EP0922123A1 - Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen - Google Patents

Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen

Info

Publication number
EP0922123A1
EP0922123A1 EP97943803A EP97943803A EP0922123A1 EP 0922123 A1 EP0922123 A1 EP 0922123A1 EP 97943803 A EP97943803 A EP 97943803A EP 97943803 A EP97943803 A EP 97943803A EP 0922123 A1 EP0922123 A1 EP 0922123A1
Authority
EP
European Patent Office
Prior art keywords
phosphating
aqueous
phosphate
metallic surfaces
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97943803A
Other languages
English (en)
French (fr)
Other versions
EP0922123B1 (de
Inventor
Thomas Kolberg
Peter Schubach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
chemetal GmbH
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to SI9730079T priority Critical patent/SI0922123T1/xx
Publication of EP0922123A1 publication Critical patent/EP0922123A1/de
Application granted granted Critical
Publication of EP0922123B1 publication Critical patent/EP0922123B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/186Orthophosphates containing manganese cations containing also copper cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • C23C22/184Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations

Definitions

  • the invention relates to an aqueous, phosphate-containing solution for producing phosphate layers on metallic surfaces made of iron, steel, zinc, zinc alloys, aluminum or aluminum alloys.
  • the invention further relates to a method for phosphating using an aqueous phosphating solution.
  • DE-PS 750 957 discloses a method for improving the corrosion resistance of metals, in particular iron and steel, by treatment in a solution which forms phosphate coatings, in which the solution contains an accelerating agent and in which nitromethane, nitrobenzene is used as the accelerating agent , Picric acid, a nitraniline, a nitrophenol, a nitrobenzoic acid, a nitroresorcinol, nitrourea, a nitrourethane or nitroguanidine is used.
  • the optimal concentration for the individual accelerators is different, but it is generally between 0.01 and 0.4% by weight in the phosphating solutions.
  • the optimal concentration for the accelerator nitroguanidine should be 0.2% by weight.
  • DE-OS 38 00 835 discloses a process for phosphating metal surfaces, in particular surfaces made of iron, steel, zinc and their alloys and aluminum as a pretreatment for cold forming, in which the surface is activated without activation in the temperature range from 30 to 70 ° C in contact with an aqueous solution containing 10 to 40 g Ca 2 * / 1, 20 to 40 g Zn 2 * / 1, 10 to 100 g PO ' / l and as an accelerator 10 to 100 g N0 3 " / 1 and / or 0.1 to 2.0 g of organic nitro compounds per liter, the solution having a pH in the range from 2.0 to 3.8 and a ratio of free acid to total acid of 1: 4 to 1: 100.
  • a nitrobenzenesulfonate and / or nitroguanidine can be used as the accelerator, and the phosphate layers produced by the known method have layer weights of 3 to 9 g / m 2 .
  • nitroguanidine can be used as an accelerator in the phosphating of metallic surfaces
  • the practical use of this accelerator encounters difficulties because the results of the phosphating are very often unsatisfactory. This is obviously due to the fact that the action of the accelerator nitroguanidine is very strongly dependent on the inorganic constituents of the phosphating solution and the concentration of the inorganic constituents in the phosphating solution, so that the phosphate layers produced using nitroguanidine only have good performance properties if they are successful to provide a phosphating solution in which the individual components are coordinated with one another in such a way that when the nitroguanidine is used as an accelerator, phosphate layers of good, consistent quality can be produced even in continuous operation.
  • the invention is therefore based on the object of providing an aqueous solution for phosphating metallic surfaces which contains nitroguanidine as an accelerator and the remaining constituents of which are coordinated with one another in such a way that the phosphate layers formed during the phosphating process are finely crystalline, have a low layer weight and good paint adhesion enable and ensure good corrosion protection. Furthermore, the invention is based on the object of providing a method for phosphating which uses the phosphating solution according to the invention, the method being intended to operate at the lowest possible temperatures, can be used for phosphating different metallic surfaces and has to operate using simple technical means and in a reliable manner .
  • the phosphating solution according to the invention can be used to produce very fine-crystalline phosphate layers which provide excellent paint adhesion and good corrosion protection.
  • the crystallites have a platelet-like, cuboid or cube-like shape and always have a maximum edge length ⁇ 15 ⁇ m, which is usually even ⁇ 10 ⁇ m.
  • the phosphating solution according to the invention is very suitable for phosphating cavities.
  • the phosphate layers deposited on the metallic objects from the phosphating solution according to the invention have a layer weight of 1.5 to 4.5 g / m 2 , preferably of 1.5 to 3 g / m 2 , whereby the paint adhesion is favored in an advantageous manner. With a zinc content> 5 g / 1, the corrosion protection properties and paint adhesion deteriorate significantly.
  • the Zn: P 2 0 5 ratio relates to the total P 2 0 5.
  • the determination of the total P 2 0 5 is based on the titration of the phosphoric acid and / or the primary phosphates from the equivalence point of the primary phosphate to the equivalence point of the secondary Phosphate.
  • the S value indicates the ratio of free acid, calculated as free P 2 0 5 , to total P 2 0 5 .
  • the definitions and determination methods for the total P 2 0 5 and the free P 2 0 5 are explained in detail in the publication by W. Rausch "Die Phosphat réelle von Metallen", 1988, pages 299 to 304.
  • this solution according to the invention which is suitable for carrying out the low zinc phosphating because of its zinc content of 0.3 to 3 g / l, particularly good work results have been achieved overall.
  • the aqueous solution contains 0.5 to 20 g N0 3 " / 1.
  • the nitrate content according to the invention advantageously favors the maintenance of the optimal layer weight of 1.5 to 4.5 g / m 2.
  • the nitrate will the Phosphating solution in the form of alkali nitrates and / or by the cations present in the system, e.g. B. added as zinc nitrate, and / or as HN0 3 . Since the nitrate-free aqueous solution also delivers good phosphating results, the known acceleration effect of the nitrate is in most cases of minor importance in the present case.
  • the phosphating solution 0.01 to 3 g Mn 2 * / 1 and / or 0.01 to 3 g Ni 2 * / 1 and / or 1 to 100 mg Cu 2 * / 1 and / or Contains 10 to 300 mg Co 2 '/ l.
  • These metal ions are built into the phosphate layer and improve paint adhesion and corrosion protection.
  • the aqueous phosphating solution contains 0.01 to 3 g F " / 3. And / or 0.05 to 3.5 g / 1 complex fluorides, preferably (SiF 6 ) 2" or (BF ⁇
  • the fluoride is added to the phosphating solution when metallic surfaces consisting of aluminum or aluminum alloys are to be phosphated, and the complex fluorides are added to the phosphating solution, in particular for stabilization, as a result of which the phosphating baths have a longer service life.
  • the object on which the invention is based is further achieved by the creation of a method for phosphating, in which the metallic surfaces are cleaned, then treated with the aqueous, phosphate-containing phosphating solution for a period of 5 seconds to 10 minutes at a temperature of 15 to 70 ° C. and finally rinsed with water.
