EP1200970A2 - Vielschichtvaristor niedriger kapazität - Google Patents

Vielschichtvaristor niedriger kapazität

Info

Publication number
EP1200970A2
EP1200970A2 EP00956063A EP00956063A EP1200970A2 EP 1200970 A2 EP1200970 A2 EP 1200970A2 EP 00956063 A EP00956063 A EP 00956063A EP 00956063 A EP00956063 A EP 00956063A EP 1200970 A2 EP1200970 A2 EP 1200970A2
Authority
EP
European Patent Office
Prior art keywords
ceramic body
multilayer
multilayer varistor
varistor
connections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00956063A
Other languages
English (en)
French (fr)
Other versions
EP1200970B1 (de
Inventor
Günther GREIER
Heinrich Zödl
Günter Engel
Reinhard Sperlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1200970A2 publication Critical patent/EP1200970A2/de
Application granted granted Critical
Publication of EP1200970B1 publication Critical patent/EP1200970B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores

Definitions

  • the present invention relates to a multilayer varistor of low capacitance with a ceramic body and two connections which are applied to the ceramic body at a distance from one another.
  • Low capacitance should be understood to mean a capacitance value that is in particular less than 10 pF.
  • spark gaps have been used for the electrostatic or ESD protection of high-frequency circuits and data lines, which can be implemented, for example, by two opposite ends of a conductor track. If an impermissibly high voltage occurs for a high-frequency circuit or data line to be protected, the spark gap ignites between the two opposite tips of the conductor track, so that this impermissibly high voltage is not applied to the high-frequency circuit or data line.
  • the spark gap is ignited in accordance with certain physical laws, in which the so-called gas discharge characteristic curve must be followed. This process takes a certain amount of time, so that the time required to ionize the spark gap alone is generally longer than the rise time of an ESD pulse, which can be of the order of 700 ps.
  • multilayer varistors are characterized by a considerably shorter response time: the response time of multilayer varistors is in the order of 500 ps, which is about a factor 2 lower than the response Talk time of spark gaps is. Nevertheless, multilayer varistors have not been used as ESD protection for high-frequency circuits or data lines, which is due to the laminar structure of the multilayer varistors. This laminar structure leads to parasitic capacitances, which makes it impossible to use multilayer varistors in high-frequency circuits with frequencies above 100 MHz. Such high-frequency circuits are, for example, high-frequency input circuits, such as antenna inputs, etc.
  • FIG. 13 to 15 show an existing multilayer varistor in perspective (cf. FIG. 13), in section (cf. FIG. 14) or in an overall view with internal electrodes guided outwards (cf. FIG. 15).
  • a ceramic body 1 is provided on two opposite sides with connections 8, from each of which internal connections 7 extend, which overlap in the ceramic body 1 at a distance from one another. Active zones 9 are formed in the overlap regions, while 9 isolation zones 11 are formed outside the overlap regions.
  • FIG. 15 shows an element of the multilayer varistor from FIG. 14: a layer of the ceramic body 1 is placed between two internal electrodes 7, which each form metallized surfaces 12 on this layer.
  • Such existing multilayer varistors are not very suitable as ESD protection for high-frequency circuits and data lines due to their capacitance.
  • this capacitance is determined by the area of the inner electrodes 7 or the connections 8, the number of layers of the ceramic body 1 between the inner electrodes 7, that is to say the number of active zones 9, and the number of active zones 9 - th operating voltage resulting thicknesses of the ceramic layers or active zones 9th
  • Multi-layer varistors hitherto produced in such technology have capacitances in the order of magnitude of at least 30 to 50 pF, which precludes the use of such multi-layer varistors for the ESD protection of sensitive antenna inputs, for example, despite its low response time.
  • This object is achieved according to the invention in the case of a multilayer varistor of low capacitance with a ceramic body and two connections which are applied to the ceramic body at a distance from one another in that the ceramic body is constructed using film technology with a multilayer structure.
  • the ceramic body is expediently provided with internal electrodes which emanate from the two connections in a comb-like manner, so that the ends of the electrodes lie opposite one another in the direction between the two connections with a gap (or spacing).
  • the inner electrodes are arranged in particular in a comb-like manner, so that the electrodes no longer overlap from the two connections, but rather lie opposite one another with their ends.
  • the low capacitance of the multilayer varistor is determined via the distance between these opposite ends of the electrodes, the so-called “gap”. If the gap remains the same or almost the same, the capacity can be further reduced by arranging the gaps in series. In the limit case, even the varistor voltage can be Increase further and decrease the capacity if internal electrodes are completely dispensed with.
  • the influence of the connections or external termination on the varistor voltage and the capacitance in this limit case can be eliminated by applying an additional passivation layer, so that with such an embodiment the maximum varistor voltage for a given volume can be achieved with minimal capacitance.
  • the inner electrodes can be designed with different electrode lengths. It is also possible to shape the tips of the inner electrodes differently from one another.
  • the electrode spacing in the multilayer varistor according to the invention can be increased considerably, which leads to a corresponding reduction in the capacitance.
  • the direction of current flow in the multilayer varistor according to the invention is also changed compared to the existing multilayer varistor, and a drastic increase in the varistor voltage is thus made possible.
  • the current density profile can be positively influenced by the arrangement of the internal electrodes. It is thus possible to produce a multilayer varistor with a non-linear voltage / current characteristic curve, which is high-resistance at voltages of, for example, 300 V and above.
