EP1200970B1 - Vielschichtvaristor niedriger kapazität - Google Patents

Vielschichtvaristor niedriger kapazität Download PDF

Info

Publication number
EP1200970B1
EP1200970B1 EP00956063A EP00956063A EP1200970B1 EP 1200970 B1 EP1200970 B1 EP 1200970B1 EP 00956063 A EP00956063 A EP 00956063A EP 00956063 A EP00956063 A EP 00956063A EP 1200970 B1 EP1200970 B1 EP 1200970B1
Authority
EP
European Patent Office
Prior art keywords
internal electrodes
multilayer varistor
ceramic body
multilayer
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00956063A
Other languages
English (en)
French (fr)
Other versions
EP1200970A2 (de
Inventor
Günther GREIER
Heinrich Zödl
Günter Engel
Reinhard Sperlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1200970A2 publication Critical patent/EP1200970A2/de
Application granted granted Critical
Publication of EP1200970B1 publication Critical patent/EP1200970B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores

Definitions

  • the present invention relates to a multilayer varistor low capacity with a ceramic body and two connections, spaced apart on the ceramic body are applied.
  • Under "low capacity” should be a Capacity value to be understood, in particular smaller than 10 pF.
  • the ignition of the spark gap runs according to certain physical laws, in which specifically the so-called Gas discharge characteristic must be traversed. This process requires a certain amount of time so that only the time which is needed to ionize the spark gap, in the Usually longer than the rise time of an ESD pulse, which may be on the order of 700 ps.
  • Multilayer varistors are distinguished from spark gaps by a considerably shorter response time: so is the Response time of multilayer varistors of the order of magnitude of 500 ps, which is about a factor of 2 lower than the response time of spark gaps is. Nevertheless, so far Multilayer varistors as ESD protection of high-frequency circuits or data lines not used, indicating the laminar Structure of the multilayer varistors is due. This laminar structure leads namely to parasitic capacitances, which the use of multilayer varistors in high-frequency circuits not possible with frequencies above 100 MHz power. Such high-frequency circuits are, for example high-frequency input circuits, such as antenna inputs, etc.
  • US 4,675,644 A describes a multilayer varistor with terminals and a ceramic body which is provided with internal electrodes, the comb of the both outlets go out.
  • FIGS. 13 to 15 show an existing multilayer varistor in perspective (see Fig. 13), in section (see Fig. 14) or in an overall view with outwardly guided internal electrodes (see Fig. 15).
  • this multilayer varistor is a ceramic body 1 on two opposite sides provided with terminals 8, from each of which internal connections 7 emanate, located in the ceramic body 1 overlap one another at a distance.
  • active zones 9 are formed while outside the overlapping areas 9 isolation zones 11 arise.
  • FIG. 15 shows an element of the multilayer varistor of FIG. 14: a layer of the ceramic body 1 is between two internal electrodes 7, which respectively metallized on this layer Form surfaces 12.
  • Such existing multilayer varistors are as ESD protection of high-frequency circuits and data lines due to their capacity little suitable.
  • This capacity is at a given ceramic material with a fixed dielectric constant ⁇ determined by the area of the internal electrodes 7 and the terminals 8, the number of layers of the Ceramic body 1 between the inner electrodes 7, that is, the number of the active zones 9 and due to the desired Operating voltage resulting thicknesses of the ceramic layers or active zones 9.
  • the Internal electrodes arranged in particular comb-like, so that The electrodes of the two terminals no longer overlap, but rather opposite each other with their ends.
  • the so-called "gap” becomes the one with it low capacitance of the multilayer varistor. at consistent or nearly constant gap can through Serial arrangement of the gaps further reduces the capacity become.
  • even the varistor voltage can be Continue to increase and reduce the capacity when on internal electrodes is completely dispensed with.
  • the one in this Borderline existing influence of connections or external termination on the varistor voltage and the capacity can be by applying an additional passivation layer eliminate, so that with such an embodiment, the for a given volume, maximum varistor voltage at minimum Capacity can be achieved.
  • the internal electrodes can with different electrode length be designed. Besides, it is possible the tips the internal electrodes form different from each other.
  • non-overlapping internal electrodes can be at the multilayer varistor according to the invention, the electrode spacing greatly increase, resulting in a corresponding reduction the capacity leads.
  • the opposite Internal electrodes also becomes the current flow direction in the multilayer varistor according to the invention over the existing multilayer varistor changed, and it will be such a drastically increase the varistor voltage allows.
  • FIGS. 13 to 15 have already been explained in the introduction.
  • Fig. 1 shows schematically a multilayer varistor with a Ceramic body of a length 1, a width b and a height h, in which a stream in direction BB between two (not shown) Connections flows.
  • a direction CC or DD runs perpendicular to the direction BB.
  • Figs. 2 to 8 show schematic sections BB different Embodiments of the multilayer varistor according to the invention, while in Figs. 9 to 12 are schematic sections DD of the multilayer varistor according to the invention with different Electrode tips are shown. These different ones Electrode tips can be used with a Dahl harshvaristor according to the embodiments Figs. 2 and 8 are applied. However, it is also possible such different electrode tips in the embodiments of Fig. 3 to 5 provide.
  • the multilayer varistor according to the invention is characterized a multilayer structure in film technology, in which different layers with and without internal electrodes on top of each other are laid and form the ceramic body 1, on the both ends in the direction BB (see Fig. 1) metallic connections 2, 3 made of aluminum or other materials are applied.
  • Fig. 2 shows a first embodiment of the invention Multilayer varistor with internal electrodes 4, 5 in a ceramic body 1.
  • the internal electrodes 4 are with connected to the terminal 2, while the internal electrodes 5 in Connection with the port 3 are.
  • the ends of the internal electrodes 4 are at a distance or "gap" d of the ends of the internal electrodes 5 are provided.
  • the internal electrodes 4, 5 are arranged comb-like, so that the Internal electrodes of the two terminals 4, 5 below the distance d are opposite. By this distance or gap d is set the low capacitance of the multilayer varistor.
  • the internal electrodes 4, 5 each have the same length. This does not have to necessary to be like this. Rather, it is possible to use the internal electrodes 4, 5 with different lengths to design, as this is provided in the embodiment of Fig. 3. Here have the internal electrodes located in the center of the ceramic body 1 a longer length than internal electrodes on the edge of the Ceramic body 1.
  • this gap is the capacity of the multilayer varistor be further reduced, as in the embodiment of Fig. 4 is shown.
  • the individual gaps between Internal electrodes 10 also the length d; the internal electrodes 10 but are several times inside the ceramic body 1 interrupted, so that only those internal electrodes 10, which are adjacent to the terminals 2, 3, connected to these while the remaining internal electrodes are electrical disconnected from these terminals and other internal electrodes are as shown in Fig. 4.
  • a total of four gaps between the inner electrodes 10 are provided. This is not necessary to be so: rather, it is also possible, if necessary more than four or less than four gaps between each Provide rows of internal electrodes 10.
  • Fig. 5 shows a further embodiment of the invention Dahlvaristors, the embodiment of Fig. 4 in this respect is similar, as here also several rows of internal electrodes 10 form a total of four gaps.
  • the inner electrodes 10 under a Offset from one another. That is, in the direction DD are the internal electrodes 10 of different rows on one different level. By such a design the internal electrodes 10 can further reduce the capacity be achieved.
  • the varistor voltage can be further increased and reduce the capacitance of the multilayer varistor by completely dispensed with internal electrodes, as with the embodiment of Fig. 6 is shown, in which only the terminals 2, 3 on the ceramic body 1 in Multilayer structure are applied.
  • the one with such Build up existing influence of the outdoor termination by the connections 2, 3 on the varistor voltage and the capacity of the Dahlvaristors can by applying an additional Passivation layer 6 are eliminated, as in the Embodiment of Fig. 7 is shown.
  • By such Design can be based on a unit volume, a maximum varistor voltage at a minimum capacitance achieve.
  • Essential to the invention is the enlargement of the electrode spacing by waiving internal electrodes or through Use of non-overlapping internal electrodes. Due to the consequent change in Strom malflußcardi in the ceramic body can be a significant increase in Achieve varistor voltage for a given volume. Furthermore while the capacity is greatly reduced at this volume, so that capacitance values below 10 pF can be achieved.
  • the inner electrode tips can be designed differently, as in the embodiments of FIGS. 9 to 12 are shown which sections in the plane BC and plan views from the direction DD (see Fig. 1) specifically to the Dahlvaristoren Figs. 2 and 8 illustrate: Fig. 8 shows an embodiment that the embodiment 2 of the same extent, as internal electrodes of the same Length are provided. But this is not necessary to be like that. Rather, it is also possible in the embodiment of Fig. 8 internal electrodes different Provide length, as in the embodiment of Fig. 3 is the case.
  • the Arrangement of internal electrodes the course of the current density between the two terminals 2, 3 are favorably influenced, so that as a result of due to the film technology Multilayer construction a component with non-linear voltage / current characteristic can be made at voltages of about 300 V is high impedance.