  • This process can be carried out using simple technical means and is extremely reliable.
  • the phosphate layers produced by the process have a consistently good quality, which does not decrease even with a longer operating time of the phosphating bath.
  • the minimum phosphating time is at Process according to the invention less than in known low-zinc processes which work with the usual accelerators.
  • the minimum phosphating time is the time in which the surface is 100% covered with a phosphate layer.
  • the treatment of the metallic surfaces with the phosphating solution is carried out by spraying, dipping, splash-dipping or rolling.
  • These working techniques open up a very broad and diverse range of applications for the method according to the invention.
  • the metallic surfaces are aftertreated with a passivating agent after the rinsing process following the phosphating.
  • the passivating agents used can be both Cr-containing and Cr-free.
  • both mechanical impurities and adhering greases are removed from the surface to be phosphated.
  • the cleaning of the metallic surfaces belongs to the known state of the art and can advantageously be carried out with an aqueous alkaline cleaner. It is useful if the
  • Layered silicates have no adverse effect on the formation of the phosphate layers. In addition to their actual beneficial effect, they also improve the sedimentation of the phosphate sludge and increase its solids content.
  • composition of the aqueous solutions used for phosphating and the properties of the phosphate layers are shown in Table 1.
  • comparative tests were carried out using known methods
  • the comparison of the exemplary embodiments 1 and 2 with the comparative experiments A, B and C shows that good results are achieved with the phosphating solution according to the invention compared to the known and proven phosphating solutions, although the nitroguanidine has significantly better utility properties than the accelerator N0 2 " .
  • the comparative experiment C shows that good and practical phosphating results can only be achieved by using the parameters according to the invention.
  • Exemplary embodiments 3 and 4 were carried out using the following process conditions, in particular the suitability of the invention for phosphating cavities to be tested: steel sheets were treated in a box which simulated a cavity in accordance with the process steps a) to e), which also at Examples 1 and 2 were used. The phosphated steel sheets were dried in the cavity (box) at room temperature without compressed air. The composition of the aqueous used to phosphate a cavity Solutions and the properties of the phosphate layers are shown in Table 3.
  • the phosphate layers of exemplary embodiments 3 and 4 had approximately the same properties as the phosphate layers of exemplary embodiments 1 and 2 with regard to layer weight, crystallite edge length and minimum phosphating time.
  • Comparative tests D and E were carried out in accordance with exemplary embodiments 3 and 4, the individual method steps being identical.
  • the phosphating solutions used in comparative experiments D and E are known per se and contain hydroxylamine as an accelerator.
  • the composition of the solutions used to carry out comparative experiments D and E and the properties of the phosphate layers are given in Table 4.
  • a comparison of the exemplary embodiments 3 and 4 with the comparative experiments D and E shows that with the invention a very good phosphating of cavities can be achieved, because according to the invention complete, closed phosphate layers are produced and no rust formation occurs.
  • the term "rust formation” means that a rust layer forms on the metallic surface, which does not have a complete, closed phosphate layer, during drying, which is very disadvantageous. In some cases, the formation of flash rust does not occur, although there is no complete, closed phosphate layer, which may be due to passivation of the metallic surface by the phosphating solution.
  • Paint adhesion test values were determined to test the corrosion properties of and paint adhesion on various metallic substrates phosphated according to the invention.
  • Table 5 shows the paint adhesion and the corrosion protection test values which were determined for different metal sheets (substrates), the individual substrates being phosphated by dipping according to examples 5, 6 and 7 with solutions according to the invention and according to comparative tests F and G with known solutions have been. The individual substrates were dipped in accordance with the process steps a) to f) mentioned above.
  • the composition of the phosphating solutions used for Examples 5, 6 and 7 is given in Table 7. There you will also find the compositions of the known phosphating solutions that were used to carry out comparative tests F and G.
  • Table 6 shows the paint adhesion and corrosion protection test values for various substrates that were phosphated by spraying.
  • the spray phosphating of the substrates was carried out according to the invention using the following process steps: g) The surfaces of the substrates were cleaned with a weakly alkaline cleaner (2% aqueous solution) for 5 minutes at 60 ° C. and in particular degreased.
  • a weakly alkaline cleaner 2% aqueous solution
  • composition of the aqueous phosphating solutions according to the invention which were used to carry out Examples 8, 9 and 10, are given in Table 8.
  • the composition of the known phosphating solution which was used to carry out comparative test H is likewise found in Table 8.
  • An electrocoating lacquer, a filler and a topcoat were then applied to the substrates phosphated by spraying.
  • the phosphated and coated substrates were then subjected to a test by outdoor exposure for 6 months, by a salt spray test, by a cross cut and by a 12-round climate change test followed by stone chips.
  • Table 6 shows the test values determined for the individual substrates, an evaluation grade being given for the cross-cut and for the outdoor exposure, the salt spray test and the climate change test the infiltration of the paint layer, measured in mm, is given. For stone chips, the flaking of the paint is given in percent.
  • the corrosion protection that is achieved by the phosphating according to the invention is comparable to the corrosion protection that is achieved through the use of proven, known ones Phosphating processes occur that work with the accelerator nitrite.
  • the phosphating according to the invention avoids the use of the accelerator nitrite, the use of which is increasingly being rejected, since nitrite produces reaction products during the phosphating which damage the environment and are sometimes toxic to humans.
  • the paint adhesion and corrosion protection effect achieved by the phosphating according to the invention can be rated as very good to good.
  • Hot-dip galvanized steel 0 ⁇ 1 1 0 ⁇ 1
  • Salt spray test 1008 h, according to DIN 50021 SS, mm infiltration

Abstract

Es wird eine wässrige, phosphathaltige Lösung zur Erzeugung von Phosphatschichten auf metallischen Oberflächen aus Eisen, Stahl, Zink, Zinklegierungen, Aluminium oder Aluminiumlegierungen beschrieben, die 0,3 bis 5 g Zn2+/l, und 0,1 bis 3 g Nitroguanidin/l enthält, wobei der S-Wert 0,03 bis 0,3 und das Gewichtsverhältnis Zn : P¿2?O5 = 1 : 5 bis 1 : 30 beträgt. Ferner wird ein Verfahren zur Phosphatierung beschrieben, bei dem die metallischen Oberflächen gereinigt, anschließend mit der wässrigen Phosphatierungslösung während einer Zeit von 5 Sekunden bis 10 Minuten bei einer Temperatur von 15 bis 70 °C behandelt und schließlich mit Wasser gespült werden.

