EP0922123B1 - Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen - Google Patents

Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen Download PDF

Info

Publication number
EP0922123B1
EP0922123B1 EP97943803A EP97943803A EP0922123B1 EP 0922123 B1 EP0922123 B1 EP 0922123B1 EP 97943803 A EP97943803 A EP 97943803A EP 97943803 A EP97943803 A EP 97943803A EP 0922123 B1 EP0922123 B1 EP 0922123B1
Authority
EP
European Patent Office
Prior art keywords
solution
phosphating
phosphate
aqueous
nitroguanidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97943803A
Other languages
English (en)
French (fr)
Other versions
EP0922123A1 (de
Inventor
Thomas Kolberg
Peter Schubach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
chemetal GmbH
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to SI9730079T priority Critical patent/SI0922123T1/xx
Publication of EP0922123A1 publication Critical patent/EP0922123A1/de
Application granted granted Critical
Publication of EP0922123B1 publication Critical patent/EP0922123B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/186Orthophosphates containing manganese cations containing also copper cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • C23C22/184Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations

Definitions

  • the invention relates to an aqueous, phosphate-containing solution for the production of phosphate layers on metallic Surfaces made of iron, steel, zinc, zinc alloys, aluminum or aluminum alloys.
  • the invention further relates to a Process for phosphating using an aqueous Phosphating solution.
  • DE-PS750957 discloses a method for improving the corrosion resistance of metals, in particular iron and steel, by treatment in a solution which forms phosphate coatings, in which the solution contains an accelerating agent and in which nitromethane, nitrobenzene, picric acid are used as accelerating agents , a nitraniline, a nitrophenol, a nitrobenzoic acid, a nitroresorcinol, nitrourea, a nitrourethane or nitroguanidine is used.
  • the optimum concentration for the individual accelerators is different, but it is generally between 0.01 and 0.4% by weight in the phosphating solutions.
  • the optimal concentration for the accelerator nitroguanidine should be 0.2% by weight.
  • DE-PS750957 makes no information about the zinc content, the S value and the Zn-P 2 O 5 ratio of the phosphating solution.
  • DE-PS 977633 assumes that a phosphating bath cannot be operated solely with organic accelerators, since the iron accumulates more and more during the phosphating process in the bath, as a result of which the bath quickly becomes unusable and the phosphate layer becomes increasingly coarse-grained with increasing service life and thus gets worse in quality.
  • this document proposes a process for the production of phosphate coatings on ferrous metal objects in dilute, phosphoric acid solutions of the primary phosphates of zinc, manganese, cadmium, calcium and magnesium, in which the phosphating bath from time to time or continuously one or more organic accelerating agents, such as For example, nitroguanidine and hydrogen peroxide are added in such a way that the concentration of the organic accelerator in the bath is kept above 0.1% and at the same time a small excess of hydrogen peroxide is maintained in the bath over the amount required for the oxidation of the Fe 2+ ions.
  • DE-PS 977633 therefore encourages the person skilled in the art to use nitroguanidine not only as an accelerator but always in combination with hydrogen peroxide.
  • DE-OS 38 00 835 discloses a process for phosphating metal surfaces, in particular surfaces made of iron, steel, zinc and their alloys and aluminum as a pretreatment for cold forming, in which the surface is activated without activation in the temperature range from 30 to 70 ° C in contact with an aqueous solution containing 10 to 40 g Ca 2+ / l, 20 to 40 g Zn 2+ / l, 10 to 100 g PO 4 3- / l and as an accelerator 10 to 100 g NO 3 - / l and / or 0.1 to 2.0 g of organic nitro compounds per liter, the solution having a pH in the range from 2.0 to 3.8 and a ratio of free acid to total acid of 1: 4 to 1: 100.
  • An m-nitrobenzenesulfonate and / or nitroguanidine can be used as accelerator.
  • the phosphate layers produced by the known method have layer weights of 3 to 9 g / m 2 .
  • the invention is therefore based on the object of an aqueous Solution for phosphating metallic surfaces too create that contains nitroguanidine as an accelerator and the remaining components are coordinated so that the phosphate layers formed during the phosphating are fine crystalline, have a low layer weight, enable good paint adhesion and good Ensure protection against corrosion. Furthermore, the invention is the Task based on a process for phosphating create the phosphating solution according to the invention used, the method at the lowest possible Temperatures should work for phosphating different metallic surfaces can be used can and using simple technical means as well must work reliably.
  • the phosphating solution according to the invention can be used to produce very fine-crystalline phosphate layers which provide excellent paint adhesion and good corrosion protection.
  • the crystallites have a plate-like, cuboid or cube-like shape and always have a maximum edge length of ⁇ 15 ⁇ m, which is usually even ⁇ 10 ⁇ m.
  • the phosphating solution according to the invention is very suitable for phosphating cavities.
  • the phosphate layers deposited on the metallic objects from the phosphating solution according to the invention have a layer weight of 1.5 to 4.5 g / m 2 , preferably of 1.5 to 3 g / m 2 , whereby the paint adhesion is favored in an advantageous manner. With a zinc content> 5 g / l, the corrosion protection properties and paint adhesion deteriorate significantly.
  • the Zn: P 2 O 5 ratio relates to the total P 2 O 5.
  • the determination of the total P 2 O 5 is based on the titration of the phosphoric acid and / or the primary phosphates from the equivalence point of the primary phosphate to the equivalence point of the secondary phosphate.
  • the S value indicates the ratio of free acid, calculated as free P 2 O 5 , to total P 2 O 5 .
  • the definitions and determination methods for total P 2 O 5 and free P 2 O 5 are explained in detail in the publication by W. Rausch "Die Phosphatmaschine von Metallen", 1988, pages 299 to 304.
  • this solution according to the invention which is suitable for carrying out the low zinc phosphating because of its zinc content of 0.3 to 3 g / l, particularly good work results have been achieved overall.
  • the aqueous solution contains 0.5 to 20 g NO 3 - / l.
  • the nitrate content according to the invention advantageously favors maintaining the optimal layer weight of 1.5 to 4.5 g / m 2 .
  • the nitrate is the phosphating solution in the form of alkali metal nitrates and / or by the cations present in the system, for. B. as zinc nitrate, and / or as HNO 3 added. Since the nitrate-free aqueous solution also delivers good phosphating results, the known acceleration effect of the nitrate is in most cases of minor importance in the present case.
  • the phosphating solution 0.01 to 3 g Mn 2+ / l and / or 0.01 to 3 g Ni 2+ / l and / or 1 to 100 mg Cu 2+ / l and / or Contains 10 to 300 mg Co 2+ / l.
  • These metal ions are built into the phosphate layer and improve paint adhesion and corrosion protection.
  • the aqueous phosphating solution 0.01 to 3 g F - / l and / or 0.05 to 3.5 g / l complex fluoride, preferably (SiF 6 ) 2- or (BF 4 ) - contains.
  • the fluoride is added to the phosphating solution when metallic surfaces consisting of aluminum or aluminum alloys are to be phosphated.
  • the complex fluorides are added to the phosphating solution, in particular for stabilization, whereby a longer service life of the phosphating baths is achieved.
  • the object underlying the invention is further achieved by the creation of a process for phosphating solved at who cleaned the metallic surfaces, then with the aqueous, phosphate-containing phosphating solution during a time of 5 seconds to 10 minutes at one temperature treated from 15 to 70 ° C and finally rinsed with water become.
  • This procedure can be done with simple technical Funds are carried out and works extraordinarily reliable.
  • the generated with the process Phosphate layers have a consistently good quality that even with a longer operating time of the phosphating bath does not decrease.
