic printing plates by direct laser engraving is known in principle, for example US 5,259,311 . WO 93/23252 . WO 02/49842 . WO 02/76739 or WO 02/83418 ,
  • the relief-forming layer absorbs laser radiation to such an extent that it is removed or at least detached at those points where it is exposed to a laser beam of sufficient intensity.
  • the material of the relief-forming layer is evaporated on the one hand, on the other hand split into more or less large fragments.
  • sticky, organic aerosols with a particle diameter of usually ⁇ 1 ⁇ m and, in addition, volatile organic substances and possibly dusts are formed.
  • High-performance IR lasers such as CO 2 lasers or Nd-YAG lasers, are common for engraving.
  • Suitable apparatus for engraving flexographic printing plates are, for example, in EP 1 162 315 and EP 1 162 316 disclosed.
  • Typical relief layer thicknesses of flexographic printing plates are usually between 0.4 and 7 mm.
  • the non-printing depressions in the relief amount to at least 0.03 mm in the grid area, significantly more in the case of other negative elements and can assume values of up to 3 mm for thick plates.
  • An engraving depth of only 0.7 mm and an average of 70% erosion approx. 500 g of material per m 2 of the printing form are removed.
  • Laser direct engraving removes large amounts of material with the laser.
  • Direct laser engraving equipment has suitable suction devices for receiving the decomposition products.
  • the suction devices should also prevent the in As the engraving is formed, very sticky aerosols deposit again on the printing surface of the plate. Redeposition of aerosols on the surface is highly undesirable because it reduces the quality of the printing relief and, accordingly, can significantly degrade the printed image when printed. This effect naturally makes the more noticeable the finer the respective relief elements are.
  • aqueous detergents of EP-A 463 016 disclosed "water-in-oil" emulsions or those of WO 99/62723 disclosed microemulsion cleaning agents of water, alkyl esters of saturated and unsaturated fatty acids and surfactants use.
  • these do not always have the desired cleaning effect.
  • some components of substantially aqueous detergents such as long chain fatty acid alkyl esters, tend to swell flexographic printing forms.
  • the object of the invention was to provide a process for the production of flexographic printing plates by means of direct laser engraving, in which a liquid cleaning agent for re-cleaning the engraved layer is used, which achieves a very good cleaning effect, but wherein the relief layer still does not swell excessively.
  • the starting material for carrying out the process according to the invention is a laser-engravable flexographic printing element which, in a manner known in principle, comprises at least one dimensionally stable support and an elastomeric, relief-forming layer having a thickness of at least 0.2 mm, preferably at least 0.3 mm and more preferably at least 0.5 mm. As a rule, the thickness is 0.5 to 3.0 mm.
  • the dimensionally stable carrier may be in a manner known in the art to polymer or metal foils, or else to cylindrical sleeves made of metals or polymeric materials. The latter are used for the production of round printing plates, also called sleeves.
  • the relief-forming layer can be obtained in a manner known in principle by crosslinking a crosslinkable layer comprising at least one elastomeric binder and components suitable for crosslinking, for example ethylenically unsaturated monomers and suitable initiators.
  • the crosslinking can be carried out, for example, photochemically.
  • optional absorbers for laser radiation such as Carbon black, and / or plasticizers and other auxiliaries such as dyes, dispersing aids or the like can be used.
  • Laser-engravable flexographic printing elements are known in principle. Laser-engravable flexographic printing elements may comprise only one relief-forming layer or several identical, similar or different structures. Details of the construction and the composition of laser engravable flexographic printing elements are, for example, in WO 93/23252 . WO 93/23253 . US 5,259,311 . WO 02/49842 . WO 02/76739 or WO 02/83418 discloses, to which reference is expressly made at this point.
  • the inventive method is not limited to the use of very specific flexographic printing elements as the starting material.
  • the advantages of the process are particularly evident in such laser-engravable flexographic printing elements, whose relief-forming layer essentially comprises hydrophobic binders in a manner known in principle.
  • elastomeric binders examples include natural rubber, polybutadiene, polyisoprene, polychloroprene, styrene-butadiene rubber, nitrile-butadiene rubber, acrylate-butadiene rubber, butyl rubber, styrene-isoprene rubber, polynorbornene rubber, polyoctenamer, ethylene-propylene Diene rubber (EPDM) or styrene-butadiene or styrene-isoprene type thermoplastic elastomeric block copolymers, such as SBS or SIS block copolymers, or star-shaped styrene-butadiene and / or styrene-isoprene block copolymers.
