EP0814925B1 - Verfahren und anlage zur kontinuierlichen erzeugung bandförmiger bleche - Google Patents

Verfahren und anlage zur kontinuierlichen erzeugung bandförmiger bleche Download PDF

Info

Publication number
EP0814925B1
EP0814925B1 EP96902223A EP96902223A EP0814925B1 EP 0814925 B1 EP0814925 B1 EP 0814925B1 EP 96902223 A EP96902223 A EP 96902223A EP 96902223 A EP96902223 A EP 96902223A EP 0814925 B1 EP0814925 B1 EP 0814925B1
Authority
EP
European Patent Office
Prior art keywords
melt
starting strip
appliance
temperature
molten bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96902223A
Other languages
English (en)
French (fr)
Other versions
EP0814925A1 (de
Inventor
Fritz-Peter Pleschiutschnigg
Ingo Von Hagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0814925A1 publication Critical patent/EP0814925A1/de
Application granted granted Critical
Publication of EP0814925B1 publication Critical patent/EP0814925B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/008Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • C23C2/00361Crucibles characterised by structures including means for immersing or extracting the substrate through confining wall area
    • C23C2/00362Details related to seals, e.g. magnetic means

Definitions

  • the invention relates to a method for the continuous production of band-shaped Sheets, in particular made of steel, with the features of the generic term of Claim 1 and an apparatus for performing this method.
  • EP 0 311 602 B1 describes a method for producing thin metal strands e.g. known from steel with thicknesses below 20 mm. This procedure uses a Metallic steel strip on the surface with room temperature (Mother band) in the vertical direction from bottom to top or vice versa by a Melted metal.
  • the molten metal can be of the same type or also different material to the mother tape.
  • the dwell time of the Mother tape in the molten metal is like this depending on its temperature dimensioned that a crystallization of metal crystals and an attachment of Melting takes place on the surface of the mother tape without the mother tape melts itself or the already deposited material again is melted.
  • a band-shaped semi-finished product can be produced its thickness is about 6 to 10 times the original thickness of the mother tape corresponds. Because the solidification process is different from the usual continuous casting This does not run from the outside inwards, but in the opposite direction Form of semi-finished product also known as inversion casting.
  • preheating to the desired temperature of the Realize the mother tape before entering the melt in that the A suitable preheating furnace in the form of a continuous furnace as the melt container separate unit is connected upstream.
  • a suitable preheating furnace in the form of a continuous furnace as the melt container separate unit is connected upstream.
  • Such a furnace could use fossil fuels Energy sources (e.g. gas or oil) or with electrical energy (e.g. Induction furnace) are heated.
  • the use of a plasma torch would also be imaginable.
  • the object of the invention is to provide a method and an apparatus for the same Specify implementation with which a specific preheating of the mother band a preheating temperature well above room temperature (especially above 200 ° C) is possible without this requiring a large outlay on equipment and without the risk of reoxidation of the surface of the mother tape.
  • the method according to the invention provides that the mother tape used in each case after creating a clean metallic surface before introducing it Melt bath heated to a temperature well above room temperature becomes.
  • This preheating should be at least 200 ° C, preferably at least 300 and particularly preferably be at least 400 ° C. If necessary, the Preheating are also significantly higher.
  • the warming is caused by indirect Heat exchange carried out, taking advantage of the heat of the Crystallize metal melt used. For this purpose, however, none direct contact of the melt with the mother tape instead. So reoxidation the mother tape surface is avoided, at least in the area of Heating zone an oxygen-free atmosphere. This can, for example, by the Generation of an appropriate vacuum can be maintained. In most In some cases, however, the use of a protective gas atmosphere should be more advantageous.
  • Inert gas in particular argon and possibly nitrogen, are suitable.
  • the preheated mother tape is then in a known manner by the Metal melt performed so that crystallization and entrainment of liquid Melt take place on the surface of the mother tape.
  • the Melt temperature can be the thickness of the coating desired Mother tape can be set.
  • After leaving the weld pool expediently an immediate smoothing of the crystallized coating. Because of that Melting pool the amount of heat required for preheating the mother tape is withdrawn, this must be done when setting the temperature of the weld pool freshly supplied melt are taken into account.
  • the melt temperature must therefore set higher than if the preheating in one separate upstream heating unit (e.g. continuous furnace).