  • the minimum phosphating time is at Process according to the invention less than in known Low zinc process with the usual accelerators work.
  • the minimum phosphating time is the time in which the surface is 100% covered with a phosphate layer.
  • the treatment of the metallic surfaces with the phosphating solution is carried out by spraying, dipping, splash-dipping or rolling.
  • These working techniques open up a very broad and diverse range of applications for the method according to the invention.
  • the metallic surfaces after cleaning with a Activating agents are treated, which is a titanium-containing Contains phosphate. This will form a closed, fine crystalline zinc phosphate layer supported.
  • the metallic surfaces after the one following the phosphating After-rinsing process treated with a passivating agent become.
  • the passivating agents used can both Be Cr-containing as well as Cr-free.
  • Cleaning the metallic surfaces will be both mechanical impurities as well as adhering fats from the surface to be phosphated removed.
  • the cleaning of the metallic surfaces belongs to the known state of the art Technique and can be advantageous with an aqueous alkaline Cleaners are carried out. It is useful if the metallic surfaces rinsed with water after cleaning become. Rinsing the cleaned or the phosphated metallic surfaces are done either with tap water or with deionized water.
  • the phosphating solution according to the invention is thereby prepared that about 30 to 90 g of a concentrate, which the inorganic components of the phosphating solution and Contains water, be made up to 1 liter with water. Then the intended amount of nitroguanidine in Form a suspension or as a powder in the Phosphating solution introduced. The solution is then ready to use and during phosphating consumed substances can be added continuously by adding the Concentrate and the nitroguanidine are supplemented.
  • the invention provides that the nitroguanidine is introduced into the aqueous solution in the form of a stabilized suspension.
  • the suspension is stabilized with a layered silicate.
  • This suspension contains 100 to 300 g nitroguanidine / l, 10 to 30 g layered silicate / l and the rest water. It can be easily pumped and is stable over 12 months, which means that the nitroguanidine does not settle even after a long time.
  • the suspension is prepared by suspending the layered silicate in 1 liter of completely deionized water and then stirring in the nitroguanidine.
  • layered silicates [Mg 6 (Si 7.4 Al 0.6) O 20 (OH) 4] Na 0.6 x xH 2 O and [(Mg 5.4 Li 0.6) Si 8 O 20 (OH 3 F) 4] Na 0.6 x xH 2 O especially proven.
  • These are synthetically produced three-layer silicates of the smectite type.
  • the layered silicates have no adverse effect on the formation of the phosphate layers. In addition to their actual beneficial effect, they also improve the sedimentation of the phosphate sludge and increase its solids content.
  • Embodiments 3 and 4 were applied carried out the following process conditions, wherein in particular the suitability of the invention for phosphating Cavities should be checked: steel sheets were in one Box that simulated a cavity corresponding to the Process steps a) to e) treated, which also in the Embodiments 1 and 2 were used. The The phosphated steel sheets were dried in the cavity (Box) at room temperature without compressed air. The composition the aqueous used to phosphate a cavity Solutions and the properties of the phosphate layers result from Table 3.
  • the phosphate layers of working examples 3 and 4 had regarding layer weight, crystallite edge length and Minimum phosphating time about the same properties as that Phosphate layers of working examples 1 and 2.
  • the Comparative experiments D and E were carried out, the individual Process steps were identical.
  • the two Comparative experiments D and E used phosphating solutions are known per se and contain accelerators Hydroxylamine.
  • the composition of the to carry out the Comparative experiments D and E used solutions and the Properties of the phosphate layers are in Table 4 specified.
  • a comparison of the embodiments 3 and 4 with the Comparative experiments D and E show that with the invention very good phosphating of cavities can be achieved because according to the invention complete, creates closed phosphate layers, and a Flash rust does not occur.
  • the term "rust formation” implies that on the metallic surface, the does not have a complete, closed phosphate layer, forms a rust layer during drying, which is very is disadvantageous. In some cases, rust formation remains from, although not a complete, closed phosphate layer what is present on a passivation of the metallic Surface due to the phosphating solution is likely to be based.
  • Paint adhesion test values determined.
  • Table 5 shows the paint adhesion and corrosion protection test values for different sheets (Substrates) were determined, the individual substrates according to Examples 5,6 and 7 with inventive Solutions and according to the comparative experiments F and G with known solutions have been phosphated by immersion. The The individual substrates were dipped in accordance with the Process steps a) to f) mentioned above. The Composition of the used for Examples 5, 6 and 7 Phosphating solutions are given in Table 7. There there are also the compositions of the known Phosphating solutions used to run the Comparative experiments F and G have been used. After An electrodeposition paint was used to phosphate the substrates by dipping, a filler and a top coat.
  • the composition of the aqueous Phosphating solutions required to carry out Examples 8, 9 and 10 were used are shown in Table 8.
  • the Composition of the known phosphating solution for Execution of the comparative test H was used also in Table 8.
  • On by spraying phosphated substrates was then a Electrocoat, a filler and a topcoat applied.
  • the phosphated and painted substrates then became one Testing by outdoor exposure for 6 months a salt spray test, through a cross cut and through a 12-round climate change test with subsequent Subject to falling rocks.
  • Table 6 are those for test values determined for individual substrates, where for the cross cut a rating grade and for the Outdoor weathering, the salt spray test and the climate change test measured the infiltration of the paint layer in mm. For the falling rocks the Paint flaking mentioned in percent.
  • the corrosion protection achieved by the phosphating according to the invention is comparable to the corrosion protection which occurs through the use of proven, known phosphating processes which work with the nitrite accelerator.
  • the phosphating according to the invention avoids the use of the accelerator nitrite, the use of which is increasingly being rejected, since nitrite produces reaction products during the phosphating which damage the environment and are sometimes toxic to humans.
  • the paint adhesion and corrosion protection effect achieved by the phosphating according to the invention can be rated as very good to good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Die Erfindung betrifft eine wässrige, phosphathaltige Lösung zur Erzeugung von Phosphatschichten auf metallischen Oberflächen aus Eisen, Stahl, Zink, Zinklegierungen, Aluminium oder Aluminiumlegierungen. Die Erfindung betrifft ferner ein Verfahren zur Phosphatierung unter Verwendung einer wäßrigen Phosphatierungslösung.
Aus der DE-PS750957 ist ein Verfahren zur Verbesserung der Korrosionsbeständigkeit von Metallen, insbesondere von Eisen und Stahl, durch Behandlung in einer Lösung, die Phosphatüberzüge bildet, bekannt, bei dem die Lösung ein Beschleunigungsmittel enthält und bei dem als Beschleunigungsmittel Nitromethan, Nitrobenzol, Picrinsäure, ein Nitranilin, ein Nitrophenol, eine Nitrobenzoesäure, ein Nitroresorcinol, Nitroharnstoff, ein Nitrourethan oder Nitroguanidin verwendet wird. Die optimale Konzentration für die einzelnen Beschleuniger ist unterschiedlich, sie liegt aber in den Phosphatierungslösungen im allgemeinen zwischen 0,01 und 0,4 Gew.%. Für den Beschleuniger Nitroguanidin soll die optimale Konzentration 0,2 Gew.% betragen. Die DE-PS750957 macht allerdings keine Angaben zum Zinkgehalt, zum S-Wert und zum Zn - P2O5 - Verhältnis der Phosphatierungslösung.
