EP2588646A1 - Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion - Google Patents
Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktionInfo
- Publication number
- EP2588646A1 EP2588646A1 EP11730611.8A EP11730611A EP2588646A1 EP 2588646 A1 EP2588646 A1 EP 2588646A1 EP 11730611 A EP11730611 A EP 11730611A EP 2588646 A1 EP2588646 A1 EP 2588646A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zinc
- points
- water
- phosphating
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 35
- 239000002184 metal Substances 0.000 title claims abstract description 35
- 239000002131 composite material Substances 0.000 title claims abstract description 30
- 238000010276 construction Methods 0.000 title abstract description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 55
- 239000011701 zinc Substances 0.000 claims abstract description 55
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 38
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 36
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000002253 acid Substances 0.000 claims abstract description 21
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 20
- 150000002484 inorganic compounds Chemical class 0.000 claims abstract description 20
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 20
- 239000010703 silicon Substances 0.000 claims abstract description 19
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 claims description 31
- 229910000165 zinc phosphate Inorganic materials 0.000 claims description 31
- 229910000831 Steel Inorganic materials 0.000 claims description 25
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 25
- 239000010959 steel Substances 0.000 claims description 25
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 23
- 239000008397 galvanized steel Substances 0.000 claims description 23
- 239000010936 titanium Substances 0.000 claims description 22
- 229910052719 titanium Inorganic materials 0.000 claims description 22
- 229910052726 zirconium Inorganic materials 0.000 claims description 22
- 229910019142 PO4 Inorganic materials 0.000 claims description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 21
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 21
- 239000010452 phosphate Substances 0.000 claims description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 19
- -1 zinc (II) ions Chemical class 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 13
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000011010 flushing procedure Methods 0.000 claims description 3
- 150000002222 fluorine compounds Chemical class 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 15
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 238000010306 acid treatment Methods 0.000 abstract description 3
- 238000003853 Pinholing Methods 0.000 abstract 1
- 229910004074 SiF6 Inorganic materials 0.000 abstract 1
- 150000007513 acids Chemical class 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 48
- 239000013078 crystal Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 7
- 238000000151 deposition Methods 0.000 description 7
- 239000003973 paint Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- IDCPFAYURAQKDZ-UHFFFAOYSA-N 1-nitroguanidine Chemical compound NC(=N)N[N+]([O-])=O IDCPFAYURAQKDZ-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 101100117236 Drosophila melanogaster speck gene Proteins 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010037867 Rash macular Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-M chlorate Inorganic materials [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004761 hexafluorosilicates Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000004313 potentiometry Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/10—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
- B05D3/107—Post-treatment of applied coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/362—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/364—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
- C23C22/365—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
- C23C22/83—Chemical after-treatment
Definitions
- the present invention relates to the anti-corrosive treatment of
- Composite metal constructions containing metallic surfaces of aluminum, zinc and optionally iron in a multi-stage process containing metallic surfaces of aluminum, zinc and optionally iron in a multi-stage process.
- the process of the present invention allows selective zinc phosphating of the zinc and iron surfaces of the composite metal structure without depositing significant amounts of zinc phosphate on the aluminum surfaces. In this way stands the
- the present invention also relates to a
- compositions for corrosion-protective treatment of the body shell Therefore, there is a need for improved pretreatment methods of complex components such as automobile bodies, in addition to parts
- Aluminum include those made of steel and optionally galvanized steel. As a result of the entire pretreatment on all metal surfaces occurring a
- Conversion or a passivation layer are generated, which is a corrosion-protective paint base, especially in front of a cathodic
- Electrocoating is suitable.
- German laid-open specification DE 19735314 proposes a two-stage process in which initially a selective phosphating of the steel and galvanized steel surfaces of a likewise aluminum surfaces having body and then treatment of the body with a Passivitationsown for
- the prior art discloses other two-stage pretreatment methods which also conceptually follow the deposition of a crystalline phosphate layer on the steel and optionally zinc-plated and alloy-galvanized steel surfaces in the first step and the passivation of the aluminum surfaces in a further subsequent step. These methods are disclosed in WO 99/12661 and WO 02/066702. In principle, the processes disclosed therein are carried out in such a way that, in a first step, selective phosphating of the steel or zinc-coated steel
- Phosphate crystals are formed.