Description

ässriσe Lösung und Verfahren zur Phosphatierung metallischer Oberflächen
Beschreibung
Die Erfindung betrifft eine wässrige, phosphathaltige Lösung zur Erzeugung von Phosphatschichten auf metallischen Oberflächen aus Eisen, Stahl, Zink, Zinklegierungen, Aluminium oder Aluminiumlegierungen. Die Erfindung betrifft ferner ein Verfahren zur Phosphatierung unter Verwendung einer wäßrigen Phosphatierungslösung .
Aus der DE-PS 750 957 ist ein Verfahren zur Verbesserung der Korrosionsbeständigkeit von Metallen, insbesondere von Eisen und Stahl, durch Behandlung in einer Lösung, die Phosphatüberzüge bildet, bekannt, bei dem die Lösung ein Beschleunigungsmittel enthält und bei dem als Beschleunigungsmittel Nitromethan, Nitrobenzol, Pikrinsäure, ein Nitranilin, ein Nitrophenol, eine Nitrobenzoesäure, ein Nitroresorcinol, Nitroharnstoff , ein Nitrourethan oder Nitroguanidin verwendet wird. Die optimale Konzentration für die einzelnen Beschleuniger ist unterschiedlich, sie liegt aber in den Phosphatierungslösungen im allgemeinen zwischen 0,01 und 0,4 Gew% . Für den Beschleuniger Nitroguanidin soll die optimale Konzentration 0,2 Gew% betragen. Aus der DE-OS 38 00 835 ist ein Verfahren zur Phosphatierung von Metalloberflächen, insbesondere von Oberflächen aus Eisen, Stahl, Zink und deren Legierungen sowie Aluminium als Vorbehandlung für die Kaltumformung bekannt, bei dem man die Oberfläche ohne Aktivierung im Temperaturbereich von 30 bis 70 °C mit einer wäßrigen Lösung in Kontakt bringt, die 10 bis 40 g Ca2*/1, 20 bis 40 g Zn2*/1, 10 bis 100 g PO '/l sowie als Beschleuniger 10 bis 100 g N03 "/1 und/oder 0,1 bis 2,0 g organische Nitroverbindungen pro Liter enthält, wobei die Lösung einen pH-Wert im Bereich von 2,0 bis 3,8 und ein Verhältnis von freier Säure zu Gesamtsäure von 1:4 bis 1 : 100 aufweist. Als Beschleuniger kann ein -Nitrobenzolsulfonat und/oder Nitroguanidin verwendet werden. Die nach dem bekannten Verfahren erzeugten Phosphatschichten haben Schichtgewichte von 3 bis 9 g/m2.
Obwohl es an sich bekannt ist, daß Nitroguanidin bei der Phosphatierung metallischer Oberflächen als Beschleuniger verwendet werden kann, stößt der praktische Einsatz dieses Beschleunigers auf Schwierigkeiten, denn die erzielten Resultate der Phosphatierung sind sehr häufig unbefriedigend. Dies ist offensichtlich darauf zurückzuführen, daß die Wirkung des Beschleunigers Nitroguanidin sehr stark von den anorganischen Bestandteilen der Phosphatierungslösung und der Konzentration der anorganischen Bestandteile in der Phosphatierungslösung abhängig ist, so daß die unter Verwendung von Nitroguanidin erzeugten Phosphatschichten nur dann gute Gebrauchseigenschaften haben, wenn es gelingt, eine Phosphatierungslösung bereitzustellen, in der die einzelnen Bestandteile so aufeinander abgestimmt sind, daß bei Verwendung des Nitroguanidins als Beschleuniger auch im Dauerbetrieb Phosphatschichten von guter, gleichbleibender Qualität erzeugt werden können. Es kommt hinzu, daß die Wechselwirkungen zwischen dem Nitroguanidin und den übrigen Bestandteilen der Phosphatierungslösung nicht durch theoretische Überlegungen oder einfache Versuche vorhergesagt bzw. ermittelt werden können, sondern nur durch umfangreiche Versuchstätigkeit an unterschiedlichen Phosphatierungssystemen zu bestimmen sind. Die häufig unbefriedigenden Resultate sind auch auf die schlechte Wasserlöslichkeit bzw. die ungleichmäßige Verteilung des Nitroguanidins zurückzuführen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine wässrige Lösung zur Phosphatierung metallischer Oberflächen zu schaffen, die als Beschleuniger Nitroguanidin enthält und deren übrige Bestandteile so aufeinander abgestimmt sind, daß die bei der Phosphatierung gebildeten Phosphatschichten feinkristallin sind, ein niedriges Schichtgewicht aufweisen, eine gute Lackhaftung ermöglichen und einen guten Korrosionsschutz gewährleisten. Ferner liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Phosphatierung zu schaffen, das die erfindungsgemäße Phosphatierungslösung verwendet, wobei das Verfahren bei möglichst niedrigen Temperaturen arbeiten soll, für die Phosphatierung unterschiedlicher metallischer Oberflächen eingesetzt werden kann und unter Verwendung einfacher technischer Mittel sowie betriebssicher arbeiten muß.
Die der Erfindung zugrunde liegende Aufgabe wird durch die Schaffung einer wäßrigen, phosphathaltigen Lösung zur Erzeugung von Phosphatschichten auf metallischen Oberflächen aus Eisen, Stahl, Zink, Zinklegierungen, Aluminium oder Aluminiumlegierung gelöst, die 0,3 bis 5 g Zn2 l, und 0,1 bis 3 g Nitroguanidin/1 enthält, wobei der S-Wert 0,03 bis 0,3 und das Gewichtsverhaltnis Zn : P205 = 1 : 5 bis 1 : 30 beträgt, und die feinkristalline Phosphatschichten erzeugt, in denen die Kristallite eine maximale Kantenlänge < 15 μm haben. In überraschender Weise hat sich gezeigt, daß mit der erfindungsgemäßen Phosphatierungslösung sehr feinkristalline Phosphatschichten erzeugt werden können, die eine ausgezeichnete Lackhaftung und einen guten Korrosionsschutz bewirken. Die Kristallite besitzen eine plättchenartige, quaderartige oder würfelartige Form und haben immer eine maximale Kantenlänge < 15 μm, die in der Regel sogar < 10 μm ist. Ferner eignet sich die erfindungsgemäße Phosphatierungslösung sehr gut zur Phosphatierung von Hohlräumen. Die auf den metallischen Gegenständen aus der erfindungsgemäßen Phosphatierungslösung abgeschiedenen Phosphatschichten haben ein Schichtgewicht von 1,5 bis 4,5 g/m2, vorzugsweise von 1,5 bis 3 g/m2, wodurch die Lackhaftung in vorteilhafter Weise begünstigt ist. Bei einem Zinkgehalt > 5 g/1 verschlechtern sich die Korrosionsschutzeigenschaften und die Lackhaftung signifikant.
Das Zn : P205-Verhältnis bezieht sich auf das Gesamt-P205 Die Bestimmung des Gesamt-P205 basiert auf der Titration der Phosphorsäure und/oder der primären Phosphate vom Äquivalenzpunkt des primären Phosphats bis zum Äquivalenzpunkt des sekundären Phosphats. Der S-Wert gibt das Verhältnis von freier Säure, berechnet als freies P205, zum Gesamt-P205 an. Die Definitionen und Bestimmungsmethoden für das Gesamt-P205 und das freie P205 sind in der Veröffentlichung von W. Rausch "Die Phosphatierung von Metallen", 1988, Seiten 299 bis 304, ausführlich erläutert.
Nach der Erfindung ist es besonders vorteilhaft, wenn die wässrige, phosphathaltige Lösung 0,3 bis 3 g Zn2*/1 und °/l bis 3 g Nitroguanidin/1 enthält, wobei der S-Wert 0,03 bis 0,3 und das Gewichtsverhältnis Zn : P20s = 1 : 5 bis 1 : 30 beträgt. Mit dieser erfindungsgemäßen Lösung, die sich wegen ihres Zink-Gehalts von 0,3 bis 3 g/1 zur Durchführung der Niedrigzink-Phosphatierung eignet, wurden insgesamt besonders gute Arbeitsergebnisse erzielt.