Die DE-PS 977633 geht davon aus, daß ein Phosphatierungsbad nicht allein mit organischen Beschleunigern betrieben werden kann, da sich das Eisen während des Phosphatierungsvorgangs im Bad immer stärker anreichert, wodurch das Bad schnell unbrauchbar wird und die Phosphatschicht mit zunehmender Betriebsdauer immer grobkörniger und damit qualitativ schlechter wird. Daher schlägt diese Druckschrift ein Verfahren zur Herstellung von Phosphatüberzügen auf eisenhaltigen Metallgegenständen in verdünnten, phosphorsauren Lösungen der primären Phosphate des Zinks, Mangans, Cadmiums, Calciums und Magnesiums vor, bei welchem dem Phospahtierungsbad von Zeit zu Zeit oder kontinuierlich ein oder mehrere organische Beschleunigungsmittel, wie zum Beispiel Nitroguanidin, sowie Wasserstoffperoxid derartig zugesetzt werden, daß die Konzentration des organischen Beschleunigers im Bad dauernd über 0,1 % gehalten und gleichzeitig ein geringer Überschuß von Wasserstoffperoxid im Bad über die zur Oxidation der Fe2+ -Ionen erforderliche Menge aufrechterhalten wird. Die DE-PS 977633 regt den Fachmann also dazu an, Nitroguanidin nicht allein als Beschleuniger, sondern immer in Kombination mit Wasserstoffperoxid zu verwenden.
Aus der DE-OS 38 00 835 ist ein Verfahren zur Phosphatierung von Metalloberflächen, insbesondere von Oberflächen aus Eisen, Stahl, Zink und deren Legierungen sowie Aluminium als Vorbehandlung für die Kaltumformung bekannt, bei dem man die Oberfläche ohne Aktivierung im Temperaturbereich von 30 bis 70°C mit einer wäßrigen Lösung in Kontakt bringt, die 10 bis 40 g Ca2+/l, 20 bis 40 g Zn2+/l, 10 bis 100 g PO4 3-/l sowie als Beschleuniger 10 bis 100 g NO3 -/l und/oder 0,1 bis 2,0 g organische Nitroverbindungen pro Liter enthält, wobei die Lösung einen pH-Wert im Bereich von 2,0 bis 3,8 und ein Verhältnis von freier Säure zu Gesamtsäure von 1:4 bis 1 : 100 aufweist. Als Beschleuniger kann ein m-Nitrobenzolsulfonat und/oder Nitroguanidin verwendet werden. Die nach dem bekannten Verfahren erzeugten Phosphatschichten haben Schichtgewichte von 3 bis 9 g/m2.
Obwohl es an sich bekannt ist, daß Nitroguanidin bei der Phosphatierung metallischer Oberflächen als Beschleuniger verwendet werden kann, stößt der praktische Einsatz dieses Beschleunigers auf Schwierigkeiten, denn die erzielten Resultate der Phosphatierung sind sehr häufig unbefriedigend. Dies ist offensichtlich darauf zurückzuführen, daß die Wirkung des Beschleunigers Nitroguanidin sehr stark von den anorganischen Bestandteilen der Phosphatierungslösung und der Konzentration der anorganischen Bestandteile in der Phosphatierungslösung abhängig ist, so daß die unter Verwendung von Nitroguanidin erzeugten Phosphatschichten nur dann gute Gebrauchseigenschaften haben, wenn es gelingt, eine Phosphatierungslösung bereitzustellen, in der die einzelnen Bestandteile so aufeinander abgestimmt sind, daß bei Verwendung des Nitroguanidins als Beschleuniger auch im Dauerbetrieb Phosphatschichten von guter, gleichbleibender Qualität erzeugt werden können. Es kommt hinzu, daß die Wechselwirkungen zwischen dem Nitroguanidin und den übrigen Bestandteilen der Phosphatierungslösung nicht durch theoretische Überlegungen oder einfache Versuche vorhergesagt bzw. ermittelt werden können, sondern nur durch umfangreiche Versuchstätigkeit an unterschiedlichen Phosphatierungssystemen zu bestimmen sind. Die häufig unbefriedigenden Resultate sind auch auf die schlechte Wasserlöslichkeit bzw. die ungleichmäßige Verteilung des Nitroguanidins zurückzuführen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine wässrige Lösung zur Phosphatierung metallischer Oberflächen zu schaffen, die als Beschleuniger Nitroguanidin enthält und deren übrige Bestandteile so aufeinander abgestimmt sind, daß die bei der Phosphatierung gebildeten Phosphatschichten feinkristallin sind, ein niedriges Schichtgewicht aufweisen, eine gute Lackhaftung ermöglichen und einen guten Korrosionsschutz gewährleisten. Ferner liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Phosphatierung zu schaffen, das die erfindungsgemäße Phosphatierungslösung verwendet, wobei das Verfahren bei möglichst niedrigen Temperaturen arbeiten soll, für die Phosphatierung unterschiedlicher metallischer Oberflächen eingesetzt werden kann und unter Verwendung einfacher technischer Mittel sowie betriebssicher arbeiten muß.
Die der Erfindung zugrunde liegende Aufgabe wird durch die Schaffung einer wäßrigen, phosphathaltigen Lösung zur Erzeugung von Phosphatschichten auf metallischen Oberflächen aus Eisen, Stahl, Zink, Zinklegierungen, Aluminium oder Aluminiumlegierung gelöst, die 0,3 bis 5 g Zn2+/l, und 0,1 bis 3 g Nitroguanidin/l enthält, wobei der S-Wert 0,03 bis 0,3 und das Gewichtsverhältnis Zn : P2O5 = 1 : 5 bis 1 : 30 beträgt, und die feinkristalline Phosphatschichten erzeugt, in denen die Kristallite eine maximale Kantenlänge < 15 µm haben. In überraschender Weise hat sich gezeigt, daß mit der erfindungsgemäßen Phosphatierungslösung sehr feinkristalline Phosphatschichten erzeugt werden können, die eine ausgezeichnete Lackhaftung und einen guten Korrosionsschutz bewirken. Die Kristallite besitzen eine plättchenartige, quaderartige oder würfelartige Form und haben immer eine maximale Kantenlänge < 15 µm, die in der Regel sogar < 10 µm ist. Ferner eignet sich die erfindungsgemäße Phosphatierungslösung sehr gut zur Phosphatierung von Hohlräumen. Die auf den metallischen Gegenständen aus der erfindungsgemäßen Phosphatierungslösung abgeschiedenen Phosphatschichten haben ein Schichtgewicht von 1,5 bis 4,5 g/m2, vorzugsweise von 1,5 bis 3 g/m2, wodurch die Lackhaftung in vorteilhafter Weise begünstigt ist. Bei einem Zinkgehalt > 5 g/l verschlechtern sich die Korrosionsschutzeigenschaften und die Lackhaftung signifikant.
Das Zn : P2O5-Verhältnis bezieht sich auf das Gesamt-P2O5. Die Bestimmung des Gesamt-P2O5 basiert auf der Titration der Phosphorsäure und/oder der primären Phosphate vom Äquivalenzpunkt des primären Phosphats bis zum Äquivalenzpunkt des sekundären Phosphats. Der S-Wert gibt das Verhältnis von freier Säure, berechnet als freies P2O5, zum Gesamt-P2O5 an. Die Definitionen und Bestimmungsmethoden für das Gesamt-P2O5 und das freie P2O5 sind in der Veröffentlichung von W. Rausch "Die Phosphatierung von Metallen", 1988, Seiten 299 bis 304, ausführlich erläutert.
Nach der Erfindung ist es besonders vorteilhaft, wenn die wässrige, phosphathaltige Lösung 0,3 bis 3 g Zn2+/l und 0,1 bis 3 g Nitroguanidin/l enthält, wobei der S-Wert 0,03 bis 0,3 und das Gewichtsverhältnis Zn : P2O5 = 1 : 5 bis 1 : 30 beträgt. Mit dieser erfindungsgemäßen Lösung, die sich wegen ihres Zink-Gehalts von 0,3 bis 3 g/l zur Durchführung der Niedrigzink-Phosphatierung eignet, wurden insgesamt besonders gute Arbeitsergebnisse erzielt.
Nach der Erfindung ist vorgesehen, daß die wässrige Lösung 0,5 bis 20 g NO3 -/l enthält. Der erfindungsgemäße Nitratgehalt begünstigt in vorteilhafter Weise die Einhaltung des optimalen Schichtgewichts von 1,5 bis 4,5 g/m2. Das Nitrat wird der Phosphatierungslösung in Form von Alkalinitraten und/oder durch die im System vorhandenen Kationen, z. B. als Zinknitrat, und/oder als HNO3 zugegeben. Da auch die nitratfreie wässrige Lösung gute Phosphatierungsergebnisse liefert, ist die an sich bekannte Beschleunigungswirkung des Nitrats im vorliegenden Fall mit großer Wahrscheinlichkeit von untergeordneter Bedeutung.
Nach der Erfindung ist ferner vorgesehen, daß die Phosphatierungslösung 0,01 bis 3 g Mn2+/l und/oder 0,01 bis 3 g Ni2+/l und/oder 1 bis 100 mg Cu2+/l und/oder 10 bis 300 mg Co2+/l enthält. Diese Metallionen werden in die Phosphatschicht eingebaut und verbessern Lackhaftung und Korrosionsschutz.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß die wässrige Phosphatierungslösung 0,01 bis 3 g F-/l und/oder 0,05 bis 3,5 g/l komplexe Fluoride, vorzugsweise (SiF6)2- oder (BF4)- enthält. Das Fluorid wird der Phosphatierungslösung dann zugegeben, wenn aus Aluminium oder Aluminiumlegierungen bestehende metallische Oberflächen phosphatiert werden sollen. Die komplexen Fluoride werden der Phosphatierungslösung insbesondere zur Stabilisierung zugegeben, wodurch eine längere Standzeit der Phosphatierungsbäder erreicht wird.
Die der Erfindung zugrunde liegende Aufgabe wird ferner durch die Schaffung eines Verfahrens zur Phosphatierung gelöst, bei dem die metallischen Oberflächen gereinigt, anschließend mit der wäßrigen, phosphathaltigen Phosphatierungslösung während einer Zeit von 5 Sekunden bis 10 Minuten bei einer Temperatur von 15 bis 70°C behandelt und schließlich mit Wasser gespült werden. Dieses Verfahren kann mit einfachen technischen Mitteln durchgeführt werden und arbeitet außerordentlich betriebssicher. Die mit dem Verfahren erzeugten Phosphatschichten haben eine gleichbleibend gute Qualität, die auch bei einer längeren Betriebszeit des Phosphatierungsbades nicht abnimmt. Die Mindest-Phosphatierzeit ist beim erfindungsgemäßen Verfahren geringer als bei bekannten Niedrigzinkverfahren, die mit den üblichen Beschleunigern arbeiten. Als Mindest-Phosphatierzeit gilt die Zeit, in der die Oberfläche zu 100 % mit einer Phosphatschicht bedeckt ist.