- the selective phosphating of the steel and galvanized steel surfaces is achieved by a temperature-dependent limitation of the proportion of free fluoride ions in the phosphating solutions, the free acid contents are set in a range of 0 to 2.5 points.
- a method for selectively phosphating steel and galvanized steel surfaces of a composite structure comprising aluminum parts is disclosed.
- This publication teaches phosphating solutions containing water - soluble inorganic compounds of the elements zirconium and titanium, the presence of which phosphating the
- phosphate crystal nests By phosphate crystal nests the skilled person understands the isolated and localized deposition of phosphate crystals on metal surfaces (here: aluminum surfaces). Such "crystal nests" are from a subsequent paint primer
- speckling one skilled in the phosphating art understands the phenomenon of local deposition of amorphous white zinc phosphate in an otherwise crystalline phosphate layer on the treated zinc surfaces or on the treated galvanized or alloy galvanized steel surfaces.
- the speckling is caused by a locally increased pickling rate of the substrate.
- Such point defects in the phosphating can be the starting point for the corrosive softening of subsequently applied organic coating systems, so that the occurrence of specks in practice is largely to be avoided.
- This object described above is achieved by a method for the chemical pretreatment of a composite metal structure which contains at least one part of aluminum and at least one part of zinc and possibly another part of iron, the (I) in a first step, the treatment of the composite metal structure with a zinc phosphating solution comprising, on the parts of zinc and iron, the formation of a surface-covering crystalline zinc phosphate layer
- Coating weight in the range 0.5 to 5 g / m 2 causes, but none
- (II) in a second step comprises applying an acidic treatment solution having a pH in the range of 3.5 to 5.5 to the composite metal structure, wherein the acidic treatment solution on the parts of zinc and iron is not more than 50 replaces% of the crystalline zinc phosphate but forms a passivating conversion layer on the aluminum parts which does not constitute a surface-covering crystalline phosphate layer having a coating weight of at least 0.5 g / m 2 ,
- step (I) has a temperature in the range of 20 to 65 ° C and contains an amount of free fluoride (measured in g / l) which is at least 0.005 g / l but not larger than the quotient of the number 8 and the solution temperature in ° C (8 / T),
- the score of the free acid in the zinc phosphating solution is at least 0.4 points, but does not exceed 3.0 points.
- the material aluminum also means its alloys.
- the material zinc also comprises galvanized steel and alloy-galvanized steel, while the inclusion of iron also includes iron alloys, in particular steel. Alloys of the aforementioned materials have a Fremdatomanteil of less than 50 atomic%.
- Zinc phosphate layer is allowed to form, so there is no closed and sealed crystalline layer is formed. This condition is at least satisfied when the basis weight of zinc phosphate deposited on the aluminum parts is less than 0.5 g / m 2 .
- aluminum parts are understood as meaning sheets and components made of aluminum and / or alloys of aluminum.
- the coating of zinc phosphate is used for all surfaces of the
- Composite metal construction determined by means of gravimetric differential weighing on test plates of the individual metallic materials of the respective composite metal construction.
- steel sheets are brought into contact immediately after a step (I) for 15 minutes with an aqueous 5 wt .-% Cr0 3 solution at a temperature of 70 ° C and freed in this way from the zinc phosphate layer.
- a corresponding test sheet is used immediately after a step (I) for
- Weight of the dry metal sheets after this respective treatment for weight of the same dry untreated metal sheet immediately before the step (I) corresponds to the coating of zinc phosphate according to this invention.
- step (II) not more than 50% of the crystalline zinc phosphate layer on the steel and galvanized and / or
- alloy-galvanized steel surfaces can also be determined by
- test sheets of the individual metallic materials of the respective Composite metal construction are understood.
- the test plates of steel, galvanized or alloy-galvanized steel phosphated according to step (I) of the process according to the invention are blown dry with compressed air after a rinsing step with deionized water and then weighed.
- the same test sheet is then brought into contact with the acidic treatment solution according to step (II) of the method according to the invention, then rinsed with deionized water, blown dry with compressed air and then weighed again.
