EP1266070B1 - Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen - Google Patents
Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen Download PDFInfo
- Publication number
- EP1266070B1 EP1266070B1 EP01911710A EP01911710A EP1266070B1 EP 1266070 B1 EP1266070 B1 EP 1266070B1 EP 01911710 A EP01911710 A EP 01911710A EP 01911710 A EP01911710 A EP 01911710A EP 1266070 B1 EP1266070 B1 EP 1266070B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mediator
- complexing agent
- dyes
- iron
- dyeing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/44—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
- D06P1/673—Inorganic compounds
- D06P1/67333—Salts or hydroxides
- D06P1/6735—Salts or hydroxides of alkaline or alkaline-earth metals with anions different from those provided for in D06P1/67341
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/22—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using vat dyestuffs including indigo
- D06P1/221—Reducing systems; Reducing catalysts
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/22—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using vat dyestuffs including indigo
- D06P1/228—Indigo
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/30—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using sulfur dyes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/44—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
- D06P1/64—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
- D06P1/642—Compounds containing nitrogen
- D06P1/645—Aliphatic, araliphatic or cycloaliphatic compounds containing amino groups
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/44—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
- D06P1/64—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
- D06P1/651—Compounds without nitrogen
- D06P1/65106—Oxygen-containing compounds
- D06P1/65118—Compounds containing hydroxyl groups
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/44—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
- D06P1/673—Inorganic compounds
- D06P1/67333—Salts or hydroxides
- D06P1/67341—Salts or hydroxides of elements different from the alkaline or alkaline-earth metals or with anions containing those elements
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P5/00—Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
- D06P5/20—Physical treatments affecting dyeing, e.g. ultrasonic or electric
- D06P5/2016—Application of electric energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S8/00—Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
- Y10S8/916—Natural fiber dyeing
- Y10S8/918—Cellulose textile
Definitions
- the present invention relates to mediator systems obtainable by mixing one or more salts of a metal which can form a plurality of valence states, with at least one amino group-containing complexing agent (K1) and at least one hydroxyl-containing, but not containing amino groups complexing agent (K2) in an alkaline aqueous medium
- Complexing agents may be present as salts and the molar ratio of K1 to metal ion is 0.1: 1 to 10: 1 and the molar ratio of K2 to metal ion is 0.1: 1 to 5: 1.
- the invention relates to a process for the reduction of dyes and a process for dyeing cellulosic textile material using these Mediatorsysteme.
- Vat dyes and sulfur dyes are important classes of textile dyes.
- Vat dyes are of great importance for the dyeing of cellulose fibers, in particular because of the high fastnesses of the dyeings.
- the insoluble oxidized dye When using these dyes, the insoluble oxidized dye must be converted to its alkali-soluble leuco form by a reduction step. This reduced form shows high affinity for the cellulose fiber, absorbs it and is converted to its insoluble form by an oxidation step on the fiber.
- the class of sulfur dyes is of particular importance for the production of lower cost dyes with average fastness requirements.
- the implementation of a reduction and oxidation step is also required in order to fix the dye on the goods can.
- a common feature of these reducing agents is the lack of a suitable way to regenerate their reducing action, so that these chemicals are released into the wastewater after use with the dyebath. In addition to the costs of the fresh chemicals to be used also creates additional effort in the treatment of wastewater.
- Iron (II) complexes with triethanolamine (WO 90/15182 . WO 94/23114 ), with bicin (N, N-bis (2-hydroxyethyl) glycine) ( WO-A-95/07374 ), with triisopropanolamine ( WO-A-96/32445 ) and with aliphatic hydroxy compounds which may contain a plurality of hydroxyl groups and may additionally be functionalized by aldehyde, keto or carboxyl groups, such as di- and polyalcohols, di- and Polyhydroxyaldehyden, di- and polyhydroxyketones, di- and polysaccharides, di- and Polyhydroxymono and dicarboxylic acids and hydroxytricarboxylic acids, wherein the compounds derived from sugars, in particular the acids and their salts, for example gluconic and heptagluconic acid, and citric acid are emphasized as
- iron (II) complexes have a reduction effect sufficient for dye reduction, which is described by the (negative) redox potential which can be measured at a specific molar ratio of iron (II): iron (III) in alkaline solution.