  • 1 is a basic representation of a multilayer varistor in perspective to determine the respective directions
  • 2 shows a sectional illustration of a multilayer varistor according to the invention with a comb-like inner electrode arrangement
  • Fig. 3 is a sectional view of an inventive
  • Fig. 4 is a sectional view of an inventive
  • Fig. 5 is a sectional view of an inventive
  • Fig. 6 is a sectional view of an inventive
  • Fig. 7 is a sectional view of an inventive
  • FIG. 8 shows a multilayer varistor with straight electrode tips similar to the embodiment of FIG. 2,
  • Fig. 10 shows a section DD through an inventive
  • FIG. 11 shows a section DD through an inventive
  • Fig. 12 shows a section DD through the invention
  • FIG. 1 schematically shows a multilayer varistor with a ceramic body of length 1, width b and height h, in which a current flows in the direction BB between two connections (not shown).
  • a direction CC or DD runs perpendicular to the direction BB.
  • FIGS. 2 to 8 show schematic sections BB of various exemplary embodiments of the multilayer varistor according to the invention
  • FIGS. 9 to 12 show schematic sections DD of the multilayer varistor according to the invention with different electrode tips.
  • These different electrode tips can be used especially in a multilayer varistor in accordance with the exemplary embodiments in FIGS. 2 and 8. However, it is also possible to provide such different electrode tips in the exemplary embodiments in FIGS. 3 to 5.
  • the multilayer varistor according to the invention is characterized by a multilayer structure in film technology, in which different layers with and without internal electrodes match. are laid differently and form the ceramic body 1, on the two ends of which in the direction BB (see FIG. 1), metallic connections 2, 3 made of aluminum or other materials are applied.
  • the connections 2, 3 can be applied, for example, by vapor deposition.
  • the second now shows a first exemplary embodiment of the multilayer varistor according to the invention with internal electrodes 4, 5 in a ceramic body 1.
  • the internal electrodes 4 are connected to the connection 2, while the internal electrodes 5 are connected to the connection 3.
  • the ends of the inner electrodes 4 are provided at a distance or "gap" d from the ends of the inner electrodes 5.
  • the inner electrodes 4, 5 are each arranged in a comb-like manner, so that the inner electrodes of the two connections 4, 5 lie opposite one another at the distance d.
  • the low capacitance of the multilayer varistor is determined by this distance or gap d.
  • the inner electrodes 4, 5 each have the same length. This need not be so. Rather, it is possible to design the inner electrodes 4, 5 with different lengths, as is provided in the exemplary embodiment in FIG. 3.
  • the inner electrodes located in the center of the ceramic body 1 have a greater length than the inner electrodes on the edge of the ceramic body 1.
  • the capacitance of the multilayer varistor can be further reduced by arranging these gaps in series, as is shown in the exemplary embodiment in FIG. 4.
  • the individual gaps between inner electrodes 10 also have the length d; the interior
  • electrodes 10 are interrupted several times in the interior of the ceramic body 1, so that only those internal electrodes 10 which adjoin the connections 2, 3 are connected to them, while the remaining internal electrodes are electrically separated from these connections and other internal electrodes, as shown in FIG Fig. 4 is shown.
  • a total of four gaps are provided between the inner electrodes 10. This need not necessarily be so: it is also possible to provide more than four or less than four gaps between the individual rows of internal electrodes 10, if necessary.
  • FIG. 5 shows a further exemplary embodiment of the multilayer varistor according to the invention, which is similar to the exemplary embodiment of FIG. 4 in that several rows of internal electrodes 10 likewise form a total of four gaps.
  • the inner electrodes 10 are arranged at an offset from one another. That is, the inner electrodes 10 of different rows are at a different level in the direction DD. Such a design of the internal electrodes 10 can further reduce the capacitance.
  • the varistor voltage can be increased further and the capacitance of the multilayer varistor can be reduced by completely dispensing with internal electrodes, as is shown in the exemplary embodiment in FIG. 6, in which only the connections 2, 3 are applied to the ceramic body 1 in a multilayer structure ,
  • What is essential to the invention is the increase in the electrode spacing by dispensing with internal electrodes or by using non-overlapping internal electrodes.
  • the resulting change in the direction of current flow in the ceramic body enables a significant increase in the varistor voltage for a given volume to be achieved.
  • the capacitance at this volume is greatly reduced, so that capacitance values below 10 pF can be achieved.
  • FIG. 8 shows an embodiment which is similar to the embodiment of FIG. 2 in that inner electrodes of the same length are provided. However, this need not necessarily be the case. Rather, it is also possible to provide inner electrodes of different lengths in the embodiment of FIG. 8, as is the case in the embodiment of FIG. 3.
  • the internal electrodes 4, 5 can have straight electrode tips (see FIG. 9), concave electrode tips (see FIG. 10), convex electrode tips (see FIG. 11) or “pointed” electrode tips (see FIG. 12) to be provided.
  • These different designs of the electrode tips can optionally also be used in the exemplary embodiments of FIGS. 4 and 5, so that here the internal electrodes 10 are to be designed in a similar manner to the internal electrodes 4, 5.
  • the course of the current density can be determined by the arrangement of the internal electrodes between the two connections 2, 3 can be influenced favorably, so that a component with a non-linear voltage / current characteristic curve can be produced as a result of the multilayer structure caused by the film technology, which is high-resistance at voltages of approximately 300 V.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Description