- the zinc phosphating of the same test sheet is then completely removed with 5% by weight CrO 3 solution as described above and the dried test sheet is weighed once more. From the weighing differences of the test sheet is now the percentage loss
- Phosphate layer determined in step (II) of the method according to the invention is Phosphate layer determined in step (II) of the method according to the invention.
- step (I) of the method according to the invention The free acid of the zinc phosphating solution in points is determined in step (I) of the method according to the invention by adding 10 ml sample volume of the method
- the concentration of free fluoride in the zinc phosphating solution is in the
- inventive method determined by a potentiometric method.
- a sample volume of the zinc phosphating solution is taken and the activity of the free fluoride ions is determined with any commercial fluoride-selective potentiometric combination electrode after calibration of the combination electrode using fluoride-containing buffer solutions without pH buffering. Both the calibration of the combination electrode and the measurement of the free fluoride are carried out at a temperature of 20 ° C.
- layer formation is undesirable because of the substrate-specific coating properties of zinc phosphating and therefore not according to the invention.
- a certain minimum amount of free fluoride is necessary to ensure sufficient deposition kinetics for the zinc phosphate layer on the surfaces of iron and zinc of the composite metal structure, in particular because of the simultaneous Treatment of the aluminum surfaces of the composite metal structure aluminum cations enter the zinc phosphating, which in turn inhibit the zinc phosphating in uncomplexed form.
- water-soluble inorganic compounds containing silicon causes the suppression of speck formation on the zinc surfaces, for which purpose at least 0.025 g / l of these compounds must be present as SiF 6 in the phosphating bath, but only less than 1 g / l, preferably only less than 0 , 9 g / l may be included.
- the upper limit is on the one hand due to the economy of the process and on the other hand, that the process control is made much more difficult by such high concentrations of water-soluble inorganic compounds containing silicon, since the formation of phosphate crystal on the aluminum surfaces on an increase in the free acid content only
- crystal nests in turn can represent local surface defects, which are starting points for the corrosive delamination of the subsequently applied dip.
- crystal nests after the completion of the paint system require punctual elevations, which always have to be ground back for a customer-desired optically uniform coating of the composite metal construction, for example an automobile body.
- Water-soluble inorganic compounds containing silicon are fluorosilicates, more preferably H 2 SiF 6 , (NH 4 ) 2 SiF 6 , Li 2 SiF 6 , Na 2 SiF 6 and / or K 2 SiF 6 .
- the water-soluble fluorosilicates are also suitable as a source of free fluoride and therefore serve the complexation of trivalent aluminum cations introduced into the bath solution, so that the phosphating remains ensured on the surfaces of steel and galvanized and / or alloy-galvanized steel.
- step (I) of the method according to the invention When using fluorosilicates in phosphating in step (I) of the method according to the invention is of course always pay attention that the ion product of silicon in the form of water-soluble inorganic compounds and free fluoride in proportion to the score of the free acid according to claim 1 of the present invention does not exceed becomes.
- step (I) zinc phosphatizing solution having a free acid content of more than 0.6 points is preferred in step (I), more preferably of at least 1.0 points, but preferably not more than 2.5 points, particularly preferably not more than 2.0 points. Maintaining the preferred ranges for the free acid ensures on the one hand a sufficient deposition kinetics of
- Phosphate layer on the selected metal surfaces and on the other hand prevents unnecessary pickling of metal ions, which in turn intensive monitoring or processing of the phosphating to avoid the precipitation of sludge or disposal thereof in the continuous operation of the
- the total acid content in the phosphating solution in step (I) of the process according to the invention should be at least 10 points, preferably at least 15 points, but not more than 50 points, preferably not more than 25 points.
- the zinc phosphating solution in step (I) contains not more than 5 ppm, more preferably not more than 1 ppm in total of water-soluble compounds of zirconium and / or titanium, based on the elements zirconium and / or titanium , It is known from WO 2008/055726 that the presence of water-soluble compounds of zirconium and / or titanium , It is known from WO 2008/055726 that the presence of water-soluble
- mapping is understood by the person skilled in the art in the dip-coating of metallic components to be a blotchy optical
- Phosphate crystal nests prevent a homogeneous paint buildup and potentially promote the corrosive Lackenthaftung.
