EP0997775A2 - Farbfotografisches Silberhalogenidmaterial - Google Patents
Farbfotografisches Silberhalogenidmaterial Download PDFInfo
- Publication number
- EP0997775A2 EP0997775A2 EP99120063A EP99120063A EP0997775A2 EP 0997775 A2 EP0997775 A2 EP 0997775A2 EP 99120063 A EP99120063 A EP 99120063A EP 99120063 A EP99120063 A EP 99120063A EP 0997775 A2 EP0997775 A2 EP 0997775A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- silver halide
- color photographic
- alkyl
- material according
- emulsion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/3022—Materials with specific emulsion characteristics, e.g. thickness of the layers, silver content, shape of AgX grains
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/08—Sensitivity-increasing substances
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/08—Sensitivity-increasing substances
- G03C1/09—Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/035—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
- G03C2001/03517—Chloride content
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/035—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
- G03C2001/03535—Core-shell grains
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/08—Sensitivity-increasing substances
- G03C1/09—Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
- G03C2001/092—Mercury
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/08—Sensitivity-increasing substances
- G03C1/09—Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
- G03C2001/093—Iridium
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/08—Sensitivity-increasing substances
- G03C1/09—Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
- G03C2001/094—Rhodium
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/305—Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers
- G03C7/30511—Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers characterised by the releasing group
- G03C7/30517—2-equivalent couplers, i.e. with a substitution on the coupling site being compulsory with the exception of halogen-substitution
- G03C7/30535—2-equivalent couplers, i.e. with a substitution on the coupling site being compulsory with the exception of halogen-substitution having the coupling site not in rings of cyclic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/32—Colour coupling substances
- G03C7/34—Couplers containing phenols
- G03C7/346—Phenolic couplers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/32—Colour coupling substances
- G03C7/36—Couplers containing compounds with active methylene groups
- G03C7/38—Couplers containing compounds with active methylene groups in rings
- G03C7/381—Heterocyclic compounds
- G03C7/382—Heterocyclic compounds with two heterocyclic rings
- G03C7/3825—Heterocyclic compounds with two heterocyclic rings the nuclei containing only nitrogen as hetero atoms
- G03C7/383—Heterocyclic compounds with two heterocyclic rings the nuclei containing only nitrogen as hetero atoms three nitrogen atoms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C7/00—Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
- G03C7/30—Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
- G03C7/32—Colour coupling substances
- G03C7/36—Couplers containing compounds with active methylene groups
- G03C7/38—Couplers containing compounds with active methylene groups in rings
- G03C7/381—Heterocyclic compounds
- G03C7/382—Heterocyclic compounds with two heterocyclic rings
- G03C7/3825—Heterocyclic compounds with two heterocyclic rings the nuclei containing only nitrogen as hetero atoms
- G03C7/3835—Heterocyclic compounds with two heterocyclic rings the nuclei containing only nitrogen as hetero atoms four nitrogen atoms
Definitions
- the invention relates to a negative developing color photographic silver halide material, whose silver halide emulsions consist of at least 95 mol% of AgCl and that with scanning exposure due to high color density and Analog exposure is characterized by contrast independent of the exposure time.
- Photo paper is used for the output of "digital prints" on scanning photo imagesetters used in which the exposure unit pixel-by-pixel the image information, line by line with bundled light of high intensity (typically from gas or Diode lasers or comparable devices) and very short exposure times per pixel (in the range of nano to microseconds) on the photo material.
- the problem of line washing occurs This is expressed visually by a blurred image of edges (e.g. Lettering) in the motif and is clearly illustrated by “overexposure”, “bleeding”, “Hem formation”, “smearing”, “blurring” etc. described. This limits the exploitable density range of the photo paper.
- Photo materials for the issue of "Digital prints” with high image quality on scanning photo imagesetters with LEDs or lasers are therefore only allowed to have a slight line washout with high color density (blackening) exhibit.
- the status A densities D F of the steps are determined on the full step wedge after a defined RGB exposure.
- the densities D R of a raster line pattern exposed with precisely these RGB values are determined on the raster step wedge.
- an effective (microscopic) line broadening 0 ⁇ b ⁇ b o can be determined on the basis of such a macro-densitometric measurement on grid line fields. This is determined by the proportions of the reflected intensity, which for each raster level result from the raster lines themselves, ie T o , and from the gaps, ie T l (see Figure 1).
- the difference from (1) and (2), the size D R -D * R , represents the density difference for each step due to line washout (see Figure 2).
- the usable maximum density D f using a material can be determined directly (see Figure 3).
- b o 0.25 mm was chosen for the raster line test image. This corresponds to a spatial frequency of 2 line pairs / mm.
- the test motif consists of a 29-step grid wedge and a full-surface wedge.
- the motif is created using a conventional program (for example Photoshop®), exposed onto a photo paper using the arming photo exposer and then processed in an AgfaColor process 94.
- level 29 receives the maximum exposure intensity.
- Each pixel line was exposed in one pass (neglecting the line overlap).
- color separations for the colors yellow, purple and teal as well as for neutral were exposed by constantly setting the complementary RGB channels to 255 (without exposure).
- the size of a step field is 20.0 x 6.35 mm.
- a common method of dividing the gradation of the photosensitive layers in color negative papers is the increase in the amount of silver halide or color coupler in the photosensitive layers. Disadvantages of this method are: increased Material costs and deterioration in processing stability (fluctuation Sensitometry depending on the processing process and depending on the process fluctuation within operation), especially with color development times of less than 45 seconds the high contrast is not such a material for an analog exposure suitable.
- the object of the invention was to provide a material for both digital exposure, especially to provide laser exposure as well as for integral exposure, which is characterized by a high color density with laser exposure and one with integral exposure contrast independent of the exposure times.
- this object is achieved when the one described at the beginning color photographic material contains at least one silver halide emulsion layer, which has solarization with integral exposure.
- the invention therefore relates to a negative developing color photographic silver halide material, at least 95 mol% of its silver halides from AgCl exist, the at least one blue sensitive, containing at least one yellow coupler Silver halide emulsion layer, at least one green sensitive, at least a silver halide emulsion layer containing purple coupler and at least a red sensitive silver halide emulsion layer containing at least one cyan coupler contains, characterized in that at least one Has silver halide emulsion layer with integral exposure solarization.
- the at least one silver halide emulsion layer contains the solarization has at least 0.1 mmol AgI per mol AgCl.
- the silver halide emulsion of the silver halide emulsion layer having solarization preferably contains silver halide grains of at least two differently felled zones.
- This silver halide emulsion is preferably obtained by pre-precipitation and subsequent Filling a silver halide generated, the filling in particular by redissolving a very fine-grained silver halide emulsion (micrate emulsion) on the pre-filling.
- the pre-precipitation is preferably a homodisperse, cubic silver halide emulsion with at least 95 mol% AgCl and at most 4 mol% AgI.
- the micrate emulsion is preferably a homodisperse silver halide emulsion with at least 90 mol% AgCl and at most 8 mol% AgI (remainder is AgBr) and an average grain diameter (Diameter of the same volume ball) from 0.05 ⁇ m to 0.2 ⁇ m.
- the finished silver halide emulsion is preferably homodisperse and cubic Silver halide grains with at least 95 mol% AgCl and an edge length the cube from 0.20 ⁇ m to 2 ⁇ m.
- the molar ratio of the outer zone to the remaining silver of the grains is especially 1:24 to 6: 1.