  • EPDM ethylene-propylene Diene rubber
  • styrene-butadiene type binders in combination with larger amounts of a suitable plasticizer, such as WO 03/106172 disclosed.
  • a printing relief is engraved into the laser-engravable layer in a manner known in principle by means of a laser.
  • a laser In particular, they can be IR lasers, for example CO 2 or Nd / YAG lasers. It may be apparatuses that work only with a laser beam or with multiple. It is preferably an apparatus with a so-called "rotating cylinder". Such apparatuses are known in principle. Their structure and functioning are, for example, in EP-A 1262 315 .
  • the depth of the elements to be engraved depends on the total thickness of the relief and the type of elements to be engraved and is determined by the person skilled in the art according to the desired properties of the printing form.
  • the depth of the engraved relief elements is at least 0.03 mm, preferably at least 0.05 mm - is called here the minimum depth between individual halftone dots.
  • Printing plates with too low relief depths are generally unsuitable for printing by means of flexographic printing technology because the negative elements are filled with printing ink.
  • Individual negative points should usually have greater depths; for those of 0.2 mm diameter, a depth of at least 0.07 to 0.08 mm is usually recommended.
  • For weggrav convinced surfaces is recommended a depth of more than 0.15 mm, preferably more than 0.3 mm and more preferably more than 0.4 mm. The latter is of course only possible with a correspondingly thick relief.
  • the degradation or decomposition products of the relief-forming layer should be extracted as well as possible during the engraving of the relief. This can be particularly advantageous in our still unpublished application DE 103 55 991.4 described apparatus are used for suction. Of course, however, other suction devices can be used.
  • the printing plate obtained, or its surface is subsequently cleaned in process step (2) using a liquid cleaning agent.
  • the cleaning agent comprises at least 50% by weight of one or more components (A), the amount being based on the sum of all components of the cleaning agent.
  • the components are one or more components selected from the group of components (A1) to (A6).
  • the component (A1) is lactones with 5, 6 or 7-membered rings, which may optionally also be further substituted, for example by OH groups. Preference is given to ⁇ -butyrolaton, ⁇ -valerolactone or ⁇ -caprolactone.
  • Component (A2) is hydroxymonocarboxylic acid ester of the general formula R 1 -COO-R 2 .
  • R 1 and R 2 hereby independently of one another represent a linear or branched alkyl, aralkyl, aryl or alkylaryl radical having 1 to 12 C atoms, where at least one of the radicals R 1 and / or R 2 is at least one additional OH group having. Furthermore, the total number of all carbon atoms of hydroxymonocarboxylic esters is from 5 to 20.
  • linear or branched alkyl radicals include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, t-butyl, 1-pentyl, 1-hexyl, 2-ethyl 1-hexyl, 1-octyl, 1-decyl or 1-dodecyl groups. They are preferably linear alkyl groups.
  • Aralkyl groups are, in a known manner, aryl-substituted alkyl groups. Examples include a benzyl or phenylethyl group. An aryl radical may be, for example, a phenyl group.
  • Alkylaryl radicals are, in a known manner, alkyl-substituted aryl radicals. For example, it may be a 4-alkylphenyl radical, in particular a 4-methylphenyl radical.
  • R 1 and R 2 are preferably, independently of one another, linear or branched alkyl radicals having 1 to 6 C atoms.
  • the number of OH groups is selected by the skilled person depending on the desired properties of the cleaning agent.
  • the components (A2) are preferably hydroxymonocarboxylic acid esters whose radicals R 1 and R 2 are alkyl groups, more preferably linear alkyl groups.
  • the OH groups can be arranged both vicinally and terminally on the alkyl group.
  • the OH groups are preferably arranged terminally or in the ⁇ -position.
  • Suitable hydroxymonocarboxylic esters include in particular esters of lactic acid H 3 CCH (OH) -COOR 2 ' , where R 2' is a straight-chain or branched alkyl group having 2 to 6 C atoms and esters of the general formula R 1 COOCH 2 CH 2 OH.
  • Other examples include glycolic acid esters HO-CH 2 COOR 2 ' or 3-hydroxybutyric acid ester CH 3 -CH (OH) CH 2 COOR 2' in particular the respective ethyl esters.
  • Component (A3) is alkoxymonocarboxylic acid esters of the general formula R 3 -COO-R 4 .
  • R 3 and R 4 are each independently a linear or branched alkyl, aralkyl or alkylaryl radical having 1 to 12 C atoms, wherein at least one of the radicals of one or more, non-adjacent, non-terminal aliphatic carbon atoms are replaced by oxygen atoms.
  • the radicals have one or more ether groups.
  • the total number of all carbon atoms of the alkoxymonocarboxylic acid esters is 5 to 20.
