EP1266070B1 - Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen - Google Patents

Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen Download PDF

Info

Publication number
EP1266070B1
EP1266070B1 EP01911710A EP01911710A EP1266070B1 EP 1266070 B1 EP1266070 B1 EP 1266070B1 EP 01911710 A EP01911710 A EP 01911710A EP 01911710 A EP01911710 A EP 01911710A EP 1266070 B1 EP1266070 B1 EP 1266070B1
Authority
EP
European Patent Office
Prior art keywords
mediator
complexing agent
dyes
iron
dyeing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01911710A
Other languages
English (en)
French (fr)
Other versions
EP1266070A1 (de
Inventor
Thomas Bechtold
Stefan Mohr
Norbert Grund
Wolfgang Schrott
Wolfgang Hiebsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dystar Textilfarben GmbH and Co Deutschland KG
Original Assignee
Dystar Textilfarben GmbH and Co Deutschland KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dystar Textilfarben GmbH and Co Deutschland KG filed Critical Dystar Textilfarben GmbH and Co Deutschland KG
Publication of EP1266070A1 publication Critical patent/EP1266070A1/de
Application granted granted Critical
Publication of EP1266070B1 publication Critical patent/EP1266070B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds
    • D06P1/67333Salts or hydroxides
    • D06P1/6735Salts or hydroxides of alkaline or alkaline-earth metals with anions different from those provided for in D06P1/67341
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/22General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using vat dyestuffs including indigo
    • D06P1/221Reducing systems; Reducing catalysts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/22General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using vat dyestuffs including indigo
    • D06P1/228Indigo
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/30General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using sulfur dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/645Aliphatic, araliphatic or cycloaliphatic compounds containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/651Compounds without nitrogen
    • D06P1/65106Oxygen-containing compounds
    • D06P1/65118Compounds containing hydroxyl groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds
    • D06P1/67333Salts or hydroxides
    • D06P1/67341Salts or hydroxides of elements different from the alkaline or alkaline-earth metals or with anions containing those elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/20Physical treatments affecting dyeing, e.g. ultrasonic or electric
    • D06P5/2016Application of electric energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/916Natural fiber dyeing
    • Y10S8/918Cellulose textile