- At least one zone of said silver halide emulsion is preferred with at least one kind of ions or metal complexes of the metals of the groups VIII and IIB or the metals Re, Au, Pb or Tl doped.
- An inner zone, in particular the core, is preferably doped with Hg 2+ and an outer zone, in particular the outermost zone, with Ir 3+ , Ir 4+ and / or Rh 3+ .
- the preferred amount of AgI of the preferred embodiment is 0.01 to 20 mmol per mol AgCl, in particular 0.1 to 5 mmol AgI per mol AgCl.
- the silver halide grains are mixed with suitable silver halide solvents, e.g. a dilute aqueous thiosulfate solution, fractionally dissolved.
- suitable silver halide solvents e.g. a dilute aqueous thiosulfate solution, fractionally dissolved.
- ICP-MS type and amount of the doping metal or the Doping metals determined.
- the direct methods without dissolving the silver halide grains are the Secondary Ion Mass Spectrometry (SIMS) and "Sputtered Neutral Mass Spectrometry” (SNMS) into consideration.
- SIMS Secondary Ion Mass Spectrometry
- SNMS Sptered Neutral Mass Spectrometry
- the redissolution is carried out using NaCl solution or a bisthioether.
- the color photographic material is preferably a copy material.
- the photographic copying materials consist of a support on which at least a photosensitive silver halide emulsion layer is applied.
- a carrier are particularly suitable thin films and foils as well as with polyethylene or Polyethylene terephthalate coated paper.
- An overview of carrier materials and auxiliary layers applied to their front and back is in Research Disclosure 37254, Part 1 (1995), p. 285.
- the color photographic copy materials indicate in the following Sequence on the carrier is usually a blue-sensitive, yellow-coupling one Silver halide emulsion layer, a green-sensitive, purple-coupling silver halide emulsion layer and a red sensitive, cyan-coupling silver halide emulsion layer on; the layers can be interchanged.
- Essential components of the photographic emulsion layers are binders, Silver halide grains and color couplers.
- the precipitation can also take place in the presence of sensitizing dyes.
- Complexing agents and / or dyes can be used at any time render ineffective, e.g. by changing the pH or by an oxidative Treatment.
- the mostly hydrophobic color coupler, but also other hydrophobic components of the Layers are usually dissolved in high-boiling organic solvents or dispersed. These solutions or dispersions are then in an aqueous Binder solution (usually gelatin solution) emulsified and lie drying the layers as fine droplets (0.05 to 0.8 ⁇ m diameter) in before the layers.
- aqueous Binder solution usually gelatin solution
- the usually arranged between layers of different spectral sensitivity non-photosensitive intermediate layers can contain agents which an undesirable diffusion of developer oxidation products from a photosensitive in another light-sensitive layer with different spectral Prevent awareness.
- Suitable connections can be found in Research Disclosure 37254, Part 7 (1995), p. 292 and in Research Disclosure 37038, Part III (1995), p. 84.
- the photographic material can also contain UV light-absorbing compounds, whiteners, spacers, filter dyes, formalin scavengers, light stabilizers, antioxidants, D min dyes, additives to improve the stability of dyes, couplers and whites and to reduce the color fog, plasticizers (latices), Contain biocides and others.
- Suitable compounds can be found in Research Disclosure 37254, Part 8 (1995), p. 292 and in Research Disclosure 37038, Parts IV, V, VI, VII, X, XI and XIII (1995), P. 84 ff.
- the layers of color photographic materials are usually hardened, i.e. that Binder used, preferably gelatin, is replaced by suitable chemical Process networked.
- Immediate or rapid hardeners are preferably used, with instant or Fast hardeners are understood to be compounds that crosslink gelatin in such a way that immediately after casting, at the latest a few days after casting is far from complete that no further, due to the crosslinking reaction Change in the sensitometry and the swelling of the layer structure occurs. Under Swelling is the difference between wet film and dry film thickness at the understood aqueous processing of the material.
- color photographic materials After photographic exposure, color photographic materials become their character processed according to different processes. Procedural details and chemicals required for this are in Research Disclosure 37254, Part 10 (1995), p. 294 and in Research Disclosure 37038, parts XVI to XXIII (1995), p. 95 ff. Together with exemplary materials.
- the color photographic material according to the invention is particularly suitable for a Short-term processing with development times from 10 to 30 seconds.
- Halogen lamps or come in particular as the light sources for the exposure Laser imagesetter into consideration.
- Preferred couplers of the formula III are those of the following formula: such as
- Suitable couplers of the formula IV are couplers of the following formula: such as
- yellow couplers of the formula (V) according to the invention are:
- cyan couplers of formula VIIa are:
- Suitable compounds of formula VIII are:
- Solutions 02 and 03 are simultaneously added to solution 01 at 50 ° C over a period of 30 minutes with a constant feed rate at pAg 7.7 and pH 5.0 with vigorous stirring.
- the pAg value by metering in a NaCl solution and the pH value by metering in H 2 SO 4 into the precipitation tank are kept constant.
- An AgCl emulsion with an average particle diameter of 0.09 ⁇ m is obtained.
- the gelatin / AgNO 3 weight ratio is 0.14.
- the emulsion is ultrafiltered at 40 ° C., washed and redispersed with so much gelatin and water that the gelatin / AgNO 3 weight ratio is 0.3 and the emulsion contains 200 g AgCl per kg. After redispersion, the grain size is 0.12 ⁇ m.
- EmM1 As EmM1, but with the difference that an additional 570 ⁇ g K 2 IrCl 6 is added to solution 02.
- the emulsion contains 20 nmol Ir 4+ per mol AgCl.
- the emulsion contains 1 mmol Ir 4+ per mol AgCl.
- EmM1 but with the difference that an additional 20.4 g of KI is added to solution 02 are given.
- EmM1 As EmM1, but with the difference that an additional 1140 ⁇ g K 2 IrCl 6 and 20.4 g KI are added to solution 02.
- Solution 11 1100 g water 136 g gelatin 1 g n-decanol 4 g NaCl 65 g EmM1 Solution 12 1860 g water 360 g NaCl 57 ⁇ g K 2 IrCl 6 Solution 13 1800 g water 1000 g AgNO 3
- Solutions 12 and 13 are added at 50 ° C. over a period of 150 minutes at a pAg of 7.7, with vigorous stirring, to the solution 11 presented in the precipitation kettle.
- the pAg and pH values are checked as in the case of the precipitation of the emulsion (EmM1).
- the feed is regulated in such a way that the feed rate of solution 13 increases linearly from 2 ml / mm to 18 ml / min in the first 100 minutes and the feed rate is constant at 20 ml / min in the remaining 50 minutes.
- An AgCl emulsion with an average particle diameter of 0.71 ⁇ m is obtained.
- the emulsion contains 10 nmol Ir 4+ per mol AgCl.
- the gelatin / AgNO 3 - (the amount of AgCl in the emulsion is subsequently converted to AgNO 3 ) weight ratio is 0.14.
- the emulsion is ultrafiltered, washed and redispersed with so much gelatin and water that the gelatin / AgNO 3 weight ratio is 0.56 and the emulsion contains 200 g AgNO 3 per kg.
- the emulsion is ripened at a pH of 0.53 with an optimal amount of gold (III) chloride and Na 2 S 2 O 3 at a temperature of 50 ° C. for 2 hours. After chemical ripening, the emulsion is spectrally sensitized at 40 ° C. with 30 mmol of the compound (Sens B), stabilized with 0.4 mmol of the compound (rod 1) and then mixed with 0.006 mol KBr.