  • non-terminal refers to the particular moiety alone, i. that neither a terminal aliphatic carbon atom nor the aliphatic C atom attached directly to the ester group should be substituted by O.
  • the number of ether groups is chosen by the skilled person depending on the desired properties of the cleaning agent. Usually, however, the components (A3) have not more than 4 ether groups, preferably 1 to 3 and particularly preferably 1 or 2. If several ether groups are present in one group, these are preferably separated from one another by at least 2 C atoms.
  • the ether groups containing radicals may also have a terminal OH group.
  • only one of the two radicals R 3 or R 4 has ether groups, more preferably R 4 .
  • alkoxymonocarboxylic acid esters examples include 2-ethoxyethyl acetate and 2-butoxyethyl acetate.
  • R 4 is a polyoxyalkylene group which is obtainable in a manner known in principle by alkoxylation of a carboxylic acid R 3 COOH with ethylene oxide and / or propylene oxide and / or butylene oxide.
  • the terminal OH group can also be etherified, for example to a methoxy, ethoxy, propoxy or butoxy.
  • suitable components (A3) having polyoxyalkylene groups include compounds of the general formula R 3 COO- (CH 2 CH 2 O) k H, R 3 COO- (CH 2 CH 2 O) k CH 3 , R 3 COO- (CH 2 CH (CH) 3 O) k H or - (CH 2 CH (CH) 3 O) k CH 3 , where n is 2 or 3 and R 3 is a straight-chain or branched alkyl radical having 2 to 6 C atoms.
  • Component (A4) is ketomonocarboxylic acid ester of the general formula R 5 -COO-R 6 .
  • keto groups are chosen by the skilled person depending on the desired properties of the cleaning agent. Usually, however, the components (A4) have not more than 4 keto groups, preferably 1 or 2 and more preferably only one keto group.
  • the component (A4) to keto esters of the general formula R 5 ' is -CO-CH 2 -COOR 6, wherein R 5' is a linear or branched alkyl, aralkyl or alkylaryl radical having from 1 to 10 C atoms, preferably a linear or branched alkyl radical having 1 to 6 carbon atoms. More preferably, R 5 ' is a methyl group.
  • R 6 the preferred compound is a linear or branched alkyl radical having 1 to 6 C atoms, for example an ethyl group.
  • esters of the general formula R 7 OOC-R 8 -COOR 7 ' and / or R 7 COO-R 8 -OOCR 7' are esters of the general formula R 7 OOC-R 8 -COOR 7 ' and / or R 7 COO-R 8 -OOCR 7' .
  • R 7 and R 7 ' are hereby independently of one another linear or branched alkyl radicals having 1 to 4 C atoms and R 8 is a divalent hydrocarbon radical having 2 to 12 C atoms.
  • the esters have 6 to 20 carbon atoms. In other words, they are diesters derived either from dicarboxylic acids or from dialcohols. The total number of all carbon atoms of the dicarboxylic acid esters is 6 to 20.
  • R 7 and R 7 ' are hereby independently of one another linear or branched alkyl radicals having 1 to 4 carbon atoms. Examples include methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl or t-butyl. Preference is given to methyl, ethyl and 1-propyl radicals, and methyl radicals are particularly preferred.
  • R 8 is a divalent hydrocarbon radical with 2 to 12 C atoms. It may be a linear, branched or cyclic, aliphatic hydrocarbon radical as well as aromatic radicals. It is preferably a divalent, linear alkylene radical having 2 to 12 C-atoms, preferably 2 to 6 C-atoms.
  • diesters examples include dimethyl butanedicarboxylate, dimethyl hexanedicarboxylate, dimethyl octanedioate, diethyl decadicarboxylate, propylene glycol diacetate or ethylene glycol diacetate.
  • the person skilled in the art will optionally make an appropriate choice as to the nature and number of such substituents depending on the desired properties of the detergent.
  • Component (A6) is ether alcohols of the general formula R 9 O - (- R 10 -O) n H.
  • n is a natural number of 2 to 5, preferably 2 or 3.
  • R 9 is H or one straight-chain or branched alkyl radical having 1 to 6 C atoms, such as, for example, methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, t-butyl, 1-pentyl or 1- hexyl radicals.
  • R 10 represents straight-chain or branched alkylene radicals having 2 to 4 C atoms, in particular 1,2-ethylene, 1,3-propylene, 1,2-propylene-1,2-butylene or 1,4-butylene radicals.
  • the radicals R 10 in an ether alcohol may be the same or different. Of course, mixtures of different ether alcohols of the formula mentioned can also be used.
  • R 10 is preferably a propylene radical. In a particularly preferred embodiment, it is dipropylene glycol monomethyl ether. Dipropylene glycol monomethyl ether and isomer mixtures thereof are commercially available.
  • the person skilled in the art makes a suitable choice among the components A1 to A6 depending on the desired properties of the cleaning agent, with the proviso that the components (A1) to (A6) each have a boiling point in the range from 150 ° C. to 300 ° C.
  • the preferred boiling range is 160 to 280 ° C, and more preferably 170 to 250 ° C.