Definitions

  • the present invention relates to mediator systems obtainable by mixing one or more salts of a metal which can form a plurality of valence states, with at least one amino group-containing complexing agent (K1) and at least one hydroxyl-containing, but not containing amino groups complexing agent (K2) in an alkaline aqueous medium
  • Complexing agents may be present as salts and the molar ratio of K1 to metal ion is 0.1: 1 to 10: 1 and the molar ratio of K2 to metal ion is 0.1: 1 to 5: 1.
  • the invention relates to a process for the reduction of dyes and a process for dyeing cellulosic textile material using these Mediatorsysteme.
  • Vat dyes and sulfur dyes are important classes of textile dyes.
  • Vat dyes are of great importance for the dyeing of cellulose fibers, in particular because of the high fastnesses of the dyeings.
  • the insoluble oxidized dye When using these dyes, the insoluble oxidized dye must be converted to its alkali-soluble leuco form by a reduction step. This reduced form shows high affinity for the cellulose fiber, absorbs it and is converted to its insoluble form by an oxidation step on the fiber.
  • the class of sulfur dyes is of particular importance for the production of lower cost dyes with average fastness requirements.
  • the implementation of a reduction and oxidation step is also required in order to fix the dye on the goods can.
  • a common feature of these reducing agents is the lack of a suitable way to regenerate their reducing action, so that these chemicals are released into the wastewater after use with the dyebath. In addition to the costs of the fresh chemicals to be used also creates additional effort in the treatment of wastewater.
  • Iron (II) complexes with triethanolamine (WO 90/15182 . WO 94/23114 ), with bicin (N, N-bis (2-hydroxyethyl) glycine) ( WO-A-95/07374 ), with triisopropanolamine ( WO-A-96/32445 ) and with aliphatic hydroxy compounds which may contain a plurality of hydroxyl groups and may additionally be functionalized by aldehyde, keto or carboxyl groups, such as di- and polyalcohols, di- and Polyhydroxyaldehyden, di- and polyhydroxyketones, di- and polysaccharides, di- and Polyhydroxymono and dicarboxylic acids and hydroxytricarboxylic acids, wherein the compounds derived from sugars, in particular the acids and their salts, for example gluconic and heptagluconic acid, and citric acid are emphasized as
  • iron (II) complexes have a reduction effect sufficient for dye reduction, which is described by the (negative) redox potential which can be measured at a specific molar ratio of iron (II): iron (III) in alkaline solution.
  • Many of these iron (II) complexes e.g. the complexes with triethanolamine, bicine, gluconic acid and heptagluconic acid, moreover, have the advantage of being capable of being electrochemically regenerated and thus of being used as mediators in the electrochemical reduction of dyes and in electrochemical dyeing processes.
  • iron complexes with gluconate or heptagluconate have very good complex stability in the pH range of 10 to 12, the cathodic current densities achievable with these complexes leave something to be desired, so that correspondingly larger electrolysis cells must be used and / or the concentration of iron complex is increased what is detrimental to the user in terms of energy requirements, chemical consumption, costs and wastewater pollution.
  • the invention therefore an object of the invention to remedy the disadvantages mentioned and to enable the reduction of dyes in an advantageous, economical manner.
  • mediators which are characterized in that the above-defined Mediator systems uses.
  • the mediator systems according to the invention that a combination of the metal ion with the complexing agents K1 and K2 is present, in which the molar ratio K1 to metal ion is 0.1: 1 to 10: 1, preferably 0.5: 1 to 6: 1, and Molar ratio K2 to metal ion is 0.1: 1 to 5: 1, preferably 0.5: 1 to 3: 1.
  • the mediator systems according to the invention are obtainable by mixing the individual components, which can be used in the form of their water-soluble salts, in an alkaline aqueous medium.
  • the metal ion is complexed, wherein, depending on the present pH, which is generally about 10 to 14, the most favorable complex preferably forms.
  • the metal ion M1 can be used in both lower and higher valued form.
  • iron (II) - and iron (III) salts can be used in the particularly preferred metal iron, which are first reduced electrochemically without problems to iron (II).
  • aliphatic amines having at least two coordinating groups which contain at least one hydroxyl group are soluble in water or aqueous / organic media or can be mixed with water or the aqueous / organic media are suitable as complexing agents K1 containing amino groups.
  • the complexing agents K1 may additionally contain carboxyl groups.
  • Preferred complexing agents K1 are e.g. Alcohol amines, in particular mono-, di- and Trialkohol- (especially alkanol) amines, such as triethanolamine and triisopropanolamine, and mono-, di- and Polyhydroxyaminocarbon Acid such as N, N-bis (2-hydroxyethyl) glycine.
  • Particularly preferred complexing agents K1 are triisopropanolamine and especially triethanolamine.
  • mixtures of complexing agents K1 can be used.
  • Particularly preferred complexing agents K2 are citric acid and especially the monocarboxylic acids derived from sugars, especially gluconic acid and heptagluconic acid, and their salts, esters and lactones.
  • mixtures of complexing agents K2 can be used.
  • a particularly suitable example of this is a mixture of gluconic acid and heptagluconic acid, preferably in a molar ratio of 0.1: 1 to 10: 1, which gives particularly stable iron complexes even at relatively high temperatures.
  • mediator systems according to the invention contain iron (II / III) ions as the metal ion, and triethanolamine as complexing agent K1 and as complexing agent K2 gluconic acid and / or heptagluconic acid.
  • the particular advantages of the mediator according to the invention are that an electrochemical dye reduction at low concentration of low-valent metal ion and thus low concentration of active complex can be carried out at high cathodic current density and at the same time there is a complex system, even at lower pH values, in the Rule ⁇ 10, is stable. Unexpectedly, the achievable current densities and complex stabilities clearly exceed those expected for a mixture of the two individual systems (metal ion / K1 and metal ion / K2).
  • the mediator systems according to the invention are outstandingly suitable for the electrochemical reduction of dyes.
  • vat dyes examples include indigo and its bromo derivatives, 5,5'-dibromoindigo and 5,5 ', 7,7'-tetrabromoindigo, and thioindigo, acylaminoanthraquinones, anthraquinonazoles, anthrimides, anthrimidecarbazoles, phthaloylacridones, benzanthrones and indanthrones, and pyrenchinones, anthanthrones, Pyranthrones, Acedianthrone and perylene derivatives.
  • particularly important sulfur dyes are CI Sulfur Black 1 and CI Leuco Sulfur Black 1 and sulfur vat dyes such as CI Vat Blue 43.
  • the maximum amount used is usually approximately the amount of mediator required stoichiometrically for the dye reduction.
  • 2 mol of a mediator system according to the invention are generally calculated, based on the redox-active, an electron-supplying metal ion.
  • this mediator amount can be lowered by the electrochemical regeneration of the mediator (when dyeing with vat dyes, based on a liter of dyebath, usually up to about 0.1 to 1 mol reduced mediator per mole of dye). The greater the deficit in the mediator system, the higher the demands on the electrolysis cell.
  • the reduction process according to the invention can advantageously be part of the likewise inventive process for dyeing cellulose-containing textile material with vat and sulfur dyes.