  • the method is used with particular advantage for the coating of Mother tape made of common carbon steel.
  • the material of the molten metal can be made from of the same material. However, the use is particularly expedient a molten metal made of a different material than that of the mother tape. In particular, the use of higher-alloy materials is recommended for this.
  • the thickness of the mother tape used should be less than 3 mm if possible, preferably less than 2 mm and particularly preferably less than 1 mm. The thinner that material is used, the faster the heating can take place.
  • the means that the preheating section can be kept correspondingly shorter or that a higher preheating temperature can be achieved over the same length.
  • a procedure is preferred in which the mother tape is passed through the molten bath from bottom to top.
  • the mother tape If the mother tape is passed from bottom to top through the melt, it must be ensured at the point at which the mother tape enters the melt that no liquid melt escapes to the outside.
  • the passage point has the shape of a narrow gap, which is largely filled by the cross section of the mother tape.
  • the temperature of the freshly supplied melt in such a way that, taking into account the heat emission due to the preheating of the mother tape, the melt pool has an isotherm in the vicinity of the point where the mother tape enters the melt , which lies between the liquidus temperature T liq and the solidus temperature T sol . Under these conditions, the seal can be easily implemented.
  • the system consists of a melt container 9, the bottom of one Sealing device 10 is formed.
  • the melt container 9th also be equipped with its own floor in which the sealing device 10 is installed.
  • the sealing device 10 consists essentially of a flat Housing with an approximately cuboid interior according to the cross-sectional geometry of the mother tape to be coated 1.
  • the broad side walls of the Sealing device 10 are designated by reference number 11.
  • the interior of the Sealing device 10 is open from below and upwards, so that it is narrow Feedthrough channel for the mother tape 1 represents.
  • At least the broad side walls 11 are resistant to a metal melt 14 to be used Refractory material formed.
  • This refractory material should expediently be so be selected that it has the highest possible thermal conductivity, since the Broad side walls 11 in the sense of a heat exchanger as radiant heating surfaces should serve. In principle, it would be possible to use the broad side walls 11 To extend the entire width of the melt container 9, so that in extreme cases narrow side surfaces, along which the longitudinal edges of the mother tape 1 pass, omitted.
  • a shielding box 6 is flanged tightly below the sealing device. This shielding box 6 has a gas connector 8 through which a Inert gas at overpressure (arrow 7) into the inside of the shielding box 6 can be initiated.
  • the molten metal 14 is over several Melt inlet connector 13, which is located near the lower part of the Sealing device 10 are located and with their outlet opening on the broad side walls 11th are directed into the melt container 9. This is through appropriate Arrows indicated. Heat through direct contact with the molten metal 14 the broad side walls 11 to a correspondingly high temperature. The means that thus the lead-through channel 12 to a heating channel for the mother tape 1 to be introduced. Due to the intense heat radiation of the Broad side walls 11 finds an extremely rapid heating of the Mother tape 1 instead. This effect can be seen from the graphical representation of the Figure 2 can be easily estimated.
  • Figure 2 shows the cooling rate of strip or plate-shaped semi-finished products made of steel by heat radiation depending on the surface temperature and the thickness of the objects.
  • This graphic can also be reversed apply for a statement about the heating rate, if appropriate molded objects from room temperature by using a heat radiation source is heated to a surface temperature, as indicated in the illustration. From this it can be seen that a 1 mm thick steel band with a Radiation temperature of e.g. 1426 ° C at a speed of approx. 250 ° C / sec is heated.
  • the channel length a can thus be set Influence preheating temperature. With a reduction in the thickness of the mother tape a higher temperature would occur with the same channel length a.
  • the crystallization of melt begins, which grows to form the coating provided with the reference number 16.
  • a pair of smoothing rollers 15 is expediently used immediately above the weld pool.
  • the coated tape with a smoothed surface is designated 17.
  • the thickness of the coating 16 that can be achieved essentially depends on the length of contact time between the mother tape 1 and the molten metal 14. The contact time in turn depends on the feed rate and the length of the immersion distance b of the mother tape 1.
  • the meniscus already mentioned above, which forms in the entrance area of the mother tape 1 into the molten metal 14, is designated by 18.
  • T liq The isotherm with the liquidus temperature is identified as T liq .