  • the components (A1) to (A6) have in common that they have a certain degree of hydrophilicity due to the functional groups in the molecules, without being particularly hydrophilic. Due to these properties, the compounds do not swell hydrophobic relief layers to any significant extent. Remains of the cleaning agent can still be washed off with water from the surface after the post-cleaning process. Nevertheless, they are sufficiently hydrophobic to be able to wash off the decomposition products of the layer from the surface of the relief printing form.
  • the components (A1) to (A6) furthermore have no long, hydrophobic alkyl radicals with more than 12 C atoms. Such long alkyl radicals usually have a high plasticizing effect on relief layers and lead to undesirable loss of hardness. This is avoided by the inventive use of the components (A1) to (A6).
  • the desired degree of hydrophilicity can be set by those skilled in the art by selecting the type and amount of components (A1) to (A6).
  • the cleaning agent should not be substantially miscible with water, but on the other hand it should be so hydrophilic that it can be washed off with water from the surface of the flexographic printing plate.
  • the cleaning agent comprises at least 50% by weight of one or more components (A) selected from the group of (A1) to (A6), based on the amount of all components of the cleaning agent.
  • the cleaning agent preferably comprises at least 70% by weight and particularly preferably at least 80% by weight of the components A1 to A6.
  • the cleaning agent consists of a mixture of at least two of the components A1 to A6.
  • a mixture of 50 to 99% by weight of one or more components selected from the group consisting of A1, A2, A3, A4 and A5 and 1 to 50% by weight of at least one compound A6 has proved suitable.
  • the amount of components A1 to A5 is preferably from 55 to 95% by weight and very particularly preferably from 60 to 90% by weight.
  • the amount of component A6 is preferably from 5 to 45% by weight and very particularly preferably from 10 to 40% by weight.
  • Particularly preferred is a mixture of one or more compounds of components A5 and A6.
  • the cleaning agent may optionally also comprise one or more auxiliaries (B).
  • the auxiliaries may be, for example, surfactants, emulsifiers, antistatic agents, defoamers, dyes or compatibilizers.
  • the cleaning agent preferably comprises at least one surfactant.
  • suitable surfactants include fatty alcohol polyglycol ethers, salts of fatty alcohol polyglycol ether sulfonic acids, fatty alcohol polyglycol ether carboxylic acids, and ethoxy group-containing esters of mono- and dicarboxylic acids.
  • auxiliaries (B) is determined by the person skilled in the art according to the desired properties of the cleaning agent.
  • the amount should, however, as a rule not exceed 15% by weight, preferably 10% and more preferably 5% by weight, relative to the amount of all components of the cleaning agent.
  • the cleaning agent according to the invention may also comprise further solvents (C) other than components A1 to A6. These can be used in particular for fine adjustment of the properties of the cleaning agent.
  • additional solvents should have a boiling range of 150 to 300 ° C, preferably 160 ° C to 280 ° C.
  • Examples include high-boiling alcohols or glycols such as cyclohexanol, methylcyclohexanol, trimethylcyclohexanol, benzyl alcohol, C7-C12 alcohols, terpene alcohols, propylene glycol, dipropylene glycol or propylheptanol, high-boiling hydrocarbons such as dearomatized petroleum fractions with a boiling range between 150 ° C and 300 ° C, hydrogenated aromatic Hydrocarbons, diisopropylbenzene or terpenes and N-methylpyrrolidone.
  • high-boiling alcohols or glycols such as cyclohexanol, methylcyclohexanol, trimethylcyclohexanol, benzyl alcohol, C7-C12 alcohols, terpene alcohols, propylene glycol, dipropylene glycol or propylheptanol
  • high-boiling hydrocarbons such
  • the type and amount of additional solvent (C) is determined by the skilled person depending on the desired properties of the cleaning agent.
  • the amount should, however, as a rule not exceed 5% by weight, preferably 15% and particularly preferably 10% by weight, relative to the amount of all components of the cleaning agent.
  • the preparation of the cleaning agent can be done by simply mixing the components.
  • the production can be carried out for example by an end user such as printers or stereotypes even on site.
  • the production can also be made by a third party.
  • the post-cleaning of the printing plate in process step (2) can be done, for example, by simply dipping or spraying the relief printing plate with the detergent.
  • brush washers which are customary for the development of photopolymerizable flexographic printing elements, can be used for the post-cleaning step.
  • flexographic printing plates can be a continuous system which has rotating round brushes, movable flat brushes or plushes.
  • washing devices which have at least one receiving device for the round printing form and at least one rotating brush whose distance from the round printing form is preferably adjustable.