Beschreibung
Vielschichtvaristor niedriger Kapazität
Die vorliegende Erfindung betrifft einen Vielschichtvaristor niedriger Kapazität mit einem Keramikkörper und zwei Anschlüssen, die im Abstand voneinander auf dem Keramikkörper aufgebracht sind. Unter "niedriger Kapazität" soll dabei ein Kapazitätswert verstanden werden, der insbesondere kleiner als 10 pF ist.
Bisher werden zum elektrostatischen bzw. ESD-Schutz von Hochfrequenzschaltungen und Datenleitungen bevorzugt Funkenstrek- ken eingesetzt, die beispielsweise durch zwei einander gegen- überliegende Spitzen einer Leiterbahn realisiert werden können. Bei Auftreten einer für eine zu schützende Hochfrequenzschaltung oder Datenleitung unzulässig hohen Spannung zündet die Funkenstrecke zwischen den beiden gegenüberliegenden Spitzen der Leiterbahn, so daß diese unzulässig hohe Spannung nicht an der Hochfrequenzschaltung bzw. Datenleitung anliegt.
Das Zünden der Funkenstrecke läuft entsprechend bestimmten physikalischen Gesetzen ab, bei denen speziell die sogenannte Gasentladungskennlinie durchlaufen werden muß. Dieser Vorgang erfordert eine bestimmte Zeitdauer, so daß allein die Zeit, die zum Ionisieren der Funkenstrecke benötigt wird, in der Regel länger als die Anstiegszeit eines ESD-Impulses ist, welche in der Größenordnung von 700 ps liegen kann.
Dies bedeutet zusammenfassend, daß Funkenstrecken infolge ihrer Trägheit als ESD-Schutz von Hochfrequenzschaltungen oder Datenleitungen mit Nachteilen behaftet sind.
Vielschichtvaristoren zeichnen sich gegenüber Funkenstrecken durch eine erheblich kürzere Ansprechzeit aus: so liegt die Ansprechzeit von Vielschichtvaristoren in der Größenordnung von 500 ps, was um etwa einen Faktor 2 niedriger als die An- Sprechzeit von Funkenstrecken ist. Dennoch werden bisher Vielschichtvaristoren als ESD-Schutz von Hochfrequenzschaltungen bzw. Datenleitungen nicht eingesetzt, was auf den laminaren Aufbau der Vielschichtvaristoren zurückzuführen ist. Dieser laminare Aufbau führt nämlich zu parasitären Kapazitäten, welche den Einsatz von Vielschichtvaristoren in Hochfrequenzschaltungen mit Frequenzen über 100 MHz nicht möglich macht. Solche Hochfrequenzschaltungen sind beispielsweise hochfrequente Eingangsschaltungen, wie Antenneneingänge usw.
Die Fig. 13 bis 15 zeigen einen bestehenden Vielschichtvaristor in Perspektive (vgl. Fig. 13), im Schnitt (vgl. Fig. 14) bzw. in einer Gesamtdarstellung mit nach außen geführten Innenelektroden (vgl. Fig. 15).
Bei diesem Vielschichtvaristor ist ein Keramikkörper 1 an zwei gegenüberliegenden Seiten mit Anschlüssen 8 versehen, von denen jeweils Innenanschlüsse 7 ausgehen, die sich im Keramikkörper 1 im Abstand voneinander überlappen. In den Über- lappungsbereichen werden dabei aktive Zonen 9 gebildet, während außerhalb der Überlappungsbereiche 9 Isolationszonen 11 entstehen.
Fig. 15 zeigt ein Element des Vielschichtvaristors von Fig. 14: eine Schicht des Keramikkörpers 1 ist zwischen zwei Innenelektroden 7 gelegt, welche auf dieser Schicht jeweils metallisierte Oberflächen 12 bilden.
Derartige bestehende Vielschichtvaristoren sind als ESD- Schutz von Hochfrequenzschaltungen und Datenleitungen infolge ihrer Kapazität wenig geeignet. Diese Kapazität wird bei einem gegebenen Keramikmaterial mit einer festgelegten Dielektrizitätskonstanten ε bestimmt von der Fläche der Innenelektroden 7 bzw. der Anschlüsse 8, der Anzahl der Schichten des Keramikkörpers 1 zwischen den Innenelektroden 7, also der Anzahl der aktiven Zonen 9 und der sich aufgrund der gewünsch- ten Betriebsspannung ergebenden Dicken der Keramikschichten bzw. aktiven Zonen 9.
Bisher in derartiger Technologie hergestellte Vielschichtvaristoren haben Kapazitäten in der Größenordnung von wenigstens 30 bis 50 pF, was den Einsatz solcher Vielschichtvaristoren für den ESD-Schutz von beispielsweise empfindlichen Antenneneingängen trotz seiner niedrigen Ansprechzeit ausschließt .
Es ist daher Aufgabe der vorliegenden Erfindung, einen Vielschichtvaristor zu schaffen, der sich durch eine derart niedrige Kapazität auszeichnet, daß er ohne weiteres zum ESD- Schutz bei Hochfrequenzschaltungen, wie insbesondere Anten- neneingängen, verwendet werden kann.
Diese Aufgabe wird bei einem Vielschichtvaristor niedriger Kapazität mit einem Keramikkörper und zwei Anschlüssen, die im Abstand voneinander auf dem Keramikkörper aufgebracht sind, erfindungsgemäß dadurch gelöst, daß der Keramikkörper in Folientechnologie mit Vielschichtstruktur aufgebaut ist. Zweckmäßigerweise ist dabei der Keramikkörper mit Innenelektroden versehen, die kammartig von den beiden Anschlüssen ausgehen, so daß sich in der Richtung zwischen den beiden An- Schlüssen die Enden der Elektroden mit einem Gap (bzw. Abstand) gegenüberliegen.