- Many of these iron (II) complexes e.g. the complexes with triethanolamine, bicine, gluconic acid and heptagluconic acid, moreover, have the advantage of being capable of being electrochemically regenerated and thus of being used as mediators in the electrochemical reduction of dyes and in electrochemical dyeing processes.
- iron complexes with gluconate or heptagluconate have very good complex stability in the pH range of 10 to 12, the cathodic current densities achievable with these complexes leave something to be desired, so that correspondingly larger electrolysis cells must be used and / or the concentration of iron complex is increased what is detrimental to the user in terms of energy requirements, chemical consumption, costs and wastewater pollution.
- the invention therefore an object of the invention to remedy the disadvantages mentioned and to enable the reduction of dyes in an advantageous, economical manner.
- mediators which are characterized in that the above-defined Mediator systems uses.
- the mediator systems according to the invention that a combination of the metal ion with the complexing agents K1 and K2 is present, in which the molar ratio K1 to metal ion is 0.1: 1 to 10: 1, preferably 0.5: 1 to 6: 1, and Molar ratio K2 to metal ion is 0.1: 1 to 5: 1, preferably 0.5: 1 to 3: 1.
- the mediator systems according to the invention are obtainable by mixing the individual components, which can be used in the form of their water-soluble salts, in an alkaline aqueous medium.
- the metal ion is complexed, wherein, depending on the present pH, which is generally about 10 to 14, the most favorable complex preferably forms.
- the metal ion M1 can be used in both lower and higher valued form.
- iron (II) - and iron (III) salts can be used in the particularly preferred metal iron, which are first reduced electrochemically without problems to iron (II).
- aliphatic amines having at least two coordinating groups which contain at least one hydroxyl group are soluble in water or aqueous / organic media or can be mixed with water or the aqueous / organic media are suitable as complexing agents K1 containing amino groups.
- the complexing agents K1 may additionally contain carboxyl groups.
- Preferred complexing agents K1 are e.g. Alcohol amines, in particular mono-, di- and Trialkohol- (especially alkanol) amines, such as triethanolamine and triisopropanolamine, and mono-, di- and Polyhydroxyaminocarbon Acid such as N, N-bis (2-hydroxyethyl) glycine.
- Particularly preferred complexing agents K1 are triisopropanolamine and especially triethanolamine.
- mixtures of complexing agents K1 can be used.
- Particularly preferred complexing agents K2 are citric acid and especially the monocarboxylic acids derived from sugars, especially gluconic acid and heptagluconic acid, and their salts, esters and lactones.
- mixtures of complexing agents K2 can be used.
- a particularly suitable example of this is a mixture of gluconic acid and heptagluconic acid, preferably in a molar ratio of 0.1: 1 to 10: 1, which gives particularly stable iron complexes even at relatively high temperatures.
- mediator systems according to the invention contain iron (II / III) ions as the metal ion, and triethanolamine as complexing agent K1 and as complexing agent K2 gluconic acid and / or heptagluconic acid.
- the particular advantages of the mediator according to the invention are that an electrochemical dye reduction at low concentration of low-valent metal ion and thus low concentration of active complex can be carried out at high cathodic current density and at the same time there is a complex system, even at lower pH values, in the Rule ⁇ 10, is stable. Unexpectedly, the achievable current densities and complex stabilities clearly exceed those expected for a mixture of the two individual systems (metal ion / K1 and metal ion / K2).
- the mediator systems according to the invention are outstandingly suitable for the electrochemical reduction of dyes.
- vat dyes examples include indigo and its bromo derivatives, 5,5'-dibromoindigo and 5,5 ', 7,7'-tetrabromoindigo, and thioindigo, acylaminoanthraquinones, anthraquinonazoles, anthrimides, anthrimidecarbazoles, phthaloylacridones, benzanthrones and indanthrones, and pyrenchinones, anthanthrones, Pyranthrones, Acedianthrone and perylene derivatives.
- particularly important sulfur dyes are CI Sulfur Black 1 and CI Leuco Sulfur Black 1 and sulfur vat dyes such as CI Vat Blue 43.
- the maximum amount used is usually approximately the amount of mediator required stoichiometrically for the dye reduction.
- 2 mol of a mediator system according to the invention are generally calculated, based on the redox-active, an electron-supplying metal ion.