  • the invention makes it possible to apply thin coatings to a mother tape with a secure weld to the base material without space-consuming separate heating units must be used for this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Sewing Machines And Sewing (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft ein Verfahren zur kontinuierlichen Erzeugung bandförmiger Bleche, insbesondere aus Stahl, mit den Merkmalen des Oberbegriffs des Patentanspruchs 1 sowie eine Vorrichtung zur Durchführung dieses Verfahrens.
Aus der EP 0 311 602 B1 ist ein Verfahren zum Erzeugen von dünnen Metallsträngen z.B. aus Stahl mit Dicken unter 20 mm bekannt. Bei diesem Verfahren wird ein Raumtemperatur aufweisendes an der Oberfläche metallisch reines Stahlband (Mutterband) in vertikaler Richtung von unten nach oben oder umgekehrt durch eine Metallschmelze geführt. Die Metallschmelze kann aus einem artgleichen oder auch zum Mutterband unterschiedlichen Werkstoff bestehen. Die Verweilzeit des Mutterbandes in der Metallschmelze ist in Abhängigkeit von deren Temperatur so bemessen, daß ein Ankristallisieren von Metallkristallen und ein Anlagern von Schmelze an der Oberfläche des Mutterbandes stattfindet, ohne daß das Mutterband selbst aufschmilzt oder das bereits angelagerte Material erneut wieder aufgeschmolzen wird. Auf diese Weise läßt sich ein bandförmiges Halbzeug erzeugen, dessen Dicke etwa dem 6- bis 10-fachen der ursprünglichen Dicke des Mutterbandes entspricht. Da der Erstarrungsvorgang im Unterschied zum üblichen Stranggießen nicht von außen nach innen, sondern in umgekehrter Richtung verläuft, wird diese Form der Halbzeugerzeugung auch als Inversionsgießen bezeichnet.
Aus der WO-A-94 29 048 ist ein weiteres Verfahren des Inversionsgießens bekannt, bei dem ein dünnes Stahlband nach Durchlaufen einer Stahlschmelze von unten nach oben unmittelbar nach dem Wiederaustritt aus der Schmelze durch ein Glättwalzenpaar in der Oberfläche geglättet wird. Im Anschluß an das Glättwalzenpaar durchläuft das auf diese Weise erzeugte Stahlband eine inertgasgefüllte Kühlzone, in der es in kontrollierter Weise zur Erzielung verbesserter Werkstoffeigenschaften abgekühlt wird.
Schließlich ist aus der JP-A-56-151163 (Patent Abstract of Japan, vol.006,no.036) die Beschichtung von Draht mit einem flüssigen Metall bekannt.
Da es beim Inversionsgießen im allgemeinen angestrebt wird, möglichst viel Material an das Mutterband anzukristallisieren, wird dieses üblicherweise bei Raumtemperatur in die Schmelze eingeführt. Insbesondere bei der Herstellung von Metallbändern mit unterschiedlichen Werkstoffschichten (Verbundwerkstoffe) ist es jedoch nicht unbedingt erstrebenswert, eine größtmögliche Beschichtungsdicke zu erzielen. Anstelle einer üblichen Erzeugung eines Produktes mit etwa der 3- bis 6-fachen Mutterbanddicke werden bei Verbundwerkstoffen vielfach erheblich geringere Schichtdicken gewünscht. Dies könnte im Grundsatz dadurch erreicht werden, daß die Kontaktzeit zwischen der Schmelze und dem Mutterband drastisch reduziert wird. Das hat aber den Nachteil, daß der Verbund zwischen dem ankristallisierten Material und dem Mutterband vielfach unzureichend ist. Es kommt also nicht mit der erforderlichen Sicherheit zu einer vollständigen Verschweißung. Um die Anwachsrate auf der Oberfläche des Mutterbandes zu verringern und gleichzeitig dennoch eine gute Verschweißung der Ankristallisation mit dem Mutterband sicherzustellen, kann man das Mutterband vorwärmen, um dessen Kühlvermögen und damit dessen Ankristallisationspotential zu vermindern. Diese Vorgehensweise kann insbesondere zur Herstellung von Mehrlagenwerkstoffen (z.B. mit rostfreiem Stahl beschichteter Kohlenstoffstahl) benutzt werden.