  • the devices may also have additional components for drying, such as a rotating brush, an air knife, a nip roll or the like.
  • the recording for the round printing form can also consist of brushes, in the gap, the round printing form is placed and is driven by different Rotationsgeschwindgkeiten / -idesen.
  • the edition of the round printing form can be done by its own weight or an additional roller.
  • the cleaning process can also be assisted by spraying the cleaning agent onto the surface of the engraved flexographic printing plate under elevated pressure using so-called spray washers.
  • the contact time with the cleaning agent should not exceed 15 minutes, preferably 10 minutes, and is more preferably 2 to 8 minutes.
  • the drying process usually lasts no more than 30 minutes, preferably not more than 20 minutes and particularly preferably not more than 10 minutes.
  • the removal can be done, for example, by simply blotting with an absorbent material such as fabric or paper, or by simply drying in air at room temperature or elevated temperatures to about 65 ° C with or without air exchange.
  • the remainders of the cleaning agent can also be removed by rapid rotation in the case of a round printing form, with the remainder of the detergent being thrown off.
  • brushes, air squeegee and / or squeeze rollers can be used.
  • the method according to the invention may of course also comprise further method steps.
  • the method may comprise further post-purification steps.
  • residues of dust or the like can be removed immediately after the engraving by blowing off with compressed air or brushing.
  • step (2) It is particularly advantageous to use water or an aqueous cleaning agent in a further post-purification step.
  • the step may be before step (2) and preferably after step (2).
  • step (2) subsequent post-washing step the residues of the liquid cleaning agent used according to the invention are particularly advantageously removed.
  • Aqueous cleaning agents for a further post-purification step (3) consist essentially of water and optionally small amounts of alcohols and / or auxiliaries, such as, for example, surfactants, emulsifiers, dispersing aids or bases. Preferably, only water is used. The residues of water or of the aqueous cleaning agent can then be removed, for example, by simply blowing off the surface with compressed air.
  • the cleaning agent of carboxylic acid esters and ether alcohols used according to the invention is only slightly swelling active, so that no lengthy drying of the printing plate is required. On the one hand, it has a very good cleaning action with respect to organic impurities on the surface, but it can still be washed off with water from the surface of the printing plate. Additional layer thickness tolerances as used conventional detergents due to swelling and drying, can be effectively avoided. This leads to a more uniform color transfer and thus to a higher-quality print result.
  • the inventive method for laser direct engraving using detergents immediately after the post-cleaning a ready-to-use flexographic printing plate is obtained.
  • the processing time is thus significantly shorter compared to the use of conventional detergents.
  • the production of the flexographic printing elements used for the process according to the invention is carried out by the usual method.
  • the photopolymerizable composition was extruded, discharged through a slot die and calendered between a support layer and a cover element. This procedure is in EP-B 084 851 described in detail.
  • the cover element consisted of a silicone-coated 125 ⁇ m thick PET cover film.
  • the extrusion equipment used was a twin-screw extruder (ZSK 53, Werner & Pfleiderer) at a throughput of 30 kg / h.
  • the calendering was carried out between two calender rolls heated to 90 ° C., wherein the backing film was passed over the upper calender roll and the cover element over the lower calender roll.
  • the resulting sandwich composite was transported via a suction belt, cooled and assembled.
  • the photochemical reinforcement of the flexographic printing elements takes place by irradiation of the unreinforced flexographic printing element by means of long-wave UV light (UVA) through the cover element.
  • UVA long-wave UV light
  • the applied UV dose is approximately 12 J / cm 2 for a flexographic printing element of 1.14 mm thickness.
  • UVC short-wave UV light
  • the reinforced flexographic printing elements were laser-engraved with the aid of a 3-beam CO 2 laser (BDE 4131, Stork Prints Austria) with a test motif at a resolution of 1270 dpi.
  • the parameters used were: steelngeschwindgkeit: 10 m / s Relief Depth: 550 ⁇ m Flank angle: 59 ° First Step: 60 ⁇ m
  • the test motif contains flexographic relevant test elements such as fine positive and negative lines (line width 60 ⁇ m to 1 mm) and dots (diameter 60 ⁇ m to 1 mm), raster (1-99% at 100 and 133 Ipi), fine fonts Grid (line width 60 ⁇ m) and a checkerboard pattern with an edge length of 500 ⁇ m.