  • the dye is added to the dyebath in prereduced form, e.g. an alkaline solution catalytically reduced indigo, and reduces the reoxidized during dyeing by air contact portion of the dye electrochemically using the mediator according to the invention.
  • the dyeing itself can be carried out as described in the literature mentioned above. In this case, by all known continuous and discontinuous dyeing methods, e.g. after the exhaust process and the padder process.
  • the further process conditions such as type of textile auxiliaries, amounts used, dyeing conditions, type of electrolysis cell, completion of the dyeings, can be selected as usual and described in the literature mentioned above.
  • all cellulose-containing textile materials can be dyed advantageously.
  • examples include: fibers of cotton, regenerated cellulose such as viscose and modal, and bast fibers such as flax, hemp and jute.
  • Forms of presentation include eg flake, ribbon, yarn, twine, woven, knitted, knitted and made-up pieces.
  • Mechanical forms can be packing systems, yarn skein, spool, warp beam and cloth beam as well as piece goods in strand and wide.
  • the electrolysis cell was a multi-cathode cell (10 electrodes, 0.18 m 2 viewing area, total area 4.3 m 2 ).
  • the anolyte used was 2% strength by weight sodium hydroxide solution (corresponding to the amount of charge flowed, 50% strength by weight sodium hydroxide solution was added in order to keep the cell voltage constant).
  • the separation of catholyte (dyebath) and anolyte was carried out by a cation exchange membrane.
  • the cathode used was a stainless steel mesh and the anode used was a platinum mixed oxide coated titanium electrode.
  • Dyeing was done as follows: 180 l of a dyebath of the composition 0.015 mol / l Iron (III) chloride (40% strength by weight aqueous solution, 4.3 ml / l) 0.068 mol / l Triethanolamine (85% strength by weight aqueous solution, 12 g / l) 0.005 mol / l Sodium gluconate (99%, 1 g / l) 0.37 mol / l Sodium hydroxide solution (50% strength by weight aqueous solution, 14.8 g / l) 1 g / l a commercial wetting agent 1.2 g / l a commercial dispersant 0.7 g / l a commercial water correction agent circulated through the yarn packages (30 l / kg min) and the electrolysis cell (100 l / min) and were reduced prior to dyeing.
  • the oxygen was first removed from the dyebath. After reaching a potential of -650 mV, the cell current was lowered to about 2 A in order to keep the dyebath potential below the leuco potential of the dye.
  • the dye was added. After a pigmentation time of 10 minutes at a redox potential of about -700 to -750 mV, the cell current was increased to 9 A in order to uniformly convert the dye into its reduced form by indirect electrolysis. The redox potential rose within 30 min to -920 mV and was then stabilized by regulating the cell current to a value between -930 and -940 mV. Under these conditions an additional 30 min was dyed. Meanwhile, the iron (II) was complex continuously regenerated electrochemically.
  • the dyeing result corresponded in color, color depth and levelness to the result obtained under the same conditions with a conventional reducing agent.
  • Dyeing was done as follows: 180 l of a dyebath of the composition 0.040 mol / l Iron (III) chloride (40% strength by weight aqueous solution, 11.5 ml / l) 0.068 mol / l Triethanolamine (85% strength by weight aqueous solution, 12 g / l) 0.031 mol / l Sodium gluconate (99%, 6.8 g / l) 0.5 mol / l Sodium hydroxide solution (50% strength by weight aqueous solution, 20 g / l) 1 g / l a commercial Egalisierangesmittels 1 g / l a commercial wetting agent 1 g / l a commercial dispersant 0.5 g / l a commercial water correction agent circulated through the yarn packages (30 l / kg min) and the electrolysis cell (100 l / min) and were reduced prior to dyeing.
  • the oxygen was first removed from the dyebath. After reaching At a potential of -700 mV, the cell current was lowered to about 1 A to keep the dyeing bath potential below the leuco potential of the dye.
  • the dye was added. After a pigmentation time of 30 minutes at a redox potential of about -765 to -780 mV, the cell current was increased to 30 A in order to uniformly convert the dye into its reduced form by indirect electrolysis. The redox potential rose within 20 min to -920 mV and was then stabilized by controlling the cell current to a value between - 930 and -940 mV. Under these conditions an additional 40 minutes was dyed. Meanwhile, the iron (II) was complex continuously regenerated electrochemically.
  • the dyeing result corresponded in color, color depth and levelness to the result obtained under the same conditions with a conventional reducing agent.
  • Dyeing was done as follows: 180 l of a dyebath of the composition 0.024 mol / l Iron (III) chloride (40% strength by weight aqueous solution, 6.8 ml / l) 0.051 mol / l Triethanolamine (85% strength by weight aqueous solution, 9 g / l) 0.017 mol / l Sodium gluconate (99%, 3.7 g / l) 0.34 mol / l Sodium hydroxide solution (50% strength by weight aqueous solution, 13.7 g / l) 1 g / l a commercial Egalisierangesmittels 1 g / l a commercial wetting agent 1 g / l a commercial dispersant 0.5 g / l a commercial water correction agent circulated through the bobbins (30 l / kg min) and the electrolysis cell (100 l / min) and were reduced before dyeing.
  • the oxygen was first removed from the dyebath. After reaching a potential of -670 mV, the cell current was lowered to about 1 A in order to keep the dyebath potential below the leuco potential of the dyes.
  • the dye mixture was added. After a pigmentation time of 30 min at a redox potential of about -765 to -780 mV, the cell current was increased to 40 A in order to uniformly convert the dye into its reduced form by indirect electrolysis. The redox potential rose within 60 min to -920 mV and was increased while keeping the cell current within 40 min to -950. Meanwhile, the iron (II) was complex continuously regenerated electrochemically.
  • the dyeing result corresponded in color, color depth and levelness to the result obtained under the same conditions with a conventional reducing agent.
  • Dyeing was done as follows: 180 l of a dyebath of the composition 0.010 mol / l Iron (III) chloride (40% strength by weight aqueous solution, 2.8 ml / l) 0.068 mol / l Triethanolamine (85% strength by weight aqueous solution, 12 g / l) 0.005 mol / l Sodium gluconate (99%, 1 g / l) 0.37 mol / l Sodium hydroxide solution (50% strength by weight aqueous solution, 14.8 g / l) 0.25 g / l a commercial dispersant circulated through the bobbins (30 l / kg min) and the electrolysis cell (100 l / min) and were reduced before dyeing.
  • the oxygen was first removed from the dyebath. After reaching a dyeing bath temperature of 60 ° C and a potential of -910 mV, the dye was added within 10 min. The redox potential was kept between -910 and -920 mV. After complete dye addition, the redox potential was stabilized by controlling the cell current between -920 and -940 mV. Under these conditions an additional 35 minutes was stained. Meanwhile, the iron (II) was complex continuously regenerated electrochemically.
  • the dyeing result corresponded in color, color depth and levelness to the result obtained under the same conditions with a conventional reducing agent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coloring (AREA)
  • Detergent Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft Mediatorsysteme, erhältlich durch Mischen eines oder mehrerer Salze eines Metalls, das mehrere Wertigkeitsstufen ausbilden kann, mit mindestens einem aminogruppenhaltigen Komplexbildner (K1) und mindestens einem hydroxylgruppenhaltigen, jedoch keine Aminogruppen enthaltenden Komplexbildner (K2) in alkalischem wäßrigen Medium, wobei die Komplexbildner als Salze vorliegen können und das Molverhältnis K1 zu Metallion 0,1 : 1 bis 10 : 1 und das Molverhältnis K2 zu Metallion 0,1 : 1 bis 5 : 1 beträgt.