Nach der Erfindung ist vorgesehen, daß die wässrige Lösung 0,5 bis 20 g N03 "/1 enthält. Der erfindungsgemäße Nitratgehalt begünstigt in vorteilhafter Weise die Einhaltung des optimalen Schichtgewichts von 1,5 bis 4,5 g/m2. Das Nitrat wird der Phosphatierungslösung in Form von Alkalinitraten und/oder durch die im System vorhandenen Kationen, z. B. als Zinknitrat, und/oder als HN03 zugegeben. Da auch die nitratfreie wässrige Lösung gute Phosphatierungsergebnisse liefert, ist die an sich bekannte Beschleunigungswirkung des Nitrats im vorliegenden Fall mit großer Wahrscheinlichkeit von untergeordneter Bedeutung.
Nach der Erfindung ist ferner vorgesehen, daß die Phosphatierungslösung 0,01 bis 3 g Mn2*/1 und/oder 0,01 bis 3 g Ni2*/1 und/oder 1 bis 100 mg Cu2*/1 und/oder 10 bis 300 mg Co2'/l enthält. Diese Metallionen werden in die Phosphatschicht eingebaut und verbessern Lackhaftung und Korrosionsschutz.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß die wässrige Phosphatierungslösung 0,01 bis 3 g F"/3. und/oder 0,05 bis 3,5 g/1 komplexe Fluoride, vorzugsweise (SiF6)2" oder (BF ~ enthält. Das Fluorid wird der Phosphatierungslösung dann zugegeben, wenn aus Aluminium oder Aluminiumlegierungen bestehende metallische Oberflächen phosphatiert werden sollen. Die komplexen Fluoride werden der Phosphatierungslösung insbesondere zur Stabilisierung zugegeben, wodurch eine längere Standzeit der Phosphatierungsbäder erreicht wird.
Die der Erfindung zugrunde liegende Aufgabe wird ferner durch die Schaffung eines Verfahrens zur Phosphatierung gelöst, bei dem die metallischen Oberflächen gereinigt, anschließend mit der wäßrigen, phosphathaltigen Phosphatierungslösung während einer Zeit von 5 Sekunden bis 10 Minuten bei einer Temperatur von 15 bis 70°C behandelt und schließlich mit Wasser gespült werden. Dieses Verfahren kann mit einfachen technischen Mitteln durchgeführt werden und arbeitet außerordentlich betriebssicher. Die mit dem Verfahren erzeugten Phosphatschichten haben eine gleichbleibend gute Qualität, die auch bei einer längeren Betriebszeit des Phosphatierungsbades nicht abnimmt. Die Mindest-Phosphatierzeit ist beim erfindungsgemäßen Verfahren geringer als bei bekannten Niedrigzinkverfahren, die mit den üblichen Beschleunigern arbeiten. Als Mindest-Phosphatierzeit gilt die Zeit, in der die Oberfläche zu 100 % mit einer Phosphatschicht bedeckt ist.
Nach der Erfindung ist vorgesehen, daß die Behandlung der metallischen Oberflächen mit der Phosphatierungslösung durch Spritzen, Tauchen, Spritztauchen oder Aufwalzen erfolgt. Diese Arbeitstechniken eröffnen dem erfindungsgemäßen Verfahren ein sehr breites und unterschiedliches Anwendungsspektrum. Nach der Erfindung hat es sich als besonders vorteilhaft erwiesen, wenn die zum Spritzen verwendete Phosphatierungslösung ein Gewichtsverhältnis Zn : P205 = 1 : 10 bis 1 : 30 aufweist und wenn die zum Tauchen verwendete Phosphatierungslösung ein Gewichtsverhältnis Zn : P205 = 1 : 5 bis 1 : 18 aufweist.
Nach der Erfingung ist es oft vorteilhaft, wenn die metallischen Oberflächen nach der Reinigung mit einem Aktivierungsmittel behandelt werden, das ein titanhaltiges Phosphat enthält. Hierdurch wird die Bildung einer geschlossenen, feinkristallinen Zinkphosphatschicht unterstützt.
Schließlich ist nach der Erfindung vorgesehen, daß die metallischen Oberflächen nach dem der Phospatierung folgenden Spülvorgang mit einem Passivierungsmittel nachbehandelt werden. Die verwendeten Passivierungsmittel können sowohl Cr-haltig als auch Cr-frei sein.
Bei der nach dem erfindungsgemäßen Verfahren vorgesehenen Reinigung der metallischen Oberflächen werden sowohl mechanische Verunreinigungen als auch anhaftende Fette von der zu phosphatierenden Oberfläche entfernt. Die Reinigung der metallischen Oberflächen gehört zum bekannten Stand der Technik und kann vorteilhaft mit einem wäßrig-alkalischen Reiniger durchgeführt werden. Es ist zweckmäßig, wenn die
Schichtsilikate haben keine nachteilige Wirkung auf die Bildung der Phosphatschichten. Neben ihrer eigentlichen vorteilhaften Wirkung verbessern sie aber auch die Sedimentation des Phosphatschlamms und erhöhen seinen Festkörperanteil .
Der Gegenstand der Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert.
Die Ausführungsbeispiele 1 und 2 wurden unter Anwendung folgender Verfahrensschritte durchgeführt:
a) Die Oberflächen von aus Stahlblech bestehenden metallischen Gegenständen wurden mit einem schwach alkalischen Reiniger (2%ige wässrige Lösung) während 5 Minuten bei 60 °C gereinigt und insbesondere entfettet.
b) Es folgte eine Spülung mit Leitungswasser während 0,5 Minuten bei Raumtemperatur.
c) Anschließend erfolgte eine Aktivierung mit einem Aktivierungsmittel (3 g/1 H20) , das ein Titanphosphat enthielt, während 0,5 Minuten bei Raumtemperatur.
d) Danach wurde bei ca. 55 °C während 3 Minuten durch Tauchen phosphatiert.
e) Schließlich wurde mit Leitungswasser während 0,5 Minuten bei Raumtemperatur gespült.
f) Die phosphatierten Oberflächen wurden mit Preßluft getrocknet.
Die Zusammensetzung der zur Phosphatierung verwendeten wäßrigen Lösungen und die Eigenschaften der Phosphatschichten ergeben sich aus Tabelle 1. Entsprechend den Ausführungsbeispielen 1 und 2 wurden Vergleichsversuche mit an sich bekannten
Phophatierungslosungen durchgeführt, die aber einen anderen Beschleuniger enthielten (Vergleichsversuche A und B) . Außerdem wurde ein Vergleichsversuch mit einer bezüglich des Zn : P205 -Verhältnisses nicht erfindungsgemäßen Phosphatierungslösung durchgeführt, die als Beschleuniger Nitroguanidin enthielt (Vergleichsversuch C) . Bei den Vergleichsversuchen A, B, C wurden die Verfahrensschritte a) bis f) durchgeführt. Die Zusammensetzung der für die Vergleichsversuche verwendeten Phophatierungslosungen und die Eigenschaften der Phosphatschichten ergeben sich aus Tabelle 2.
Der Vergleich der Ausführungsbeispiele 1 und 2 mit den Vergleichsversuchen A, B und C zeigt, daß mit der erfindungsgemäßen Phosphatierungslösung gegenüber den bekannten und bewährten Phosphatierungslösungen gute Ergebnisse erzielt werden, wobei das Nitroguanidin gegenüber dem Beschleuniger N02 " allerdings wesentlich bessere Gebrauchseisenschaften hat. Der Vergleichsversuch C zeigt, daß erst durch die Anwendung der erfindungsgemäßen Parameter gute und praxisgerechte Phosphatierungsergebnisse erzielt werden.
Die Ausführungsbeispiele 3 und 4 wurden unter Anwendung folgender Verfahrensbedingungen durchgeführt, wobei insbesondere die Eignung der Erfindung zur Phosphatierung von Hohlräumen geprüft werden sollte: Stahlbleche wurden in einem Kasten, der einen Hohlraum simulierte, entsprechend den Verfahrensschritten a) bis e) behandelt, die auch bei den Ausführungsbeispielen 1 und 2 zur Anwendung kamen. Die Trocknung der phophatierten Stahlbleche erfolgte im Hohlraum (Kasten) bei Raumtemperatur ohne Preßluft. Die Zusammensetzung der zur Phosphatierung eines Hohlraums verwendeten wäßrigen Lösungen und die Eigenschaften der Phosphatschichten ergeben sich aus Tabelle 3.