- Zinc phosphating in step (I) of the inventive method preferably not more than 5 ppm, more preferably not more than 1 ppm total of water-soluble compounds of zirconium and / or titanium based on the elements zirconium and / or titanium, and particularly preferably not water-soluble Contain compounds of zirconium and / or titanium.
- the zinc phosphating solution in step (I) of the process according to the invention preferably contains at least 0.3 g / l, more preferably at least 0.8 g / l, but preferably not more than 3 g / l, more preferably not more than 2 g / l zinc ions.
- the proportion of phosphate ions in the phosphating solution is preferably at least 5 g / l, but is preferably not greater than 50 g / l, more preferably not greater than 25 g / l.
- the zinc phosphating solution of the process according to the invention may additionally comprise at least one of the following accelerators:
- the formation of a homogeneous crystalline zinc phosphate layer on the steel surfaces as well as on the galvanized and / or alloy-galvanized steel surfaces is substantially facilitated by the accelerator, which reduces the formation of gaseous hydrogen on the metal surface.
- Corrosion protection and paint adhesion of the crystalline zinc phosphate layers produced with an aqueous composition according to the invention are, according to experience, improved if, in addition, one or more of the following cations is present: From 0.001 to 4 g / l of manganese (II),
- Aqueous conversion conversion compositions containing both manganese and nickel ions in addition to zinc ions are well known to those skilled in phosphating as trication phosphating solutions and are well suited to the present invention. Also, as in the phosphating usual share of up to 5 g / l, preferably up to 3 g / l nitrate facilitates the formation of a crystalline homogeneous and closed phosphate layer on the steel, galvanized and alloy-galvanized steel surfaces.
- the phosphating solutions in step (I) of the process according to the invention generally also contain sodium, potassium and / or ammonium ions, on the addition of the appropriate alkalis to adjust the free acidity in the
- step (II) of the method is carried out by the bringing into contact the
- Zinc phosphate layer on the steel surfaces, galvanized and / or alloy-galvanized steel surfaces during the contacting with the treatment solution to not more than 50%, preferably not more than 20%, particularly preferably not more than 10% dissolved.
- passivating inorganic or mixed inorganic-organic thin layers which are not closed crystalline phosphate layers are considered as the conversion layer on aluminum and therefore have a basis weight of less than 0.5 g / m 2 of phosphate layer determined by differential weighing after contacting the aluminum surfaces with 65% by weight nitric acid for 15 minutes at 25 ° C.
- Aluminum surfaces of the composite metal structure typically produced by chromium-free acid treatment solutions containing water-soluble compounds of the elements Zr, Ti, Hf, Si, V and Ce, preferably in a total amount of at least 10 ppm based on the respective elements. Particularly preferred is a
- the acidic treatment solution in step (II) comprises a total of 10 to 1500 ppm fluorocomplexes of zirconium and / or titanium based on the elements zirconium and / or titanium and optionally up to 100 ppm, optionally preferably at least 1 ppm copper ( ll) ions.
- the inventive method for corrosion-protective treatment of assembled from metallic materials composite metal structures, which at least partially also have aluminum surfaces, takes place after cleaning and activation of the metallic surfaces, first by bringing the
- step (I) Surfaces with the zinc phosphating solution of step (I), e.g. by spraying or dipping, at temperatures in the range of 20-65 ° C and for one on the
- step (I) of the method according to the invention is particularly suitable for such Phosphatieranlagen that operate on the principle of the dipping process, since the speckling in inventive method is suppressed.
- step (I) Immediately after the application of the Phosphatungslosung in step (I) is usually followed by a flushing with city water or demineralized water, wherein after working up of the enriched with components of the treatment solution
- Rinse a selective recycling of components of the Phosphatsammlungslosung in the phosphating according to step (I) of the method according to the invention can be made.
- the composite metal construction treated according to step (I) is reacted with the acidic treatment solution in step (II) Immerse or contacted by spraying the solution.