  • Außerdem betrifft die Erfindung ein Verfahren zur Reduktion von Farbstoffen sowie ein Verfahren zum Färben von cellulosehaltigem Textilmaterial unter Verwendung dieser Mediatorsysteme.
  • Küpenfarbstoffe und Schwefelfarbstoffe stellen wichtige Klassen von Textilfarbstoffen dar.
  • Küpenfarbstoffe sind zur Färbung von Cellulosefasern insbesondere aufgrund der hohen Echtheiten der Färbungen von großer Bedeutung. Bei der Anwendung dieser Farbstoffe muß der unlösliche oxidierte Farbstoff durch einen Reduktionsschritt in seine alkalilösliche Leukoform überführt werden. Diese reduzierte Form zeigt hohe Affinität zur Cellulosefaser, zieht auf diese auf und wird durch einen Oxidationsschritt auf der Faser wiederum in seine unlösliche Form überführt.
  • Die Klasse der Schwefelfarbstoffe ist von besonderer Bedeutung für die Herstellung preislich günstiger Färbungen mit durchschnittlichen Echtheitsanforderungen. Bei der Anwendung der Schwefelfarbstoffe ist ebenfalls die Durchführung eines Reduktions- und Oxidationsschrittes erforderlich, um den Farbstoff auf der Ware fixieren zu können.
  • In der Literatur sind verschiedenste Reduktionsmittel beschrieben, die auch technisch angewendet werden, z.B. Natriumdithionit, organische Sulfinsäuren, organische Hydroxyverbindungen wie Glucose oder Hydroxyaceton. Zur Reduktion von Schwefelfarbstoffen werden in manchen Ländern auch noch Sulfide und Polysulfide eingesetzt.
  • Ein gemeinsames Merkmal dieser Reduktionsmittel ist das Fehlen einer geeigneten Möglichkeit zur Regeneration ihrer Reduktionswirkung, so daß diese Chemikalien nach dem Gebrauch mit dem Färbebad ins Abwasser abgegeben werden. Neben den Kosten für die frisch einzusetzenden Chemikalien entsteht auch zusätzlicher Aufwand bei der Behandlung der anfallenden Abwässer.
  • Weitere wichtige Nachteile dieser Reduktionsmittel sind die sehr eingeschränkten Möglichkeiten zur Beeinflussung ihrer Reduktionswirkung bzw. ihres Redoxpotentials unter Anwendungsbedingungen im Färbebad und das Fehlen einfacher steuerungstechnischer Möglichkeiten zur Regelung des Färbebadpotentials.
  • Eine weitere Gruppe von Reduktionsmitteln wurde mit der Klasse der Eisen(II)komplexe gefunden. Bekannt sind Eisen(II)komplexe mit Triethanolamin ( WO-A-90/15182 , WO-A-94/23114 ), mit Bicin (N,N-Bis(2-hydroxyethyl)glycin) ( WO-A-95/07374 ), mit Triisopropanolamin ( WO-A-96/32445 ) sowie mit aliphatischen Hydroxyverbindungen, die mehrere Hydroxylgruppen enthalten können und zusätzlich durch Aldehyd-, Keto- oder Carboxylgruppen funktionalisiert sein können, wie Di- und Polyalkoholen, Di- und Polyhydroxyaldehyden, Di- und Polyhydroxyketonen, Di- und Polysacchariden, Di- und Polyhydroxymono- und -dicarbonsäuren sowie Hydroxytricarbonsäuren, wobei die von Zuckern abgeleiteten Verbindungen, insbesondere die Säuren und deren Salze, z.B. Glucon- und Heptagluconsäure, und Citronensäure als bevorzugt hervorgehoben werden ( DE-A-42 06 929 , DE-A-43 20 866 , DE-A-43 20 867 , die nicht vorveröffentlichte DE-A-199 19 746 sowie WO-A-92/09740 ).
  • Diese Eisen(II)komplexe haben eine zur Farbstoffreduktion ausreichende Reduktionswirkung, die durch das bei einem bestimmten Molverhältnis Eisen (II) : Eisen(III) in alkalischer Lösung meßbare (negative) Redoxpotential beschrieben wird. Zahlreiche dieser Eisen(II)komplexe, z.B. die Komplexe mit Triethanolamin, Bicin, Gluconsäure und Heptagluconsäure, weisen zudem den Vorteil auf, elektrochemisch regenerierbar zu sein und damit als Mediatoren bei einer elektrochemischen Reduktion von Farbstoffen sowie bei elektrochemischen Färbeverfahren eingesetzt werden zu können.
  • Dennoch weisen diese Eisenkomplexe spezifische Schwächen auf. So läßt sich die kathodische Reduktion bei Verwendung von Triethanolamin oder Bicin als Komplexbildner als diffusionskontrollierte Elektrodenreaktion mit hoher kathodischer Stromdichte durchführen, jedoch besitzen die entsprechenden Eisenkomplexe keine ausreichende Stabilität im schwächer basischen Bereich bei ph ≤ 11,5, was die Einsetzbarkeit dieser Komplexe als elektrochemisch regenerierbare Reduktionsmittel in Indigofärbebädern bei der Denimherstellung stark einschränkt. Eisenkomplexe mit Gluconat oder Heptagluconat weisen zwar sehr gute Komplexstabilität im pH-Bereich von 10 - 12 auf, jedoch lassen die mit diesen Komplexen erzielbaren kathodischen Stromdichten zu wünschen übrig, so daß entsprechend größere Elektrolysezellen eingesetzt werden müssen und/oder die Konzentration an Eisenkomplex erhöht werden muß, was für den Anwender im Hinblick auf Energiebedarf, Chemikalienverbrauch, Kosten und Abwasserbelastung nachteilig ist.
  • Aus textil praxis international, 47, Seite 44 - 49 (1992) und Journal of the Society of Dyers and Colourists, 113, Seite 135 - 144 (1997) ist es auch bekannt, Mischungen dieser Eisenkomplexe als Reduktionsmittel einzusetzen. So wird in dem erstgenannten Artikel eine Mischung von Eisen(II)sulfat, Triethanolamin und Citronensäure im Molverhältnis 1 : 12,4 : 0,02 als Reduktionsmittel zur analytischen Bestimmung von Indigo beschrieben. In dem letztgenannten Artikel wird eine Mischung von Eisen(III)sulfat, Triethanolamin und Natriumgluconat im Molverhältnis 1 (bezogen auf Eisen) : 6,3 : 0,04 als Mediator zum elektrochemischen Färben mit Indigo vorgeschlagen.
  • Aber auch bei diesen Mischungen sind die bei den Einzelkomplexen auftretenden Nachteile, insbesondere die mangelnde Stabilität bei niedrigeren pH-Werten, zu beobachten.
  • Der Erfindung lag daher die Aufgabe zugrunde, den genannten Nachteilen abzuhelfen und die Reduktion von Farbstoffen auf vorteilhafte, wirtschaftliche Weise zu ermöglichen.
  • Demgemäß wurden die eingangs definierten Mediatorsysteme gefunden.
  • Außerdem wurden ein Verfahren zur elektrochemischen Reduktion von Farbstoffen in alkalischem wäßrigen Medium sowie ein Verfahren zum Färben von cellulosehaltigem Textilmaterial mit Küpenfarbstoffen oder Schwefelfarbstoffen unter elektrochemischer Farbstoffreduktion in Gegenwart von Metallkomplexen als Mediatoren gefunden, welche dadurch gekennzeichnet sind, daß man die eingangs definierten Mediatorsysteme einsetzt.
  • Wesentlich bei den erfindungsgemäßen Mediatorsystemen ist, daß eine Kombination des Metallions mit den Komplexbildnern K1 und K2 vorliegt, in der das Molverhältnis K1 zu Metallion 0,1 : 1 bis 10 : 1, bevorzugt 0,5 : 1 bis 6 : 1, und das Molverhältnis K2 zu Metallion 0,1 : 1 bis 5 : 1, bevorzugt 0,5 : 1 bis 3 : 1, beträgt.
  • Die erfindungsgemäßen Mediatorsysteme sind durch Mischen der einzelnen Komponenten, die in Form ihrer wasserlöslichen Salze eingesetzt werden können, in alkalischem wäßrigen Medium erhältlich. Dabei wird das Metallion komplexiert, wobei sich in Abhängigkeit vom vorliegenden pH-Wert, der in der Regel etwa 10 bis 14 beträgt, der jeweils günstigste Komplex bevorzugt bildet.
  • Das Metallion M1 kann sowohl in nieder- als auch in höherwertiger Form zum Einsatz kommen. Beispielsweise können beim besonders bevorzugten Metall Eisen sowohl Eisen(II)- als auch Eisen (III) salze verwendet werden, die elektrochemisch problemlos zunächst zu Eisen(II) reduziert werden.
  • Als aminogruppenhaltige Komplexbildner K1 eignen sich erfindungsgemäß insbesondere aliphatische Amine mit mindestens zwei koordinationsfähigen Gruppen, die mindestens eine Hydroxylgruppe enthalten, in Wasser oder wäßrig/organischen Medien löslich bzw. mit Wasser oder den wäßrig/organischen Medien mischbar sind.
  • Die Komplexbildner K1 können zusätzlich Carboxylgruppen enthalten. Bevorzugte Komplexbildner K1 sind z.B. Alkoholamine, insbesondere Mono-, Di- und Trialkohol- (insbesondere -alkanol)amine, wie Triethanolamin und Triisopropanolamin, sowie Mono-, Di- und Polyhydroxyaminocarbonsäuren wie N,N-Bis (2-hydroxyethyl) glycin. Besonders bevorzugte Komplexbildner K1 sind Triisopropanolamin und vor allem Triethanolamin.