- Precipitation, desalination, redispersion, chemical ripening, spectral sensitization and stabilization are the same as for EmB1, but with the difference that before the Start of the precipitation 100 mg of the bisthioether I-9 are added to solution 11.
- Desalination and redispersion are the same as for EmB1.
- the grain size after redispersion is 0.72 ⁇ m.
- the outermost zone differs from the inner zones in that it contains 20 nmol Ir 4+ per mol AgCl and that reduction nuclei are produced by the compound I-9. Chemical maturation, spectral sensitization and stabilization take place as with EmB1.
- the emulsion is produced by redissolving the EmM2 micrate emulsion for a preliminary EmV1.
- the emulsion is prepared as for the EmB4, but before the Redissolution of the micro emulsion EmM2 to the pre-precipitation EmV1 instead of compound I -9 100 ml of 20% by weight aqueous NaCl solution added. It becomes an AgCl emulsion obtained with the mean particle diameter of 0.70 ⁇ m. Chemical Maturation, spectral sensitization and stabilization take place as with EmB1.
- the emulsion contains 20 nmol Ir 4+ .
- Compound I-9 produces reduction nuclei in the core and in the shell.
- Precipitation, desalination, redispersion, chemical ripening, spectral sensitization and stabilization are the same as for EmB1, but with the difference that additional 1.02 g of KI are added to solution 12.
- the grain size is 0.72 ⁇ m.
- solutions 12 and 13 are divided as follows: Solution 22 1395 g water 270 g NaCl 1.02 g AI 57 ⁇ g K 2 IrCl 6 Solution 23 1350 g water 750 g AgNO 3 Solution 24 465 g water 90 g NaCl Solution 25 450 g water 250 g AgNO 3
- the first run-in takes place with solutions 22 and 23.
- the second run-in takes place with solutions 24 and 25.
- the feed rate is the same as for EmB1. 10th Minutes before the start of the second enema, 100 mg of compound I-9 dem Precipitation kettle added.
- the grain size after redispersion is 0.72 ⁇ m.
- the emulsions are prepared by redissolving the micrate emulsions a precondition.
- 900 g of the pre-precipitation EmV2 (corresponds to 180 g AgNO 3 ) are placed in a precipitation kettle and melted at 40 ° C.
- 300 g of Mikratemulsion EmM1 (corresponds to 60 g of AgNO 3 ) are placed in an inlet tank installed with a stirrer and melted at 40 ° C.
- 95 mg of the compound I-9 are added with vigorous stirring of the precipitation EmV2.
- the micro emulsion EmM1 is metered in at a constant speed within 20 minutes.
- the emulsion is redispersed with enough gelatin that the gelatin / AgNO 3 weight ratio is 0.56.
- An AgCl emulsion with an average particle diameter of 0.73 ⁇ m is obtained. Chemical maturation, spectral sensitization and stabilization take place as with EmB1.
- EmV3 prefix instead of EmV2.
- EmV5 instead of EmV2.
- EmM5 micro emulsion EmM5 instead of EmM1.
- EmV4 instead of EmV2.
- EmM6 micro emulsion EmM6 instead of EmM1.
- EmV4 instead of EmV2.
- EmV6 prefix instead of EmV2.
- the blue-sensitive emulsions B1 and B7 to B19 are shown below in terms of grain structure and doping.
- emulsion Zones Made from Ir 4+ doping (nmol / mol Ag) AgI doping (mmol / mol Ag) Share of zones in the total grain B 1 1 EmM1 0 0 1.3% 2nd Double inlet 10th 0 98.7% B 7 1 EmM1 0 0 1.3% 2nd Double inlet 10th 1 98.7%
- B 8 1 EmM1 0 0 1.3% 2nd Double inlet 0 0 74% 3rd Double inlet 40 4th 24.7%
- B 9 1 EmM1 0 0 1.3% 2nd Double inlet 13.3 1.33 74% 3rd Double inlet 0 0 24.7%
- B 11 EmM1 0 0 0.975% 2nd Double inlet
- Solution 21 1100 g water 136 g gelatin 1 g n-decanol 4 g NaCl 186 g EmM1 Solution 22 1860 g water 3600 g NaCl 57 ⁇ g K 2 IrCl 6 Solution 23 1800 g water 1000 g AgNO 3 4.8 mg HgCl 2
- Solutions 22 and 23 are added at 40 ° C. over the course of 75 minutes at a pAg of 7.7 to the solution 21 presented in the precipitation kettle with vigorous stirring.
- the pAg and pH are checked in the same way as for the precipitation of the EmM1 emulsion.
- the feed is controlled in such a way that the feed rate of solution 23 increases linearly from 4 ml / min to 36 ml / min in the first 50 minutes and the rate of feed in the remaining 25 minutes is constant at 40 ml / min.
- An AgCl emulsion with an average particle diameter of 0.50 ⁇ m is obtained.
- the emulsion contains 10 nmol Ir 4+ and 3 ⁇ mol HgCl 2 per mol AgCl.
- the gelatin / AgNO 3 weight ratio is 0.14.
- the emulsion is ultrafiltered, washed and redispersed with so much gelatin and water that the gelatin / AgNO 3 weight ratio is 0.56 and the emulsion contains 200 g AgNO 3 per kg.
- 2.5 kg of the emulsion (corresponds to 500 g AgNO 3 ) is ripened at a pH of 0.53 with an optimal amount of gold (III) chloride and Na 2 S 2 O 3 at a temperature of 60 ° C. for 2 hours.
- gold (III) chloride and Na 2 S 2 O 3 at a temperature of 60 ° C. for 2 hours.
- per mole of AgCl in the emulsion is spectrally sensitized at 50 ° C with 40 mmol of the compound (Sens G), with 0.4 mmol of the compound (Rod 1) and 0.4 mmol of the compound (Rod 2) and 0, 4 mmol of the compound (rod 3) stabilized and then mixed with 0.01 mol KBr.
- EmG1 2.5 kg of the emulsion EmG1 (corresponds to 500 g AgNO 3 ) are placed in a precipitation kettle and melted at 40 ° C.
- EmM3 (corresponds to 50 g AgNO 3 ) are placed in an inlet vessel equipped with a stirrer and melted at 40 ° C.
- EmM3 is metered in at a constant rate within 5 minutes.
- the emulsion is redispersed with enough gelatin that the gelatin / AgNO 3 weight ratio is 0.56.
- An AgCl emulsion with an average particle diameter of 0.52 ⁇ m is obtained. Chemical ripening, spectral sensitization and stabilization take place as with EmG1.
- Precipitation, desalination and redispersion are the same as for the green-sensitive EmG1 emulsion.
- the emulsion is spectrally sensitized at 40 ° C with 50 ⁇ mol of the compound (Sens R) and with 954 ⁇ mol (rod 4) and 2.24 mmol (rod 2) per mol of AgNO 3 stabilized. Then 0.003 mol KBr are added.