  • flexographic relevant test elements such as fine positive and negative lines (line width 60 ⁇ m to 1 mm) and dots (diameter 60 ⁇ m to 1 mm), raster (1-99% at 100 and 133 Ipi), fine fonts Grid (line width 60 ⁇ m) and a checkerboard pattern with an edge length of 500 ⁇ m.
  • the laser-engraved flexographic printing elements were cleaned with the aid of a commercial brush flat washer (W 32 ⁇ 40, BASF Drucksysteme GmbH) for the specified cleaning time with the respective cleaning agent.
  • Nisso ® PB B-1000 Oligomeric polybutadiene oil (Nippon soda) Ondina ® 934: Medicinal white oil (Shell Chemicals)
  • Laromer® ® HDDA 1,6-hexanediol diacrylate (BASF)
  • Irgacure ® 651 Benzil dimethyl ketal (Ciba Specialty Chemicals) Kerobit ® TBK: 2,6-di-tert-butyl-p-cresol (Raschig) Buyrolacton: Butyrolactone (BASF) Starsol ® : commercial mixture of dimethyl succinate, dimethyl glutarate and dimethyl adipate (dibasic ester mixture)
  • an unreinforced flexographic printing element was used in analogy to WO 03/106172 manufactured in a total thickness of 1.29 mm including cover element.
  • the relief layer had the following composition: components feedstocks wt% binder KRATON ® D-1102 56.96 softener NISSO ® PB B-1000 15.00 Ondina ® G 34 15.00 monomers Laromer ® HDDA 10.00 photoinitiator Irgacurc ® 651 2.00 additives Kerobit ® TBK 1.00 dye 0.04
  • the unprimed flexographic printing element produced in this way was photochemically reinforced as described above and laser-engraved with the test motif.
  • An inventive cleaning agent consisting of 80 parts by weight and 20 parts by weight Butyrolcaton Solvenon ® DPM was prepared by intensive mixing. An unpurified laser-engraved flexographic printing element analogous to Example 1 was cleaned for 1 minute in a scrubber with this cleaning mixture and blown dry with the aid of compressed air.
  • the layer thickness increase was only 3 ⁇ m.
  • the cleaned printing form can be used for flexographic printing without causing an unclean printed image.
  • Example 2 An unpurified laser-engraved flexographic printing element analogous to Example 1 was cleaned for 5 minutes in a friction washer with the cleaning mixture from Example 2 according to the invention and blown dry with the aid of compressed air.
  • the layer thickness increase was only 4 ⁇ m.
  • the cleaned printing form can be used for flexographic printing without causing an unclean printed image.
  • An inventive cleaning agent consisting of 80 parts by weight Starsol ® and 20 parts by weight Solvenon DPM was prepared by intensive mixing.
  • An unpurified laser-engraved flexographic printing element analogous to Example 1 was cleaned for 5 minutes in a scrubber with this cleaning mixture, then rinsed for 2 minutes with water and blown dry with the aid of compressed air. The detergent was easily removed from the surface of the flexographic printing element by rinsing with water.
  • the layer thickness increase was only 17 ⁇ m.
  • the cleaned printing form can be used for flexographic printing without causing an unclean printed image.
  • a microemulsion cleaner according to WO 99/62723 Made from the following components: Rapeseed oil methyl ester, water, emulsifiers and auxiliaries
  • Rapeseed oil methyl ester Rapeseed oil methyl ester
  • water emulsifiers
  • auxiliaries An unpurified laser-engraved flexographic printing element analogous to Example 1 was cleaned with the microemulsion cleaner for 5 minutes in a reaming machine, then rinsed with water for 2 minutes and blown dry with the aid of compressed air.
  • the detergent was well by the rinsing with water of the Remove the surface of the flexographic printing element.
  • the layer thickness increase was 28 ⁇ m.
  • Example 2 For comparison, an unpurified laser-engraved flexographic printing element was cleaned analogously to Example 1 for 5 min in a scrubber with tap water and blown dry with the aid of compressed air.
  • a layer thickness increase could not be determined.
  • a conventional washout agent for flexographic printing plates (nylosolv A, BASF Drucksysteme GmbH) was used.
  • An unpurified laser-engraved flexographic printing element analogous to Example 1 was cleaned for 3 minutes in a scrubber with nylosolv A and blown dry with the aid of compressed air.
  • the layer thickness increase was 46 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Laser Beam Processing (AREA)
  • Laser Beam Printer (AREA)
EP05749386A 2004-05-19 2005-05-18 Verfahren zur herstellung von flexodruckformen mittels laser-direktgravur Not-in-force EP1753619B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05749386T PL1753619T3 (pl) 2004-05-19 2005-05-18 Sposób wytwarzania form fleksograficznych za pomocą bezpośredniego grawerowania laserem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004025364A DE102004025364A1 (de) 2004-05-19 2004-05-19 Verfahren zur Herstellung von Flexodruckformen mittels Laser-Direktgravur
PCT/EP2005/005398 WO2005113240A1 (de) 2004-05-19 2005-05-18 Verfahren zur herstellung von flexodruckformen mittels laser-direktgravur