- the composite metal construction may be provided with a base coat, preferably with an organic dip coat, preferably without prior drying of the component treated according to the invention.
- Composite metal construction is used in automotive production in body construction, in shipbuilding, in the construction industry and for the production of white goods.
- the present invention relates to a
- Zinc phosphating solution (A) has a free acidity of at least 0.4 points but not more than 3 points and a pH in the range of 2.2 to 3.6, and
- the product (Si / mM) - (F / mM) is not larger than the concentration of silicon [Si in mM] in the form of water-soluble inorganic compounds and the concentration of free fluoride [F in mM] divided by the score of the free acid 5; preferably not greater than 4.5, more preferably not greater than 4.0.
- the zinc phosphating solution (A) according to the invention contains a total of not more than 5 ppm, particularly preferably not more than 1 ppm of water-soluble compounds of zirconium and / or titanium based on the elements zirconium and / or titanium and in particular no water-soluble compounds of zirconium and / or titanium.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Treatment Of Metals (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11730611T PL2588646T3 (pl) | 2010-06-30 | 2011-06-24 | Sposób selektywnego fosforanowania zespolonej konstrukcji metalowej |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010030697A DE102010030697A1 (de) | 2010-06-30 | 2010-06-30 | Verfahren zur selektiven Phosphatierung einer Verbundmetallkonstruktion |
PCT/EP2011/060590 WO2012000894A1 (de) | 2010-06-30 | 2011-06-24 | Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2588646A1 true EP2588646A1 (de) | 2013-05-08 |
EP2588646B1 EP2588646B1 (de) | 2015-09-23 |
Family
ID=44628232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11730611.8A Active EP2588646B1 (de) | 2010-06-30 | 2011-06-24 | Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion |
Country Status (13)
Country | Link |
---|---|
US (1) | US9550208B2 (de) |
EP (1) | EP2588646B1 (de) |
JP (1) | JP5727601B2 (de) |
KR (1) | KR101632470B1 (de) |
CN (1) | CN102959127B (de) |
BR (1) | BR112012033494A2 (de) |
CA (1) | CA2802035C (de) |
DE (1) | DE102010030697A1 (de) |
ES (1) | ES2556138T3 (de) |
HU (1) | HUE025740T2 (de) |
MX (1) | MX336103B (de) |
PL (1) | PL2588646T3 (de) |
WO (1) | WO2012000894A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019158508A1 (de) | 2018-02-19 | 2019-08-22 | Chemetall Gmbh | Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010001686A1 (de) | 2010-02-09 | 2011-08-11 | Henkel AG & Co. KGaA, 40589 | Zusammensetzung für die alkalische Passivierung von Zinkoberflächen |
PL2503025T3 (pl) * | 2011-03-22 | 2013-12-31 | Henkel Ag & Co Kgaa | Chroniąca przed korozją, wielostopniowa obróbka metalowych elementów konstrukcyjnych o powierzchniach cynkowych |
US20130230425A1 (en) * | 2011-09-02 | 2013-09-05 | Ppg Industries Ohio, Inc. | Two-step zinc phosphating process |
CN103741127B (zh) * | 2013-11-28 | 2016-02-24 | 苏州长风航空电子有限公司 | 一种锌-镍合金镀层钝化液及其钝化方法 |
EP3017996A1 (de) | 2014-11-05 | 2016-05-11 | ABB Technology AG | Fahrzeug mit Leistungsverteilungssystem und Leistungsverteilungssystem |
CN107532308A (zh) | 2015-05-01 | 2018-01-02 | 诺维尔里斯公司 | 连续卷材预处理方法 |
CN106435552A (zh) * | 2016-08-16 | 2017-02-22 | 贵州理工学院 | 一种无氰镀锌镀层钝化液及其制备方法和应用 |
PL3392375T3 (pl) | 2017-04-21 | 2020-05-18 | Henkel Ag & Co. Kgaa | Sposób fosforanowania cynkowego komponentów metalowych w seriach, tworzącego warstwy, bez powstawania szlamu |