Bei dem erfindungsgemäßen Vielschichtvaristor werden also die Innenelektroden insbesondere kammartig angeordnet, so daß sich die Elektroden von den beiden Anschlüssen nicht mehr überlappen, sondern vielmehr einander mit ihren Enden gegenüberliegen. Über den Abstand dieser sich gegenüberliegenden Enden der Elektroden, das sogenannte "Gap", wird die damit niedrige Kapazität des Vielschichtvaristors festgelegt. Bei gleichbleibendem bzw. nahezu gleichbleibendem Gap kann durch serielle Anordnung der Gaps die Kapazität weiter reduziert werden. Im Grenzfall läßt sich sogar die Varistorspannung weiter erhöhen und die Kapazität verkleinern, wenn auf Innenelektroden vollständig verzichtet wird. Der in diesem Grenzfall vorhandene Einfluß der Anschlüsse bzw. Außentermi- nierung auf die Varistorspannung und die Kapazität läßt sich durch das Aufbringen einer zusätzlichen Passivierungsschicht eliminieren, so daß mit einem solchen Ausführungsbeispiel die für ein gegebenes Volumen maximale Varistorspannung bei minimaler Kapazität erzielt werden kann.
Die Innenelektroden können mit unterschiedlicher Elektrodenlänge gestaltet werden. Außerdem ist es möglich, die Spitzen der Innenelektroden unterschiedlich voneinander auszuformen.
Durch sich nicht überlappende Innenelektroden läßt sich bei dem erfindungsgemäßen Vielschichtvaristor der Elektrodenabstand erheblich vergrößern, was zu einer entsprechenden Reduzierung der Kapazität führt. Infolge der sich gegenüberliegenden Innenelektroden wird auch die Stromdurchflußrichtung bei dem erfindungsgemäßen Vielschichtvaristor gegenüber dem bestehenden Vielschichtvaristor verändert, und es wird so eine drastische Erhöhung der Varistorspannung ermöglicht.
Versuche der Erfinder haben ergeben, daß bei dem erfindungs- gemäßen Vielschichtvaristor durch die angegebene Anordnung der Innenelektroden der Stromdichteverlauf positiv beeinflußt werden kann. Es ist somit möglich, einen Vielschichtvaristor mit nichtlinearer Spannungs/Strom-Kennlinie herzustellen, der bei Spannungen von beispielsweise 300 V und darüber hochohmig ist .
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine prinzipielle Darstellung eines Vielschicht- varistors in Perspektive zur Festlegung der jeweiligen Richtungen, Fig. 2 eine Schnittdarstellung eines erfindungsgemäßen Vielschichtvaristors mit kammartiger Innenelek- trodenanordnung,
Fig. 3 eine Schnittdarstellung eines erfindungsgemäßen
Vielschichtvaristors mit kammartiger Innenelek- trodenanordnung mit unterschiedlicher Elektrodenlänge,
Fig. 4 eine Schnittdarstellung eines erfindungsgemäßen
Vielschichtvaristors mit kammartiger Innenelek- trodenanordnung mit serieller Ausführung von Gaps,
Fig. 5 eine Schnittdarstellung eines erfindungsgemäßen
Vielschichtvaristors mit kammartiger Innenelek- trodenanordnung mit serieller Ausführung von Gaps und Versatz der Innenelektroden zueinander,
Fig. 6 eine Schnittdarstellung eines erfindungsgemäßen
Vielschichtvaristors ohne Innenelektroden,
Fig. 7 eine Schnittdarstellung eines erfindungsgemäßen
Vielschichtvaristors ohne Innenelektroden mit ei- ner auf dem Keramikkόrper aufgetragenen Passivierungsschicht,
Fig. 8 einen zu dem Ausführungsbeispiel von Fig. 2 ähnlichen Vielschichtvaristor mit geraden Elektro- denspitzen,
Fig. 9 einen Schnitt DD durch den Vielschichtvaristor von Fig. 8,
Fig. 10 einen Schnitt DD durch einen erfindungsgemäßen
Vielschichtvaristor mit konkaven Elektrodenspitzen, Fig. 11 einen Schnitt DD durch einen erfindungsgemäßen
Vielschichtvaristor mit konvexen Elektrodenspitzen,
Fig. 12 einen Schnitt DD durch den erfindungsgemäßen
Vielschichtvaristor mit spitzen Elektrodenspitzen und
Fig. 13-15 Darstellungen zur Erläuterung eines bestehenden
Vielschichtvaristors .
Die Fig. 13 bis 15 sind bereits eingangs erläutert worden.
In den Figuren sind einander entsprechende Bauteile mit den gleichen Bezugszeichen versehen.
Fig. 1 zeigt schematisch einen Vielschichtvaristor mit einem Keramikkörper einer Länge 1, einer Breite b und einer Höhe h, bei dem ein Strom in Richtung BB zwischen zwei (nicht dargestellten) Anschlüssen fließt. Eine Richtung CC bzw. DD verläuft senkrecht zu der Richtung BB .
Die Fig. 2 bis 8 zeigen schematische Schnitte BB verschiede- ner Ausführungsbeispiele des erfindungsgemäßen Vielschichtvaristors, während in den Fig. 9 bis 12 schematische Schnitte DD des erfindungsgemäßen Vielschichtvaristors mit unterschiedlichen Elektrodenspitzen dargestellt sind. Diese unterschiedlichen Elektrodenspitzen können speziell bei einem Vielschichtvaristor entsprechend den Ausführungsbeispielen der Fig. 2 und 8 angewandt werden. Jedoch ist es auch möglich, solche unterschiedlichen Elektrodenspitzen bei den Ausführungsbeispielen der Fig. 3 bis 5 vorzusehen.
Der erfindungsgemäße Vielschichtvaristor zeichnet sich durch einen Vielschichtaufbau in Folientechnologie aus, bei dem verschiedene Schichten mit und ohne Innenelektroden überein- ander gelegt sind und den Keramikkörper 1 bilden, auf dessen beide Enden in Richtung BB (vgl. Fig. 1) metallische Anschlüsse 2, 3 aus Aluminium oder auch anderen Materialien aufgebracht sind. Das Auftragen der Anschlüsse 2, 3 kann bei- spielsweise durch Aufdampfen erfolgen.
Fig. 2 zeigt nun ein erstes Ausführungsbeispiel des erfindungsgemäßen Vielschichtvaristors mit Innenelektroden 4, 5 in einem Keramikkörper 1. Die Innenelektroden 4 sind dabei mit dem Anschluß 2 verbunden, während die Innenelektroden 5 in Verbindung mit dem Anschluß 3 stehen. Die Enden der Innenelektroden 4 sind dabei unter einem Abstand bzw. "Gap" d von den Enden der Innenelektroden 5 vorgesehen. Die Innenelektroden 4, 5 sind jeweils kammartig angeordnet, so daß sich die Innenelektroden von den beiden Anschlüssen 4, 5 unter dem Abstand d gegenüberliegen. Durch diesen Abstand bzw. Gap d wird die niedrige Kapazität des Vielschichtvaristors festgelegt.