  • Selbstverständlich können Gemische der Komplexbildner K1 eingesetzt werden.
  • Als hydroxylgruppenhaltige, jedoch keine Aminogruppen enthaltende Komplexbildner K2 sind erfindungsgemäß insbesondere aliphatische Hydroxyverbindungen mit mindestens zwei koordinationsfähigen Gruppen geeignet, die ebenfalls in Wasser oder wäßrig/organischen Medien löslich bzw. mit Wasser oder den wäßrig/organischen Medien mischbar sind und die mehrere Hydroxylgruppen und/oder Aldehyd-, Keto- und/oder Carboxylgruppen enthalten können. Als Beispiele für bevorzugte Komplexbildner K2 seien im einzelnen genannt:
    • Di- und Polyalkohole wie Ethylenglykol, Diethylenglykol, Pentaerythrit, 2,5-Dihydroxy-1,4-dioxan, vor allem Zuckeralkohole wie Glycerin, Tetrite wie Erythrit, Pentite wie Xylit und Arabit, Hexite wie Mannit, Dulcit, Sorbit und Galactid;
    • Di- und Polyhydroxyaldehyde wie Glycerinaldehyd, Trioseredukton, vor allem Zucker (Aldosen) wie Mannose, Galactose und Glucose;
    • Di- und Polyhydroxyketone wie vor allem Zucker (Ketosen) wie Fructose;
    • Di- und Polysaccharide wie Saccharose, Maltose, Lactose, Cellubiose und Melasse;
    • Di- und Polyhydroxymonocarbonsäuren wie Glycerinsäure, vor allem von Zuckern abgeleitete Säuren wie Gluconsäure, Heptagluconsäure, Galactonsäure und Ascorbinsäure;
    • Di- und Polyhydroxydicarbonsäuren wie Äpfelsäure, vor allem Zuckersäuren wie Glucarsäuren, Mannarsäuren und Galactarsäure;
    • Hydroxytricarbonsäuren wie Citronensäure.
  • Besonders bevorzugte Komplexbildner K2 sind Citronensäure und vor allem die von Zuckern abgeleiteten Monocarbonsäuren, insbesondere Gluconsäure und Heptagluconsäure, sowie deren Salze, Ester und Lactone.
  • Selbstverständlich können auch Gemische der Komplexbildner K2 eingesetzt werden. Ein besonders geeignetes Beispiel hierfür ist ein Gemisch von Gluconsäure und Heptagluconsäure, vorzugsweise im Molverhältnis 0,1 : 1 bis 10 : 1, das auch bei höheren Temperaturen besonders stabile Eisenkomplexe ergibt.
  • Besonders bevorzugte erfindungsgemäße Mediatorsysteme enthalten als Metallion Eisen (II/III) ionen, als Komplexbildner K1 Triethanolamin und als Komplexbildner K2 Gluconsäure und/oder Heptagluconsäure.
  • Die besonderen Vorteile der erfindungsgemäßen Mediatorsysteme bestehen darin, daß eine elektrochemische Farbstoffreduktion bei niedriger Konzentration an niederwertigem Metallion und damit niedriger Konzentration an aktivem Komplex bei hoher kathodischer Stromdichte durchgeführt werden kann und gleichzeitig auch ein Komplexsystem vorliegt, das auch bei niedrigeren pH-Werten, in der Regel ≤ 10, stabil ist. Die erzielbaren Stromdichten und Komplexstabilitäten gehen dabei unerwarteterweise deutlich über die für eine Mischung der beiden Einzelsysteme (Metallion/K1 und Metallion/K2) erwarteten Resultate hinaus.
  • Zum Vergleich seien die mit Hilfe der cyclischen Voltametrie unter Verwendung einer hängenden Quecksilbertropfen-Elektrode bei einer Spannungsvorschubgeschwindigkeit von 200 mV/s für ein Mediatorsystem aus Eisenionen, Gluconationen und Triethanolamin bei einer NaOH-Konzentration von 0,175 mol/l ermittelten kathodischen Peakströme dargestellt.
    Messung Eisen Gluconat Triethanolamin pH Peakpotential Kath.
    Peakstrom
    Nr. mol/l mol/l mol/l mV mA
    1 0,010 0,020 0,060 12,9 -1010 43,0
    2 0,010 0,020 0,030 13,1 -1005 43,0
    3 0,010 0,020 0,010 12,9 -1000 38,6
    4 0,010 0,020 0,002 12,9 -1000 22,4
    V1 0,010 - 0,060 12,9 -1010 42,8
    V2 0,010 0,020 - 12,9 -1000 5,5
  • Die erfindungsgemäßen Mediatorsysteme eignen sich hervorragend zur elektrochemischen Reduktion von Farbstoffen.
  • Besondere Bedeutung hat das erfindungsgemäße Verfahren zur Reduktion von Küpenfarbstoffen und Schwefelfarbstoffen, wobei die Klassen der indigoiden Farbstoffe, der anthrachinoiden Farbstoffe und der Farbstoffe auf Basis höher kondensierter, aromatischer Ringsysteme sowie der Schwefel-Koch- und Schwefel-Backfarbstoffe genannt sein sollen. Als Beispiele für Küpenfarbstoffe sind Indigo und seine Bromderivate, 5,5'-Dibromindigo und 5,5',7,7'-Tetrabromindigo, und Thioindigo, Acylaminoanthrachinone, Anthrachinonazole, Anthrimide, Anthrimidcarbazole, Phthaloylacridone, Benzanthrone und Indanthrone sowie Pyrenchinone, Anthanthrone, Pyranthrone, Acedianthrone und Perylenderivate zu nennen. Beispiele für besonders wichtige Schwefelfarbstoffe sind C.I. Sulfur Black 1 und C.I. Leuco Sulfur Black 1 und Schwefelküpenfarbstoffe wie C.I. Vat Blue 43.
  • Bei dem erfindungsgemäßen Verfahren zur Reduktion des Farbstoffs wird üblicherweise als Höchstmenge annähernd die stöchiometrisch für die Farbstoffreduktion erforderliche Menge Mediator eingesetzt. Pro mol eines oxidierten Farbstoffs, der zwei Elektronen pro Molekül aufnimmt, um in die Leukoform überzugehen, werden also in der Regel, bezogen auf das redoxaktive, ein Elektron liefernde Metallion, 2 mol eines erfindungsgemäßen Mediatorsystems berechnet. Selbstverständlich kann diese Mediatormenge durch die elektrochemische Regeneration des Mediators gesenkt werden (beim Färben mit Küpenfarbstoffen, bezogen auf einen Liter Färbebad, in der Regel auf bis zu etwa 0,1 bis 1 mol reduzierter Mediator pro mol Farbstoff). Je größer der Unterschuß an Mediatorsystem ist, desto höhere Anforderungen sind an die Elektrolysezelle zu stellen.
  • Das erfindungsgemäße Reduktionsverfahren kann vorteilhaft Bestandteil des ebenfalls erfindungsgemäßen Verfahrens zum Färben von cellulosehaltigem Textilmaterial mit Küpen- und Schwefelfarbstoffen sein. Vorzugsweise gibt man den Farbstoff hierbei dem Färbebad in vorreduzierter Form, z.B. eine alkalische Lösung katalytisch reduzierten Indigos, zu und reduziert den während des Färbens durch Luftkontakt reoxidierten Anteil des Farbstoffs elektrochemisch mit Hilfe der erfindungsgemäßen Mediatorsysteme.
  • Das Färben an sich kann, wie in der eingangs genannten Literatur beschrieben, vorgenommen werden. Dabei kann nach allen bekannten kontinuierlichen und diskontinuierlichen Färbemethoden, z.B. nach dem Ausziehverfahren und dem Foulard-Verfahren, vorgegangen werden.
  • Abhängig vom jeweiligen Färbeverfahren und dem dabei verwendeten Färbeapparat ist der Luftzutritt unterschiedlich groß, und es sind teilweise erhebliche Mengen Mediatorsystem zum Abfangen des Luftsauerstoffs erforderlich. So ergibt sich z.B. beim Ausziehfärben mit Küpenfarbstoffen bei mittleren Farbtiefen ein zusätzlicher Bedarf von etwa 1 bis 10 mol reduzierter Mediator pro mol Farbstoff und beim Kontinuefärben mit Indigo von etwa 2 bis 10 mol reduzierter Mediator pro mol Indigo.
  • Die weiteren Verfahrensbedingungen, wie Art der Textilhilfsmittel, Einsatzmengen, Färbebedingungen, Art der Elektrolysezelle, Fertigstellen der Färbungen, können wie üblich und in der eingangs genannten Literatur beschrieben gewählt werden.
  • Nach dem erfindungsgemäßen Färbeverfahren können alle cellulosehaltigen Textilmaterialien vorteilhaft gefärbt werden. Beispielhaft seien genannt: Fasern aus Baumwolle, regenerierter Cellulose wie Viskose und Modal, und Bastfasern wie Flachs, Hanf und Jute. Als Aufmachungsformen seien z.B. Flocke, Band, Garn, Zwirn, Gewebe, Gestricke, Gewirke und konfektionierte Stücke aufgeführt. Maschinelle Formen können Packsysteme, Garnstrang, Spule, Kettbaum und Warenbaum sowie Stückware im Strang und breit sein.
  • Beispiele Garnfärbung Beispiel 1
  • 1,8 kg färbefertig vorbehandeltes Garn aus Cellulosefasern (mittlere Feinheit) wurden auf zwei Kreuzspulen in einem an eine Elektrolysezelle gekoppelten Garnfärbeapparat mit 18,2 g Indanthren® Brillantviolett 3B (C.I. Vat Violet 9) gefärbt.