- this mediator amount can be lowered by the electrochemical regeneration of the mediator (when dyeing with vat dyes, based on a liter of dyebath, usually up to about 0.1 to 1 mol reduced mediator per mole of dye). The greater the deficit in the mediator system, the higher the demands on the electrolysis cell.
- the reduction process according to the invention can advantageously be part of the likewise inventive process for dyeing cellulose-containing textile material with vat and sulfur dyes.
- the dye is added to the dyebath in prereduced form, e.g. an alkaline solution catalytically reduced indigo, and reduces the reoxidized during dyeing by air contact portion of the dye electrochemically using the mediator according to the invention.
- the dyeing itself can be carried out as described in the literature mentioned above. In this case, by all known continuous and discontinuous dyeing methods, e.g. after the exhaust process and the padder process.
- the further process conditions such as type of textile auxiliaries, amounts used, dyeing conditions, type of electrolysis cell, completion of the dyeings, can be selected as usual and described in the literature mentioned above.
- all cellulose-containing textile materials can be dyed advantageously.
- examples include: fibers of cotton, regenerated cellulose such as viscose and modal, and bast fibers such as flax, hemp and jute.
- Forms of presentation include eg flake, ribbon, yarn, twine, woven, knitted, knitted and made-up pieces.
- Mechanical forms can be packing systems, yarn skein, spool, warp beam and cloth beam as well as piece goods in strand and wide.
- the electrolysis cell was a multi-cathode cell (10 electrodes, 0.18 m 2 viewing area, total area 4.3 m 2 ).
- the anolyte used was 2% strength by weight sodium hydroxide solution (corresponding to the amount of charge flowed, 50% strength by weight sodium hydroxide solution was added in order to keep the cell voltage constant).
- the separation of catholyte (dyebath) and anolyte was carried out by a cation exchange membrane.
- the cathode used was a stainless steel mesh and the anode used was a platinum mixed oxide coated titanium electrode.
- Dyeing was done as follows: 180 l of a dyebath of the composition 0.015 mol / l Iron (III) chloride (40% strength by weight aqueous solution, 4.3 ml / l) 0.068 mol / l Triethanolamine (85% strength by weight aqueous solution, 12 g / l) 0.005 mol / l Sodium gluconate (99%, 1 g / l) 0.37 mol / l Sodium hydroxide solution (50% strength by weight aqueous solution, 14.8 g / l) 1 g / l a commercial wetting agent 1.2 g / l a commercial dispersant 0.7 g / l a commercial water correction agent circulated through the yarn packages (30 l / kg min) and the electrolysis cell (100 l / min) and were reduced prior to dyeing.
- the oxygen was first removed from the dyebath. After reaching a potential of -650 mV, the cell current was lowered to about 2 A in order to keep the dyebath potential below the leuco potential of the dye.
- the dye was added. After a pigmentation time of 10 minutes at a redox potential of about -700 to -750 mV, the cell current was increased to 9 A in order to uniformly convert the dye into its reduced form by indirect electrolysis. The redox potential rose within 30 min to -920 mV and was then stabilized by regulating the cell current to a value between -930 and -940 mV. Under these conditions an additional 30 min was dyed. Meanwhile, the iron (II) was complex continuously regenerated electrochemically.
- the dyeing result corresponded in color, color depth and levelness to the result obtained under the same conditions with a conventional reducing agent.
- Dyeing was done as follows: 180 l of a dyebath of the composition 0.040 mol / l Iron (III) chloride (40% strength by weight aqueous solution, 11.5 ml / l) 0.068 mol / l Triethanolamine (85% strength by weight aqueous solution, 12 g / l) 0.031 mol / l Sodium gluconate (99%, 6.8 g / l) 0.5 mol / l Sodium hydroxide solution (50% strength by weight aqueous solution, 20 g / l) 1 g / l a commercial Egalisierangesmittels 1 g / l a commercial wetting agent 1 g / l a commercial dispersant 0.5 g / l a commercial water correction agent circulated through the yarn packages (30 l / kg min) and the electrolysis cell (100 l / min) and were reduced prior to dyeing.
- the oxygen was first removed from the dyebath. After reaching At a potential of -700 mV, the cell current was lowered to about 1 A to keep the dyeing bath potential below the leuco potential of the dye.