- the type and amount of doping of the silver halide emulsions follows from Table 1. The zones are numbered from the inside out. emulsion Number of zones Endowment Zone share in grain B-1 1 10 nmol Ir 4+ / mol AgCl 100% B-2 1 10 nmol Ir 4+ / mol AgCl 100% B-3 2nd Zone 1- 50% Zone 2: 20 nmol Ir 4+ / mol AgCl 50% B-4 2nd Zone 1 - 50% Zone 2: 20 nmol Ir 4+ / mol AgCl 50% B-5 2nd Zone 1 - 50% Zone 2: 20 nmol Ir 4+ / mol AgCl 50% B-6 2nd Zone 1: 20 nmol Ir 4+ / mol AgCl 50% Zone 2 - 50% G 1 1 10 nmol Ir 4+ and 3 ⁇ mol Hg 2+ / mol AgCl 100% G 2 2nd Zone 1: 10 nmol Ir 4+ and 3 ⁇ mol Hg 2+ / mol AgCl 100%
- a color photographic recording material was produced by applying the following layers in the order given to a support made of paper coated on both sides with polyethylene. The quantities given relate to 1 m 2 . The corresponding amounts of AgNO 3 are given for the silver halide application.
- the blue-sensitive emulsion in the second layer is EmB2 with 0.4 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB3 with 0.4 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB4 with 0.4 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB5 with 0.4 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB6 with 0.4 g AgNO 3 / m 2 .
- the green-sensitive emulsion in the fourth layer is EmG2 with 0.23 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB7 with 0.4 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB8 with 0.4 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB9 with 0.4 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB10 with 0.4 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB11 with 0.4 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB12 with 0.40 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB13 with 0.40 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB14 with 0.40 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB15 with 0.40 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB16 with 0.40 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB17 with 0.40 g AgNO 3 / m 2 .
- the blue-sensitive emulsion in the second layer is EmB18 with 0.40 g AgNO 3 / m 2 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
Abstract
Description
Farbe | Laser-System | Wellenlänge | maximale Leistung | Strahl-Durchmesser (FWHM) |
Blau | Argon Ion | 458 nm | 150 µW | 25µm |
Grün | Helium-Neon | 543 nm | 80 µW | 25 µm |
Rot | Helium-Neon | 633 nm | 2600 µW | 25 µm |
- Papier: festliegend auf der Innenseite eines Halbzylinders
- Strahlmodulation: 8 bit Akusto-Optischer Modulator (AOM)
- Strahlmischung von Blau, Grün und Rot nach der jeweiligen Strahlmodulation
- Strahlfokussierung durch Linsen
- x-Ablenkung (Linienweise "Fast-Scan"): rotierendes Spiegel-polygon mit 2000 rpm
- y-Ablenkung (Slow-Scan): Lineare Verschiebung des Spiegel-Polygons entlang der Zylinderachse
- Auflösung 1016 dpi, Belichtungszeit je Pixel: 400 +/- 100 ns
- linearer Punkt-Überlapp ca. 30 %
- Der Belichter wird im leistungslinearen Modus bezüglich RGB (RGB = Rot, Grün, Blau), d.h. ohne eine materialspezifische Gerätekalibrierung ("Linearisierung") betrieben. Die maximale Belichtungsleistung für die drei Farbkanäle wird im Hinblick auf die unterschiedlichen Materialempfindlichkeiten für Gelb, Purpur und Blaugrün so reduziert, daß einerseits die Maximaldichte des Materials erreicht werden kann und andererseits beim Belichten eines identischen RGB-Tripels (z.B. RGB = (100, 100, 100)) ein zumindest näherungsweise neutrales Motiv entsteht (Blau: 6,5 µW, Grün: 10,4 µW, Rot: 680 µW).
-
- gemessene Dichte DF Vollfeld
- ▪
- gemessene Dichte DR des Rasterfelds mit Verwaschung
- ○
- theoretische Dichte DR* des idealen Rasterfelds ohne Verwaschung
- ⋄
- Dichtezuwachs DR-DR* aufgrund Linienverwaschung
- Menge von Ir3+, Ir4+, Rh3+:
- von 5 nmol/mol Ag bis 50 µmol/mol Ag, vorzugsweise von 10 nmol/mol Ag bis 500 nmol/mol Ag
- Menge von Hg2+:
- von 0,5 µmol/mol Ag bis 100 µmol/mol Ag, vorzugsweise von 1 µmol/mol Ag bis 30 µmol/mol Ag
- Art der Zugabe von Ir3+, Ir4+, Rh3+ und Hg2+:
- in NaCl-Einlauflösung
- R1
- einen Alkyl-, Alkenyl-, Cycloalkyl-, Aryl- oder Aralkylrest mit nicht mehr als 8 C-Atomen oder -C(R6, R7)-C(R8, R9)-(CH2)nNHCONHR10,
- R2 bis R9,
- H oder Alkyl mit nicht mehr als 3 C-Atomen oder paarweise die Glieder eines Fünf- oder Sechsringes,
- R10
- Wasserstoff oder einen Substituenten und
- n
- 0 oder 1 bedeuten.
- R1 bis R9 und n
- die vorstehend genannte Bedeutung besitzen und
- R11
- H, eine Alkyl-, Alkenyl- oder Cycloalkylgruppe mit nicht mehr als 6 C-Atomen, eine Acyl-, Alkoxycarbonyl-, Carbamoyl- oder Sulfonylgruppe bedeutet.
- R31, R32, R33 und R34
- unabhängig voneinander Wasserstoff, Alkyl, Aralkyl, Aryl, Aroxy, Alkylthio, Arylthio, Amino, Anilino, Acylamino, Cyano, Alkoxycarbonyl, Alkylcarbamoyl oder Alkylsulfamoyl, wobei diese Reste weiter substituiert sein können und wobei mindestens einer dieser Reste eine Ballastgruppe enthält, und
- Y
- einen von Wasserstoff verschiedenen, bei der chromogenen Kupplung abspaltbaren Rest (Fluchtgruppe) bedeuten.
- R31 und R33
- sind vorzugsweise tert.-Butyl; Y ist vorzugsweise Chlor.
- R51, R52, R53
- unabhängig voneinander Alkyl bedeuten oder R52 und R53 gemeinsam einen drei- bis sechsgliedrigen Ring bilden;
- R54
- Alkyl, Alkoxy oder Halogen,
- R55
- Halogen, Alkyl, Alkoxy, Aryloxy, Alkoxycarbonyl, Alkylsulfonyl, Alkylcarbamoyl, Arylcarbamoyl, Alkylsulfamoyl, Arylsulfamoyl;
- Z1
- -O-, -NR56-;
- Z2
- -NR57- oder -C(R58)R59-;
- R56, R57, R58 und R59
- unabhängig voneinander Wasserstoff oder Alkyl bedeuten.
- R51, R52 und R53
- sind vorzugsweise CH3.
- R54
- ist vorzugsweise Cl oder OCH3.
- R55
- ist vorzugsweise -COOR60, -CONHR60, -SO2NHCOR60, wobei R60 C10-C18-Alkyl.
- R61, R62, R63 und R64
- unabhängig voneinander Wasserstoff oder C1 -C6-Alkyl bedeuten; in der
- R71 und R72
- unabhängig voneinander für eine elektronenziehende Gruppe stehen,
- X71
- für H oder eine bei der Reaktion mit Entwickleroxidationsprodukt abspaltbare Gruppe steht,
- Y71
- für eine Gruppe zur Vervollständigung eines stickstoffhaltigen Heterocyclus steht, mit der Maßgabe, daß eine durch R72 dargestellte Gruppe an ein Kohlenstoffatom des Heterocyclus gebunden ist,
- n
- für 1 oder 2 steht; in der
- R71, R72 und X71
- die vorstehend genannte Bedeutung besitzen und
- Z71
- für H oder einen Substituenten steht; worin
- R81
- Wasserstoff oder einen Substituenten,
- X81
- ein Wasserstoffatom oder eine Abspaltgruppe und
- Y81
- OR82 oder bedeuten, wobei
- R82
- oder Alkyl,
- R83
- Alkyl,
- R84
- Wasserstoff oder R83,
- R85, R86, R88 und R89
- Wasserstoff oder einen Substituenten,
- R87
- einen Substituenten und
- Z81
- die restlichen nicht-metallischen Glieder eines 3- bis 8-gliedrigen Ringes bedeuten, wobei Z81 weitersubstituiert sein kann.