Nach der Erfindung ist vorgesehen, daß die Behandlung der metallischen Oberflächen mit der Phosphatierungslösung durch Spritzen, Tauchen, Spritztauchen oder Aufwalzen erfolgt. Diese Arbeitstechniken eröffnen dem erfindungsgemäßen Verfahren ein sehr breites und unterschiedliches Anwendungsspektrum. Nach der Erfindung hat es sich als besonders vorteilhaft erwiesen, wenn die zum Spritzen verwendete Phosphatierungslösung ein Gewichtsverhältnis Zn : P2O5 = 1 : 10 bis 1 : 30 aufweist und wenn die zum Tauchen verwendete Phosphatierungslösung ein Gewichtsverhältnis Zn : P2O5 = 1 : 5 bis 1 : 18 aufweist.
Nach der Erfingung ist es oft vorteilhaft, wenn die metallischen Oberflächen nach der Reinigung mit einem Aktivierungsmittel behandelt werden, das ein titanhaltiges Phosphat enthält. Hierdurch wird die Bildung einer geschlossenen, feinkristallinen Zinkphosphatschicht unterstützt.
Schließlich ist nach der Erfindung vorgesehen, daß die metallischen Oberflächen nach dem der Phospatierung folgenden Spülvorgang mit einem Passivierungsmittel nachbehandelt werden. Die verwendeten Passivierungsmittel können sowohl Cr-haltig als auch Cr-frei sein.
Bei der nach dem erfindungsgemäßen Verfahren vorgesehenen Reinigung der metallischen Oberflächen werden sowohl mechanische Verunreinigungen als auch anhaftende Fette von der zu phosphatierenden Oberfläche entfernt. Die Reinigung der metallischen Oberflächen gehört zum bekannten Stand der Technik und kann vorteilhaft mit einem wäßrig-alkalischen Reiniger durchgeführt werden. Es ist zweckmäßig, wenn die metallischen Oberflächen nach der Reinigung mit Wasser gespült werden. Das Spülen der gereinigten bzw. der phospatierten metallischen Oberflächen erfolgt entweder mit Leitungswasser oder mit entsalztem Wasser.
Die erfindungsgemäße Phosphatierungslösung wird dadurch hergestellt, daß ca. 30 bis 90 g eines Konzentrats, welches die anorganischen Bestandteile der Phosphatierungslösung sowie Wasser enthält, mit Wasser auf 1 l aufgefüllt werden. Anschließend wird die vorgesehene Menge des Nitroguanidins in Form einer Suspension oder als Pulver in die Phosphatierungslösung eingebracht. Die Lösung ist dann gebrauchsfertig und die während der Phosphatierung verbrauchten Substanzen können kontinuierlich durch Zugabe des Konzentrats und des Nitroguanidins ergänzt werden.
Um die schwierige Dosierung des Nitroguanidins als Pulver zu vermeiden, ist nach der Erfindung vorgesehen, daß das Nitroguanidin in Form einer stabilisierten Suspension in die wässrige Lösung eingebracht wird. Erfindungsgemäß wird die Suspension mit einem Schichtsilikat stabilisiert. Diese Suspension enthält 100 bis 300 g Nitroguanidin/l, 10 bis 30 g Schichtsilikat/l und Rest Wasser. Sie ist durch Pumpen gut förderbar und über 12 Monate stabil, d. h., daß sich das Nitroguanidin auch nach längerer Zeit nicht absetzt. Die Suspension wird dadurch hergestellt, daß in 1 l vollentsalztem Wasser das Schichtsilikat suspendiert und danach das Nitroguanidin eingerührt wird. Bei dem in der Phosphatierungslösung herrschenden pH-Wert von 2 bis 3 wird die Suspension zerstört, und das Nitroguanidin wird in feiner Verteilung freigesetzt. Nach der Erfindung haben sich als Schichtsilikate [Mg6(Si7,4Al0,6)O20 (OH)4]Na0,6 · xH2O und [(Mg5,4Li0,6)Si8O20 (OH3F)4]Na0,6 · xH2O besonders bewährt. Hierbei handelt es sich um synthetisch hergestellte Dreischichtsilikate vom Smectit-Typ. Die Schichtsilikate haben keine nachteilige Wirkung auf die Bildung der Phosphatschichten. Neben ihrer eigentlichen vorteilhaften Wirkung verbessern sie aber auch die Sedimentation des Phosphatschlamms und erhöhen seinen Festkörperanteil.
Der Gegenstand der Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert.
Die Ausführungsbeispiele 1 und 2 wurden unter Anwendung folgender Verfahrensschritte durchgeführt:
  • a) Die Oberflächen von aus Stahlblech bestehenden metallischen Gegenständen wurden mit einem schwach alkalischen Reiniger (2%ige wässrige Lösung) während 5 Minuten bei 60 °C gereinigt und insbesondere entfettet.
  • b) Es folgte eine Spülung mit Leitungswasser während 0,5 Minuten bei Raumtemperatur.
  • c) Anschließend erfolgte eine Aktivierung mit einem Aktivierungsmittel (3 g/l H2O), das ein Titanphosphat enthielt, während 0,5 Minuten bei Raumtemperatur.
  • d) Danach wurde bei ca. 55 °C während 3 Minuten durch Tauchen phosphatiert.
  • e) Schließlich wurde mit Leitungswasser während 0,5 Minuten bei Raumtemperatur gespült.
  • f) Die phosphatierten Oberflächen wurden mit Preßluft getrocknet.
  • Die Zusammensetzung der zur Phosphatierung verwendeten wäßrigen Lösungen und die Eigenschaften der Phosphatschichten ergeben sich aus Tabelle 1.
    Entsprechend den Ausführungsbeispielen 1 und 2 wurden Vergleichsversuche mit an sich bekannten Phophatierungslösungen durchgeführt, die aber einen anderen Beschleuniger enthielten (Vergleichsversuche A und B). Außerdem wurde ein Vergleichsversuch mit einer bezüglich des Zn : P2O5-Verhältnisses nicht erfindungsgemäßen Phosphatierungslösung durchgeführt, die als Beschleuniger Nitroguanidin enthielt (Vergleichsversuch C). Bei den Vergleichsversuchen A, B, C wurden die Verfahrensschritte a) bis f) durchgeführt. Die Zusammensetzung der für die Vergleichsversuche verwendeten Phophatierungslösungen und die Eigenschaften der Phosphatschichten ergeben sich aus Tabelle 2.
    Der Vergleich der Ausführungsbeispiele 1 und 2 mit den Vergleichsversuchen A, B und C zeigt, daß mit der erfindungsgemäßen Phosphatierungslösung gegenüber den bekannten und bewährten Phosphatierungslösungen gute Ergebnisse erzielt werden, wobei das Nitroguanidin gegenüber dem Beschleuniger NO2 - allerdings wesentlich bessere Gebrauchseisenschaften hat. Der Vergleichsversuch C zeigt, daß erst durch die Anwendung der erfindungsgemäßen Parameter gute und praxisgerechte Phosphatierungsergebnisse erzielt werden.
    Die Ausführungsbeispiele 3 und 4 wurden unter Anwendung folgender Verfahrensbedingungen durchgeführt, wobei insbesondere die Eignung der Erfindung zur Phosphatierung von Hohlräumen geprüft werden sollte: Stahlbleche wurden in einem Kasten, der einen Hohlraum simulierte, entsprechend den Verfahrensschritten a) bis e) behandelt, die auch bei den Ausführungsbeispielen 1 und 2 zur Anwendung kamen. Die Trocknung der phophatierten Stahlbleche erfolgte im Hohlraum (Kasten) bei Raumtemperatur ohne Preßluft. Die Zusammensetzung der zur Phosphatierung eines Hohlraums verwendeten wäßrigen Lösungen und die Eigenschaften der Phosphatschichten ergeben sich aus Tabelle 3.
    Die Phosphatschichten der Ausführungsbeispiele 3 und 4 hatten bezüglich Schichtgewicht, Kristallit-Kantenlänge und Mindesphosphatierzeit etwa die gleichen Eigenschaften wie die Phosphatschichten der Ausführungsbeispiele 1 und 2.
    Entsprechend den Ausführungsbeispielen 3 und 4 wurden die Vergleichsversuche D und E durchgeführt, wobei die einzelnen Verfahrensschritte identisch waren. Die bei den Vergleichsversuchen D und E benutzten Phophatierungslösungen sind an sich bekannt und enthalten als Beschleuniger Hydroxylamin. Die Zusammensetzung der zur Durchführung der Vergleichsversuche D und E verwendeten Lösungen und die Eigenschaften der Phosphatschichten sind in Tabelle 4 angegeben.
    Ein Vergleich der Ausführungsbeispiele 3 und 4 mit den Vergleichsversuchen D und E zeigt, daß mit der Erfindung eine sehr gute Phophatierung von Hohlräumen erreicht werden kann, denn entsprechend der Erfindung werden vollständige, geschlossene Phosphatschichten erzeugt, und eine Flugrostbildung tritt nicht ein. Der Begriff "Flugrostbildung" beinhaltet, daß sich auf der metallischen Oberfläche, die keine vollständige, geschlossene Phosphatschicht besitzt, während der Trocknung eine Rostschicht bildet, was sehr nachteilig ist. In einigen Fällen bleibt die Flugrostbildung aus, obwohl keine vollständige, geschlossene Phosphatschicht vorhanden ist, was auf einer Passivierung der metallischen Oberfläche durch die Phosphatierungslösung beruhen dürfte.
    Zur Prüfung der Korrosionseigenschaften von und der Lackhaftung auf verschiedenen, nach der Erfindung phosphatierten metallischen Substraten wurden Lackhaftungsprüfwerte ermittelt.