EP3392376A1 (de) | 2017-04-21 | 2018-10-24 | Henkel AG & Co. KGaA | Verfahren zur schichtbildenden zinkphosphatierung von metallischen bauteilen in serie |
EP3828306A1 (de) * | 2019-11-26 | 2021-06-02 | Henkel AG & Co. KGaA | Ressourcenschonendes verfahren zur aktivierung einer metalloberfläche vor einer phosphatierung |
WO2022232817A1 (en) * | 2021-04-30 | 2022-11-03 | Ppg Industries Ohio, Inc. | Methods of making coating layers and substrates having same coating layers |
CN114606483A (zh) * | 2022-03-10 | 2022-06-10 | 常州市春雷浩宇环保科技有限公司 | 一种适用于拉拔变形且无渣抗磨的磷化液及其制备方法 |
CN115198264A (zh) * | 2022-06-21 | 2022-10-18 | 中国第一汽车股份有限公司 | 一种不同面积比的多种金属的涂装前处理工艺的选择方法 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3631759A1 (de) * | 1986-09-18 | 1988-03-31 | Metallgesellschaft Ag | Verfahren zum erzeugen von phosphatueberzuegen auf metalloberflaechen |
US5200000A (en) * | 1989-01-31 | 1993-04-06 | Nihon Parkerizing Co., Ltd. | Phosphate treatment solution for composite structures and method for treatment |
US5082511A (en) * | 1989-09-07 | 1992-01-21 | Henkel Corporation | Protective coating processes for zinc coated steel |
KR100197145B1 (ko) * | 1989-12-19 | 1999-06-15 | 후지이 히로시 | 금속표면의 인산아연 처리방법 |
JPH07100870B2 (ja) * | 1990-04-24 | 1995-11-01 | 日本ペイント株式会社 | 金属表面のリン酸亜鉛皮膜処理方法 |
JP2794013B2 (ja) * | 1990-10-24 | 1998-09-03 | 日本パーカライジング株式会社 | 鉄―アルミニウム系金属板金構成体用リン酸塩化成処理液 |
DE4111186A1 (de) * | 1991-04-06 | 1992-10-08 | Henkel Kgaa | Verfahren zum phosphatieren von metalloberflaechen |
US5143562A (en) * | 1991-11-01 | 1992-09-01 | Henkel Corporation | Broadly applicable phosphate conversion coating composition and process |
US5328526A (en) * | 1992-04-03 | 1994-07-12 | Nippon Paint Co., Ltd. | Method for zinc-phosphating metal surface |
DE4232292A1 (de) * | 1992-09-28 | 1994-03-31 | Henkel Kgaa | Verfahren zum Phosphatieren von verzinkten Stahloberflächen |
JPH07173643A (ja) * | 1993-12-21 | 1995-07-11 | Mazda Motor Corp | 金属表面の燐酸塩処理方法及び処理液 |
DE19511573A1 (de) * | 1995-03-29 | 1996-10-02 | Henkel Kgaa | Verfahren zur Phosphatierung mit metallhaltiger Nachspülung |
DE19735314C2 (de) | 1996-09-13 | 2001-05-23 | Bayerische Motoren Werke Ag | Verfahren zur Vorbehandlung von Bauteilen |
US6720032B1 (en) * | 1997-09-10 | 2004-04-13 | Henkel Kommanditgesellschaft Auf Aktien | Pretreatment before painting of composite metal structures containing aluminum portions |
ES2316169T3 (es) * | 1997-09-10 | 2009-04-01 | HENKEL AG & CO. KGAA | Pretratamiento antes de la pintura de estructuras de metal compuesto que contienen porciones de aluminio. |
CA2400695A1 (en) * | 1999-05-28 | 2000-12-07 | Henkel Kommanditgesellschaft Auf Aktien | Post-passivation of a phosphatized metal surface |
CA2390018C (en) * | 1999-11-04 | 2010-10-19 | Henkel Corporation | Zinc phosphating process and composition with reduced pollution potential |
DE10026850A1 (de) * | 2000-05-31 | 2001-12-06 | Chemetall Gmbh | Verfahren zum Behandeln bzw. Vorbehandeln von Bauteilen mit Aluminium-Oberflächen |
US6551417B1 (en) * | 2000-09-20 | 2003-04-22 | Ge Betz, Inc. | Tri-cation zinc phosphate conversion coating and process of making the same |
ES2462291T3 (es) * | 2001-02-16 | 2014-05-22 | Henkel Ag & Co. Kgaa | Proceso de tratamiento de artículos polimetálicos |
DE10110834B4 (de) * | 2001-03-06 | 2005-03-10 | Chemetall Gmbh | Verfahren zur Beschichtung von metallischen Oberflächen und Verwendung der derart beschichteten Substrate |
DE10155976A1 (de) * | 2001-11-14 | 2003-05-22 | Henkel Kgaa | Steuerung der Beschleunigerkonzentration in Phosphatierbäder |
DE50310042D1 (de) * | 2002-07-10 | 2008-08-07 | Chemetall Gmbh | Verfahren zur beschichtung von metallischen oberflächen |