- R61
- ist bevorzugt CH3 oder C2H5.
- R62
- ist bevorzugt C2-C6-Alkyl,
- R63 und R64
- sind bevorzugt t-C4H9 oder t-C5H11.
Lösung 01 | 5500 g | Wasser |
700 g | Gelatine | |
5 g | n-Decanol | |
20 g | NaCl | |
Lösung 02 | 9300 g | Wasser |
1800 g | NaCl | |
Lösung 03 | 9000 g | Wasser |
5000 g | AgNO3 |
Lösung 11 | 1100 g | Wasser |
136 g | Gelatine | |
1 g | n-Decanol | |
4 g | NaCl | |
65 g | EmM1 | |
Lösung 12 | 1860 g | Wasser |
360 g | NaCl | |
57 µg | K2IrCl6 | |
Lösung 13 | 1800 g | Wasser |
1000 g | AgNO3 |
Lösung 22 | 1395 g | Wasser |
270 g | NaCl | |
1,02 g | KI | |
57 µg | K2IrCl6 | |
Lösung 23 | 1350 g | Wasser |
750 g | AgNO3 | |
Lösung 24 | 465 g | Wasser |
90 g | NaCl | |
Lösung 25 | 450 g | Wasser |
250 g | AgNO3 |
Emulsion | Zonen | Herstellung aus | Dotierung Ir4+ (nmol/Mol Ag) | Dotierung AgI (mmol/Mol Ag) | Anteil der Zonen am Gesamt-Korn |
B 1 | 1 | EmM1 | 0 | 0 | 1,3 % |
2 | Doppeleinlauf | 10 | 0 | 98,7 % | |
B 7 | 1 | EmM1 | 0 | 0 | 1,3 % |
2 | Doppeleinlauf | 10 | 1 | 98,7 % | |
B 8 | 1 | EmM1 | 0 | 0 | 1,3 % |
2 | Doppeleinlauf | 0 | 0 | 74 % | |
3 | Doppeleinlauf | 40 | 4 | 24,7 % | |
B 9 | 1 | EmM1 | 0 | 0 | 1,3 % |
2 | Doppeleinlauf | 13,3 | 1,33 | 74 % | |
3 | Doppeleinlauf | 0 | 0 | 24,7 % | |
B 10 | 1 | EmM1 | 0 | 0 | 1,3 % |
2 | Doppeleinlauf | 0 | 0 | 74 % | |
3 | Doppeleinlauf | 0 | 4 | 24,7 % | |
B 11 | 1 | EmM1 | 0 | 0 | 0,975 % |
2 | Doppeleinlauf | 0 | 0 | 74,025 % | |
3 | Umlösung | 0 | 0 | 25 % | |
B 12 | 1 | EmM1 | 0 | 0 | 0,975 % |
2 | Doppeleinlauf | 0 | 1,33 | 74,025 % | |
3 | Umlösung | 0 | 0 | 25 % | |
B 13 | 1 | EmM1 | 0 | 0 | 0,975 % |
2 | Doppeleinlauf | 13,3 | 1,33 | 74,025 % | |
3 | Umlösung | 0 | 0 | 25 % | |
B 14 | 1 | EmM5 | 0 | 0 | 0,975 % |
2 | Doppeleinlauf | 0 | 0 | 74,025 % | |
3 | Umlösung | 0 | 4 | 25 % | |
B 15 | 1 | EmM5 | 0 | 0 | 0,975 % |
2 | Doppeleinlauf | 13,3 | 0 | 74,025 % | |
3 | Umlösung | 0 | 4 | 25 % | |
B 16 | 1 | EmM6 | 0 | 0 | 0,975 % |
2 | Doppeleinlauf | 0 | 0 | 74,025 % | |
3 | Umlösung | 40 | 4 | 25 % | |
B 17 | 1 | EmM6 | 0 | 0 | 0,975 % |
2 | Doppeleinlauf | 13,3 | 0 | 74,025 % | |
3 | Umlösung | 40 | 4 | 25 % | |
B 18 | 1 | EmM6 | 0 | 0 | 0,975 % |
2 | Doppeleinlauf | 133 | 13,3 | 74,025 % | |
3 | Umlösung | 40 | 4 | 25 % |
Lösung 21 | 1100 g | Wasser |
136 g | Gelatine | |
1 g | n-Decanol | |
4 g | NaCl | |
186 g | EmM1 | |
Lösung 22 | 1860 g | Wasser |
3600 g | NaCl | |
57 µg | K2IrCl6 | |
Lösung 23 | 1800 g | Wasser |
1000 g | AgNO3 | |
4,8 mg | HgCl2 |
Emulsion | Zahl der Zonen | Dotierung | Anteil der Zone am Korn |
B-1 | 1 | 10 nmol Ir4+/mol AgCl | 100 % |
B-2 | 1 | 10 nmol Ir4+/mol AgCl | 100 % |
B-3 | 2 | Zone 1- | 50 % |
Zone 2: 20 nmol Ir4+/mol AgCl | 50 % | ||
B-4 | 2 | Zone 1 - | 50 % |
Zone 2: 20 nmol Ir4+/mol AgCl | 50 % | ||
B-5 | 2 | Zone 1 - | 50 % |
Zone 2: 20 nmol Ir4+/mol AgCl | 50 % | ||
B-6 | 2 | Zone 1: 20 nmol Ir4+/mol AgCl | 50 % |
Zone 2 - | 50 % | ||
G 1 | 1 | 10 nmol Ir4+ und 3 µmol Hg2+/mol AgCl | 100 % |
G 2 | 2 | Zone 1: 10 nmol Ir4+ und 3 µmol Hg2+/mol AgCl | 90,9 % |
Zone 2: 1000 nmol Ir4+/mol AgCl | 9,1 % | ||
R 1 | 1 | 10 nmol Ir4+ und 3 µmol Hg2+/mol AgCl | 100 % |
Triethanolamin | 9,0 g |
N,N-Diethylhydroxylamin | 4,0 g |
Diethylenglykol | 0,05 g |
3-Methyl-4-amino-N-ethyl-N-methansulfonamidoethyl-anilin-sulfat | 5,0 g |
Kaliumsulfit | 0,2 g |
Triethylenglykol | 0,05 g |
Kaliumcarbonat | 22 g |
Kaliumhydroxid | 0,4 g |
Ethylendiamintetraessigsäure-di-Na-Salz | 2,2 g |
Kaliumchlorid | 2,5 g |
1,2-Dihydroxybenzol-3,4,6-trisulfonsäuretrinatriumsalz | 0,3 g |
auffüllen mit Wasser auf 1 000 ml; pH 10,0 |
Ammoniumthiosulfat | 75 g |
Natriumhydrogensulfit | 13,5 g |
Ammoniumacetat | 2,0 g |
Ethylendiamintetraessigsäure (Eisen-Ammonium-Salz) | 57 g |
Ammoniak 25 %ig | 9,5 g |
auffüllen mit Essigsäure auf 1 000 ml; pH 5,5 |
- Dmin:
- Dichte im Bereich der Farbdichtekurve im nicht belichteten Bereich
- Empfindlichkeit E:
- Abszisse zur Dichte = 0,6 Als Abszissenwert wird die Dichte des Vorlagekeils angegeben (relativer Empfindlichkeitswert)
- Gamma-Wert G1:
- Schwellengradation: ist die Steigung der Sekante zwischen dem Empfindlichkeitspunkt mit der Dichte D = Dmin + 0,10 und dem Kurvenpunkt mit der Dichte D = Dmin+ 0,85.