Im Grundsatz läßt sich eine Vorwärmung auf die jeweils gewünschte Temperatur des Mutterbandes vor dem Eintritt in die Schmelze dadurch realisieren, daß dem Schmelzenbehälter ein entsprechender Vorwärmofen in Form eines Durchlaufofens als separates Aggregat vorgeschaltet wird. Ein solcher Ofen könnte mit fossilen Energieträgern (z.B. Gas oder Öl) oder auch mit elektrischer Energie (z.B. Induktionsofen) beheizt werden. Auch der Einsatz eines Plasmabrenners wäre vorstellbar.
Derartige Lösungen bringen einen relativ großen zusätzlichen apparativen Aufwand mit sich, zumal die Vorschubgeschwindigkeiten für das Mutterband relativ hoch sind. Üblicherweise liegen diese im Bereich von 10 - 100 m/min. Hinzu kommt die Forderung, daß das in die Schmelze eingeführte Mutterband eine metallisch reine Oberfläche aufweisen muß. Das bedeutet, daß insbesondere ein vorerwärmtes Mutterband vor dem Zutritt von Sauerstoff geschützt werden muß, da sonst eine rasche Reoxidation einsetzt. Oxidierte Oberflächenbereiche würden die erforderliche Verschweißung mit dem ankristallisierten Material gefährden.
Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zu dessen Durchführung anzugeben, mit dem eine gezielte Vorerwärmung des Mutterbandes auf eine deutlich über Raumtemperatur liegende Vorwärmtemperatur (insbesondere über 200 °C) möglich ist, ohne daß es hierzu eines großen apparativen Aufwandes bedarf und ohne daß die Gefahr einer Reoxidation der Oberfläche des Mutterbandes besteht.
Gelöst wird diese Aufgabe für ein gattungsgemäßes Verfahren mit den kennzeichnenden Merkmalen des Patentanspruchs 1. Vorteilhafte Weiterbildungen des Verfahrens sind in den Unteransprüchen 2 bis 9 angegeben. Eine erfindungsgemäße Anlage zur Durchführung dieses Verfahrens weist die Merkmale des Anspruchs 10 auf. Durch die Merkmale der Ansprüche 11 bis 18 läßt sich diese Anlage in zweckmäßiger Weise weiter ausgestalten.
Das erfindungsgemäße Verfahren sieht vor, daß das jeweils verwendete Mutterband nach Erzeugung einer metallisch reinen Oberfläche vor der Einführung in das Schmelzbad auf eine deutlich über Raumtemperatur liegende Temperatur erwärmt wird. Diese Vorerwärmung sollte mindestens 200 °C, vorzugsweise mindestens 300 und besonders bevorzugt mindestens 400 °C betragen. Im Bedarfsfall kann die Vorerwärmung auch noch deutlich höher liegen. Die Erwärmung wird durch indirekten Wärmeaustausch durchgeführt, und zwar unter Ausnutzung der Wärme der zum Ankristallisieren eingesetzten Metallschmelze. Zu diesem Zweck findet aber kein unmittelbarer Kontakt der Schmelze mit dem Mutterband statt. Damit eine Reoxidation der Mutterbandoberfläche vermieden wird, herrscht zumindest im Bereich der Aufheizzone eine sauerstofffreie Atmosphäre. Diese kann beispielsweise durch die Erzeugung eines entsprechenden Vakuums aufrechterhalten werden. In den meisten Fällen vorteilhafter dürfte jedoch der Einsatz einer Schutzgasatmosphäre sein. Als Schutzgas kommen insbesondere Argon und gegebenenfalls Stickstoff in Frage. Das vorerwärmte Mutterband wird dann in an sich bekannter Weise durch die Metallschmelze geführt, so daß ein Ankristallisieren und ein Mitführen von flüssiger Schmelze an der Oberfläche des Mutterbandes stattfinden. Durch entsprechende Regulierung der Vorschubgeschwindigkeit des Mutterbandes unter Berücksichtigung der Länge der Eintauchstrecke in der Metallschmelze und unter Berücksichtigung der Schmelzentemperatur kann die Dicke der gewünschten Beschichtung des Mutterbandes eingestellt werden. Nach Verlassen des Schmelzbades erfolgt zweckmäßigerweise ein sofortiges Glätten der ankristallisierten Beschichtung. Da dem Schmelzbad die für die Vorerwärmung des Mutterbandes erforderliche Wärmemenge entzogen wird, muß dies bei der Einstellung der Temperatur der dem Schmelzbad frisch zugeführten Schmelze berücksichtigt werden. Die Schmelzentemperatur muß also entsprechend höher eingestellt werden, als wenn die Vorwärmung in einem gesonderten vorgeschalteten Heizaggregat (z.B. Durchlaufofen) vorgenommen würde.