Die Phosphatschichten der Ausführungsbeispiele 3 und 4 hatten bezüglich Schichtgewicht, Kristallit-Kantenlänge und Mindesphosphatierzeit etwa die gleichen Eigenschaften wie die Phosphatschichten der Ausführungsbeispiele 1 und 2.
Entsprechend den Ausführungsbeispielen 3 und 4 wurden die Vergleichsversuche D und E durchgeführt, wobei die einzelnen Verfahrensschritte identisch waren. Die bei den Vergleichsversuchen D und E benutzten Phophatierungslosungen sind an sich bekannt und enthalten als Beschleuniger Hydroxylamin. Die Zusammensetzung der zur Durchführung der Vergleichsversuche D und E verwendeten Lösungen und die Eigenschaften der Phosphatschichten sind in Tabelle 4 angegeben.
Ein Vergleich der Ausführungsbeispiele 3 und 4 mit den Vergleichsversuchen D und E zeigt, daß mit der Erfindung eine sehr gute Phophatierung von Hohlräumen erreicht werden kann, denn entsprechend der Erfindung werden vollständige, geschlossene Phosphatschichten erzeugt, und eine Flugrostbildung tritt nicht ein. Der Begriff "Flugrostbildung" beinhaltet, daß sich auf der metallischen Oberfläche, die keine vollständige, geschlossene Phosphatschicht besitzt, während der Trocknung eine Rostschicht bildet, was sehr nachteilig ist. In einigen Fällen bleibt die Flugrostbildung aus, obwohl keine vollständige, geschlossene Phosphatschicht vorhanden ist, was auf einer Passivierung der metallischen Oberfläche durch die Phosphatierungslösung beruhen dürfte.
Zur Prüfung der Korrosionseigenschaften von und der Lackhaftung auf verschiedenen, nach der Erfindung phosphatierten metallischen Substraten wurden Lackhaftungsprüfwerte ermittelt. Die Tabelle 5 gibt die Lackhaftungs- und die Korrosionsschutzprüfwerte an, die für unterschiedliche Bleche (Substrate) ermittelte wurden, wobei die einzelnen Substrate entsprechend den Beispielen 5,6 und 7 mit erfindungsgemäßen Lösungen und gemäß den Vergleichsversuchen F und G mit bekannten Lösungen durch Tauchen phosphatiert worden sind. Das Tauchen der einzelnen Substrate erfolgte entsprechend den vorstehend genannten Verfahrensschritten a) bis f) . Die Zusammensetzung der für die Beispiele 5, 6 und 7 verwendeten Phosphatierungslösungen ist in Tabelle 7 angegeben. Dort finden sich auch die Zusammensetzungen der bekannten PhosphatierungslÖsungen, die zur Ausführung der Vergleichsversuche F und G verwendet worden sind. Nach der Phosphatierung der Substrate durch Tauchen wurde ein Elektro- tauchlack, ein Füller und ein Decklack aufgebracht. Anschließend erfolgte die Prüfung durch eine Freibewitterung, bewertet nach 6 Monaten, durch einen Salzsprühnebeltest und durch Steinschlag nach einem 12-Runden-Klimawechseltest. Tabelle 5 gibt die bei den einzelnen Prüfungen ermittelte Unterwanderung der Lackschicht, gemessen in mm, an, wobei für die Steinschlag-Prüfung die Lackabplatzung in Prozent genannt ist.
Tabelle 6 gibt die Lackhaftungs- und Korrosionsschutzprüfwerte für verschiedene Substrate an, die durch Spritzen phosphatiert wurden. Die Spritzphosphatierung der Substrate wurde entsprechend der Erfindung unter Anwendung folgender Verfahrensschritte durchgeführt: g) Die Oberflächen der Substrate wurden mit einem schwach alkalischen Reiniger (2 %-ige wässrige Lösung) während 5 Minuten bei 60°C gereinigt und insbesondere entfettet.
h) Es folgte eine Spülung mit Leitungswasser während 0,5 Minuten bei Raumtemperatur. i) Danach wurde bei 55°C während 2 Minuten durch Spritzen phosphatiert.
k) Anschließend wurde mit einem chromfreien Nachspülmittel, das (ZrF6)2" enthielt, bei Raumtemperatur während 1 Minute gespült, um die phosphatierten Substrate zu passivieren.
1) Schließlich wurde mit vollentsalztem Wasser während 1 Minute bei Raumtemperatur gespült.
m) Die phosphatierten Substrate wurden im Ofen während 10 Minuten bei 80 °C getrocknet.
Die Zusammensetzung der erfindungsgemäßen wässrigen Phosphatierungslösungen, die zur Ausführung der Beispiele 8, 9 und 10 verwendet wurden, sind in der Tabelle 8 angegeben. Die Zusammensetzung der bekannten Phosphatierungslösung, die zur Ausführung des Vergleichsversuchs H verwendet wurde, findet sich ebenfalls in Tabelle 8. Auf die durch Spritzen phosphatierten Substrate wurde anschließend ein Elektrotauchlack, ein Füller und ein Decklack aufgetragen. Die phosphatierten und lackierten Substrate wurden dann einer Prüfung durch eine Freibewitterung während 6 Monaten, durch einen Salzsprühnebeltest, durch einen Gitterschnitt und durch einen 12-Runden-Klimawechseltest mit anschließendem Steinschlag unterworfen. In der Tabelle 6 sind die für die einzelnen Substrate ermittelten Prüfwerte angegeben, wobei für den Gitterschnitt eine Bewertungsnote und für die Freibewitterung, den Salzsprühnebeltest und den Klimawechseltest die Unterwanderung der Lackschicht, gemessen in mm, angegeben ist. Für den Steinschlag wird die Lackabplatzung in Prozent genannt.
Der Korrosionsschutz, der durch die erfindungsgemäße Phosphatierung erreicht wird, ist mit dem Korrosionsschutz vergleichbar, der durch die Anwendung bewährter, bekannter Phosphatierungsverfahren eintritt, die mit dem Beschleuniger Nitrit arbeiten. Die erfindungsgemäße Phosphatierung vermeidet hingegen die Anwendung des Beschleunigers Nitrit, dessen Verwendung zunehmend auf Ablehnung stößt, da aus Nitrit bei der Phosphatierung Reaktionsprodukte entstehen, welche die Umwelt schädigen und teilweise auf den Menschen toxisch wirken. Die durch die erfindungsgemäße Phosphatierung erzielte Lackhaftung und Korrosionsschutzwirkung ist als sehr gut bis gut zu bewerten.
Tabelle 1
Tabelle 2
Tabelle 3
Tabelle 4
Tabelle 5 Lackhaftungsprüfwerte, Tauchanwendung
Substrat Beispiele Vergleichsversuche
5 6 7 F G
Freibewitterung 6 Monate, mm Unterwanderung, einseitig vom Ritz gemessen.
Stahl < 1 < 1 1,5 < 1 2,5
Elelctrolytisch verzinkter Stahl 1 1 1 1,5 2,5
Feuerverzinkter Stahl 0 < 1 1 0 < 1
Stahl mit Fe-Zn-Schicht < 1 < 1 < 1 < 1 < 1
AlMgSi, ungeschliffen 3 0 0 < 1 bis 3 ~
AlMgSi, geschliffen 5 < 1 0 4 —
Salzsprühnebelprüfimg, 1008 h, nach DIN 50021 SS, mm Unterwanderung
Stahl < 1 < 1 1,5 < 1 1
12-Runden-Klimawechseltest gemäß VDA 621-415, Unterwanderung in mm, einseitig vom Ritz gemessen, und anschließender Steinschlag gemäß Spezifikation der VW AG, % Lackabplatzung, in ( ) angegeben
Stahl < 1 (0,5) < 1 (0,5) 1,5 (0,5) < 1 (1) 2 (1 )
Elelctrolytisch verzinkter Stahl 6,5 (1,5) 7 (8,5) 7 (5) 5,5 (2) 8 (40)
Feuerverzin ter Stahl 1,5 (0,5) 2 (7) 2 (2) 1 (0,5) 2,5 (15)
Stahl mit Fe-Zn-Schicht 1 (0,5) 1 (0,5) 1 (0,5) 1 (0,5) 1 (0,5)
Tabelle 6 Lackhaftungsprüfwerte, Spritzanwendung
Tabelle 7
Tabelle 8