DE10322446A1 (de) * | 2003-05-19 | 2004-12-09 | Henkel Kgaa | Vorbehandlung von Metalloberflächen vor einer Lackierung |
DE10323305B4 (de) * | 2003-05-23 | 2006-03-30 | Chemetall Gmbh | Verfahren zur Beschichtung von metallischen Oberflächen mit einer Wasserstoffperoxid enthaltenden Phosphatierungslösung, Phosphatierlösung und Verwendung der behandelten Gegenstände |
US20050145303A1 (en) * | 2003-12-29 | 2005-07-07 | Bernd Schenzle | Multiple step conversion coating process |
US20060113005A1 (en) * | 2004-11-30 | 2006-06-01 | Honda Motor Co., Ltd | Method for surface treatment of aluminum alloy |
DE102005007752A1 (de) * | 2005-02-18 | 2006-08-31 | Henkel Kgaa | Phosphatierlösung und Phosphatierverfahren mit einer Kombination von Beschleunigern |
JP4419905B2 (ja) * | 2005-04-28 | 2010-02-24 | 株式会社デンソー | 電解リン酸塩化成処理方法 |
WO2006138540A1 (en) * | 2005-06-14 | 2006-12-28 | Henkel Kommanditgesellschaft Auf Aktien | Method for treatment of chemically passivated galvanized surfaces to improve paint adhesion |
RU2449054C2 (ru) * | 2006-03-01 | 2012-04-27 | Шеметалл Гмбх | Композиция для обработки поверхности металла, способ обработки поверхности металла и металлический материал |
DE102006052919A1 (de) * | 2006-11-08 | 2008-05-15 | Henkel Kgaa | Zr-/Ti-haltige Phosphatierlösung zur Passivierung von Metallverbundoberflächen |
JP5462467B2 (ja) * | 2008-10-31 | 2014-04-02 | 日本パーカライジング株式会社 | 金属材料用化成処理液および処理方法 |
-
2010
- 2010-06-30 DE DE102010030697A patent/DE102010030697A1/de not_active Ceased
-
2011
- 2011-06-24 HU HUE11730611A patent/HUE025740T2/en unknown
- 2011-06-24 CA CA2802035A patent/CA2802035C/en active Active
- 2011-06-24 MX MX2012015048A patent/MX336103B/es unknown
- 2011-06-24 BR BR112012033494A patent/BR112012033494A2/pt not_active Application Discontinuation
- 2011-06-24 PL PL11730611T patent/PL2588646T3/pl unknown
- 2011-06-24 CN CN201180031918.7A patent/CN102959127B/zh active Active
- 2011-06-24 ES ES11730611.8T patent/ES2556138T3/es active Active
- 2011-06-24 KR KR1020127034254A patent/KR101632470B1/ko active IP Right Grant
- 2011-06-24 WO PCT/EP2011/060590 patent/WO2012000894A1/de active Application Filing
- 2011-06-24 JP JP2013517208A patent/JP5727601B2/ja active Active
- 2011-06-24 EP EP11730611.8A patent/EP2588646B1/de active Active
-
2012
- 2012-12-18 US US13/718,342 patent/US9550208B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019158508A1 (de) | 2018-02-19 | 2019-08-22 | Chemetall Gmbh | Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion |
Also Published As
Publication number | Publication date |
---|---|
HUE025740T2 (en) | 2016-05-30 |
MX2012015048A (es) | 2013-02-15 |
BR112012033494A2 (pt) | 2016-11-29 |
CA2802035A1 (en) | 2012-01-05 |
WO2012000894A1 (de) | 2012-01-05 |
KR101632470B1 (ko) | 2016-06-21 |
JP2013534972A (ja) | 2013-09-09 |
JP5727601B2 (ja) | 2015-06-03 |
DE102010030697A1 (de) | 2012-01-05 |
CN102959127B (zh) | 2016-06-29 |
CN102959127A (zh) | 2013-03-06 |
KR20130112731A (ko) | 2013-10-14 |
EP2588646B1 (de) | 2015-09-23 |
US9550208B2 (en) | 2017-01-24 |
CA2802035C (en) | 2018-12-18 |
US20130202797A1 (en) | 2013-08-08 |
MX336103B (es) | 2016-01-08 |
ES2556138T3 (es) | 2016-01-13 |
PL2588646T3 (pl) | 2016-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2588646B1 (de) | Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion | |
EP2092090B1 (de) | Zr-/ti-haltige phosphatierlösung zur passivierung von metallverbundoberflächen | |
DE102008014465B4 (de) | Mittel zur optimierten Passivierung auf Ti-/Zr-Basis für Metalloberflächen und Verfahren zur Konversionsbehandlung | |