- the dye was added. After a pigmentation time of 30 minutes at a redox potential of about -765 to -780 mV, the cell current was increased to 30 A in order to uniformly convert the dye into its reduced form by indirect electrolysis. The redox potential rose within 20 min to -920 mV and was then stabilized by controlling the cell current to a value between - 930 and -940 mV. Under these conditions an additional 40 minutes was dyed. Meanwhile, the iron (II) was complex continuously regenerated electrochemically.
- the dyeing result corresponded in color, color depth and levelness to the result obtained under the same conditions with a conventional reducing agent.
- Dyeing was done as follows: 180 l of a dyebath of the composition 0.024 mol / l Iron (III) chloride (40% strength by weight aqueous solution, 6.8 ml / l) 0.051 mol / l Triethanolamine (85% strength by weight aqueous solution, 9 g / l) 0.017 mol / l Sodium gluconate (99%, 3.7 g / l) 0.34 mol / l Sodium hydroxide solution (50% strength by weight aqueous solution, 13.7 g / l) 1 g / l a commercial Egalisierangesmittels 1 g / l a commercial wetting agent 1 g / l a commercial dispersant 0.5 g / l a commercial water correction agent circulated through the bobbins (30 l / kg min) and the electrolysis cell (100 l / min) and were reduced before dyeing.
- the oxygen was first removed from the dyebath. After reaching a potential of -670 mV, the cell current was lowered to about 1 A in order to keep the dyebath potential below the leuco potential of the dyes.
- the dye mixture was added. After a pigmentation time of 30 min at a redox potential of about -765 to -780 mV, the cell current was increased to 40 A in order to uniformly convert the dye into its reduced form by indirect electrolysis. The redox potential rose within 60 min to -920 mV and was increased while keeping the cell current within 40 min to -950. Meanwhile, the iron (II) was complex continuously regenerated electrochemically.
- the dyeing result corresponded in color, color depth and levelness to the result obtained under the same conditions with a conventional reducing agent.
- Dyeing was done as follows: 180 l of a dyebath of the composition 0.010 mol / l Iron (III) chloride (40% strength by weight aqueous solution, 2.8 ml / l) 0.068 mol / l Triethanolamine (85% strength by weight aqueous solution, 12 g / l) 0.005 mol / l Sodium gluconate (99%, 1 g / l) 0.37 mol / l Sodium hydroxide solution (50% strength by weight aqueous solution, 14.8 g / l) 0.25 g / l a commercial dispersant circulated through the bobbins (30 l / kg min) and the electrolysis cell (100 l / min) and were reduced before dyeing.
- the oxygen was first removed from the dyebath. After reaching a dyeing bath temperature of 60 ° C and a potential of -910 mV, the dye was added within 10 min. The redox potential was kept between -910 and -920 mV. After complete dye addition, the redox potential was stabilized by controlling the cell current between -920 and -940 mV. Under these conditions an additional 35 minutes was stained. Meanwhile, the iron (II) was complex continuously regenerated electrochemically.