    Die Tabelle 5 gibt die Lackhaftungs- und die Korrosionsschutzprüfwerte an, die für unterschiedliche Bleche (Substrate) ermittelte wurden, wobei die einzelnen Substrate entsprechend den Beispielen 5,6 und 7 mit erfindungsgemäßen Lösungen und gemäß den Vergleichsversuchen F und G mit bekannten Lösungen durch Tauchen phosphatiert worden sind. Das Tauchen der einzelnen Substrate erfolgte entsprechend den vorstehend genannten Verfahrensschritten a) bis f). Die Zusammensetzung der für die Beispiele 5, 6 und 7 verwendeten Phosphatierungslösungen ist in Tabelle 7 angegeben. Dort finden sich auch die Zusammensetzungen der bekannten Phosphatierungslösungen, die zur Ausführung der Vergleichsversuche F und G verwendet worden sind. Nach der Phosphatierung der Substrate durch Tauchen wurde ein Elektrotauchlack, ein Füller und ein Decklack aufgebracht. Anschließend erfolgte die Prüfung durch eine Freibewitterung, bewertet nach 6 Monaten, durch einen Salzsprühnebeltest und durch Steinschlag nach einem 12-Runden-Klimawechseltest. Tabelle 5 gibt die bei den einzelnen Prüfungen ermittelte Unterwanderung der Lackschicht, gemessen in mm, an, wobei für die Steinschlag-Prüfung die Lackabplatzung in Prozent genannt ist.
    Tabelle 6 gibt die Lackhaftungs- und Korrosionsschutzprüfwerte für verschiedene Substrate an, die durch Spritzen phosphatiert wurden. Die Spritzphosphatierung der Substrate wurde entsprechend der Erfindung unter Anwendung folgender Verfahrensschritte durchgeführt:
  • g) Die Oberflächen der Substrate wurden mit einem schwach alkalischen Reiniger (2 %-ige wässrige Lösung) während 5 Minuten bei 60°C gereinigt und insbesondere entfettet.
  • h) Es folgte eine Spülung mit Leitungswasser während 0,5 Minuten bei Raumtemperatur.
  • i) Danach wurde bei 55°C während 2 Minuten durch Spritzen phosphatiert.
  • k) Anschließend wurde mit einem chromfreien Nachspülmittel, das (ZrF6)2- enthielt, bei Raumtemperatur während 1 Minute gespült, um die phosphatierten Substrate zu passivieren.
  • l) Schließlich wurde mit vollentsalztem Wasser während 1 Minute bei Raumtemperatur gespült.
  • m) Die phosphatierten Substrate wurden im Ofen während 10 Minuten bei 80°C getrocknet.
  • Die Zusammensetzung der erfindungsgemäßen wässrigen Phosphatierungslösungen, die zur Ausführung der Beispiele 8, 9 und 10 verwendet wurden, sind in der Tabelle 8 angegeben. Die Zusammensetzung der bekannten Phosphatierungslösung, die zur Ausführung des Vergleichsversuchs H verwendet wurde, findet sich ebenfalls in Tabelle 8. Auf die durch Spritzen phosphatierten Substrate wurde anschließend ein Elektrotauchlack, ein Füller und ein Decklack aufgetragen. Die phosphatierten und lackierten Substrate wurden dann einer Prüfung durch eine Freibewitterung während 6 Monaten, durch einen Salzsprühnebeltest, durch einen Gitterschnitt und durch einen 12-Runden-Klimawechseltest mit anschließendem Steinschlag unterworfen. In der Tabelle 6 sind die für die einzelnen Substrate ermittelten Prüfwerte angegeben, wobei für den Gitterschnitt eine Bewertungsnote und für die Freibewitterung, den Salzsprühnebeltest und den Klimawechseltest die Unterwanderung der Lackschicht, gemessen in mm, angegeben ist. Für den Steinschlag wird die Lackabplatzung in Prozent genannt.
    Der Korrosionsschutz, der durch die erfindungsgemäße Phosphatierung erreicht wird, ist mit dem Korrosionsschutz vergleichbar, der durch die Anwendung bewährter, bekannter Phosphatierungsverfahren eintritt, die mit dem Beschleuniger Nitrit arbeiten. Die erfindungsgemäße Phosphatierung vermeidet hingegen die Anwendung des Beschleunigers Nitrit, dessen Verwendung zunehmend auf Ablehnung stößt, da aus Nitrit bei der Phosphatierung Reaktionsprodukteentstehen, welche die Umwelt schädigen und teilweise auf den Menschen toxisch wirken. Die durch die erfindungsgemäße Phosphatierung erzielte Lackhaftung und Korrosionsschutzwirkung ist als sehr gut bis gut zu bewerten.
    Beispiel 1 Beispiel 2
    Zn2+ 1,4 g/l 1,4 g/l
    Mn2+ 1,0 g/ll 1,0 g/l
    Ni2+ 1,0 g/l -
    Cu2+ - 8 mg/l
    NO3 - 3,0 g/l 3,0 g/l
    PO4 3- (gesamt) 18,0 g/l 18,0 g/l
    = P2O5 (gesamt) 13,5 g/l 13,5 g/l
    Nitroguanidin 0,5 g/l 0,5 g/l
    Na+ die für Titrationsdaten-Einstellung erforderliche Menge
    S-Wert 0,09 0,09
    Schichtgewicht 2,4 g/m2 2,6 g/m2
    Kristallit-Kantenlänge 2 - 8 µm 2 - 8 µm
    Mindestphosphatierzeit < 60 sec < 60 sec
    Vergleichsversuch A Vergleichsversuch B Vergleichsversuch C
    Zn2+ 1,4 g/l 1,4 g/l 3,5 g/l
    Ni2+ 1,0 g/l 1,0 g/l -
    Mn2+ 1,0 g/l 1,0 g/l -
    P2O5 (gesamt) 12,0 g/l 12,0 g/l 5,5 g/l
    S-Wert 0,07 0,09 0,35
    NO3 - 3,0 g/l 3,0 g/l 3,0 g/l
    H2O2 30 mg/l - -
    NO2 - - 170 mg/l -
    Nitroguanidin - - 2,0 g/l
    Na+ die für Titrationsdaten-Einstellung erforderliche Menge
    Schichtgewicht 1,3 g/m2 2,2 g/m2 4,9 g/m2
    Kristallit-Kantenlänge 40 µm 10 µm 20 bis 25 µm
    Mindestphosphatierzeit 120 sec 60 sec 60 sec
    Beispiel 3 Beispiel 4
    Zn2+ 1,4 g/l 1,9 g/l
    Ni2+ 1,0 g/l 1,0 g/l
    Mn2+ 1,0 g/l 1,0 g/l
    P2O5 (gesamt) 12,0 g/l 12,0 g/l
    S-Wert 0,09 0,09
    NO3 - 3,0 g/l 3,0 g/l
    Nitroguanidin 0,5 g/l 0,9 g/l
    Na+ die für Titrationsdaten-Einstellung erforderlicheMenge
    Vollständige, geschlossene Phosphatschicht ja ja
    Flugrostbildung nein nein
    Vergleichsversuch D Vergleichsversuch E
    Zn2+ 1,4 g/l 1,9 g/l
    Ni2+ 1,0 g/l 1,0 g/l
    Mn2+ 1,0 g/l 1,0 g/l
    P2O5 (gesamt) 12,0 g/l 12,0 g/l
    S-Wert 0,09 0,09
    NO3 - 3,0 g/l 3,0 g/l
    Hydroxylamin 1,0 g/l 1,0 g/l
    Na+ die für Titrationsdaten-Einstellung erforderliche Menge
    Vollständige, geschlossene Phosphatschicht nein nein
    Flugrostbildung ja nein
    Lackhaftungsprüfwerte, Tauchanwendung
    Substrat Beispiele Vergleichsversuche
    5 6 7 F G
    Freibewitterung 6 Monate, mm Unterwanderung, einseitig vom Ritz gemessen.
    Stahl <1 <1 1,5 <1 2,5
    Elektrolytisch verzinkter Stahl 1 1 1 1,5 2,5
    Feuerverzinkter Stahl 0 <1 1 0 <1
    Stahl mit Fe-Zn-Schicht <1 <1 <1 <1 <1
    AlMgSi, ungeschliffen 3 0 0 <1 bis 3 --
    AlMgSi, geschliffen 5 <1 0 4 -
    Salzsprühnebelprüfung, 1008 h, nach DIN 50021 SS, mm Unterwanderung
    Stahl <1 <1 1,5 <1 1
    12-Runden-Klimawechseltest gemäß VDA 621-415, Unterwanderung in mm, einseitig vom Ritz gemessen, und anschließender Steinschlag gemäß Spezifikation der VW AG, % Lackabplatzung, in ( ) angegeben
    Stahl <1 (0,5) <1 (0,5) 1,5 (0,5) <1 (1) 2 (1)
    Elektrolytisch verzinkter Stahl 6,5 (1,5) 7 (8,5) 7 (5) 5,5 (2) 8 (40)
    Feuerverzinkter Stahl 1,5 (0,5) 2 (7) 2 (2) 1 (0,5) 2,5 (15)
    Stahl mit Fe-Zn-Schicht 1 (0,5) 1 (0,5) 1 (0,5) 1 (0,5) 1 (0,5)
    Lackhaftungsprüfwerte, Spritzanwendung
    Substrat Beispiele Vergleichsversuch
    8 9 10 H
    Freibewitterung 6 Monate, mm Unterwanderung, einseitig vom Ritz gemessen.
    Stahl <1 1 <1 <1
    Elektrolytisch verzinkter Stahl <1 1,5 1,5 1,5
    Feuerverzinkter Stahl 0 0 0 0
    Stahl mit Fe-Zn-Schicht 0 <1 <1 <1
    AlMgSi, ungeschliffen 0 0 0 2
    AlMgSi, geschliffen 0 0 2,5 5
    Salzsprühnebelprüfung, 1008 h, nach DIN 50021 SS, mm Unterwanderung
    Stahl <1 <1 <1 <1
    Gitterschnitt nach 240 h gemäß DIN 50017 KK und DIN / ISO 2409, Note
    Stahl 1 2 1 1
    Elektrolytisch verzinkter Stahl 1 1 1-2 1
    Feuerverzinkter Stahl 1 1 2 1
    Stahl mit Fe-Zn-Schicht 1 1 1 1
    AlMgSi, ungeschliffen 1 0 3 1
    AlMgSi, geschliffen 1 0-1 3 1
    12-Runden-Klimawechseltest gemäß VDA 621-415, Unterwanderung in mm, einseitig vom Ritz gemessen, und anschließender Steinschlag gemäß Spezifikation der VW AG, % Lackabplatzung, in ( ) angegeben
    Stahl <1 (2) 1 (5) <1 (2) <1 (2)
    Elektrolytisch verzinkter Stahl 5 (5,5) 5,5 (9) 6 (14) 5,5 (4)
    Feuerverzinkter Stahl 1,5 (1) 2,5 (2) 2,5 (1,5) 1,5 (1)
    Stahl mit Fe-Zn-Schicht 1 (1) 1 (2) 1 (1) 1 (1)
    Stoff/Wert Beispiele Vergleichsversuche
    5 6 7 F G
    Zn2+ 1,4 g/l 1,4 g/l 1,4 g/l 1,4 g/l 3,5 g/l
    Mn2+ 1,0 g/l 1,0 g/l 1,0 g/l 1,0 g/l --
    Ni2+ 1,0 g/l -- -- 1,0 g/l --
    Cu2+ -- 8 mg/l -- -- --
    NO3 - 3,0 g/l 3,0 g/l 3,0 g/l 3,0 g/l 3,0 g/l
    P2O5 (gesamt) 13,5 g/l 13,5 g/l 13,5 g/l 12,0 g/l 5,5 g/l
    Nitroguanidin 0,5 g/l 0,5 g/l 0,5 g/l -- 2 g/l
    NO2 - -- -- -- 170 mg/l --
    S-Wert 0,09 0,09 0,09 0,09 0,35
    Stoff/Wert Beispiele Vergleichsversuch
    8 9 10 H
    Zn2+ 0,9 g/l 0,9 g/l 0,9 g/l 0,9 g/l
    Mn2+ 1,0 g/l 1,0 g/l 1,0 g/l 1,0 g/l
    Ni2+ 1,0 g/l -- -- 1,0 g/l
    Cu2+ -- 5 mg/l -- --
    NO3 - 3,0 g/l 3,0 g/l 3,0 g/l 3,0 g/l
    P2O5 (gesamt) 11 g/l 11 g/l 11 g/l 11 g/l
    Nitroguanidin 0,5 g/l 0,5 g/l 0,5 g/l --
    NO2 - -- -- -- 150 mg/l
    S-Wert 0,07 0,07 0,07 0,07