  • Bei der Elektrolysezelle handelte es sich um eine Mehrkathodenzelle (10 Elektroden, 0,18 m2 Ansichtsfläche, Gesamtfläche 4,3 m2). Als Anolyt diente 2 gew.-%ige Natronlauge (entsprechend der geflossenen Ladungsmenge wurde 50 gew.-%ige Natronlauge ergänzt, um die Zellenspannung konstant zu halten). Die Trennung von Katholyt (Färbebad) und Anolyt erfolgte durch eine Kationenaustauschermembran. Als Kathode wurde ein Edelstahlsiebgewebe verwendet, als Anode diente eine mit Platinmischoxid beschichtete Titanelektrode.
  • Beim Färben wurde wie folgt vorgegangen:
    180 l eines Färbebads der Zusammensetzung
    0,015 mol/l Eisen (III) chlorid (40 gew.-%ige wäßrige Lösung; 4,3 ml/l)
    0,068 mol/l Triethanolamin (85 gew.-%ige wäßrige Lösung; 12 g/l)
    0,005 mol/l Natriumgluconat (99%ig; 1 g/l)
    0,37 mol/l Natronlauge (50 gew.-%ige wäßrige Lösung; 14,8 g/l)
    1 g/l eines handelsüblichen Netzmittels
    1,2 g/l eines handelsüblichen Dispergiermittels
    0,7 g/l eines handelsüblichen Wasserkorrekturmittels
    zirkulierten durch die Garnspulen (30 1/kg min) und die Elektrolysezelle (100 l/min) und wurden vor Färbebeginn reduziert.
  • Durch kathodische Reduktion mit einer Stromstärke von 45 A wurde zuerst der Sauerstoff aus dem Färbebad entfernt. Nach Erreichen eines Potentials von -650 mV wurde der Zellenstrom auf etwa 2 A abgesenkt, um das Färbebadpotential unter dem Leukopotential des Farbstoffs zu halten.
  • Nach Erreichen einer Färbebadtemperatur von 80°C wurde der Farbstoff zugegeben. Nach einer Pigmentierzeit von 10 min bei einem Redoxpotential von etwa -700 bis -750 mV wurde der Zellenstrom auf 9 A erhöht, um den Farbstoff durch indirekte Elektrolyse gleichmäßig in seine reduzierte Form zu überführen. Das Redoxpotential stieg dabei innerhalb von 30 min auf -920 mV und wurde dann durch Regelung des Zellenstroms auf einen Wert zwischen -930 und -940 mV stabilisiert. Unter diesen Bedingungen wurde weitere 30 min gefärbt. Währenddessen wurde der Eisen(II)komplex laufend elektrochemisch regeneriert.
  • Die Fertigstellung der Färbung erfolgte in üblicher Weise durch Oxidieren, Spülen, Seifen und Neutralisieren.
  • Das Färbeergebnis entsprach in Farbton, Farbtiefe und Egalität dem unter gleichen Bedingungen mit einem herkömmlichen Reduktionsmittel erhaltenen Ergebnis.
  • Beispiel 2
  • 3,6 kg färbefertig vorbehandeltes Garn aus Cellulosefasern (mittlere Feinheit) wurden auf vier Kreuzspulen in dem Garnfärbeapparat aus Beispiel 1 mit 18,2 g Indanthren Brillantviolett 3B (C.I. Vat Violet 9) gefärbt.
  • Beim Färben wurde wie folgt vorgegangen:
    180 l eines Färbebads der Zusammensetzung
    0,040 mol/l Eisen(III)chlorid (40 gew.-%ige wäßrige Lösung; 11,5 ml/l)
    0,068 mol/l Triethanolamin (85 gew.-%ige wäßrige Lösung; 12 g/l)
    0,031 mol/l Natriumgluconat (99%ig; 6,8 g/l)
    0,5 mol/l Natronlauge (50 gew.-%ige wäßrige Lösung; 20 g/l)
    1 g/l eines handelsüblichen Egalisierhilfsmittels
    1 g/l eines handelsüblichen Netzmittels
    1 g/l eines handelsüblichen Dispergiermittels
    0,5 g/l eines handelsüblichen Wasserkorrekturmittels
    zirkulierten durch die Garnspulen (30 1/kg min) und die Elektrolysezelle (100 l/min) und wurden vor Färbebeginn reduziert.
  • Durch kathodische Reduktion mit einer Stromstärke von 45 A wurde zuerst der Sauerstoff aus dem Färbebad entfernt. Nach Erreichen eines Potentials von -700 mV wurde der Zellenstrom auf etwa 1 A abgesenkt, um das Färbebadpotential unter dem Leukopotential des Farbstoffs zu halten.
  • Nach Erreichen einer Färbebadtemperatur von 80°C wurde der Farbstoff zugegeben. Nach einer Pigmentierzeit von 30 min bei einem Redoxpotential von etwa -765 bis -780 mV wurde der Zellenstrom auf 30 A erhöht, um den Farbstoff durch indirekte Elektrolyse gleichmäßig in seine reduzierte Form zu überführen. Das Redoxpotential stieg dabei innerhalb von 20 min auf -920 mV und wurde dann durch Regelung des Zellenstroms auf einen Wert zwischen - 930 und -940 mV stabilisiert. Unter diesen Bedingungen wurde weitere 40 min gefärbt. Währenddessen wurde der Eisen(II)komplex laufend elektrochemisch regeneriert.
  • Die Fertigstellung der Färbung erfolgte in üblicher Weise durch Oxidieren, Spülen, Seifen und Neutralisieren.
  • Das Färbeergebnis entsprach in Farbton, Farbtiefe und Egalität dem unter gleichen Bedingungen mit einem herkömmlichen Reduktionsmittel erhaltenen Ergebnis.
  • Beispiel 3
  • 3,6 kg färbefertig vorbehandeltes Garn aus Cellulosefasern (mittlere Feinheit) wurden auf vier Kreuzspulen in dem Garnfärbeapparat aus Beispiel 1 mit einer Farbstoffmischung aus 247,1 g Indanthren Direktschwarz 5589, 85,3 g Indanthren Marineblau G (C.I. Vat Blue 16), 64,9 g Indanthren Orange RRTS (C.I. Vat Orange 2) und 17,2 g Indanthren Olivgrün B (C.I. Vat Green 3) gefärbt.
  • Beim Färben wurde wie folgt vorgegangen:
    180 l eines Färbebads der Zusammensetzung
    0,024 mol/l Eisen(III)chlorid (40 gew.-%ige wäßrige Lösung; 6,8 ml/1)
    0,051 mol/l Triethanolamin (85 gew.-%ige wäßrige Lösung; 9 g/l)
    0,017 mol/l Natriumgluconat (99%ig; 3,7 g/l)
    0,34 mol/l Natronlauge (50 gew.-%ige wäßrige Lösung; 13,7 g/l)
    1 g/l eines handelsüblichen Egalisierhilfsmittels
    1 g/l eines handelsüblichen Netzmittels
    1 g/l eines handelsüblichen Dispergiermittels
    0,5 g/l eines handelsüblichen Wasserkorrekturmittels
    zirkulierten durch die Garnspulen (30 1/kg min) und die Elektrolysezelle (100 1/min) und wurden vor Färbebeginn reduziert.
  • Durch kathodische Reduktion mit einer Stromstärke von 40 A wurde zuerst der Sauerstoff aus dem Färbebad entfernt. Nach Erreichen eines Potentials von -670 mV wurde der Zellenstrom auf etwa 1 A abgesenkt, um das Färbebadpotential unter dem Leukopotential der Farbstoffe zu halten.
  • Nach Erreichen einer Färbebadtemperatur von 80°C wurde die Farbstoffmischung zugegeben. Nach einer Pigmentierzeit von 30 min bei einem Redoxpotential von etwa -765 bis -780 mV wurde der Zellenstrom auf 40 A erhöht, um den Farbstoff durch indirekte Elektrolyse gleichmäßig in seine reduzierte Form zu überführen. Das Redoxpotential stieg dabei innerhalb von 60 min auf -920 mV und wurde unter Konstanthalten des Zellenstroms innerhalb von 40 min bis auf -950 erhöht. Währenddessen wurde der Eisen(II)komplex laufend elektrochemisch regeneriert.
  • Die Fertigstellung der Färbung erfolgte in üblicher Weise durch Oxidieren, Spülen, Seifen und Neutralisieren.
  • Das Färbeergebnis entsprach in Farbton, Farbtiefe und Egalität dem unter gleichen Bedingungen mit einem herkömmlichen Reduktionsmittel erhaltenen Ergebnis.
  • Beispiel 4
  • 1,8 kg färbefertig vorbehandeltes Garn aus Cellulosefasern (mittlere Feinheit) wurden auf zwei Kreuzspulen in dem Garnfärbeapparat aus Beispiel 1 mit 49,7 g Indanthren Blau BC (C.I. Vat Blue 6) gefärbt.
  • Beim Färben wurde wie folgt vorgegangen:
    180 l eines Färbebads der Zusammensetzung
    0,010 mol/l Eisen(III)chlorid (40 gew.-%ige wäßrige Lösung; 2,8 ml/l)
    0,068 mol/l Triethanolamin (85 gew.-%ige wäßrige Lösung; 12 g/l)
    0,005 mol/l Natriumgluconat (99%ig; 1 g/l)
    0,37 mol/l Natronlauge (50 gew.-%ige wäßrige Lösung; 14,8 g/l)
    0,25 g/l eines handelsüblichen Dispergiermittels
    zirkulierten durch die Garnspulen (30 1/kg min) und die Elektrolysezelle (100 1/min) und wurden vor Färbebeginn reduziert.
  • Durch kathodische Reduktion mit einer Stromstärke von 30 A wurde zuerst der Sauerstoff aus dem Färbebad entfernt. Nach Erreichen einer Färbebadtemperatur von 60°C und eines Potentials von -910 mV wurde der Farbstoff innerhalb von 10 min zugegeben. Das Redoxpotential wurde dabei zwischen -910 und -920 mV gehalten. Nach vollständiger Farbstoffzugabe wurde das Redoxpotential durch Regelung des Zellenstroms zwischen -920 und -940 mV stabilisiert. Unter diesen Bedingungen wurde weitere 35 min gefärbt. Währenddessen wurde der Eisen(II)komplex laufend elektrochemisch regeneriert.
  • Die Fertigstellung der Färbung erfolgte in üblicher Weise durch Oxidieren, Spülen, Seifen und Neutralisieren.
  • Das Färbeergebnis entsprach in Farbton, Farbtiefe und Egalität dem unter gleichen Bedingungen mit einem herkömmlichen Reduktionsmittel erhaltenen Ergebnis.