Description

Die vorliegende Erfindung betrifft einen Vielschichtvaristor niedriger Kapazität mit einem Keramikkörper und zwei Anschlüssen, die im Abstand voneinander auf dem Keramikkörper aufgebracht sind. Unter "niedriger Kapazität" soll dabei ein Kapazitätswert verstanden werden, der insbesondere kleiner als 10 pF ist.
Bisher werden zum elektrostatischen bzw. ESD-Schutz von Hochfrequenzschaltungen und Datenleitungen bevorzugt Funkenstrekken eingesetzt, die beispielsweise durch zwei einander gegenüberliegende Spitzen einer Leiterbahn realisiert werden können. Bei Auftreten einer für eine zu schützende Hochfrequenzschaltung oder Datenleitung unzulässig hohen Spannung zündet die Funkenstrecke zwischen den beiden gegenüberliegenden Spitzen der Leiterbahn, so daß diese unzulässig hohe Spannung nicht an der Hochfrequenzschaltung bzw. Datenleitung anliegt.
Das Zünden der Funkenstrecke läuft entsprechend bestimmten physikalischen Gesetzen ab, bei denen speziell die sogenannte Gasentladungskennlinie durchlaufen werden muß. Dieser Vorgang erfordert eine bestimmte Zeitdauer, so daß allein die Zeit, die zum Ionisieren der Funkenstrecke benötigt wird, in der Regel länger als die Anstiegszeit eines ESD-Impulses ist, welche in der Größenordnung von 700 ps liegen kann.
Dies bedeutet zusammenfassend, daß Funkenstrecken infolge ihrer Trägheit als ESD-Schutz von Hochfrequenzschaltungen oder Datenleitungen mit Nachteilen behaftet sind.
Vielschichtvaristoren zeichnen sich gegenüber Funkenstrecken durch eine erheblich kürzere Ansprechzeit aus: so liegt die Ansprechzeit von Vielschichtvaristoren in der Größenordnung von 500 ps, was um etwa einen Faktor 2 niedriger als die Ansprechzeit von Funkenstrecken ist. Dennoch werden bisher Vielschichtvaristoren als ESD-Schutz von Hochfrequenzschaltungen bzw. Datenleitungen nicht eingesetzt, was auf den laminaren Aufbau der Vielschichtvaristoren zurückzuführen ist. Dieser laminare Aufbau führt nämlich zu parasitären Kapazitäten, welche den Einsatz von Vielschichtvaristoren in Hochfrequenzschaltungen mit Frequenzen über 100 MHz nicht möglich macht. Solche Hochfrequenzschaltungen sind beispielsweise hochfrequente Eingangsschaltungen, wie Antenneneingänge usw.
US 4 675 644 A beschreibt einen Vielschichtvaristor mit Anschlüßen und einem Keramikkörper der mit Innenelektroden versehen ist, die kammartig von den beiden Anschlüßen ausgehen.
Die Fig. 13 bis 15 zeigen einen bestehenden Vielschichtvaristor in Perspektive (vgl. Fig. 13), im Schnitt (vgl. Fig. 14) bzw. in einer Gesamtdarstellung mit nach außen geführten Innenelektroden (vgl. Fig. 15).
Bei diesem Vielschichtvaristor ist ein Keramikkörper 1 an zwei gegenüberliegenden Seiten mit Anschlüssen 8 versehen, von denen jeweils Innenanschlüsse 7 ausgehen, die sich im Keramikkörper 1 im Abstand voneinander überlappen. In den Überlappungsbereichen werden dabei aktive Zonen 9 gebildet, während außerhalb der Überlappungsbereiche 9 Isolationszonen 11 entstehen.
Fig. 15 zeigt ein Element des Vielschichtvaristors von Fig. 14: eine Schicht des Keramikkörpers 1 ist zwischen zwei Innenelektroden 7 gelegt, welche auf dieser Schicht jeweils metallisierte Oberflächen 12 bilden.
Derartige bestehende Vielschichtvaristoren sind als ESD-Schutz von Hochfrequenzschaltungen und Datenleitungen infolge ihrer Kapazität wenig geeignet. Diese Kapazität wird bei einem gegebenen Keramikmaterial mit einer festgelegten Dielektrizitätskonstanten ε bestimmt von der Fläche der Innenelektroden 7 bzw. der Anschlüsse 8, der Anzahl der Schichten des Keramikkörpers 1 zwischen den Innenelektroden 7, also der Anzahl der aktiven Zonen 9 und der sich aufgrund der gewünschten Betriebsspannung ergebenden Dicken der Keramikschichten bzw. aktiven Zonen 9.
Bisher in derartiger Technologie hergestellte Vielschichtvaristoren haben Kapazitäten in der Größenordnung von wenigstens 30 bis 50 pF, was den Einsatz solcher Vielschichtvaristoren für den ESD-Schutz von beispielsweise empfindlichen Antenneneingängen trotz seiner niedrigen Ansprechzeit ausschließt.
Es ist daher Aufgabe der vorliegenden Erfindung, einen Vielschichtvaristor zu schaffen, der sich durch eine derart niedrige Kapazität auszeichnet, daß er ohne weiteres zum ESD-Schutz bei Hochfrequenzschaltungen, wie insbesondere Antenneneingängen, verwendet werden kann.
Diese Aufgabe wird bei einem Vielschichtvaristor niedriger Kapazität gemäß Anspruch 1 gelöst. Zweckmäßigerweise ist dabei der Keramikkörper mit Innenelektroden versehen, die kammartig von den beiden Anschlüssen ausgehen, so daß sich in der Richtung zwischen den beiden Anschlüssen die Enden der Elektroden mit einem Gap, bzw. Abstand, gegenüberliegen.