Claims

Patentansprüche
1. Wässrige, phosphathaltige Lösung zur Erzeugung von Phosphatschichten auf metallischen Oberflächen aus Eisen, Stahl, Zink, Zinklegierungen, Aluminium oder Aluminiumlegierungen, die 0,3 bis 5 g Zn2*/1/ und 0,1 bis 3 g Nitroguanidin/ 1 enthält, wobei der S-Wert 0,03 bis 0,3 und das Gewichtsverhältnis Zn : P20s = 1 : 5 bis 1 :
30 beträgt, und die feinkristalline Phosphatschichten erzeugt, in denen die Kristallite eine maximale Kantenlänge < 15 μm haben.
2. Wässrige Lösung nach Anspruch 1, die 0,3 bis 3 g Zn2'/1/ enthält.
3. Wässrige Lösung nach den Ansprüchen 1 bis 2, die 0,5 bis 20 g N03 "/1 enthält.
4. Wäßrige Lösung nach den Ansprüchen 1 bis 3, die 0,01 bis 3 g Mn27l und/oder 0,01 bis 3 g Ni*/1 und/oder 1 bis 100 mg Cu2*/1 und oder 10 bis 300 mg Co2*/l enthält.
5. Wässrige Lösung nach den Ansprüchen 1 bis 4, die 0,01 bis 3 g T'/ l und/oder 0,05 bis 3,5 g/1 mindestens eines komplexen Fluorids enthält.
6. Wässrige Lösung nach Anspruch 5, die als komplexes Fluorid (SiF6)2" oder (BF ~ enthält.
7. Verfahren zur Phosphatierung, bei dem die metallischen Oberflächen gereinigt, anschließend mit der wässrigen, phosphathaltigen Lösung gemäß den Ansprüchen 1 bis 6 während einer Zeit von 5 Sekunden bis 10 Minuten bei einer Temperatur von 15 bis 70 °C behandelt und schließlich mit Wasser gespült werden.
8. Verfahren nach Anspruch 7, bei dem die Behandlung der metallischen Oberflächen mit der Phosphatierungslösung durch Spritzen, Tauchen, Spritztauchen oder Aufwalzen erfolgt.
9. Verfahren nach Anspruch 8, bei dem die zum Spritzen verwendete Phosphatierungslösung ein Gewichtsverhältnis Zn : P2Os = 1 : 10 bis 1 : 30 aufweist.
10. Verfahren nach Anspruch 8, bei dem die zum Tauchen verwendete Phosphatierungslösung ein Gewichtsverhältnis Zn : P205 = 1 : 5 bis 1 : 18 aufweist.
11. Verfahren nach den Ansprüchen 7 bis 10, bei dem die metallischen Oberflächen nach der Reinigung mit einem Aktivierungsmittel behandelt werden, das ein titanhaltiges Phosphat enthält.
12. Verfahren nach den Ansprüchen 7 bis 11, bei dem die metallischen Oberflächen nach dem der Phosphatierung folgenden Spülvorgang mit einem Passivierungsmittel nachbehandelt werden.
13. Verfahren nach Anspruch 7, bei dem das Nitroguanidin in die wässrige Lösung in Form einer stabilen, wässrigen Suspension eingebracht wird.
14. Verfahren nach Anspruch 13, bei dem die stabile, wässrige Suspension als Stabilisator ein Schichtsilikat enthält.
15. Verfahren nach Anspruch 14, bei dem als Stabilisator die Schichtsilikate [Mg6 (Si74A10 O20 (OH) 4]Na0 „ xH20 und
[ (Mgs 4Li0 6) Si8O20 (0H3F) 4]Na00 xH20 in einer Menge von 10 bis 30 g/1 Nitroguanidin-Suspension verwendet werden.
16. Verwendung der wässrigen, phosphathaltigen Lösung nach den Ansprüchen 1 bis 6 und des Verfahrens zur Phosphatierung nach den Ansprüchen 7 bis 15 zur Behandlung von Werkstücken vor der Lackierung.
17. Verwendung nach Anspruch 16 zur Behandlung von Werkstücken vor der Elektrotauchlackierung.
EP97943803A 1996-08-28 1997-08-11 Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen Expired - Lifetime EP0922123B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9730079T SI0922123T1 (en) 1996-08-28 1997-08-11 Process and aqueous solution for phosphatising metallic surfaces