    Claims (17)

    1. Wässrige, phosphathaltige Lösung zur Erzeugung von Phosphatschichten auf metallischen Oberflächen aus Eisen, Stahl, Zink, Zinklegierungen, Aluminium oder Aluminiumlegierungen, die Zink, Phosphat sowie Nitroguanidin als Beschleuniger enthält, dadurch gekennzeichnet, daß die Lösung 0,3 bis 5 g Zn 2+ /l und 0,1 bis 3 g Nitroguanidin / l enthält, wobei der S-Wert 0,03 bis 0,3 und das Gewichtsverhältnis Zn zu P2O5 = 1 : 5 bis 1 : 30 beträgt, wobei der S-Wert das Verhältnis von freier Säure, berechnet als freies P2O5 , zum Gesamt- P2O5 angibt und wobei die Lösung feinkristalline Phosphatschichten erzeugt, in denen die Kristallite eine maximale Kantenlänge < 15µm haben.
    2. Wässrige Lösung nach Anspruch 1, dadurch gekennzeichnet, daß die Lösung 0,3 bis 3 g Zn 2+ /l enthält.
    3. Wässrige Lösung nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß die Lösung 0,5 bis 20 g NO3 -/l enthält.
    4. Wässrige Lösung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Lösung 0,01 bis 3 g Mn2+ /l und/oder 0,01 bis 3 g Ni 2+ /l und/oder 1 bis 100 mg Cu 2+ /l und/oder 10 bis 300 mg Co 2+ /l enthält.
    5. Wässrige Lösung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Lösung 0,01 bis 3 g F- /l und/oder 0,05 bis 3,5 g/l mindestens eines komplexen Fluorids enthält.
    6. Wässrige Lösung nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Lösung als komplexes Fluorid (SiF6)2- oder (BF4)- enthält.
    7. Verfahren zur Phosphatierung, dadurch gekennzeichnet, daß die metallischen Oberflächen gereinigt, anschließend mit der wässrigen, phosphathaltigen Lösung gemäß den Ansprüchen 1 bis 6 während einer Zeit von 5 Sekunden bis 10 Minuten bei einer Temperatur von 15 bis 70'C behandelt und schließlich mit Wasser gespült werden.
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Behandlung der metallischen Oberflächen mit der Phosphatierungslösung durch Spritzen, Tauchen, Spritztauchen oder Aufwalzen erfolgt.
    9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die zum Spritzen verwendete Phosphatierungslösung ein Gewichtsverhältnis Zn zu P2O5 = 1 : 10 bis 1 : 30 aufweist.
    10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die zum Tauchen verwendete Phosphatierungslösung ein Gewichtsverhältnis Zn zu P2O5 = 1 : 5 bis 1 : 18 aufweist.
    11. Verfahren nach den Ansprüchen 7 bis 10, dadurch gekennzeichnet, daß die metallischen Oberflächen nach der Reinigung mit einem Aktivierungsmittel behandelt werden, das ein titanhaltiges Phosphat enthält.
    12. Verfahren nach den Ansprüchen 7 bis 11, dadurch gekennzeichnet, daß die metallischen Oberflächen nach dem der Phosphatierung folgenden Spülvorgang mit einem Passivierungsmittel nachbehandelt werden.
    13. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Nitroguanidin in die wässrige Lösung in Form einer stabilen, wässrigen Suspension eingebracht wird.
    14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die stabile, wässrige Suspension als Stabilisator ein Schichtsilikat enthält.
    15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß als Stabilisator die Schichtsilikate [Mg6 (Si7,4 Al0,6) O20 (OH)4] Na0,6 x XH2O und [(Mg5,4 Li0,6) Si8 O20 (OH3 F)4 ] Na0,6 x XH2O in einer Menge von 10 bis 30 g/l Nitroguanidin-Suspension verwendet werden.
    16. Verwendung der wässrigen, phosphathaltigen Lösung nach den Ansprüchen 1 bis 6 und des Verfahrens zur Phosphatierung nach den Ansprüchen 7 bis 15 zur Behandlung von Werkstücken vor der Lackierung.
    17. Verwendung nach Anspruch 16 zur Behandlung von Werkstücken vor der Elektrotauchlackierung.
    EP97943803A 1996-08-28 1997-08-11 Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen Expired - Lifetime EP0922123B1 (de)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    SI9730079T SI0922123T1 (en) 1996-08-28 1997-08-11 Process and aqueous solution for phosphatising metallic surfaces