- Gamma-Wert G2:
- Schultergradation: ist die Steigung der Sekante zwischen dem Empfindlichkeitspunkt mit der Dichte D = Dmin + 0,85 und dem Kurvenpunkt mit der Dichte D = Dmin+ 1,60.
- Dmax:
- Dichte im Bereich des horizontalen Verlaufs der Farbdichtekurve bei Überbelichtung.
Rot: | minimal: | 0,7 nW |
maximal: | 25 µW | |
Grün: | minimal: | 1 nW |
maximal: | 2 µW | |
Blau: | minimal: | 1 nW |
maximal: | 5 µW |
- DF (rot):
- Die nutzbare Blaugrün-Maximaldichte bei einer tolerierbaren Linienverbreitung gemäß Abbildung (3) und Gleichung (3)
- DF (grün):
- wie DF (rot) aber für Purpur-Farbdichte
- DF (blau):
- wie DF (rot) aber für Gelb-Farbdichte
Schichtaufbau | empfindliche Schicht | Solarisation | Ausnutzbare DF bei Laser-Belichtung | Bemerkung | ||||
(0,5 h-0,0h) | (1h-0,0h) | (2h-0,0h) | (16h-0,0h) | (48h-0,0h) | ||||
DF (Blau) | ||||||||
1 | Gelb | -0,00 | -0,01 | -0,01 | -0,00 | -0,03 | 1,90 | Vergleich |
2 | Gelb | -0,00 | -0,00 | -0,00 | -0,01 | -0,02 | 1,95 | Vergleich |
3 | Gelb | -0,00 | -0,18 | -0,25 | -0,51 | -0,02 | 2,05 | Erfindung |
4 | Gelb | -0,00 | -0,30 | -0,45 | -0,72 | -0,05 | 2,10 | Erfindung |
5 | Gelb | -0,00 | -0,23 | -0,34 | -0,60 | -0,03 | 2,13 | Erfindung |
6 | Gelb | -0,00 | -0,26 | -0,38 | -0,64 | -0,02 | 2,12 | Erfindung |
Schichtaufbau | empfindliche Schicht | Solarisation | Ausnutzbare DF bei LaserBelichtung | Bemerkung | ||||
(0,5 h-0,0h) | (1h-0,0h) | (2h-0,0h) | (16h-0,0h) | (48h-0,0h) | ||||
DF (Grün) | ||||||||
1 | Purpur | -0,00 | -0,00 | -0,00 | -0,01 | +0,01 | 2,28 | Vergleich |
7 | Purpur | -0,00 | -0,05 | -0,10 | -0,18 | -0,02 | 2,37 | Erfindung |
Schichtaufbau | empfindliche Schicht | Gamma 1 bei Belichtungszeit | Gamma 2 bei Belichtungszeit | Bemerkung | ||||
5 msec | 40 msec | 5 sec | 5 msec | 40 msec | 5 sec | |||
1 | Gelb | 1,65 | 1,80 | 1,78 | 2,62 | 3,00 | 2,98 | Vergleich |
2 | Gelb | 1,63 | 1,75 | 1,76 | 2,57 | 2,80 | 2,82 | Vergleich |
3 | Gelb | 1,73 | 1,76 | 1,76 | 2,75 | 2,85 | 2,85 | Erfindung |
4 | Gelb | 1,74 | 1,76 | 1,76 | 2,87 | 2,90 | 2,90 | Erfindung |
5 | Gelb | 1,75 | 1,77 | 1,77 | 2,90 | 2,95 | 2,95 | Erfindung |
6 | Gelb | 1,72 | 1,76 | 1,77 | 2,83 | 2,89 | 2,88 | Erfindung |
Schichtaufbau | empfindliche Schicht | Gamma 1 bei Belichtungszeit | Gamma 2 bei Belichtungszeit | Bemerkung | ||||
5 msec | 40 msec | 5 sec | 5 msec | 40 msec | 5 sec | |||
1 | Purpur | 1,75 | 1,82 | 1,78 | 2,90 | 3,20 | 3,05 | Vergleich |
7 | Purpur | 1,81 | 1,84 | 1,82 | 3,18 | 3,22 | 3,17 | Erfindung |
Schichtaufbau | Blauempfindliche Schicht | Solarisation | Ausnutzbare DF bei Laser-Belichtung | Bemerkung | ||||||
(0,5 h-0,0h) | (1 h-0,0h) | (2 h-0,0h) | (16 h-0,0h) | (48 h-0,0h) | DF (Rot) | DF (Grün) | DF (Blau) | |||
8 | EmB 1 | -0,00 | -0,01 | -0,01 | -0,00 | -0,04 | 2,47 | 2,38 | 1,95 | Vergleich |
9 | EmB 7 | -0,00 | -0,00 | -0,00 | -0,01 | -0,03 | 2,46 | 2,39 | 2,00 | Vergleich |
10 | EmB 8 | -0,00 | -0,16 | -0,25 | -0,40 | -0,02 | 2,48 | 2,41 | 2,25 | Erfindung |
11 | EmB 9 | -0,00 | -0,15 | -0,20 | -0,32 | -0,05 | 2,47 | 2,42 | 2,20 | Erfindung |
12 | EmB 10 | -0,00 | -0,22 | -0,38 | -0,40 | -0,03 | 2,46 | 2,44 | 2,15 | Erfindung |
Schichtaufbau | Blauempfindliche Schicht | Solarisation | Ausnutzbare DF bei Laser-Belichtung | Bemerkung | ||||||
(0,5 h-0,0h) | (1 h-0,0h) | (2 h-0,0h) | (16 h-0,0h) | (48 h-0,0h) | DF (Rot) | DF (Grün) | DF (Blau) | |||
13 | EmB 11 | -0,00 | -0,01 | -0,01 | -0,00 | -0,03 | 2,44 | 2,38 | 1,90 | Vergleich |
14 | EmB 12 | -0,00 | -0,00 | -0,25 | -0,51 | -0,02 | 2,43 | 2,40 | 2,00 | Erfindung |
15 | EmB 13 | -0,00 | -0,30 | -0,35 | -0,62 | -0,05 | 2,47 | 2,42 | 2,05 | Erfindung |
16 | EmB 14 | -0,00 | -0,13 | -0,24 | -0,50 | -0,03 | 2,46 | 2,43 | 2,08 | Erfindung |
17 | EmB 15 | -0,00 | -0,12 | -0,34 | -0,60 | -0,03 | 2,44 | 2,44 | 2,15 | Erfindung |
18 | EmB 16 | -0,00 | -0,15 | -0,37 | -0.60 | -0,02 | 2,43 | 2,47 | 2,20 | Erfindung |
19 | EmB 17 | -0,00 | -0,18 | -0,25 | -0,51 | -0,02 | 2,45 | 2,50 | 2,28 | Erfindung |
20 | EmB 18 | -0,00 | -0,30 | -0.45 | -0,72 | -0,05 | 2,47 | 2,46 | 2,20 | Erfindung |
Schichtaufbau | Blauempfindliche Emulsion | Gamma 1 bei Belichtungszeit | Gamma 2 bei Belichtungszeit | Bemerkung | ||||
5 msec | 40 msec | 5 sec | 5 msec | 40 msec | 5 sec | |||
8 | EmB1 | 1,65 | 1,80 | 1,76 | 2,63 | 3,01 | 2,98 | Vergleich |
9 | EmB7 | 1,62 | 1,75 | 1,76 | 2,82 | 3,05 | 3,05 | Vergleich |
10 | EmB8 | 1,79 | 1,81 | 1,80 | 3,20 | 3,30 | 3,30 | Erfindung |
11 | EmB9 | 1,76 | 1,78 | 1,76 | 3,22 | 3,25 | 3,25 | Erfindung |
12 | EmB10 | 1,74 | 1,75 | 1,77 | 3,10 | 3,15 | 3,15 | Erfindung |
Schichtaufbau | Blauempfindliche Schicht | Gamma 1 bei Belichtungszeit | Gamma 2 bei Belichtungszeit | Bemerkung | ||||
5 msec | 40 msec | 5 sec | 5 msec | 40 msec | 5 sec | |||
13 | EmB11 | 1,65 | 1,80 | 1,78 | 2,62 | 3,00 | 2,95 | Vergleich |
14 | EmB12 | 1,73 | 1,78 | 1,80 | 3,12 | 3,15 | 3,20 | Erfindung |
15 | EmB13 | 1,74 | 1,76 | 1,78 | 3,10 | 3,12 | 3,14 | Erfindung |
16 | EmB14 | 1,78 | 1,80 | 1,78 | 3,15 | 3,15 | 3,19 | Erfindung |
17 | EmB15 | 1,75 | 1,75 | 1,78 | 3,17 | 3,18 | 3,20 | Erfindung |