Mit besonderem Vorteil wird das Verfahren eingesetzt für die Beschichtung von Mutterband aus üblichem Kohlenstoffstahl. Das Material der Metallschmelze kann aus artgleichem Material bestehen. Besonders zweckmäßig ist jedoch die Verwendung einer Metallschmelze aus einem anderen Material als dem des Mutterbandes. Insbesondere empfiehlt sich die Verwendung von höherlegierten Werkstoffen hierfür. Die Dicke des eingesetzten Mutterbandes sollte möglichst unter 3 mm liegen, vorzugsweise unter 2 mm und besonders bevorzugt unter 1 mm. Je dünner das eingesetzte Material ist, um so schneller kann die Erwärmung stattfinden. Das bedeutet, daß die Vorwärmstrecke entsprechend kürzer gehalten werden kann oder daß auf gleicher Länge eine höhere Vorwärmtemperatur erzielbar ist.
Bevorzugt wird eine Verfahrensweise, bei der das Mutterband von unten nach oben durch das Schmelzbad hindurchgeführt wird. Es ist jedoch auch möglich, die umgekehrte Vorgehensweise vorzunehmen oder das Mutterband seitlich in das Schmelzenbad hinein- und wieder herauszuführen. Wenn das Mutterband von unten nach oben durch die Schmelze geführt wird, muß an der Stelle, an der das Mutterband in die Schmelze eintritt, sichergestellt werden, daß keine flüssige Schmelze nach außen austritt. Die Durchtrittsstelle hat die Form eines engen Spaltes, der weitestgehend vom Querschnitt des Mutterbandes ausgefüllt wird. In der Nähe der Eintrittszone besteht aufgrund des von dem Mutterband bewirkten Kühleffektes ein deutlicher Temperaturgradient. Dieser Bereich der Schmelze in der Umgebung des Mutterbandeintritts wird vielfach auch als "Meniskus" bezeichnet. Um an dieser Stelle aufwendige Maßnahmen zur Abdichtung zu vermeiden, ist es zweckmäßig, die Temperatur der frisch zugeführten Schmelze in der Weise einzustellen, daß unter Berücksichtigung der Wärmeabgabe infolge der Vorerwärmung des Mutterbandes das Schmelzbad im Nahbereich der Eintrittsstelle des Mutterbandes in die Schmelze eine Isotherme aufweist, die zwischen der Liquidustemperatur Tliq und der Solidustemperatur Tsol liegt. Unter diesen Bedingungen läßt sich die Abdichtung problemlos realisieren.
Die Erfindung wird nachfolgend anhand der Zeichnung näher beschrieben. Es zeigen:
Figur 1
einen Längsschnitt durch ein Ausführungsbeispiel einer erfindungsgemäßen Anlage und
Figur 2
die Abkühlgeschwindigkeit von Blechen und Platten aus Stahl durch Wärmestrahlung in Abhängigkeit von Dicke und Oberflächentemperatur des Materials.
In Figur 1 ist eine mögliche Ausführungsform einer erfindungsgemäßen Anlage in schematischer Form dargestellt worden. Die Größenverhältnisse, insbesondere die Längen im Verhältnis zur Dicke des Mutterbandes entsprechen dabei nicht den realen Verhältnissen.