Infolge dieser niedrigen Kapazität kann der erfindungsgemäße Vielschichtvaristor ohne weiteres als ESD-Schutz von beispielsweise empfindlichen Antenneneingängen in SMD-Bauweise (SMD = "surface mounted device") geeignet.
Bei dem Ausführungsbeispiel von Fig. 2 weisen die Innenelek- troden 4, 5 jeweils die gleiche Länge auf. Dies muß nicht notwendig so sein. Vielmehr ist es möglich, die Innenelektroden 4, 5 mit unterschiedlicher Länge auszugestalten, wie dies bei dem Ausführungsbeispiel von Fig. 3 vorgesehen ist. Hier haben die in der Mitte des Keramikkörpers 1 gelegenen Innen- elektroden eine größere Länge als Innenelektroden am Rand des Keramikkörpers 1.
Bei gleichbleibender Länge des Gaps d kann durch serielle Anordnung dieser Gaps die Kapazität des Vielschichtvaristors weiter reduziert werden, wie dies in dem Ausfuhrungsbeispiel von Fig. 4 gezeigt ist. Hier haben die einzelnen Gaps zwischen Innenelektroden 10 ebenfalls die Länge d; die Innen- elektroden 10 sind aber im Innern des Keramikkörpers 1 mehrmals unterbrochen, so daß lediglich diejenigen Innenelektroden 10, die an die Anschlüsse 2, 3 angrenzen, mit diesen verbunden sind, während die übrigen Innenelektroden elektrisch von diesen Anschlüssen und anderen Innenelektroden getrennt sind, wie dies in Fig. 4 dargestellt ist. Bei dem Ausführungsbeispiel von Fig. 4 sind insgesamt vier Gaps zwischen den Innenelektroden 10 vorgesehen. Dies braucht nicht notwendig so zu sein: vielmehr ist es auch möglich, gegebenenfalls mehr als vier oder weniger als vier Gaps zwischen den einzelnen Reihen von Innenelektroden 10 vorzusehen.
Fig. 5 zeigt ein weiteres Ausfuhrungsbeispiel des erfindungs- gemäßen Vielschichtvaristors, das dem Ausführungsbeispiel von Fig. 4 insoweit gleicht, als hier ebenfalls mehrere Reihen von Innenelektroden 10 insgesamt vier Gaps bilden. Im Unterschied vom Ausführungsbeispiel der Fig. 4 sind aber beim Aus- führungsbeispiel der Fig. 5 die Innenelektroden 10 unter einem Versatz zueinander angeordnet. Das heißt, in der Richtung DD liegen die Innenelektroden 10 verschiedener Reihen auf einem unterschiedlichen Niveau. Durch eine derartige Gestaltung der Innenelektroden 10 kann eine weitere Reduzierung der Kapazität erreicht werden.
Im Grenzfall läßt sich die Varistorspannung weiter erhöhen und die Kapazität des Vielschichtvaristors verkleinern, indem vollständig auf Innenelektroden verzichtet wird, wie dies bei dem Ausführungsbeispiel von Fig. 6 gezeigt ist, in welchem lediglich die Anschlüsse 2, 3 auf den Keramikkörper 1 in Vielschichtaufbau aufgetragen sind. Der bei einem derartigen
Aufbau vorhandene Einfluß der Außenterminierung durch die Anschlüsse 2, 3 auf die Varistorspannung und die Kapazität des Vielschichtvaristors kann durch Auftragen einer zusätzlichen Passivierungsschicht 6 eliminiert werden, wie dies in dem Ausführungsbeispiel von Fig. 7 gezeigt ist. Durch eine derartige Gestaltung läßt sich, bezogen auf ein Einheitsvolumen, eine maximale Varistorspannung bei einer minimalen Kapazität erzielen.
Wesentlich an der Erfindung ist die Vergrößerung des Elektro- denabstandes durch Verzicht auf Innenelektroden bzw. durch Verwendung von sich nicht überlappenden Innenelektroden. Durch die dadurch bedingte Änderung der Stromdurchflußrichtung im Keramikkörper läßt sich eine bedeutende Erhöhung der Varistorspannung bei gegebenem Volumen erzielen. Außerdem wird dabei die Kapazität bei diesem Volumen stark vermindert, so daß Kapazitätswerte unterhalb von 10 pF erreichbar sind.
Die Innenelektrodenspitzen können verschieden gestaltet werden, wie dies in den Ausführungsbeispielen der Fig. 9 bis 12 gezeigt sind, welche Schnitte in der Ebene BC bzw. Draufsichten aus der Richtung DD (vgl. Fig. 1) speziell auf die Vielschichtvaristoren der Fig. 2 und 8 veranschaulichen: Fig. 8 zeigt dabei ein Ausführungsbeispiel, das dem Ausführungsbeispiel von Fig. 2 insoweit gleicht, als Innenelektroden glei- eher Länge vorgesehen sind. Dies braucht aber nicht notwendig so zu sein. Vielmehr ist es auch möglich, bei dem Ausführungsbeispiel von Fig. 8 Innenelektroden unterschiedlicher Länge vorzusehen, wie dies bei dem Ausführungsbeispiel von Fig. 3 der Fall ist.
Es ist nun möglich, für die Innenelektroden 4, 5 gerade Elektrodenspitzen (vgl. Fig. 9), konkave Elektrodenspitzen (vgl. Fig. 10), konvexe Elektrodenspitzen (vgl. Fig. 11) oder "spitze" Elektrodenspitzen (vgl. Fig. 12) vorzusehen. Diese verschiedenen Gestaltungen der Elektrodenspitzen können gegebenenfalls auch bei den Ausfuhrungsbeispielen der Fig. 4 und 5 zur Anwendung gelangen, so daß hier die Innenelektroden 10 in ähnlicher Weise wie die Innenelektroden 4, 5 zu gestalten sind.
Bei dem erfindungsgemäßen Vielschichtvaristor kann durch die Anordnung der Innenelektroden der Verlauf der Stromdichte zwischen den beiden Anschlüssen 2, 3 günstig beeinflußt werden, so daß infolge des durch die Folientechnologie bedingten Vielschichtaufbaues ein Bauelement mit nichtlinearer Span- nungs/Strom-Kennlinie hergestellt werden kann, das bei Spannungen von etwa 300 V hochohmig ist.