Publications (2)

Publication Number Publication Date
EP1753619A1 EP1753619A1 (de) 2007-02-21
EP1753619B1 true EP1753619B1 (de) 2008-07-23

Family

ID=34969827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05749386A Not-in-force EP1753619B1 (de) 2004-05-19 2005-05-18 Verfahren zur herstellung von flexodruckformen mittels laser-direktgravur

Country Status (15)

Country Link
US (1) US7749399B2 (pt)
EP (1) EP1753619B1 (pt)
JP (1) JP2007537897A (pt)
CN (1) CN1989010A (pt)
AT (1) ATE402009T1 (pt)
AU (1) AU2005245114A1 (pt)
BR (1) BRPI0511180A (pt)
CA (1) CA2566891A1 (pt)
DE (2) DE102004025364A1 (pt)
DK (1) DK1753619T3 (pt)
ES (1) ES2308502T3 (pt)
MX (1) MXPA06013261A (pt)
PL (1) PL1753619T3 (pt)
WO (1) WO2005113240A1 (pt)
ZA (1) ZA200609561B (pt)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720966B1 (ko) * 2006-03-31 2007-05-23 김성훈 반지의 내주면에 레이저 마킹하는 방법
JP5288699B2 (ja) * 2006-11-10 2013-09-11 旭化成イーマテリアルズ株式会社 レーザー彫刻印刷版表面の洗浄方法
ES2340605T3 (es) 2006-12-20 2010-06-07 Agfa Graphics N.V. Precursor de forma para impresion flexografica grabable por laser.
JP4936446B2 (ja) * 2007-01-10 2012-05-23 旭化成イーマテリアルズ株式会社 レーザー彫刻印刷版表面の洗浄方法
DE102007006378A1 (de) 2007-02-08 2008-08-14 Flint Group Germany Gmbh Fotopolymerisierbare zylindrische endlos-nahtlose Flexodruckelemente und daraus hergestellte harte Flexodruckformen
ATE468981T1 (de) 2007-11-30 2010-06-15 Agfa Graphics Nv Verfahren zur behandlung einer lithografiedruckplatte
ATE514561T1 (de) * 2008-03-31 2011-07-15 Agfa Graphics Nv Verfahren zur behandlung einer lithografischen druckplatte
DE102008024214A1 (de) 2008-05-19 2009-11-26 Flint Group Germany Gmbh Fotopolymerisierbare Flexodruckelemente für den Druck mit UV-Farben
JP2010234554A (ja) * 2009-03-30 2010-10-21 Fujifilm Corp 印刷版の作製方法
US8771925B2 (en) * 2009-08-25 2014-07-08 Eastman Kodak Company Flexographic processing solution and method of use
JP2011046090A (ja) * 2009-08-27 2011-03-10 Fujifilm Corp レリーフ印刷版製版用リンス液及びレリーフ印刷版の製版方法
DE102012006558B4 (de) 2012-04-02 2019-09-12 Hell Gravure Systems Gmbh & Co. Kg Verfahren zur Herstellung einer Flexodruckform
WO2014042272A1 (ja) 2012-09-14 2014-03-20 富士フイルム株式会社 円筒状印刷原版及びその製造方法、並びに、円筒状印刷版及びその製版方法
WO2018222395A1 (en) * 2017-05-29 2018-12-06 3M Innovative Properties Company Use of a cleaning composition for 3d-printed articles and related process
CN111448005B (zh) 2017-12-08 2022-07-05 3M创新有限公司 用于洗涤3d打印物体的系统和方法
CN111019746B (zh) * 2019-12-19 2022-04-19 东莞市同欣表面处理科技有限公司 一种应用于激光版直雕的保护剂及其制备方法
CN112620221B (zh) * 2020-12-21 2021-12-21 深圳嘉洛激光工艺有限公司 一种激光雕刻残留油气冲洗工艺
DE102021111409A1 (de) 2021-05-03 2022-11-03 Akk Gmbh Vorrichtung zur Strukturierung eines Flexodruckmediums

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3908764C2 (de) 1989-03-17 1994-08-11 Basf Ag Entwickler für die Herstellung photopolymerisierter flexographischer Reliefdruckformen
US5798202A (en) 1992-05-11 1998-08-25 E. I. Dupont De Nemours And Company Laser engravable single-layer flexographic printing element
US5259311A (en) 1992-07-15 1993-11-09 Mark/Trece Inc. Laser engraving of photopolymer printing plates
JP3853431B2 (ja) * 1996-06-24 2006-12-06 昭和電工株式会社 スクリーン印刷版の洗浄剤組成物
GB9802973D0 (en) * 1998-02-13 1998-04-08 Du Pont Uk Improvements in the performance of printing plates
DE19824236A1 (de) * 1998-05-29 1999-12-02 Basf Ag Verfahren zum Reinigen von Druckmaschinen und Druckformen
US6494965B1 (en) * 2000-05-30 2002-12-17 Creo Products Inc. Method and apparatus for removal of laser ablation byproducts
DE10028528C1 (de) 2000-06-08 2002-01-24 Clement Yacht Habour Systems G Vorrichtung zum Schutz vor Winderosionsschäden durch gezielte Beregnung
FR2810055B1 (fr) 2000-06-08 2004-05-21 Balisage Securite Service B S Barriere de securite en beton pour voies routieres et autoroutieres
EP1343632B1 (de) 2000-12-19 2004-06-30 BASF Drucksysteme GmbH Verfahren zur herstellung von flexodruckformen mittels lasergravur
US20020104454A1 (en) * 2001-02-06 2002-08-08 Eric Verschueren Apparatus for cleaning a surface
DE10113926A1 (de) * 2001-03-21 2002-09-26 Basf Drucksysteme Gmbh Verfahren zur Herstellung von Flexodruckplatten mittels Lasergravur
DE10118987A1 (de) 2001-04-18 2002-10-24 Basf Drucksysteme Gmbh Lasergravierbare Flexodruckelemente mit reliefbildenden elastomeren Schichten enthaltend syndiotaktisches 1,2,-Polybutadien
ATE282526T1 (de) 2001-05-25 2004-12-15 Stork Prints Austria Gmbh Verfahren und vorrichtung zur herstellung einer druckform
US6715640B2 (en) 2001-07-09 2004-04-06 Innovative Technology, Inc. Powder fluidizing devices and portable powder-deposition apparatus for coating and spray forming
JP2005510383A (ja) * 2001-11-27 2005-04-21 ビーエーエスエフ ドルクズュステーメ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 親水性重合体及び疎水性エラストマーのブレンドを含む、フレキソ印刷版製造用のレーザー彫刻可能なフレキソ印刷要素
DE10227188A1 (de) * 2002-06-18 2004-01-08 Basf Drucksysteme Gmbh Verfahren zur Herstellung von Flexodruckformen mittels Laser-Direktgravur
DE10227189A1 (de) 2002-06-18 2004-01-08 Basf Drucksysteme Gmbh Verfahren zur Herstellung von Flexdruckformen mittels Laser-Direktgravur
JP4226300B2 (ja) * 2002-10-23 2009-02-18 旭化成ケミカルズ株式会社 フレキソ印刷版の製造方法