Die Anlage besteht aus einem Schmelzenbehälter 9, dessen Boden von einer Dichteinrichtung 10 gebildet wird. Selbstverständlich könnte der Schmelzenbehälter 9 auch mit einem eigenen Boden ausgestattet sein, in den die Dichteinrichtung 10 eingebaut ist. Die Dichteinrichtung 10 besteht im wesentlichen aus einem flachen Gehäuse mit einem etwa quaderförmigen Innenraum entsprechend der Querschnittsgeometrie des zu beschichtenden Mutterbandes 1. Die Breitseitenwände der Dichteinrichtung 10 sind mit dem Bezugszeichen 11 bezeichnet. Der Innenraum der Dichteinrichtung 10 ist von unten und nach oben hin offen, so daß er einen schmalen Durchführkanal für das Mutterband 1 darstellt. Zumindest die Breitseitenwände 11 sind aus einem gegenüber der einzusetzenden Metallschmelze 14 beständigen Feuerfestmaterial gebildet. Zweckmäßigerweise sollte dieses Feuerfestmaterial so ausgewählt sein, daß es eine möglichst hohe Wärmeleitfähigkeit besitzt, da die Breitseitenwände 11 im Sinne eines Wärmetauschers als Strahlungsheizflächen dienen sollen. Im Grundsatz wäre es möglich, die Breitseitenwände 11 über die gesamte Breite des Schmelzenbehälters 9 zu erstrecken, so daß im Extremfall die schmalen Seitenflächen, an denen die Längskanten des Mutterbandes 1 vorbeilaufen, entfallen. Unterhalb der Dichteinrichtung ist ein Abschirmkasten 6 dicht angeflanscht. Dieser Abschirmkasten 6 weist einen Gasanschlußstutzen 8 auf, durch den ein unter Überdruck stehendes Inertgas (Pfeil 7) in das Innere des Abschirmkastens 6 eingeleitet werden kann. Damit bei der Einleitung des Inertgases nicht unnötig große Leckverluste entstehen, ist im Bereich des Durchtrittsspaltes für das Mutterband 1 in vorteilhafter Weiterbildung der Erfindung am Abschirmkasten 6 ein spezielles Dichtungssystem vorgesehen. Dieses kann beispielsweise, wie dies im linken Teil des Bildes dargestellt ist, in Form von Lamellendichtungen 4 oder, wie dies im rechten Teil des Bildes dargestellt ist, in Form eines Paares elastischer Dichtrollen 3 (vorzugsweise aus Hartgummi) ausgebildet sein. Um das Mutterband 1 in die in dem Schmelzenbehälter 9 befindliche Metallschmelze 14 einzuführen, wird dem Mutterband 1 über Treibrollenpaare 2,5 eine entsprechende Vorschubbewegung in vertikaler Richtung von unten nach oben erteilt. Die Metallschmelze 14 wird über mehrere Schmelzeneinlaßstutzen 13, die sich in der Nähe des unteren Teils der Dichteinrichtung 10 befinden und mit ihrer Austrittsöffnung auf die Breitseitenwände 11 gerichtet sind, in den Schmelzenbehälter 9 eingeleitet. Dies ist durch entsprechende Pfeile angedeutet. Durch den unmittelbaren Kontakt mit der Metallschmelze 14 heizen sich die Breitseitenwände 11 auf eine entsprechend hohe Temperatur auf. Das bedeutet, daß somit der Durchführkanal 12 zu einem Aufheizkanal für das einzuführende Mutterband 1 wird. Durch die intensive Wärmestrahlung der Breitseitenwände 11 findet eine außerordentlich schnelle Erwärmung des Mutterbandes 1 statt. Dieser Effekt kann anhand der graphischen Darstellung der Figur 2 leicht abgeschätzt werden.
Figur 2 zeigt die Abkühlgeschwindigkeit von streifen- oder plattenförmigem Halbzeug aus Stahl durch Wärmeabstrahlung in Abhängigkeit von der Oberflächentemperatur und der Dicke der Gegenstände. Diese Graphik läßt sich in umgekehrter Weise auch anwenden für eine Aussage über die Aufheizgeschwindigkeit, wenn entsprechend geformte Gegenstände von Raumtemperatur durch eine Wärmestrahlungsquelle mit einer Oberflächentemperatur erwärmt wird, wie sie in der Darstellung angegeben ist. Daraus läßt sich entnehmen, daß ein 1 mm dickes Stahlband bei einer Strahlungstemperatur von z.B. 1426 °C mit einer Geschwindigkeit von ca. 250 °C/sek erwärmt wird. Wenn also der Durchführkanal und damit die Aufheizstrecke eine Länge von a = 1 m aufweist und die Vorschubgeschwindigkeit des Mutterbandes bei 60 m/sek liegt, so würde sich bis zum Eintritt des Mutterbandes in die Metallschmelze 14 eine Erwärmung um etwa 250 °C erreichen lassen, wenn die Strahlungstemperatur der Breitseitenwände bei etwa 1426 °C liegt und die Banddicke 1 mm beträgt. Durch eine entsprechende Gestaltung der Kanallänge a läßt sich somit die einzustellende Vorwärmtemperatur beeinflussen. Bei einer Verringerung der Dicke des Mutterbandes würde sich bei gleicher Kanallänge a eine höhere Temperatur einstellen. So ergäbe sich entsprechend der Darstellung in Figur 2 bei einer Strahlungstemperatur von 1426 °C und einer Mutterbanddicke von 0,8 mm bei einer Verweilzeit von 1 sek im Durchführkanal 12 (entsprechend einer Vorschubgeschwindigkeit von 60 m/sek und einer Kanallänge von 1 m) eine Temperaturerhöhung um etwa 316 °C.