Claims

Patentansprüche
1. Vielschichtvaristor niedriger Kapazität mit einem Keramikkörper (1), zwei Anschlüssen (2, 3), die im Abstand (d) von- einander auf dem Keramikkörper (1) aufgebracht sind, dadurch gekennzeichnet, daß der Keramikkörper (1) in Folientechnologie mit Vielschicht - Struktur aufgebaut ist.
2. Vielschichtvaristor nach Anspruch 1, dadurch gekennzeichnet, daß der Keramikkörper (1) mit Innenelektroden (4, 5; 10) versehen ist, die kammartig von den beiden Anschlüssen (2, 3) ausgehen, so daß sich in der Richtung zwischen den beiden An- Schlüssen (2, 3) die Enden der Innenelektroden (4, 5; 10) mit einem Gap gegenüberliegen.
3. Vielschichtvaristor nach Anspruch 2, dadurch gekennzeichnet, daß die Innenelektroden (4, 5; 10) mit unterschiedlicher Elektrodenlänge gestaltet sind.
4. Vielschichtvaristor nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Innenelektroden (4, 5; 10) mehrere Gaps in serieller Anordnung bilden.
5. Vielschichtvaristor nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Spitzen der Innenelektroden (4, 5; 10) unterschiedlich ausgeformt sind.
6. Vielschichtvaristor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß auf dem Keramikkörper eine Passivierungsschicht (6) vorgesehen ist.
EP00956063A 1999-07-06 2000-07-06 Vielschichtvaristor niedriger kapazität Expired - Lifetime EP1200970B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19931056A DE19931056B4 (de) 1999-07-06 1999-07-06 Vielschichtvaristor niedriger Kapazität
DE19931056 1999-07-06
PCT/DE2000/002204 WO2001003148A2 (de) 1999-07-06 2000-07-06 Vielschichtvaristor niedriger kapazität

Publications (2)

Publication Number Publication Date
EP1200970A2 true EP1200970A2 (de) 2002-05-02
EP1200970B1 EP1200970B1 (de) 2004-10-20

Family

ID=7913753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00956063A Expired - Lifetime EP1200970B1 (de) 1999-07-06 2000-07-06 Vielschichtvaristor niedriger kapazität

Country Status (6)