Bei dem erfindungsgemäßen Vielschichtvaristor werden also die Innenelektroden insbesondere kammartig angeordnet, so daß sich die Elektroden von den beiden Anschlüssen nicht mehr überlappen, sondern vielmehr einander mit ihren Enden gegenüberliegen. Über den Abstand dieser sich gegenüberliegenden Enden der Elektroden, das sogenannte "Gap", wird die damit niedrige Kapazität des Vielschichtvaristors festgelegt. Bei gleichbleibendem bzw. nahezu gleichbleibendem Gap kann durch serielle Anordnung der Gaps die Kapazität weiter reduziert werden. Im Grenzfall läßt sich sogar die Varistorspannung weiter erhöhen und die Kapazität verkleinern, wenn auf Innenelektroden vollständig verzichtet wird. Der in diesem Grenzfall vorhandene Einfluß der Anschlüsse bzw. Außenterminierung auf die Varistorspannung und die Kapazität läßt sich durch das Aufbringen einer zusätzlichen Passivierungsschicht eliminieren, so daß mit einem solchen Ausführungsbeispiel die für ein gegebenes Volumen maximale Varistorspannung bei minimaler Kapazität erzielt werden kann.
Die Innenelektroden können mit unterschiedlicher Elektrodenlänge gestaltet werden. Außerdem ist es möglich, die Spitzen der Innenelektroden unterschiedlich voneinander auszuformen.
Durch sich nicht überlappende Innenelektroden läßt sich bei dem erfindungsgemäßen Vielschichtvaristor der Elektrodenabstand erheblich vergrößern, was zu einer entsprechenden Reduzierung der Kapazität führt. Infolge der sich gegenüberliegenden Innenelektroden wird auch die Stromdurchflußrichtung bei dem erfindungsgemäßen Vielschichtvaristor gegenüber dem bestehenden Vielschichtvaristor verändert, und es wird so eine drastische Erhöhung der Varistorspannung ermöglicht.
Versuche der Erfinder haben ergeben, daß bei dem erfindungsgemäßen Vielschichtvaristor durch die angegebene Anordnung der Innenelektroden der Stromdichteverlauf positiv beeinflußt werden kann. Es ist somit möglich, einen Vielschichtvaristor mit nichtlinearer Spannungs/Strom-Kennlinie herzustellen, der bei Spannungen von beispielsweise 300 V und darüber hochohmig ist.
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1
eine prinzipielle Darstellung eines Vielschichtvaristors in Perspektive zur Festlegung der jeweiligen Richtungen,
Fig. 2
eine Schnittdarstellung eines erfindungsgemäßen Vielschichtvaristors mit kammartiger Innenelektrodenanordnung,
Fig. 3
eine Schnittdarstellung eines erfindungsgemäßen Vielschichtvaristors mit kammartiger Innenelektrodenanordnung mit unterschiedlicher Elektrodenlänge,
Fig. 4
eine Schnittdarstellung eines erfindungsgemäßen Vielschichtvaristors mit kammartiger Innenelektrodenanordnung mit serieller Ausführung von Gaps,
Fig. 5
eine Schnittdarstellung eines erfindungsgemäßen Vielschichtvaristors mit kammartiger Innenelektrodenanordnung mit serieller Ausführung von Gaps und Versatz der Innenelektroden zueinander,
Fig. 6
eine Schnittdarstellung eines erfindungsgemäßen Vielschichtvaristors ohne Innenelektroden,
Fig. 7
eine Schnittdarstellung eines erfindungsgemäßen Vielschichtvaristors ohne Innenelektroden mit einer auf dem Keramikkörper aufgetragenen Passivierungsschicht,
Fig. 8
einen zu dem Ausführungsbeispiel von Fig. 2 ähnlichen Vielschichtvaristor mit geraden Elektrodenspitzen,
Fig. 9
einen Schnitt DD durch den Vielschichtvaristor von Fig. 8,
Fig. 10
einen Schnitt DD durch einen erfindungsgemäßen Vielschichtvaristor mit konkaven Elektrodenspitzen,
Fig. 11
einen Schnitt DD durch einen erfindungsgemäßen Vielschichtvaristor mit konvexen Elektrodenspitzen,
Fig. 12
einen Schnitt DD durch den erfindungsgemäßen Vielschichtvaristor mit spitzen Elektrodenspitzen und
Fig. 13-15
Darstellungen zur Erläuterung eines bestehenden Vielschichtvaristors.
Die Fig. 13 bis 15 sind bereits eingangs erläutert worden.
In den Figuren sind einander entsprechende Bauteile mit den gleichen Bezugszeichen versehen.
Fig. 1 zeigt schematisch einen Vielschichtvaristor mit einem Keramikkörper einer Länge 1, einer Breite b und einer Höhe h, bei dem ein Strom in Richtung BB zwischen zwei (nicht dargestellten) Anschlüssen fließt. Eine Richtung CC bzw. DD verläuft senkrecht zu der Richtung BB.
Die Fig. 2 bis 8 zeigen schematische Schnitte BB verschiedener Ausführungsbeispiele des erfindungsgemäßen Vielschichtvaristors, während in den Fig. 9 bis 12 schematische Schnitte DD des erfindungsgemäßen Vielschichtvaristors mit unterschiedlichen Elektrodenspitzen dargestellt sind. Diese unterschiedlichen Elektrodenspitzen können speziell bei einem Vielschichtvaristor entsprechend den Ausführungsbeispielen der Fig. 2 und 8 angewandt werden. Jedoch ist es auch möglich, solche unterschiedlichen Elektrodenspitzen bei den Ausführungsbeispielen der Fig. 3 bis 5 vorzusehen.
Der erfindungsgemäße Vielschichtvaristor zeichnet sich durch einen Vielschichtaufbau in Folientechnologie aus, bei dem verschiedene Schichten mit und ohne Innenelektroden übereinander gelegt sind und den Keramikkörper 1 bilden, auf dessen beide Enden in Richtung BB (vgl. Fig. 1) metallische Anschlüsse 2, 3 aus Aluminium oder auch anderen Materialien aufgebracht sind. Das Auftragen der Anschlüsse 2, 3 kann beispielsweise durch Aufdampfen erfolgen.
Fig. 2 zeigt nun ein erstes Ausführungsbeispiel des erfindungsgemäßen Vielschichtvaristors mit Innenelektroden 4, 5 in einem Keramikkörper 1. Die Innenelektroden 4 sind dabei mit dem Anschluß 2 verbunden, während die Innenelektroden 5 in Verbindung mit dem Anschluß 3 stehen. Die Enden der Innenelektroden 4 sind dabei unter einem Abstand bzw. "Gap" d von den Enden der Innenelektroden 5 vorgesehen. Die Innenelektroden 4, 5 sind jeweils kammartig angeordnet, so daß sich die Innenelektroden von den beiden Anschlüssen 4, 5 unter dem Abstand d gegenüberliegen. Durch diesen Abstand bzw. Gap d wird die niedrige Kapazität des Vielschichtvaristors festgelegt.