Also Published As

Publication number Publication date
AU2005245114A1 (en) 2005-12-01
ES2308502T3 (es) 2008-12-01
EP1753619A1 (de) 2007-02-21
US20080061036A1 (en) 2008-03-13
PL1753619T3 (pl) 2009-02-27
WO2005113240A1 (de) 2005-12-01
ATE402009T1 (de) 2008-08-15
DE502005004817D1 (de) 2008-09-04
MXPA06013261A (es) 2007-02-28
DK1753619T3 (da) 2008-11-17
CN1989010A (zh) 2007-06-27
BRPI0511180A (pt) 2007-12-04
CA2566891A1 (en) 2005-12-01
US7749399B2 (en) 2010-07-06
DE102004025364A1 (de) 2005-12-08
ZA200609561B (en) 2008-06-25
JP2007537897A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
EP1753619B1 (de) Verfahren zur herstellung von flexodruckformen mittels laser-direktgravur
EP1451014B1 (de) Lasergravierbare flexodruckelemente zur herstellung von flexodruckformen enthaltend mischungen aus hydrophilen polymeren und hydrophoben elastomeren
EP2114675B1 (de) Fotopolymerisierbare flexodruckelemente und daraus hergestellte harte flexodruckformen
EP1315617B1 (de) Verfahren zur herstellung von flexodruckplatten mittels lasergravur
EP1613484B1 (de) Lasergravierbares flexodruckelement enthaltend einen leitfähigkeitsruss sowie verfahren zur herstellung von flexodruckformen
EP1423280B1 (de) Verfahren zur herstellung von flexodruckformen mittels laser-direktgravur
EP2279454B1 (de) Fotopolymerisierbare flexodruckelemente für den druck mit uv-farben
EP3047336A2 (de) Digital bebilderbares flexodruckelement und verfahren zur herstellung von flexodruckplatten
DE10227189A1 (de) Verfahren zur Herstellung von Flexdruckformen mittels Laser-Direktgravur
EP1694504B1 (de) Verfahren zur herstellung von flexodruckplatten mittels lasergravur
DE10355996A1 (de) Verfahren zur Herstellung von Flexodruckplatten mittels Lasergravur sowie dazu ge-eignete Vorrichtung
WO2004054803A1 (de) Verfahren zur herstellung von flexodruckformen mittels lasergravur unter verwendung von fotopolymeren flexodruckelementen und fotopolymerisierbares flexodruckelement
DE60015708T2 (de) Flachdruckverfahren mit einem wiederverwendbaren Druckplattenträger
EP3577523A1 (de) Strahlungshärtbares gemisch enthaltend niedrig funktionalisiertes teilverseiftes polyvinylacetat
EP1657594B1 (de) Verfahren zur Hydrophilierung von Siebruckschablonenträgern sowie Verfahren zur Entfernung von Schablonenmaterial von einem Siebdruckschablonenträger und Entschichtungsflüssigkeit hierfür
DE60009255T2 (de) Flachdruckverfahren mit einer wiederverwendbaren Trägeroberfläche
EP3394672B1 (de) Verfahren zur generativen herstellung von reliefdruckformen mittels monomerdiffusion durch eine integrale maskenschicht
DE60009490T2 (de) Flachdruckverfahren mit wiederverwendbaren Trägeroberflächen
DE69913518T2 (de) Verfahren zur Erneuerung einer Flachdruckplatte
DE102015202048B3 (de) Verfahren zum Bearbeiten einer Offsetdruckplatte und Offsetdruckmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FLINT GROUP GERMANY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005004817

Country of ref document: DE

Date of ref document: 20080904

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2308502

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081223

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

BERE Be: lapsed

Owner name: FLINT GROUP GERMANY G.M.B.H.

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 3818

Country of ref document: SK

Effective date: 20090518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20150522

Year of fee payment: 11

Ref country code: CH

Payment date: 20150520

Year of fee payment: 11

Ref country code: TR

Payment date: 20150506

Year of fee payment: 11

Ref country code: CZ

Payment date: 20150507

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20150415

Year of fee payment: 11

Ref country code: NL

Payment date: 20150520

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160531

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170519

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 402009

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190619

Year of fee payment: 15

Ref country code: IT

Payment date: 20190521

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190521

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190731

Year of fee payment: 15

Ref country code: GB

Payment date: 20190523

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005004817

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160518