Country Link
US (1) US6608547B1 (de)
EP (1) EP1200970B1 (de)
JP (1) JP3863777B2 (de)
AT (1) ATE280429T1 (de)
DE (2) DE19931056B4 (de)
WO (1) WO2001003148A2 (de)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400477B2 (en) 1998-08-24 2008-07-15 Leviton Manufacturing Co., Inc. Method of distribution of a circuit interrupting device with reset lockout and reverse wiring protection
DE10064447C2 (de) * 2000-12-22 2003-01-02 Epcos Ag Elektrisches Vielschichtbauelement und Entstörschaltung mit dem Bauelement
DE10102201C2 (de) 2001-01-18 2003-05-08 Epcos Ag Elektrisches Schaltmodul, Schaltmodulanordnung und verwendung des Schaltmoduls und der Schaltmodulanordnung
DE10134751C1 (de) * 2001-07-17 2002-10-10 Epcos Ag Elektrokeramisches Bauelement
WO2003030386A1 (de) * 2001-09-28 2003-04-10 Epcos Ag Schaltungsanordnung, schaltmodul mit der schaltungsanordnung und verwendung des schaltmoduls
JP4008881B2 (ja) * 2001-09-28 2007-11-14 エプコス アクチエンゲゼルシャフト 回路装置、該回路装置を有するスイッチングモジュール、および該スイッチングモジュールの使用方法
US7492565B2 (en) 2001-09-28 2009-02-17 Epcos Ag Bandpass filter electrostatic discharge protection device
WO2003030383A1 (de) * 2001-09-28 2003-04-10 Epcos Ag Schaltungsanordnung, schaltmodul mit der schaltungsanordnung und verwendung des schaltmoduls
US20050059371A1 (en) * 2001-09-28 2005-03-17 Christian Block Circuit arrangement, switching module comprising said circuit arrangement and use of switching module
WO2003030384A1 (de) * 2001-09-28 2003-04-10 Epcos Ag Schaltungsanordnung, schaltmodul mit der schaltungsanordnung und verwendung des schaltmoduls
WO2003030385A1 (de) * 2001-09-28 2003-04-10 Epcos Ag Schaltungsanordnung, schaltmodul mit der schaltungsanordnung und verwendung des schaltmoduls
DE10202915A1 (de) * 2002-01-25 2003-08-21 Epcos Ag Elektrokeramisches Bauelement mit Innenelektroden
DE10235011A1 (de) * 2002-07-31 2004-02-26 Epcos Ag Elektrisches Vielschichtbauelement
DE10246098A1 (de) * 2002-10-02 2004-04-22 Epcos Ag Schaltungsanordnung
DE10313891A1 (de) 2003-03-27 2004-10-14 Epcos Ag Elektrisches Vielschichtbauelement
JP2005203479A (ja) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd 静電気対策部品
US20050212648A1 (en) * 2004-03-23 2005-09-29 Inpaq Technology Co., Ltd. Low-capacitance laminate varistor
DE102004031878B3 (de) * 2004-07-01 2005-10-06 Epcos Ag Elektrisches Mehrschichtbauelement mit zuverlässigem Lötkontakt
DE102004058410B4 (de) 2004-12-03 2021-02-18 Tdk Electronics Ag Vielschichtbauelement mit ESD-Schutzelementen
DE102005016590A1 (de) * 2005-04-11 2006-10-26 Epcos Ag Elektrisches Mehrschicht-Bauelement und Verfahren zur Herstellung eines Mehrschicht-Bauelements
DE102005028498B4 (de) * 2005-06-20 2015-01-22 Epcos Ag Elektrisches Vielschichtbauelement
DE102005050638B4 (de) 2005-10-20 2020-07-16 Tdk Electronics Ag Elektrisches Bauelement
DE102007020783A1 (de) 2007-05-03 2008-11-06 Epcos Ag Elektrisches Vielschichtbauelement
WO2008146514A1 (ja) * 2007-05-28 2008-12-04 Murata Manufacturing Co., Ltd. Esd保護デバイス
JP2008311362A (ja) * 2007-06-13 2008-12-25 Tdk Corp セラミック電子部品
DE102007031510A1 (de) 2007-07-06 2009-01-08 Epcos Ag Elektrisches Vielschichtbauelement
US7697252B2 (en) * 2007-08-15 2010-04-13 Leviton Manufacturing Company, Inc. Overvoltage device with enhanced surge suppression
CN101910856B (zh) 2008-01-29 2014-06-18 立维腾制造有限公司 自测试故障电路中断器装置和方法
DE102009010212B4 (de) * 2009-02-23 2017-12-07 Epcos Ag Elektrisches Vielschichtbauelement
DE102010036270B4 (de) 2010-09-03 2018-10-11 Epcos Ag Keramisches Bauelement und Verfahren zur Herstellung eines keramischen Bauelements
DE102010044856A1 (de) * 2010-09-09 2012-03-15 Epcos Ag Widerstandsbauelement und Verfahren zur Herstellung eines Widerstandsbauelements
US9786437B1 (en) 2010-12-10 2017-10-10 Presidio Components, Inc. High voltage fringe-effect capacitor
US8599522B2 (en) 2011-07-29 2013-12-03 Leviton Manufacturing Co., Inc. Circuit interrupter with improved surge suppression
DE102012101606A1 (de) * 2011-10-28 2013-05-02 Epcos Ag ESD-Schutzbauelement und Bauelement mit einem ESD-Schutzbauelement und einer LED
DE102013102686A1 (de) * 2013-03-15 2014-09-18 Epcos Ag Elektronisches Bauelement
US9759758B2 (en) 2014-04-25 2017-09-12 Leviton Manufacturing Co., Inc. Ground fault detector
DE102016100352A1 (de) * 2016-01-11 2017-07-13 Epcos Ag Bauelementträger mit ESD Schutzfunktion und Verfahren zur Herstellung
DE102016108604A1 (de) * 2016-05-10 2017-11-16 Epcos Ag Vielschichtbauelement und Verfahren zur Herstellung eines Vielschichtbauelements
KR102556495B1 (ko) 2018-03-05 2023-07-17 교세라 에이브이엑스 컴포넌츠 코포레이션 에너지 처리 용량이 향상된 케스케이드 바리스터
DE102018115085B4 (de) * 2018-06-22 2021-03-25 Tdk Electronics Ag Keramisches Vielschichtbauelement und Verfahren zur Herstellung eines keramischen Vielschichtbauelements
WO2020018651A1 (en) 2018-07-18 2020-01-23 Avx Corporation Varistor passivation layer and method of making the same
WO2020018746A1 (en) * 2018-07-18 2020-01-23 Hubbell Incorporated Voltage-dependent resistor device for protecting a plurality of conductors against a power surge