Infolge dieser niedrigen Kapazität kann der erfindungsgemäße Vielschichtvaristor ohne weiteres als ESD-Schutz von beispielsweise empfindlichen Antenneneingängen in SMD-Bauweise (SMD = "surface mounted device") geeignet.
Bei dem Ausführungsbeispiel von Fig. 2 weisen die Innenelektroden 4, 5 jeweils die gleiche Länge auf. Dies muß nicht notwendig so sein. Vielmehr ist es möglich, die Innenelektroden 4, 5 mit unterschiedlicher Länge auszugestalten, wie dies bei dem Ausführungsbeispiel von Fig. 3 vorgesehen ist. Hier haben die in der Mitte des Keramikkörpers 1 gelegenen Innenelektroden eine größere Länge als Innenelektroden am Rand des Keramikkörpers 1.
Bei gleichbleibender Länge des Gaps d kann durch serielle Anordnung dieser Gaps die Kapazität des Vielschichtvaristors weiter reduziert werden, wie dies in dem Ausführungsbeispiel von Fig. 4 gezeigt ist. Hier haben die einzelnen Gaps zwischen Innenelektroden 10 ebenfalls die Länge d; die Innenelektroden 10 sind aber im Innern des Keramikkörpers 1 mehrmals unterbrochen, so daß lediglich diejenigen Innenelektroden 10, die an die Anschlüsse 2, 3 angrenzen, mit diesen verbunden sind, während die übrigen Innenelektroden elektrisch von diesen Anschlüssen und anderen Innenelektroden getrennt sind, wie dies in Fig. 4 dargestellt ist. Bei dem Ausführungsbeispiel von Fig. 4 sind insgesamt vier Gaps zwischen den Innenelektroden 10 vorgesehen. Dies braucht nicht notwendig so zu sein: vielmehr ist es auch möglich, gegebenenfalls mehr als vier oder weniger als vier Gaps zwischen den einzelnen Reihen von Innenelektroden 10 vorzusehen.
Fig. 5 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen Vielschichtvaristors, das dem Ausführungsbeispiel von Fig. 4 insoweit gleicht, als hier ebenfalls mehrere Reihen von Innenelektroden 10 insgesamt vier Gaps bilden. Im Unterschied vom Ausführungsbeispiel der Fig. 4 sind aber beim Ausführungsbeispiel der Fig. 5 die Innenelektroden 10 unter einem Versatz zueinander angeordnet. Das heißt, in der Richtung DD liegen die Innenelektroden 10 verschiedener Reihen auf einem unterschiedlichen Niveau. Durch eine derartige Gestaltung der Innenelektroden 10 kann eine weitere Reduzierung der Kapazität erreicht werden.
Im Grenzfall läßt sich die Varistorspannung weiter erhöhen und die Kapazität des Vielschichtvaristors verkleinern, indem vollständig auf Innenelektroden verzichtet wird, wie dies bei dem Ausführungsbeispiel von Fig. 6 gezeigt ist, in welchem lediglich die Anschlüsse 2, 3 auf den Keramikkörper 1 in Vielschichtaufbau aufgetragen sind. Der bei einem derartigen Aufbau vorhandene Einfluß der Außenterminierung durch die Anschlüsse 2, 3 auf die Varistorspannung und die Kapazität des Vielschichtvaristors kann durch Auftragen einer zusätzlichen Passivierungsschicht 6 eliminiert werden, wie dies in dem Ausführungsbeispiel von Fig. 7 gezeigt ist. Durch eine derartige Gestaltung läßt sich, bezogen auf ein Einheitsvolumen, eine maximale Varistorspannung bei einer minimalen Kapazität erzielen.
Wesentlich an der Erfindung ist die Vergrößerung des Elektrodenabstandes durch Verzicht auf Innenelektroden bzw. durch Verwendung von sich nicht überlappenden Innenelektroden. Durch die dadurch bedingte Änderung der Stromdurchflußrichtung im Keramikkörper läßt sich eine bedeutende Erhöhung der Varistorspannung bei gegebenem Volumen erzielen. Außerdem wird dabei die Kapazität bei diesem Volumen stark vermindert, so daß Kapazitätswerte unterhalb von 10 pF erreichbar sind.
Die Innenelektrodenspitzen können verschieden gestaltet werden, wie dies in den Ausführungsbeispielen der Fig. 9 bis 12 gezeigt sind, welche Schnitte in der Ebene BC bzw. Draufsichten aus der Richtung DD (vgl. Fig. 1) speziell auf die Vielschichtvaristoren der Fig. 2 und 8 veranschaulichen: Fig. 8 zeigt dabei ein Ausführungsbeispiel, das dem Ausführungsbeispiel von Fig. 2 insoweit gleicht, als Innenelektroden gleicher Länge vorgesehen sind. Dies braucht aber nicht notwendig so zu sein. Vielmehr ist es auch möglich, bei dem Ausführungsbeispiel von Fig. 8 Innenelektroden unterschiedlicher Länge vorzusehen, wie dies bei dem Ausführungsbeispiel von Fig. 3 der Fall ist.
Es ist nun möglich, für die Innenelektroden 4, 5 gerade Elektrodenspitzen (vgl. Fig. 9), konkave Elektrodenspitzen (vgl. Fig. 10), konvexe Elektrodenspitzen (vgl. Fig. 11) oder "spitze" Elektrodenspitzen (vgl. Fig. 12) vorzusehen. Diese verschiedenen Gestaltungen der Elektrodenspitzen können gegebenenfalls auch bei den Ausführungsbeispielen der Fig. 4 und 5 zur Anwendung gelangen, so daß hier die Innenelektroden 10 in ähnlicher Weise wie die Innenelektroden 4, 5 zu gestalten sind.
Bei dem erfindungsgemäßen Vielschichtvaristor kann durch die Anordnung der Innenelektroden der Verlauf der Stromdichte zwischen den beiden Anschlüssen 2, 3 günstig beeinflußt werden, so daß infolge des durch die Folientechnologie bedingten Vielschichtaufbaues ein Bauelement mit nichtlinearer Spannungs/Strom-Kennlinie hergestellt werden kann, das bei Spannungen von etwa 300 V hochohmig ist.