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19634685 1996-08-28
DE19634685A DE19634685A1 (de) 1996-08-28 1996-08-28 Wässrige Lösung und Verfahren zur Phosphatierung metallischer Oberflächen
PCT/EP1997/004360 WO1998008999A1 (de) 1996-08-28 1997-08-11 Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen

Publications (2)

Publication Number Publication Date
EP0922123A1 true EP0922123A1 (de) 1999-06-16
EP0922123B1 EP0922123B1 (de) 2000-07-26

Family

ID=7803869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97943803A Expired - Lifetime EP0922123B1 (de) 1996-08-28 1997-08-11 Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen

Country Status (25)

Country Link
US (1) US6261384B1 (de)
EP (1) EP0922123B1 (de)
JP (1) JP3940174B2 (de)
KR (1) KR100473779B1 (de)
CN (1) CN1080325C (de)
AR (1) AR009336A1 (de)
AT (1) ATE195005T1 (de)
AU (1) AU720551B2 (de)
BR (1) BR9713177A (de)
CA (1) CA2264568C (de)
CZ (1) CZ294673B6 (de)
DE (2) DE19634685A1 (de)
DK (1) DK0922123T3 (de)
ES (1) ES2150791T3 (de)
GR (1) GR3034297T3 (de)
HU (1) HU228330B1 (de)
IN (1) IN192301B (de)
PL (1) PL192285B1 (de)
PT (1) PT922123E (de)
SI (1) SI0922123T1 (de)
SK (1) SK283857B6 (de)
TR (1) TR199900426T2 (de)
TW (1) TW363089B (de)
WO (1) WO1998008999A1 (de)
ZA (1) ZA977706B (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19808440C2 (de) 1998-02-27 2000-08-24 Metallgesellschaft Ag Wässrige Lösung und Verfahren zur Phosphatierung metallischer Oberflächen sowie eine Verwendung der Lösung und des Verfahrens
DE19834796A1 (de) 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
DE19857799A1 (de) 1998-12-15 2000-06-21 Henkel Kgaa Verfahren zum Steuern einer Behandlungslinie
DE19911843C2 (de) * 1999-03-17 2001-05-10 Metallgesellschaft Ag Verfahren für den Korrosionsschutz von Aluminium und Aluminiumlegierungen sowie Verwendung des Verfahrens
DE50310042D1 (de) 2002-07-10 2008-08-07 Chemetall Gmbh Verfahren zur beschichtung von metallischen oberflächen
US20040118483A1 (en) * 2002-12-24 2004-06-24 Michael Deemer Process and solution for providing a thin corrosion inhibiting coating on a metallic surface
US20040188323A1 (en) * 2003-03-24 2004-09-30 Tzatzov Konstantin K. Active coating system for reducing or eliminating coke build-up during petrochemical processes
DE10320313B4 (de) * 2003-05-06 2005-08-11 Chemetall Gmbh Verfahren zum Beschichten von metallischen Körpern mit einer Phosphatierungslösung, Phosphatierungslösung und die Verwendung des beschichteten Gegenstandes
DE10323305B4 (de) * 2003-05-23 2006-03-30 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen mit einer Wasserstoffperoxid enthaltenden Phosphatierungslösung, Phosphatierlösung und Verwendung der behandelten Gegenstände
CN1314836C (zh) * 2004-08-02 2007-05-09 吉林大学 镁合金磷化溶液及其磷化工艺
CN101693993B (zh) * 2009-09-27 2011-03-30 上海大学 碳钢表面磷化处理液及镀镍封闭方法
CN107338428B (zh) * 2017-06-02 2019-01-11 余卫民 钴、锌、铁三元体系磷酸盐金属表面处理剂、制备方法及复合沉积物
RU2690876C1 (ru) * 2018-06-14 2019-06-06 Закрытое Акционерное общество "ФК" (ЗАО " ФК") Способ получения фосфатного покрытия
CN109518176B (zh) * 2018-12-14 2021-09-24 上海大学 碱性磷化液、制备方法及磷化处理工艺
CN110699681B (zh) * 2019-10-24 2021-12-14 河南北方红阳机电有限公司 一种高强度钢和硬铝合金组合体喷淋磷化工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE432557A (de) * 1938-02-04
US2375468A (en) * 1938-02-04 1945-05-08 Parker Rust Proof Co Phosphate coating of metals
DE821907C (de) * 1943-06-07 1951-11-22 Pyrene Co Ltd Mittel fuer die Herstellung von Phosphatueberzuegen auf Metallen
DE977633C (de) * 1950-07-06 1967-11-02 Galvapol Ges Fuer Galvanotechn Verfahren zur Herstellung von Phosphatueberzuegen auf eisenhaltigen Metallgegenstaenden
US3855147A (en) * 1972-05-26 1974-12-17 Nl Industries Inc Synthetic smectite compositions, their preparation, and their use as thickeners in aqueous systems
GB2080835B (en) * 1980-07-25 1984-08-30 Pyrene Chemical Services Ltd Prevention of sludge in phosphating baths
DE3800835A1 (de) * 1988-01-14 1989-07-27 Henkel Kgaa Verfahren zur phosphatierung von metalloberflaechen
US5268041A (en) * 1990-04-27 1993-12-07 Metallgesellschaft Ag Process for phosphating metal surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9808999A1 *