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857174A (en) 1973-09-27 1974-12-31 Gen Electric Method of making varistor with passivating coating
US4460623A (en) * 1981-11-02 1984-07-17 General Electric Company Method of varistor capacitance reduction by boron diffusion
EP0189087B1 (de) 1985-01-17 1988-06-22 Siemens Aktiengesellschaft Spannungsabhängiger elektrischer Widerstand (Varistor)
JP2800896B2 (ja) * 1987-09-07 1998-09-21 株式会社村田製作所 電圧非直線抵抗体
JP2833242B2 (ja) * 1991-03-12 1998-12-09 株式会社村田製作所 Ntcサーミスタ素子
JPH0634201A (ja) * 1992-07-17 1994-02-08 Matsushita Electric Ind Co Ltd 温風発生装置
JP3632860B2 (ja) * 1993-04-23 2005-03-23 Tdk株式会社 Ntcサーミスタ
DE4334059A1 (de) * 1993-10-06 1995-04-13 Philips Patentverwaltung Schichtverbundfolie, Mehrfarbensiebdruckverfahren zu ihrer Herstellung und ihre Verwendung
JPH0727140U (ja) * 1993-10-15 1995-05-19 住友金属工業株式会社 積層チップコンデンサ
JP3179313B2 (ja) * 1995-05-31 2001-06-25 松下電器産業株式会社 電子部品の製造方法
JPH08236308A (ja) * 1995-02-22 1996-09-13 Murata Mfg Co Ltd セラミック電子部品とその特性値調整方法
JPH09205005A (ja) * 1996-01-24 1997-08-05 Matsushita Electric Ind Co Ltd 電子部品とその製造方法
JPH1070012A (ja) * 1996-06-03 1998-03-10 Matsushita Electric Ind Co Ltd バリスタの製造方法
DE19634498C2 (de) 1996-08-26 1999-01-28 Siemens Matsushita Components Elektro-keramisches Bauelement und Verfahren zu seiner Herstellung
JPH10199709A (ja) * 1997-01-09 1998-07-31 Tdk Corp 積層型バリスタ
JPH10223408A (ja) * 1997-01-31 1998-08-21 Taiyo Yuden Co Ltd チップ状回路部品とその製造方法
JP3393524B2 (ja) * 1997-03-04 2003-04-07 株式会社村田製作所 Ntcサーミスタ素子
TW394961B (en) * 1997-03-20 2000-06-21 Ceratech Corp Low capacitance chip varistor and fabrication method thereof
JPH1131602A (ja) * 1997-07-10 1999-02-02 Tama Electric Co Ltd チップ部品
JPH11126704A (ja) * 1997-10-23 1999-05-11 Matsushita Electric Ind Co Ltd 積層型チップサーミスタ
JP2840834B2 (ja) 1997-12-22 1998-12-24 株式会社村田製作所 Ntcサーミスタ素子
JPH11191506A (ja) * 1997-12-25 1999-07-13 Murata Mfg Co Ltd 積層型バリスタ
JPH11204309A (ja) * 1998-01-09 1999-07-30 Tdk Corp 積層型バリスタ
JPH11273914A (ja) * 1998-03-26 1999-10-08 Murata Mfg Co Ltd 積層型バリスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0103148A2 *

Also Published As

Publication number Publication date
EP1200970B1 (de) 2004-10-20
DE50008343D1 (de) 2004-11-25
DE19931056B4 (de) 2005-05-19
DE19931056A1 (de) 2001-01-25
WO2001003148A3 (de) 2001-07-19
ATE280429T1 (de) 2004-11-15
WO2001003148A2 (de) 2001-01-11
US6608547B1 (en) 2003-08-19
JP2004507069A (ja) 2004-03-04
JP3863777B2 (ja) 2006-12-27

Similar Documents

Publication Publication Date Title
EP1200970B1 (de) Vielschichtvaristor niedriger kapazität
EP2143117B1 (de) Elektrisches vielschichtbauelement mit elektrisch nicht kontaktierter abschirmstruktur
EP2614508B1 (de) Widerstandsbauelement und verfahren zur herstellung eines widerstandsbauelements
DE3408216A1 (de) Spannungsbegrenzende durchfuehrung
EP1350257B1 (de) Elektrisches vielschichtbauelement und entstörschaltung mit dem bauelement
DE19628890A1 (de) Elektronikteile mit eingebauten Induktoren
DE2848508C2 (de) Flüssigkristall-Anzeigetafel
EP2756509B1 (de) Vielschichtbauelement und verfahren zu dessen herstellung
DE69823637T2 (de) Laminat-Varistor
EP1369880B1 (de) Elektrisches Vielschichtbauelement und Schaltungsanordnung
EP1880399B1 (de) Elektrisches durchführungsbauelement
DE4121888C2 (de) IC-Karte
EP1391898B1 (de) Elektrisches Vielschichtbauelement
EP1560235B1 (de) Elektrisches Vielschichtbauelement
EP1538641B1 (de) Elektrisches Bauelement und Schaltungsanordnung
DE102011014967B4 (de) Elektrisches Vielschichtbauelement
DE19958484A1 (de) Mehrfach-Filter
EP2465123B1 (de) Elektrisches vielschichtbauelement
DE10045195B4 (de) Thermistor und Verfahren zu dessen Herstellung
DE2439581C2 (de) Abgleichbarer Schichtkondensator
DE102016218478B4 (de) Symmetrischer Spannungsteiler
DE112020005494T5 (de) Varistor
DE2246573B2 (de) Abgleichbarer Schichtkondensator
WO2003009311A1 (de) Elektrokeramisches bauelement
DE4131623A1 (de) Bandleiterlaser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EPCOS AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50008343

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050131

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050706

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050706

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050721

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: *EPCOS A.G.

Effective date: 20050731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050320

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50008343

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50008343

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190724

Year of fee payment: 20

Ref country code: DE

Payment date: 20190723

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190725

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50008343

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200705