Claims (5)

  1. Vielschichtvaristor mit den Merkmalen
    ein Keramikkörper (1) ist in Folientechnologie aufgebaut,
    zwei Anschlüssen (2, 3) sind im Abstand voneinander auf dem Keramikkörper (1) aufgebracht,
    der Keramikkörper (1) ist mit Innenelektroden (4, 5; 10) versehen, die kammartig von den beiden Anschlüssen (2, 3) ausgehen, dadurch gekennzeichnet, daß sich in der Richtung zwischen den beiden Anschlüssen (2, 3) die Enden der Innenelektroden (4, 5; 10) mit einem Abstand (d) gegenüberliegen.
  2. Vielschichtvaristor nach Anspruch 1,
    bei dem die Innenelektroden (4, 5; 10) mit unterschiedlicher Elektrodenlänge gestaltet sind.
  3. Vielschichtvaristor nach Anspruch 1 oder 2,
    bei dem die Innenelektroden (4, 5; 10) mehrere Abstände in serieller Anordnung bilden.
  4. Vielschichtvaristor nach einem der Ansprüche 1 bis 3,
    bei dem die Spitzen der Innenelektroden (4, 5; 10) unterschiedlich ausgeformt sind.
  5. Vielschichtvaristor nach einem der Ansprüche 1 bis 4,
    bei dem auf dem Keramikkörper eine Passivierungsschicht (6) vorgesehen ist.
EP00956063A 1999-07-06 2000-07-06 Vielschichtvaristor niedriger kapazität Expired - Lifetime EP1200970B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19931056A DE19931056B4 (de) 1999-07-06 1999-07-06 Vielschichtvaristor niedriger Kapazität
DE19931056 1999-07-06
PCT/DE2000/002204 WO2001003148A2 (de) 1999-07-06 2000-07-06 Vielschichtvaristor niedriger kapazität

Publications (2)

Publication Number Publication Date
EP1200970A2 EP1200970A2 (de) 2002-05-02
EP1200970B1 true EP1200970B1 (de) 2004-10-20

Family

ID=7913753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00956063A Expired - Lifetime EP1200970B1 (de) 1999-07-06 2000-07-06 Vielschichtvaristor niedriger kapazität

Country Status (6)