Also Published As

Publication number Publication date
US6261384B1 (en) 2001-07-17
PT922123E (pt) 2000-11-30
DE19634685A1 (de) 1998-03-05
GR3034297T3 (en) 2000-12-29
SK283857B6 (sk) 2004-03-02
CN1231705A (zh) 1999-10-13
SK23299A3 (en) 2000-05-16
IN192301B (de) 2004-04-03
CZ294673B6 (cs) 2005-02-16
ES2150791T3 (es) 2000-12-01
ATE195005T1 (de) 2000-08-15
JP2000516999A (ja) 2000-12-19
DE59702088D1 (de) 2000-08-31
HUP9903091A3 (en) 2004-03-01
DK0922123T3 (da) 2000-11-20
TR199900426T2 (xx) 1999-04-21
BR9713177A (pt) 2000-02-08
SI0922123T1 (en) 2000-12-31
CA2264568C (en) 2006-10-17
CA2264568A1 (en) 1998-03-05
HUP9903091A1 (hu) 2001-05-28
ZA977706B (en) 1999-03-01
PL331883A1 (en) 1999-08-16
AU720551B2 (en) 2000-06-01
KR20000035825A (ko) 2000-06-26
AU4551697A (en) 1998-03-19
PL192285B1 (pl) 2006-09-29
EP0922123B1 (de) 2000-07-26
KR100473779B1 (ko) 2005-03-08
CZ68099A3 (cs) 1999-11-17
WO1998008999A1 (de) 1998-03-05
JP3940174B2 (ja) 2007-07-04
HU228330B1 (en) 2013-03-28
AR009336A1 (es) 2000-04-12
CN1080325C (zh) 2002-03-06
TW363089B (en) 1999-07-01

Similar Documents

Publication Publication Date Title
EP0633950B1 (de) Nickelfreie phosphatierverfahren
WO2009115504A1 (de) Optimierte passivierung auf ti-/zr-basis für metalloberflächen
EP0922123B1 (de) Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen
EP1254279A2 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
EP2588646A1 (de) Verfahren zur selektiven phosphatierung einer verbundmetallkonstruktion
EP1114202A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
WO2003002781A1 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
EP0327153B1 (de) Verfahren zur Erzeugung von Phosphatüberzügen auf Metallen
WO1992017628A1 (de) Verfahren zum phosphatieren von metalloberflächen
DE19808440C2 (de) Wässrige Lösung und Verfahren zur Phosphatierung metallischer Oberflächen sowie eine Verwendung der Lösung und des Verfahrens
EP0931179B1 (de) Verfahren zur phosphatierung von stahlband
DE19705701A1 (de) Verfahren zur Niedrig-Nickel-Phosphatierung mit metallhaltiger Nachspülung
EP0264811B1 (de) Verfahren zum Erzeugen von Phosphatüberzügen
EP0889977B1 (de) Zinkphosphatierung mit geringen gehalten an kupfer und mangan
WO1994008074A1 (de) Verfahren zum phosphatieren von verzinkten stahloberflächen
EP0882144A1 (de) Zinkphosphatierung mit geringen gehalten an nickel und/oder cobalt
WO1999014397A1 (de) Verfahren zur phosphatierung von stahlband
DE19639597C2 (de) Verfahren zur Phosphatierung von laufenden Bändern aus kalt- oder warmgewalztem Stahl in schnellaufenden Bandanlagen
EP1155163B1 (de) Verfahren zur phosphatierung von zink- oder aluminiumoberflächen
WO1986004931A1 (en) Process for the phosphating of metal surfaces
WO1997014821A1 (de) Schichtgewichtssteuerung bei hydroxylamin-beschleunigten phosphatiersystemen
WO1993022474A1 (de) Kupfer enthaltendes, nickelfreies phosphatierverfahren
EP0866888B1 (de) Verfahren zur phosphatierung von metalloberflächen
DE19958192A1 (de) Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 19990329

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990713

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 19990329

REF Corresponds to:

Ref document number: 195005

Country of ref document: AT

Date of ref document: 20000815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000726

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59702088

Country of ref document: DE

Date of ref document: 20000831

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000822

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2150791

Country of ref document: ES

Kind code of ref document: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MG TECHNOLOGIES AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MG TECHNOLOGIES AG

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010724

Year of fee payment: 5

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020811

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CHEMETALL GMBH

Free format text: METALLGESELLSCHAFT AKTIENGESELLSCHAFT#BOCKENHEIMER LANDSTRASSE 73-77#60325 FRANKFURT AM MAIN (DE) -TRANSFER TO- CHEMETALL GMBH#TRAKEHNER STRASSE 3#60487 FRANKFURT AM MAIN (DE)

NLS Nl: assignments of ep-patents

Owner name: CHEMETALL GMBH

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: MG TECHNOLOGIES AG

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

BECH Be: change of holder

Owner name: *CHEMETAL G.M.B.H.

Effective date: 20050105

REG Reference to a national code

Ref country code: PT

Ref legal event code: PD4A

Owner name: MG TECHNOLOGIES AG, DE

Effective date: 20041123

Ref country code: PT

Ref legal event code: PC4A

Owner name: CHEMETALL GMBH, DE

Effective date: 20041123

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

BECH Be: change of holder

Owner name: *CHEMETAL G.M.B.H.

Effective date: 20050105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20100824

Year of fee payment: 14

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20000401984

Country of ref document: GR

Effective date: 20120302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160826

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160830

Year of fee payment: 20

Ref country code: DE

Payment date: 20160826

Year of fee payment: 20

Ref country code: IT

Payment date: 20160824

Year of fee payment: 20

Ref country code: IE

Payment date: 20160826

Year of fee payment: 20

Ref country code: CH

Payment date: 20160829

Year of fee payment: 20

Ref country code: DK

Payment date: 20160831

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20160721

Year of fee payment: 20

Ref country code: FR

Payment date: 20160825

Year of fee payment: 20

Ref country code: SE

Payment date: 20160829

Year of fee payment: 20

Ref country code: AT

Payment date: 20160720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160826

Year of fee payment: 20

Ref country code: BE

Payment date: 20160829

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59702088

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20170811

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170810

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170810

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 195005

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170811

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20170811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170811

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170810

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170821

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170812