DE60226078T2 (de) | Behandlungsflüssigkeit für die oberflächenbehandlung von auf aluminium oder magnesium basierendem metall und oberflächenbehandlungsverfahren | |
EP0633950B1 (de) | Nickelfreie phosphatierverfahren | |
EP2503025B1 (de) | Mehrstufige korrosionsschützende Behandlung metallischer Bauteile, die zumindest teilweise Oberflächen von Zink oder Zinklegierungen aufweisen | |
WO2011067094A1 (de) | Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen | |
EP1114202A1 (de) | Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung | |
EP1633905B1 (de) | Beschichtung metallischer oberflächen mit wassersoffperoxid und nitro-guanidin enthaltenden phosphatierungslösungen | |
EP3755825A1 (de) | Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion | |
EP0717787A1 (de) | Nickelfreies phosphatierverfahren | |
EP0922123B1 (de) | Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen | |
EP1521863B1 (de) | Verfahren zur beschichtung von metallischen oberflächen | |
EP0931179B1 (de) | Verfahren zur phosphatierung von stahlband | |
DE19735314C2 (de) | Verfahren zur Vorbehandlung von Bauteilen | |
WO2001038605A2 (de) | Verfahren zur phosphatierung mit metallhaltiger nachspülung | |
WO2009115485A1 (de) | Optimierte elektrotauchlackierung von zusammengefügten und teilweise vorphosphatierten bauteilen | |
DE4330104A1 (de) | Nickel- und Kupfer-freies Phosphatierverfahren | |
WO1999014397A1 (de) | Verfahren zur phosphatierung von stahlband | |
DE4341041A1 (de) | Nickelfreies Phosphatierverfahren mit m-Nitrobenzolsulfonat | |
WO1993022474A1 (de) | Kupfer enthaltendes, nickelfreies phosphatierverfahren | |
WO2001040546A1 (de) | Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung | |
DE10231279B3 (de) | Verfahren zur Beschichtung von metallischen Oberflächen und Verwendung der derart beschichteten Substrate | |
DE19723350A1 (de) | Nachspülung von Phosphatschichten mit rutheniumhaltigen Lösungen | |
DE10236526A1 (de) | Verfahren zur Beschichtung von metallischen Oberflächen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121210 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150603 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 751302 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011007936 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2556138 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151224 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160123 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 20052 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E025740 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160125 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011007936 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160624 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 751302 Country of ref document: AT Kind code of ref document: T Effective date: 20160624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160624 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230829 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240619 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240617 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240628 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240613 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240614 Year of fee payment: 14 Ref country code: SE Payment date: 20240619 Year of fee payment: 14 Ref country code: HU Payment date: 20240621 Year of fee payment: 14 Ref country code: BE Payment date: 20240619 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240625 Year of fee payment: 14 |