Country Link
US (1) US6608547B1 (de)
EP (1) EP1200970B1 (de)
JP (1) JP3863777B2 (de)
AT (1) ATE280429T1 (de)
DE (2) DE19931056B4 (de)
WO (1) WO2001003148A2 (de)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400477B2 (en) 1998-08-24 2008-07-15 Leviton Manufacturing Co., Inc. Method of distribution of a circuit interrupting device with reset lockout and reverse wiring protection
DE10064447C2 (de) * 2000-12-22 2003-01-02 Epcos Ag Elektrisches Vielschichtbauelement und Entstörschaltung mit dem Bauelement
DE10102201C2 (de) 2001-01-18 2003-05-08 Epcos Ag Elektrisches Schaltmodul, Schaltmodulanordnung und verwendung des Schaltmoduls und der Schaltmodulanordnung
DE10134751C1 (de) * 2001-07-17 2002-10-10 Epcos Ag Elektrokeramisches Bauelement
US20050059371A1 (en) * 2001-09-28 2005-03-17 Christian Block Circuit arrangement, switching module comprising said circuit arrangement and use of switching module
US7492565B2 (en) 2001-09-28 2009-02-17 Epcos Ag Bandpass filter electrostatic discharge protection device
WO2003030382A1 (de) * 2001-09-28 2003-04-10 Epcos Ag Schaltungsanordnung, schaltmodul mit der schaltungsanordnung und verwendung des schaltmoduls
WO2003030386A1 (de) * 2001-09-28 2003-04-10 Epcos Ag Schaltungsanordnung, schaltmodul mit der schaltungsanordnung und verwendung des schaltmoduls
US7343137B2 (en) 2001-09-28 2008-03-11 Epcos Ag Circuit, switching module comprising the same, and use of said switching module
WO2003030384A1 (de) * 2001-09-28 2003-04-10 Epcos Ag Schaltungsanordnung, schaltmodul mit der schaltungsanordnung und verwendung des schaltmoduls
WO2003030385A1 (de) * 2001-09-28 2003-04-10 Epcos Ag Schaltungsanordnung, schaltmodul mit der schaltungsanordnung und verwendung des schaltmoduls
DE10202915A1 (de) * 2002-01-25 2003-08-21 Epcos Ag Elektrokeramisches Bauelement mit Innenelektroden
DE10235011A1 (de) * 2002-07-31 2004-02-26 Epcos Ag Elektrisches Vielschichtbauelement
DE10246098A1 (de) * 2002-10-02 2004-04-22 Epcos Ag Schaltungsanordnung
DE10313891A1 (de) 2003-03-27 2004-10-14 Epcos Ag Elektrisches Vielschichtbauelement
JP2005203479A (ja) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd 静電気対策部品
US20050212648A1 (en) * 2004-03-23 2005-09-29 Inpaq Technology Co., Ltd. Low-capacitance laminate varistor
DE102004031878B3 (de) * 2004-07-01 2005-10-06 Epcos Ag Elektrisches Mehrschichtbauelement mit zuverlässigem Lötkontakt
DE102004058410B4 (de) * 2004-12-03 2021-02-18 Tdk Electronics Ag Vielschichtbauelement mit ESD-Schutzelementen
DE102005016590A1 (de) * 2005-04-11 2006-10-26 Epcos Ag Elektrisches Mehrschicht-Bauelement und Verfahren zur Herstellung eines Mehrschicht-Bauelements
DE102005028498B4 (de) * 2005-06-20 2015-01-22 Epcos Ag Elektrisches Vielschichtbauelement
DE102005050638B4 (de) 2005-10-20 2020-07-16 Tdk Electronics Ag Elektrisches Bauelement
DE102007020783A1 (de) 2007-05-03 2008-11-06 Epcos Ag Elektrisches Vielschichtbauelement
KR101027092B1 (ko) * 2007-05-28 2011-04-05 가부시키가이샤 무라타 세이사쿠쇼 Esd 보호 디바이스
JP2008311362A (ja) * 2007-06-13 2008-12-25 Tdk Corp セラミック電子部品
DE102007031510A1 (de) 2007-07-06 2009-01-08 Epcos Ag Elektrisches Vielschichtbauelement
US7697252B2 (en) * 2007-08-15 2010-04-13 Leviton Manufacturing Company, Inc. Overvoltage device with enhanced surge suppression
CN101910856B (zh) 2008-01-29 2014-06-18 立维腾制造有限公司 自测试故障电路中断器装置和方法
DE102009010212B4 (de) * 2009-02-23 2017-12-07 Epcos Ag Elektrisches Vielschichtbauelement
DE102010036270B4 (de) 2010-09-03 2018-10-11 Epcos Ag Keramisches Bauelement und Verfahren zur Herstellung eines keramischen Bauelements