18 | EmB16 | 1,81 | 1,81 | 1,80 | 3,29 | 3,28 | 3,27 | Erfindung |
19 | EmB17 | 1,85 | 1,83 | 1,82 | 3,45 | 3,40 | 3,40 | Erfindung |
20 | EmB18 | 1,81 | 1,82 | 1,80 | 3,25 | 3,25 | 3,25 | Erfindung |
Claims (14)
- Farbfotografisches, negativ entwickelndes Silberhalogenidmaterial mit einem Träger und wenigstens einer blauempfindlichen, wenigstens einen Gelbkuppler enthaltenden Silberhalogenidemulsionsschicht, wenigstens einer grünempfindlichen, wenigstens einen Purpurkuppler enthaltenden Silberhalogenidemulsionsschicht und wenigstens einer rotempfindlichen, wenigstens einen Blaugrünkuppler enthaltenden Silberhalogenidemulsionsschicht, deren Silberhalogenide zu wenigstens 95 mol-% aus AgCl bestehen, dadurch gekennzeichnet, daß mindestens eine Silberhalogenidemulsionsschicht bei Analogbelichtung Solarisation aufweist.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, dadurch gekennzeichnet, daß mindestens eine Silberhalogenidemulsionsschicht eine Silberhalogenidemulsion enthält, deren Körner aus mindestens zwei unterschiedlich gefällten Zonen besteht und das Silber-Verhältnis der äußeren Zone zu dem restlichen Silber der Körner 1/24 bis 6/1 beträgt.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 2, dadurch gekennzeichnet, daß die äußerste Zone durch Umlösung einer Mikratemulsion auf die vorher erzeugte Vorfällung hergestellt wird.
- Farbfotografisches Silberhatogenidmaterial nach Anspruch 2, dadurch gekennzeichnet, daß mindestens eine Zone der genannten Silberhalogenidemulsion mit wenigstens einem Metall aus der Gruppe VIII oder IIB des Periodensystems der Elemente oder mit Re, Au, Ph oder Tl dotiert wird.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 3, dadurch gekennzeichnet, daß als Umlösemittel für die Rekristallisation der Mikratemulsion ein Bisthioether oder/und eine NaCl-Lösung verwendet wird.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 5, dadurch gekennzeichnet, daß der Bisthioether der Formel I entspricht worin
- R1
- einen Alkyl-, Alkenyl-, Cycloalkyl-, Aryl- oder Aralkylrest mit nicht mehr als 8 C-Atomen oder -C(R6, R7)-C(R8, R9-(CH2)nNHCONHR10,
- R2 bis R9,
- H oder Alkyl mit nicht mehr als 3 C-Atomen oder paarweise die Glieder eines Fünf- oder Sechsringes,
- R10
- Wasserstoff oder einen Substituenten und
- n
- 0 oder 1 bedeuten.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, dadurch gekennzeichnet, daß der Purpurkuppler den Formeln III oder IV entspricht worin
- R31, R32, R33 und R34
- unabhängig voneinander Wasserstoff, Alkyl, Aralkyl, Aryl, Aroxy, Alkylthio, Arylthio, Amino, Anilino, Acylamino, Cyano, Alkoxycarbonyl, Alkylcarbamoyl oder Alkylsulfamoyl, wobei diese Reste weiter substituiert sein können und wobei mindestens einer dieser Reste eine Ballastgruppe enthält, und
- Y
- einen von Wasserstoff verschiedenen, bei der chromogenen Kupplung abspaltbaren Rest (Fluchtgruppe) bedeuten.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, dadurch gekennzeichnet, daß Gelbkuppler der Formel V entspricht in welcher
- R51, R52, R53
- unabhängig voneinander Alkyl bedeuten oder R52 und R53 gemeinsam einen drei- bis sechsgliedrigen Ring bilden;
- R54
- Alkyl, Alkoxy oder Halogen,
- R55
- Halogen, Alkyl, Alkoxy, Aryloxy, Alkoxycarbonyl, Alkylsulfonyl, Alkylcarbamoyl, Arylcarbamoyl, Alkylsulfamoyl, Arylsulfamoyl;
- Z1
- -O-, -NR56-;
- Z2
- -NR57- oder -C(R58)R59-;
- R56, R57, R58 und R59
- unabhängig voneinander Wasserstoff oder Alkyl bedeuten.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, dadurch gekennzeichnet, daß der Blaugrünkuppler einer der Formeln VI, VII und VIII entspricht worin
- R61, R62, R63 und R64
- unabhängig voneinander Wasserstoff oder C1-C6-Alkyl bedeuten; in der
- R71 und R72
- unabhängig voneinander für eine elektronenziehende Gruppe stehen,
- X71
- für H oder eine bei der Reaktion mit Entwickleroxidationsprodukt abspaltbare Gruppe steht,
- Y71
- für eine Gruppe zur Vervollständigung eines stickstoffhaltigen Heterocyclus steht, mit der Maßgabe, daß eine durch R72 dargestellte Gruppe an ein Kohlenstoffatom des Heterocyclus gebunden ist,
- n
- für 1 oder 2 steht; worin
- R81
- Wasserstoff oder einen Substituenten,
- X81
- ein Wasserstoffatom oder eine Abspaltgruppe und
- Y81
- OR82 oder bedeuten, wobei
- R82
- oder Alkyl,
- R83
- Alkyl,
- R84
- Wasserstoff oder R83,
- R85, R86, R88 und R89
- Wasserstoff oder einen Substituenten,
- R87
- einen Substituenten und
- Z81
- die restlichen nicht-metallischen Glieder eines 3- bis 8-gliedrigen Ringes bedeuten, wobei Z81 weitersubstituiert sein kann.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 4, dadurch gekennzeichnet, daß als Dotierungsmetall Iridium, Rhodium oder Quecksilber verwendet wird.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 4, dadurch gekennzeichnet, daß eine innere Zone der Silberhalogenidemulsion mit Hg2+ und eine äußere Zone mit Ir3+, Ir4+ und/oder Rh3+ dotiert ist.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 1, dadurch gekennzeichnet, daß mindestens eine Silberhalogenidemulsionsschicht wenigstens 0,01 mmol AgI pro mol AgCl enthält.