- the dyeing result corresponded in color, color depth and levelness to the result obtained under the same conditions with a conventional reducing agent.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coloring (AREA)
- Detergent Compositions (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10010059A DE10010059A1 (de) | 2000-03-02 | 2000-03-02 | Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen |
DE10010059 | 2000-03-02 | ||
PCT/EP2001/002308 WO2001065000A1 (de) | 2000-03-02 | 2001-03-01 | Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1266070A1 EP1266070A1 (de) | 2002-12-18 |
EP1266070B1 true EP1266070B1 (de) | 2008-12-03 |
Family
ID=7633163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01911710A Expired - Lifetime EP1266070B1 (de) | 2000-03-02 | 2001-03-01 | Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen |
Country Status (12)
Country | Link |
---|---|
US (1) | US6814763B2 (pt) |
EP (1) | EP1266070B1 (pt) |
JP (1) | JP2003525363A (pt) |
KR (1) | KR100683310B1 (pt) |
CN (1) | CN1289748C (pt) |
AT (1) | ATE416270T1 (pt) |
BR (1) | BR0108831A (pt) |
DE (2) | DE10010059A1 (pt) |
ES (1) | ES2317891T3 (pt) |
HK (1) | HK1053157B (pt) |
MX (1) | MXPA02008539A (pt) |
WO (1) | WO2001065000A1 (pt) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10161265A1 (de) * | 2001-12-13 | 2003-06-26 | Dystar Textilfarben Gmbh & Co | Verfahren zur Farbveränderung von gefärbten textilen Substraten |
DE10234825A1 (de) * | 2002-07-31 | 2004-02-19 | Dystar Textilfarben Gmbh & Co. Deutschland Kg | Verfahren zum Färben mit Schwefel- und Schwefelküpenfarbstoffen |
US20050209602A1 (en) * | 2004-03-22 | 2005-09-22 | Disc Dynamics, Inc. | Multi-stage biomaterial injection system for spinal implants |
US20060265076A1 (en) * | 2005-05-03 | 2006-11-23 | Disc Dynamics, Inc. | Catheter holder for spinal implant |
CN102808339B (zh) * | 2012-07-20 | 2014-05-14 | 濮阳宏业汇龙化工有限公司 | 一种激发态高效还原剂 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT398316B (de) | 1989-06-01 | 1994-11-25 | Verein Zur Foerderung Der Fors | Verfahren zur reduktion von farbstoffen |
ATE135765T1 (de) | 1990-12-03 | 1996-04-15 | Verein Zur Foerderung Der Fors | Verfahren zur reduktion von textilfarbstoffen |
DE4206929A1 (de) | 1992-03-05 | 1993-09-09 | Basf Ag | Verfahren zum faerben oder bedrucken von cellulosehaltigem textilmaterial mit kuepenfarbstoffen |
DE4230870A1 (de) * | 1992-09-16 | 1994-03-17 | Basf Ag | Verfahren zum Färben und Bedrucken von textilen Materialien aus Cellulosefasern |
TW251325B (pt) | 1993-03-30 | 1995-07-11 | Basf Ag | |
DE4320867A1 (de) | 1993-06-24 | 1995-01-05 | Basf Ag | Verfahren zum Färben von cellulosehaltigen Textilmaterialien mit Küpenfarbstoffen oder Schwefelfarbstoffen |
DE4320866A1 (de) | 1993-06-24 | 1995-01-05 | Basf Ag | Verfahren zum Färben oder Bedrucken von cellulosehaltigen Textilmaterialien mit Küpenfarbstoffen oder Schwefelfarbstoffen |
AT402946B (de) | 1993-09-08 | 1997-09-25 | Verein Zur Foerderung Der Fors | Elektrolysezelle |
DE19513839A1 (de) | 1995-04-12 | 1996-10-17 | Basf Ag | Verfahren zur elektrochemischen Reduktion von Küpenfarbstoffen |
DE19919746A1 (de) | 1999-04-29 | 2000-11-02 | Basf Ag | Verfahren zur Herstellung von wäßrig-alkalischen Lösungen reduzierter indigoider Farbstoffe |
-
2000
- 2000-03-02 DE DE10010059A patent/DE10010059A1/de not_active Withdrawn
-
2001
- 2001-03-01 JP JP2001563681A patent/JP2003525363A/ja active Pending
- 2001-03-01 DE DE50114544T patent/DE50114544D1/de not_active Expired - Lifetime
- 2001-03-01 MX MXPA02008539A patent/MXPA02008539A/es active IP Right Grant
- 2001-03-01 EP EP01911710A patent/EP1266070B1/de not_active Expired - Lifetime
- 2001-03-01 KR KR1020027011444A patent/KR100683310B1/ko not_active IP Right Cessation
- 2001-03-01 AT AT01911710T patent/ATE416270T1/de active
- 2001-03-01 CN CNB018058566A patent/CN1289748C/zh not_active Expired - Fee Related
- 2001-03-01 ES ES01911710T patent/ES2317891T3/es not_active Expired - Lifetime
- 2001-03-01 US US10/220,072 patent/US6814763B2/en not_active Expired - Fee Related
- 2001-03-01 WO PCT/EP2001/002308 patent/WO2001065000A1/de active Application Filing
- 2001-03-01 BR BR0108831-9A patent/BR0108831A/pt active Search and Examination
-
2003
- 2003-07-24 HK HK03105340.3A patent/HK1053157B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE10010059A1 (de) | 2001-09-06 |
HK1053157B (zh) | 2007-06-29 |
US6814763B2 (en) | 2004-11-09 |