DE102010044856A1 (de) * 2010-09-09 2012-03-15 Epcos Ag Widerstandsbauelement und Verfahren zur Herstellung eines Widerstandsbauelements
US9786437B1 (en) 2010-12-10 2017-10-10 Presidio Components, Inc. High voltage fringe-effect capacitor
US8599522B2 (en) 2011-07-29 2013-12-03 Leviton Manufacturing Co., Inc. Circuit interrupter with improved surge suppression
DE102012101606A1 (de) * 2011-10-28 2013-05-02 Epcos Ag ESD-Schutzbauelement und Bauelement mit einem ESD-Schutzbauelement und einer LED
DE102013102686A1 (de) * 2013-03-15 2014-09-18 Epcos Ag Elektronisches Bauelement
US9759758B2 (en) 2014-04-25 2017-09-12 Leviton Manufacturing Co., Inc. Ground fault detector
DE102016100352A1 (de) * 2016-01-11 2017-07-13 Epcos Ag Bauelementträger mit ESD Schutzfunktion und Verfahren zur Herstellung
DE102016108604A1 (de) * 2016-05-10 2017-11-16 Epcos Ag Vielschichtbauelement und Verfahren zur Herstellung eines Vielschichtbauelements
EP3762951A4 (de) 2018-03-05 2022-01-26 AVX Corporation Kaskadenvaristor mit verbesserter energiehandhabungskapazität
DE102018115085B4 (de) * 2018-06-22 2021-03-25 Tdk Electronics Ag Keramisches Vielschichtbauelement und Verfahren zur Herstellung eines keramischen Vielschichtbauelements
US10748681B2 (en) * 2018-07-18 2020-08-18 Hubbell Incorporated Voltage-dependent resistor device for protecting a plurality of conductors against a power surge
JP7431798B2 (ja) 2018-07-18 2024-02-15 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション バリスタパッシベーション層及びその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857174A (en) 1973-09-27 1974-12-31 Gen Electric Method of making varistor with passivating coating
US4460623A (en) * 1981-11-02 1984-07-17 General Electric Company Method of varistor capacitance reduction by boron diffusion
US4675644A (en) 1985-01-17 1987-06-23 Siemens Aktiengesellschaft Voltage-dependent resistor
JP2800896B2 (ja) * 1987-09-07 1998-09-21 株式会社村田製作所 電圧非直線抵抗体
JP2833242B2 (ja) * 1991-03-12 1998-12-09 株式会社村田製作所 Ntcサーミスタ素子
JPH0634201A (ja) * 1992-07-17 1994-02-08 Matsushita Electric Ind Co Ltd 温風発生装置
JP3632860B2 (ja) * 1993-04-23 2005-03-23 Tdk株式会社 Ntcサーミスタ
DE4334059A1 (de) * 1993-10-06 1995-04-13 Philips Patentverwaltung Schichtverbundfolie, Mehrfarbensiebdruckverfahren zu ihrer Herstellung und ihre Verwendung
JPH0727140U (ja) * 1993-10-15 1995-05-19 住友金属工業株式会社 積層チップコンデンサ
JP3179313B2 (ja) * 1995-05-31 2001-06-25 松下電器産業株式会社 電子部品の製造方法
JPH08236308A (ja) * 1995-02-22 1996-09-13 Murata Mfg Co Ltd セラミック電子部品とその特性値調整方法
JPH09205005A (ja) * 1996-01-24 1997-08-05 Matsushita Electric Ind Co Ltd 電子部品とその製造方法
JPH1070012A (ja) * 1996-06-03 1998-03-10 Matsushita Electric Ind Co Ltd バリスタの製造方法
DE19634498C2 (de) 1996-08-26 1999-01-28 Siemens Matsushita Components Elektro-keramisches Bauelement und Verfahren zu seiner Herstellung
JPH10199709A (ja) * 1997-01-09 1998-07-31 Tdk Corp 積層型バリスタ
JPH10223408A (ja) * 1997-01-31 1998-08-21 Taiyo Yuden Co Ltd チップ状回路部品とその製造方法
JP3393524B2 (ja) * 1997-03-04 2003-04-07 株式会社村田製作所 Ntcサーミスタ素子
TW394961B (en) * 1997-03-20 2000-06-21 Ceratech Corp Low capacitance chip varistor and fabrication method thereof
JPH1131602A (ja) * 1997-07-10 1999-02-02 Tama Electric Co Ltd チップ部品
JPH11126704A (ja) * 1997-10-23 1999-05-11 Matsushita Electric Ind Co Ltd 積層型チップサーミスタ
JP2840834B2 (ja) 1997-12-22 1998-12-24 株式会社村田製作所 Ntcサーミスタ素子
JPH11191506A (ja) * 1997-12-25 1999-07-13 Murata Mfg Co Ltd 積層型バリスタ
JPH11204309A (ja) * 1998-01-09 1999-07-30 Tdk Corp 積層型バリスタ
JPH11273914A (ja) * 1998-03-26 1999-10-08 Murata Mfg Co Ltd 積層型バリスタ