Claims (11)

  1. Mediatorsysteme, erhältlich durch Mischen eines oder mehrerer Salze eines Metalls, das mehrere Wertigkeitsstufen ausbilden kann, mit mindestens einem aminogruppenhaltigen Komplexbildner (K1) und mindestens einem hydroxylgruppenhaltigen, jedoch keine Aminogruppen enthaltenden Komplexbildner (K2) in alkalischem wäßrigen Medium, wobei die Komplexbildner als Salze vorliegen können und das Molverhältnis K1 zu Metallion 0,1 : 1 bis 10 : 1 und das Molverhältnis K2 zu Metallion 0,1 : 1 bis 5 : 1 beträgt.
  2. Mediatorsysteme nach Anspruch 1, die als Metallion Eisen(II)ionen und/oder Eisen(III)ionen enthalten.
  3. Mediatorsysteme nach Anspruch 1 oder 2, die als Komplexbildner K1 aliphatische Aminoverbindungen mit mindestens zwei koordinationsfähigen Gruppen enthalten, die mindestens eine Hydroxylgruppe enthalten.
  4. Mediatorsysteme nach den Ansprüchen 1 bis 3, die als Komplexbildner K1 Alkoholamine enthalten.
  5. Mediatorsysteme nach den Ansprüchen 1 bis 4, die als Komplexbildner K2 aliphatische Hydroxyverbindungen mit mindestens zwei koordinationsfähigen Gruppen enthalten, die mehrere Hydroxylgruppen und/oder Aldehyd-, Keto- und/oder Carboxylgruppen aufweisen können.
  6. Mediatorsysteme nach den Ansprüchen 1 bis 5, die als Komplexbildner K2 hydroxylgruppenhaltige aliphatische Carbonsäuren enthalten.
  7. Mediatorsysteme nach den Ansprüchen 1 bis 6, die als Metallion Eisen (II/III) ionen, als Komplexbildner K1 Triethanolamin und als Komplexbildner K2 Gluconsäure und/oder Heptagluconsäure enthalten.
  8. Verfahren zur elektrochemischen Reduktion von Farbstoffen in alkalischem wäßrigen Medium unter Verwendung von Metallkomplexen als Mediatoren, dadurch gekennzeichnet, daß man ein Mediatorsystem gemäß den Ansprüchen 1 bis 7 einsetzt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man es zur Reduktion von Küpenfarbstoffen und Schwefelfarbstoffen anwendet.
  10. Verfahren zum Färben von cellulosehaltigem Textilmaterial mit Küpenfarbstoffen oder Schwefelfarbstoffen unter elektrochemischer Farbstoffreduktion in Gegenwart von Metallkomplexen als Mediatoren, dadurch gekennzeichnet, daß man ein Mediatorsystem gemäß den Ansprüchen 1 bis 7 einsetzt.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß man den Farbstoff dem Färbebad in vorreduzierter Form zusetzt und den während des Färbens durch Luftkontakt reoxidierten Anteil des Farbstoffs elektrochemisch mit Hilfe des Mediatorsystems reduziert.
EP01911710A 2000-03-02 2001-03-01 Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen Expired - Lifetime EP1266070B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10010059 2000-03-02
DE10010059A DE10010059A1 (de) 2000-03-02 2000-03-02 Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen
PCT/EP2001/002308 WO2001065000A1 (de) 2000-03-02 2001-03-01 Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen

Publications (2)

Publication Number Publication Date
EP1266070A1 EP1266070A1 (de) 2002-12-18
EP1266070B1 true EP1266070B1 (de) 2008-12-03

Family

ID=7633163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01911710A Expired - Lifetime EP1266070B1 (de) 2000-03-02 2001-03-01 Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen

Country Status (12)

Country Link
US (1) US6814763B2 (de)
EP (1) EP1266070B1 (de)
JP (1) JP2003525363A (de)
KR (1) KR100683310B1 (de)
CN (1) CN1289748C (de)
AT (1) ATE416270T1 (de)
BR (1) BR0108831A (de)
DE (2) DE10010059A1 (de)
ES (1) ES2317891T3 (de)
HK (1) HK1053157B (de)
MX (1) MXPA02008539A (de)
WO (1) WO2001065000A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10161265A1 (de) * 2001-12-13 2003-06-26 Dystar Textilfarben Gmbh & Co Verfahren zur Farbveränderung von gefärbten textilen Substraten
DE10234825A1 (de) * 2002-07-31 2004-02-19 Dystar Textilfarben Gmbh & Co. Deutschland Kg Verfahren zum Färben mit Schwefel- und Schwefelküpenfarbstoffen
US8029511B2 (en) * 2004-03-22 2011-10-04 Disc Dynamics, Inc. Multi-stage biomaterial injection system for spinal implants
US20060265076A1 (en) * 2005-05-03 2006-11-23 Disc Dynamics, Inc. Catheter holder for spinal implant
CN102808339B (zh) * 2012-07-20 2014-05-14 濮阳宏业汇龙化工有限公司 一种激发态高效还原剂

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT398316B (de) * 1989-06-01 1994-11-25 Verein Zur Foerderung Der Fors Verfahren zur reduktion von farbstoffen
DE59107584D1 (de) * 1990-12-03 1996-04-25 Verein Zur Foerderung Der Fors Verfahren zur reduktion von textilfarbstoffen
DE4206929A1 (de) 1992-03-05 1993-09-09 Basf Ag Verfahren zum faerben oder bedrucken von cellulosehaltigem textilmaterial mit kuepenfarbstoffen
DE4230870A1 (de) * 1992-09-16 1994-03-17 Basf Ag Verfahren zum Färben und Bedrucken von textilen Materialien aus Cellulosefasern
TW251325B (de) 1993-03-30 1995-07-11 Basf Ag
DE4320867A1 (de) * 1993-06-24 1995-01-05 Basf Ag Verfahren zum Färben von cellulosehaltigen Textilmaterialien mit Küpenfarbstoffen oder Schwefelfarbstoffen
DE4320866A1 (de) 1993-06-24 1995-01-05 Basf Ag Verfahren zum Färben oder Bedrucken von cellulosehaltigen Textilmaterialien mit Küpenfarbstoffen oder Schwefelfarbstoffen
AT402946B (de) 1993-09-08 1997-09-25 Verein Zur Foerderung Der Fors Elektrolysezelle
DE19513839A1 (de) 1995-04-12 1996-10-17 Basf Ag Verfahren zur elektrochemischen Reduktion von Küpenfarbstoffen
DE19919746A1 (de) * 1999-04-29 2000-11-02 Basf Ag Verfahren zur Herstellung von wäßrig-alkalischen Lösungen reduzierter indigoider Farbstoffe

Also Published As

Publication number Publication date
DE50114544D1 (de) 2009-01-15
JP2003525363A (ja) 2003-08-26
DE10010059A1 (de) 2001-09-06
ATE416270T1 (de) 2008-12-15
US20030121112A1 (en) 2003-07-03
ES2317891T3 (es) 2009-05-01
CN1406299A (zh) 2003-03-26
KR100683310B1 (ko) 2007-02-15
MXPA02008539A (es) 2002-12-13
CN1289748C (zh) 2006-12-13
KR20020086596A (ko) 2002-11-18
HK1053157A1 (en) 2003-10-10
HK1053157B (zh) 2007-06-29
BR0108831A (pt) 2002-12-10
EP1266070A1 (de) 2002-12-18
WO2001065000A1 (de) 2001-09-07
US6814763B2 (en) 2004-11-09

Similar Documents

Publication Publication Date Title
EP0692042B1 (de) Verfahren zum färben von cellulosehaltigem textilmaterial mit hydriertem indigo
EP1177258B1 (de) Verfahren zur herstellung von wässrig-alkalischen lösungen reduzierter indigoider farbstoffe
EP1266070B1 (de) Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen
EP0364752B1 (de) Verfahren zum Färben von textilen Materialen aus Cellulosefasern
EP1266069B1 (de) Mediatorsysteme auf basis gemischter metallkomplexe zur reduktion von farbstoffen
EP0513291B1 (de) Verfahren zur reduktion von textilfarbstoffen
EP1527228B1 (de) Verfahren zum färben mit schwefel und schwefelküpenfarbstoffen
DE4230870A1 (de) Verfahren zum Färben und Bedrucken von textilen Materialien aus Cellulosefasern
WO1998024967A1 (de) Verfahren zur reduktion von schwefel- und küpenfarbstoffen
DE4320867A1 (de) Verfahren zum Färben von cellulosehaltigen Textilmaterialien mit Küpenfarbstoffen oder Schwefelfarbstoffen
DE4206929A1 (de) Verfahren zum faerben oder bedrucken von cellulosehaltigem textilmaterial mit kuepenfarbstoffen
EP0741777B1 (de) Bleichen von jeans
DE970073C (de) Verfahren zum Faerben mit Kuepenfarbstoffen
DE1444283A1 (de) Verfahren zum Faerben von Tierhaarprodukten
DE2052151A1 (de) Verfahren zur Färbung von sauremodifi zierten synthetischen Textilfasern
WO2007023132A2 (de) Farbstoffzubereitungen von indigoiden farbstoffen, von küpen- und schwefelfarbstoffen enthaltend anorganische und/oder organische elektrochemisch aktive mediatorsysteme sowie deren verwendung
DE4315873A1 (de) Verfahren zum Färben von cellulosehaltigem Textilmaterial mit katalytisch hydriertem Indigo
DEC0007072MA (de)
DE2555046A1 (de) Verfahren zur oxydativen nachbehandlung mit schwefelfarbstoffen gefaerbter oder bedruckter textilmaterialien
DE2434095A1 (de) Oxydative nachbehandlung von mit schwefelfarbstoffen gefaerbten bzw. bedruckten cellulosehaltigen textilmaterialien
DE1161845B (de) Verfahren zum Faerben von Gemischen von Acrylnitrilpolymerisatfasern mit mindestens 80 Gewichtsprozent Acrylnitril und 2 bis 10 Gewichtsprozent eines Vinylpyridins in polmerisierter Form und Wollfasern unter Reservierung der Wollfasern
DE4006642A1 (de) Verfahren zur kontrollierten herstellung der leukoform von kuepenfarbstoffen
DE829443B (de) Farbstoffpräparate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG

17Q First examination report despatched

Effective date: 20080613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50114544

Country of ref document: DE

Date of ref document: 20090115

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090400582

Country of ref document: GR

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2317891

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090504

BERE Be: lapsed

Owner name: DYSTAR TEXTILFARBEN G.M.B.H. & CO. DEUTSCHLAND KG

Effective date: 20090331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20090904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100414

Year of fee payment: 10

Ref country code: FR

Payment date: 20100415

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100310

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100329

Year of fee payment: 10

Ref country code: GB

Payment date: 20100401

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20100330

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20110311

Year of fee payment: 11

Ref country code: AT

Payment date: 20110310

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110314

Year of fee payment: 11

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081203

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114544

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111004

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110302

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 416270

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301