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19634685 1996-08-28
    DE19634685A DE19634685A1 (de) 1996-08-28 1996-08-28 Wässrige Lösung und Verfahren zur Phosphatierung metallischer Oberflächen
    PCT/EP1997/004360 WO1998008999A1 (de) 1996-08-28 1997-08-11 Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen

    Publications (2)

    Publication Number Publication Date
    EP0922123A1 EP0922123A1 (de) 1999-06-16
    EP0922123B1 true EP0922123B1 (de) 2000-07-26

    Family

    ID=7803869

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97943803A Expired - Lifetime EP0922123B1 (de) 1996-08-28 1997-08-11 Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen

    Country Status (25)

    Country Link
    US (1) US6261384B1 (de)
    EP (1) EP0922123B1 (de)
    JP (1) JP3940174B2 (de)
    KR (1) KR100473779B1 (de)
    CN (1) CN1080325C (de)
    AR (1) AR009336A1 (de)
    AT (1) ATE195005T1 (de)
    AU (1) AU720551B2 (de)
    BR (1) BR9713177A (de)
    CA (1) CA2264568C (de)
    CZ (1) CZ294673B6 (de)
    DE (2) DE19634685A1 (de)
    DK (1) DK0922123T3 (de)
    ES (1) ES2150791T3 (de)
    GR (1) GR3034297T3 (de)
    HU (1) HU228330B1 (de)
    IN (1) IN192301B (de)
    PL (1) PL192285B1 (de)
    PT (1) PT922123E (de)
    SI (1) SI0922123T1 (de)
    SK (1) SK283857B6 (de)
    TR (1) TR199900426T2 (de)
    TW (1) TW363089B (de)
    WO (1) WO1998008999A1 (de)
    ZA (1) ZA977706B (de)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2004104266A1 (de) * 2003-05-23 2004-12-02 Chemetall Gmbh Verfahren und lösung zur beschichtung von metallischen oberflächen mit einer wasserstoffperoxid enthaltenden phosphatierungslösung, hergestellte metallgenstand und verwendung des gegenstandes
    US8349092B2 (en) 2002-07-10 2013-01-08 Chemetall Gmbh Process for coating metallic surfaces

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19808440C2 (de) 1998-02-27 2000-08-24 Metallgesellschaft Ag Wässrige Lösung und Verfahren zur Phosphatierung metallischer Oberflächen sowie eine Verwendung der Lösung und des Verfahrens
    DE19834796A1 (de) 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
    DE19857799A1 (de) 1998-12-15 2000-06-21 Henkel Kgaa Verfahren zum Steuern einer Behandlungslinie
    DE19911843C2 (de) * 1999-03-17 2001-05-10 Metallgesellschaft Ag Verfahren für den Korrosionsschutz von Aluminium und Aluminiumlegierungen sowie Verwendung des Verfahrens
    US20040118483A1 (en) * 2002-12-24 2004-06-24 Michael Deemer Process and solution for providing a thin corrosion inhibiting coating on a metallic surface
    US20040188323A1 (en) * 2003-03-24 2004-09-30 Tzatzov Konstantin K. Active coating system for reducing or eliminating coke build-up during petrochemical processes
    DE10320313B4 (de) * 2003-05-06 2005-08-11 Chemetall Gmbh Verfahren zum Beschichten von metallischen Körpern mit einer Phosphatierungslösung, Phosphatierungslösung und die Verwendung des beschichteten Gegenstandes
    CN1314836C (zh) * 2004-08-02 2007-05-09 吉林大学 镁合金磷化溶液及其磷化工艺
    CN101693993B (zh) * 2009-09-27 2011-03-30 上海大学 碳钢表面磷化处理液及镀镍封闭方法
    CN107338428B (zh) * 2017-06-02 2019-01-11 余卫民 钴、锌、铁三元体系磷酸盐金属表面处理剂、制备方法及复合沉积物
    RU2690876C1 (ru) * 2018-06-14 2019-06-06 Закрытое Акционерное общество "ФК" (ЗАО " ФК") Способ получения фосфатного покрытия
    CN109518176B (zh) * 2018-12-14 2021-09-24 上海大学 碱性磷化液、制备方法及磷化处理工艺
    CN110699681B (zh) * 2019-10-24 2021-12-14 河南北方红阳机电有限公司 一种高强度钢和硬铝合金组合体喷淋磷化工艺

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE977633C (de) * 1950-07-06 1967-11-02 Galvapol Ges Fuer Galvanotechn Verfahren zur Herstellung von Phosphatueberzuegen auf eisenhaltigen Metallgegenstaenden