ES2317891T3 (es) | 2009-05-01 |
WO2001065000A1 (de) | 2001-09-07 |
CN1406299A (zh) | 2003-03-26 |
HK1053157A1 (en) | 2003-10-10 |
JP2003525363A (ja) | 2003-08-26 |
KR20020086596A (ko) | 2002-11-18 |
CN1289748C (zh) | 2006-12-13 |
ATE416270T1 (de) | 2008-12-15 |
EP1266070A1 (de) | 2002-12-18 |
KR100683310B1 (ko) | 2007-02-15 |
BR0108831A (pt) | 2002-12-10 |
DE50114544D1 (de) | 2009-01-15 |
MXPA02008539A (es) | 2002-12-13 |
US20030121112A1 (en) | 2003-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0692042B1 (de) | Verfahren zum färben von cellulosehaltigem textilmaterial mit hydriertem indigo | |
EP1177258B1 (de) | Verfahren zur herstellung von wässrig-alkalischen lösungen reduzierter indigoider farbstoffe | |
EP1266070B1 (de) | Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen | |
EP0364752B1 (de) | Verfahren zum Färben von textilen Materialen aus Cellulosefasern | |
EP1266069B1 (de) | Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen | |
EP0513291B1 (de) | Verfahren zur reduktion von textilfarbstoffen | |
EP1527228B1 (de) | Verfahren zum färben mit schwefel und schwefelküpenfarbstoffen | |
DE4230870A1 (de) | Verfahren zum Färben und Bedrucken von textilen Materialien aus Cellulosefasern | |
DE4320867A1 (de) | Verfahren zum Färben von cellulosehaltigen Textilmaterialien mit Küpenfarbstoffen oder Schwefelfarbstoffen | |
DE4206929A1 (de) | Verfahren zum faerben oder bedrucken von cellulosehaltigem textilmaterial mit kuepenfarbstoffen | |
EP0741777B1 (de) | Bleichen von jeans | |
DE970073C (de) | Verfahren zum Faerben mit Kuepenfarbstoffen | |
DE1444283A1 (de) | Verfahren zum Faerben von Tierhaarprodukten | |
DE2052151A1 (de) | Verfahren zur Färbung von sauremodifi zierten synthetischen Textilfasern | |
WO2007023132A2 (de) | Farbstoffzubereitungen von indigoiden farbstoffen, von küpen- und schwefelfarbstoffen enthaltend anorganische und/oder organische elektrochemisch aktive mediatorsysteme sowie deren verwendung | |
DE1146840B (de) | Verfahren zum Faerben und Bedrucken von Textilmaterialien aus Cellulose und/oder Polyestern | |
DE4315873A1 (de) | Verfahren zum Färben von cellulosehaltigem Textilmaterial mit katalytisch hydriertem Indigo | |
DEC0007072MA (pt) | ||
DE2555046A1 (de) | Verfahren zur oxydativen nachbehandlung mit schwefelfarbstoffen gefaerbter oder bedruckter textilmaterialien | |
DE2434095A1 (de) | Oxydative nachbehandlung von mit schwefelfarbstoffen gefaerbten bzw. bedruckten cellulosehaltigen textilmaterialien | |
DE829443B (de) | Farbstoffpräparate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021002 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG |
|
17Q | First examination report despatched |
Effective date: 20080613 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50114544 Country of ref document: DE Date of ref document: 20090115 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20090400582 Country of ref document: GR Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2317891 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090504 |
|
BERE | Be: lapsed |
Owner name: DYSTAR TEXTILFARBEN G.M.B.H. & CO. DEUTSCHLAND KG Effective date: 20090331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20090904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20100414 Year of fee payment: 10 Ref country code: FR Payment date: 20100415 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100310 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100329 Year of fee payment: 10 Ref country code: GB Payment date: 20100401 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20100330 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20110311 Year of fee payment: 11 Ref country code: AT Payment date: 20110310 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110314 Year of fee payment: 11 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20110616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111001 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50114544 Country of ref document: DE Effective date: 20111001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110301 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111004 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110302 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 416270 Country of ref document: AT Kind code of ref document: T Effective date: 20120301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120301 |