Also Published As

Publication number Publication date
JP2004507069A (ja) 2004-03-04
DE19931056A1 (de) 2001-01-25
EP1200970A2 (de) 2002-05-02
DE50008343D1 (de) 2004-11-25
JP3863777B2 (ja) 2006-12-27
ATE280429T1 (de) 2004-11-15
US6608547B1 (en) 2003-08-19
WO2001003148A3 (de) 2001-07-19
DE19931056B4 (de) 2005-05-19
WO2001003148A2 (de) 2001-01-11

Similar Documents

Publication Publication Date Title
EP1200970B1 (de) Vielschichtvaristor niedriger kapazität
EP2143117B1 (de) Elektrisches vielschichtbauelement mit elektrisch nicht kontaktierter abschirmstruktur
DE3408216C2 (de)
DE2442898C2 (de) Mehrschichtiger monolithischer Keramik-Kondensator und Verfahren zum Einstellen seines Kapazitätswertes n
EP2614508B1 (de) Widerstandsbauelement und verfahren zur herstellung eines widerstandsbauelements
DE19628890A1 (de) Elektronikteile mit eingebauten Induktoren
DE2848508C2 (de) Flüssigkristall-Anzeigetafel
EP2756509B1 (de) Vielschichtbauelement und verfahren zu dessen herstellung
DE69823637T2 (de) Laminat-Varistor
EP1369880B1 (de) Elektrisches Vielschichtbauelement und Schaltungsanordnung
EP1880399B1 (de) Elektrisches durchführungsbauelement
DE4121888C2 (de) IC-Karte
DE2752333A1 (de) Streifenleitungs-kondensator
EP1077514A2 (de) Mehrfachfilter
DE3445706C2 (de) Widerstand für das Elektronenstrahlerzeugungssytem einer Kathodenstrahlröhre
EP1391898B1 (de) Elektrisches Vielschichtbauelement
EP1560235B1 (de) Elektrisches Vielschichtbauelement
EP1538641B1 (de) Elektrisches Bauelement und Schaltungsanordnung
DE19958484A1 (de) Mehrfach-Filter
EP2465123B1 (de) Elektrisches vielschichtbauelement
DE10045195B4 (de) Thermistor und Verfahren zu dessen Herstellung
DE2439581C2 (de) Abgleichbarer Schichtkondensator
DE102016218478B4 (de) Symmetrischer Spannungsteiler
DE19939379B4 (de) Mehrfachfilter für vielpolige Steckverbinder
EP0058835B1 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EPCOS AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50008343

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050131

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050706

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050706

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050721

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: *EPCOS A.G.

Effective date: 20050731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050320

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50008343

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50008343

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190724

Year of fee payment: 20

Ref country code: DE

Payment date: 20190723

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190725

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50008343

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200705