- Farbfotografisches Silberhatogenidmaterial nach Anspruch 4, dadurch gekennzeichnet, daß die Zone, die mit wenigstens einem Metall aus der Gruppe VIII oder IIB des Periodensystems der Elemente dotiert wird, gleichzeitig AgI enthält.
- Farbfotografisches Silberhalogenidmaterial nach Anspruch 12, dadurch gekennzeichnet, daß die AgI-Menge 0,1 bis 20 mmol pro Mol AgCl beträgt.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19850073 | 1998-10-30 | ||
DE19850073 | 1998-10-30 | ||
DE19914881 | 1999-04-01 | ||
DE19914881A DE19914881A1 (de) | 1999-04-01 | 1999-04-01 | Farbfotografisches Silberhalogenidmaterial |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0997775A2 true EP0997775A2 (de) | 2000-05-03 |
EP0997775A3 EP0997775A3 (de) | 2000-06-07 |
EP0997775B1 EP0997775B1 (de) | 2001-10-10 |
Family
ID=26049858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99120063A Expired - Lifetime EP0997775B1 (de) | 1998-10-30 | 1999-10-19 | Farbfotografisches Silberhalogenidmaterial |
Country Status (4)
Country | Link |
---|---|
US (1) | US6194135B1 (de) |
EP (1) | EP0997775B1 (de) |
JP (1) | JP2000137315A (de) |
DE (1) | DE59900302D1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6838230B2 (en) | 2002-09-20 | 2005-01-04 | Fuji Hunt Photographic Chemicals, Inc. | Method for processing a digitally exposed translucent or transparent photographic material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1212142A (en) * | 1969-03-11 | 1970-11-11 | Kabushiki Kaishi Ricoh | Improvements in and relating to direct positive silver halide photographic emulsions |
EP0262567A2 (de) * | 1986-10-03 | 1988-04-06 | Agfa-Gevaert AG | Farbfotografischer Negativ-Film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2896438B2 (ja) | 1988-07-06 | 1999-05-31 | 富士写真フイルム株式会社 | カラー画像形成法 |
JP2799645B2 (ja) | 1992-05-15 | 1998-09-21 | 富士写真フイルム株式会社 | 画像形成方法 |
US5744287A (en) | 1995-11-17 | 1998-04-28 | Eastman Kodak Company | Photographic silver halide media for digital optical recording |
US5759762A (en) | 1997-05-30 | 1998-06-02 | Eastman Kodak Company | High chloride emulsion with dimethylamine silver chloro-iodide and antifoggants |
-
1999
- 1999-10-19 EP EP99120063A patent/EP0997775B1/de not_active Expired - Lifetime
- 1999-10-19 DE DE59900302T patent/DE59900302D1/de not_active Expired - Fee Related
- 1999-10-22 JP JP11300445A patent/JP2000137315A/ja active Pending
- 1999-10-22 US US09/425,591 patent/US6194135B1/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1212142A (en) * | 1969-03-11 | 1970-11-11 | Kabushiki Kaishi Ricoh | Improvements in and relating to direct positive silver halide photographic emulsions |
EP0262567A2 (de) * | 1986-10-03 | 1988-04-06 | Agfa-Gevaert AG | Farbfotografischer Negativ-Film |
Also Published As
Publication number | Publication date |
---|---|
EP0997775B1 (de) | 2001-10-10 |
DE59900302D1 (de) | 2001-11-15 |
JP2000137315A (ja) | 2000-05-16 |
US6194135B1 (en) | 2001-02-27 |
EP0997775A3 (de) | 2000-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1286900B (de) | Gruenempfindliche supersensibilisierte Silberhalogenidemulsion | |
DE3529375A1 (de) | Lichtempfindliches silberhalogenid - farbumkehrreflexionsabdruckmaterial | |
DE2034064B2 (de) | Farbfotografisches Aufzeichenmaterial | |
DE10055094A1 (de) | Farbfotografisches Silberhalogenidmaterial | |
DE3784808T2 (de) | Farbphotoempfindliches silberhalogenidmaterial fuer schnelle behandlung. | |
EP0997775B1 (de) | Farbfotografisches Silberhalogenidmaterial | |
DE69203022T2 (de) | Photographische Kupplerzusammensetzungen, die Ballastgruppen aufweisende Sulfoxide oder Sulfone enthalten sowie Verfahren zur Herstellung von Farbbildern. | |
DE2853362A1 (de) | Farbphotographisches aufzeichnungsmaterial mit einem dir-kuppler hoher reaktivitaet | |
EP0866364A1 (de) | Hochempfindliches farbfotografisches Aufzeichnungsmaterial mit erhöhter Empfindlichkeit im blauen Spektralbereich | |
DE2411105B2 (de) | Verfahren zur Herstellung farbphotographischer Bilder | |
DE19914881A1 (de) | Farbfotografisches Silberhalogenidmaterial | |
DE69205087T2 (de) | Photographische Kupplerzusammensetzungen, die Carbonamide enthalten, sowie Verfahren. | |
DE10032635A1 (de) | Farbfotografisches Silberhalogenidmaterial | |
DE10005769C1 (de) | Farbfotografisches Bilderzeugungsverfahren | |
DE69319386T2 (de) | Verfahren zur Herstellung von Farbbildern | |
DE3786974T2 (de) | Verfahren zur Herstellung eines positiven Farbbildes. | |
DE19916650A1 (de) | Farbfotografisches Silberhalogenidmaterial | |
EP0866368B1 (de) | Hochempfindliches farbfotografisches Aufzeichnungsmaterial mit erhöhter Empfindlichkeit im grünen spektralbereich | |
DE19939541A1 (de) | Digitales Bilderzeugungsverfahren | |
EP0809140B1 (de) | Farbfotografisches Aufzeichnungsmaterial mit erhöhter Empfindlichkeit und verbesserter Farbwiedergabe | |
DE10013129C1 (de) | Fotografisches Silberhalogenidmaterial | |
DE10230981A1 (de) | Farbfotografisches Kopiermaterial | |
DE10230980A1 (de) | Farbfotografisches Silberhalogenidmaterial | |
DE1547851B2 (de) | Photographisches aufzeichnungsmaterial mit einer auf einen schichttraeger aufgebrachten spektral sensibilisierten silberhalogenidemulsionsschicht | |
DE102004008924A1 (de) | Farbfotografisches Silberhalogenidmaterial |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20001207 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20010221 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGFA-GEVAERT |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20011010 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20011010 |
|
REF | Corresponds to: |
Ref document number: 59900302 Country of ref document: DE Date of ref document: 20011115 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20011224 |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20031013 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040923 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040927 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20040921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20051019 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060503 |