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    BE432557A (de) * 1938-02-04
    US2375468A (en) * 1938-02-04 1945-05-08 Parker Rust Proof Co Phosphate coating of metals
    DE821907C (de) * 1943-06-07 1951-11-22 Pyrene Co Ltd Mittel fuer die Herstellung von Phosphatueberzuegen auf Metallen
    US3855147A (en) * 1972-05-26 1974-12-17 Nl Industries Inc Synthetic smectite compositions, their preparation, and their use as thickeners in aqueous systems
    GB2080835B (en) * 1980-07-25 1984-08-30 Pyrene Chemical Services Ltd Prevention of sludge in phosphating baths
    DE3800835A1 (de) * 1988-01-14 1989-07-27 Henkel Kgaa Verfahren zur phosphatierung von metalloberflaechen
    US5268041A (en) * 1990-04-27 1993-12-07 Metallgesellschaft Ag Process for phosphating metal surfaces

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE977633C (de) * 1950-07-06 1967-11-02 Galvapol Ges Fuer Galvanotechn Verfahren zur Herstellung von Phosphatueberzuegen auf eisenhaltigen Metallgegenstaenden

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    DR. WERNER RAUSCH: "Die Phosphatierung von Metallen, Seiten 299-304", EUGEN G. LEUZE VERLAG, 1988 *

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8349092B2 (en) 2002-07-10 2013-01-08 Chemetall Gmbh Process for coating metallic surfaces
    WO2004104266A1 (de) * 2003-05-23 2004-12-02 Chemetall Gmbh Verfahren und lösung zur beschichtung von metallischen oberflächen mit einer wasserstoffperoxid enthaltenden phosphatierungslösung, hergestellte metallgenstand und verwendung des gegenstandes

    Also Published As

    Publication number Publication date
    CA2264568A1 (en) 1998-03-05
    SI0922123T1 (en) 2000-12-31
    ATE195005T1 (de) 2000-08-15
    JP3940174B2 (ja) 2007-07-04
    TR199900426T2 (xx) 1999-04-21
    DE19634685A1 (de) 1998-03-05
    PL192285B1 (pl) 2006-09-29
    ES2150791T3 (es) 2000-12-01
    IN192301B (de) 2004-04-03
    BR9713177A (pt) 2000-02-08
    HUP9903091A1 (hu) 2001-05-28
    CA2264568C (en) 2006-10-17
    AU720551B2 (en) 2000-06-01
    TW363089B (en) 1999-07-01
    SK283857B6 (sk) 2004-03-02
    ZA977706B (en) 1999-03-01
    DE59702088D1 (de) 2000-08-31
    JP2000516999A (ja) 2000-12-19
    KR20000035825A (ko) 2000-06-26
    PT922123E (pt) 2000-11-30
    HU228330B1 (en) 2013-03-28
    SK23299A3 (en) 2000-05-16
    WO1998008999A1 (de) 1998-03-05
    CN1231705A (zh) 1999-10-13
    US6261384B1 (en) 2001-07-17
    CN1080325C (zh) 2002-03-06
    HUP9903091A3 (en) 2004-03-01
    CZ68099A3 (cs) 1999-11-17
    PL331883A1 (en) 1999-08-16
    EP0922123A1 (de) 1999-06-16
    DK0922123T3 (da) 2000-11-20
    AU4551697A (en) 1998-03-19
    AR009336A1 (es) 2000-04-12
    GR3034297T3 (en) 2000-12-29
    CZ294673B6 (cs) 2005-02-16
    KR100473779B1 (ko) 2005-03-08

    Similar Documents

    Publication Publication Date Title
    DE3789746T2 (de) Verfahren zur Herstellung von Zink-Nickel-Phosphatüberzügen.
    DE3879099T2 (de) Verfahren und zusammensetzung zur herstellung von zinkphosphatueberzuegen.
    EP0633950B1 (de) Nickelfreie phosphatierverfahren
    EP0922123B1 (de) Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen
    EP1390564A2 (de) Verfahren zur beschichtung von metallischen oberflächen und verwendung der derart beschichteten substrate
    EP2588646A1 (de) Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion
    EP1254279A2 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
    EP1114202A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
    WO1992017628A1 (de) Verfahren zum phosphatieren von metalloberflächen
    DE19808440C2 (de) Wässrige Lösung und Verfahren zur Phosphatierung metallischer Oberflächen sowie eine Verwendung der Lösung und des Verfahrens
    EP0931179B1 (de) Verfahren zur phosphatierung von stahlband
    DE19705701A1 (de) Verfahren zur Niedrig-Nickel-Phosphatierung mit metallhaltiger Nachspülung
    DE3875459T2 (de) Verfahren zum phosphatieren von metalloberflaechen.
    EP0889977B1 (de) Zinkphosphatierung mit geringen gehalten an kupfer und mangan
    WO1994008074A1 (de) Verfahren zum phosphatieren von verzinkten stahloberflächen
    WO1997030189A1 (de) Zinkphosphatierung mit geringen gehalten an nickel und/oder cobalt
    DE19639597C2 (de) Verfahren zur Phosphatierung von laufenden Bändern aus kalt- oder warmgewalztem Stahl in schnellaufenden Bandanlagen
    DE19808755A1 (de) Schichtgewichtsteuerung bei Bandphosphatierung
    WO1993022474A1 (de) Kupfer enthaltendes, nickelfreies phosphatierverfahren
    WO1986004931A1 (en) Process for the phosphating of metal surfaces
    WO1997014821A1 (de) Schichtgewichtssteuerung bei hydroxylamin-beschleunigten phosphatiersystemen
    EP1155163B1 (de) Verfahren zur phosphatierung von zink- oder aluminiumoberflächen
    EP0866888B1 (de) Verfahren zur phosphatierung von metalloberflächen
    WO2024120826A1 (de) Verfahren zur elektrolytischen abscheidung einer phosphatschicht auf zinkoberflächen
    WO1998009000A1 (de) Rutheniumhaltige zinkphosphatierung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990329

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

    AX Request for extension of the european patent

    Free format text: SI PAYMENT 19990329

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19990713

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    ITF It: translation for a ep patent filed
    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE PATENT HAS BEEN GRANTED

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

    AX Request for extension of the european patent

    Free format text: SI PAYMENT 19990329

    REF Corresponds to:

    Ref document number: 195005

    Country of ref document: AT

    Date of ref document: 20000815

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ISLER & PEDRAZZINI AG

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000726

    ET Fr: translation filed
    REF Corresponds to:

    Ref document number: 59702088

    Country of ref document: DE

    Date of ref document: 20000831

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20000822

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2150791

    Country of ref document: ES

    Kind code of ref document: T3

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: MG TECHNOLOGIES AG

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: MG TECHNOLOGIES AG

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20010724

    Year of fee payment: 5

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020811

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: CHEMETALL GMBH

    Free format text: METALLGESELLSCHAFT AKTIENGESELLSCHAFT#BOCKENHEIMER LANDSTRASSE 73-77#60325 FRANKFURT AM MAIN (DE) -TRANSFER TO- CHEMETALL GMBH#TRAKEHNER STRASSE 3#60487 FRANKFURT AM MAIN (DE)

    NLS Nl: assignments of ep-patents

    Owner name: CHEMETALL GMBH

    NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

    Owner name: MG TECHNOLOGIES AG

    REG Reference to a national code

    Ref country code: SI

    Ref legal event code: IF

    BECH Be: change of holder

    Owner name: *CHEMETAL G.M.B.H.

    Effective date: 20050105

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: PD4A

    Owner name: MG TECHNOLOGIES AG, DE

    Effective date: 20041123

    Ref country code: PT

    Ref legal event code: PC4A

    Owner name: CHEMETALL GMBH, DE

    Effective date: 20041123

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

    BECH Be: change of holder

    Owner name: *CHEMETAL G.M.B.H.

    Effective date: 20050105

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20100824

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: ML

    Ref document number: 20000401984

    Country of ref document: GR

    Effective date: 20120302

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120302

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20160826

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160830

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20160826

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20160824

    Year of fee payment: 20

    Ref country code: IE

    Payment date: 20160826

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20160829

    Year of fee payment: 20

    Ref country code: DK

    Payment date: 20160831

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20160721

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20160825

    Year of fee payment: 20

    Ref country code: SE

    Payment date: 20160829

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20160720

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20160826

    Year of fee payment: 20

    Ref country code: BE

    Payment date: 20160829

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59702088

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EUP

    Effective date: 20170811

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20170810

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20170810

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 195005

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20170811

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MK9A

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MK

    Effective date: 20170811

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170811

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170810

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170821

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20180508

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170812