Kurz nach Eintritt in die Metallschmelze 14 beginnt die Ankristallisation von Schmelze, die zu der mit dem Bezugszeichen 16 versehenen Beschichtung aufwächst. Zur Glättung der Oberfläche des erzeugten beschichteten Produktes wird zweckmäßigerweise ein Glättwalzenpaar 15 unmittelbar über dem Schmelzbad eingesetzt. Das beschichtete Band mit geglätteter Oberfläche ist mit 17 bezeichnet. Die Dicke der erzielbaren Beschichtung 16 hängt wesentlich neben der Vorwärmtemperatur von der Länge der Kontaktzeit von Mutterband 1 und Metallschmelze 14 ab. Die Kontaktzeit wiederum hängt von der Vorschubgeschwindigkeit und von der Länge der Eintauchstrecke b des Mutterbandes 1 ab. Der weiter oben bereits erwähnte Meniskus, der sich im Eintrittsbereich des Mutterbandes 1 in die Metallschmelze 14 ausbildet, ist mit 18 bezeichnet. In Form von gestrichelten Linien sind einige Isothermen angedeutet. Die Isotherme mit der Liquidustemperatur ist als Tliq gekennzeichnet. In manchen Fällen kann es zweckmäßig sein, die lichte Weite des Durchführkanals 12 im Austrittsbereich des Mutterbandes 1 zur Vermeidung eines Schmelzenaustritts enger zu gestalten als im übrigen Bereich über die Kanallänge a. Diese sollte mindestens 0,5 m betragen. zweckmäßigerweise mindestens 1 m, damit eine ausreichend hohe Vorerwärmungstemperatur bei ausreichend hoher Vorschubgeschwindigkeit erreichbar ist.
Durch die Erfindung ist es möglich, auch dünne Beschichtungen auf ein Mutterband mit einer sicheren Verschweißung zum Grundwerkstoff hin auszuführen, ohne daß platzaufwendige gesonderte Heizaggregate hierfür eingesetzt werden müssen.
Vielmehr findet die Vorerwärmung des Mutterbandes in unmittelbarer Nähe vor dem Eintritt in die Metallschmelze durch indirekten Wärmetausch mit der eingesetzten Schmelze statt.

Claims (18)

  1. Verfahren zur kontinuierlichen Erzeugung bandförmiger Bleche, insbesondere aus Stahl, bei dem ein Mutterband (1) mit metallisch reiner Oberfläche durch ein Schmelzbad eines Metalls (Eintauchlänge b) hindurchgeführt wird, wobei ferner die Geschwindigkeits des Mutterbandes (1) in Abhängigkeit von der Eintauchlänge b und der Temperatur der Metallschmelze (14) zur Erzielung einer gewünschten Gesamtdicke einer sich in Form von Kristallen und Schmelze an der Oberfläche des Mutterbandes (1) ablagernden Beschichtung geregelt wird und wobei die Beschichtung unmittelbar nach dem Verlassen des Schmelzbades durch Walzen geglättet wird,
    dadurch gekennzeichnet,
    daß das Mutterband (1) vorerwämt mit einer über 200 °C liegenden Temperatur in das Schmelzbad eingeführt wird, wobei die Vorerwärmung durch indirekten Wärmeaustausch mit dem Schmelzbad (14) in sauerstofffreier Umgebung vorgenommen wird und daß eine dem Schmelzbad frisch zugeführte Metallschmelze eine dem Wärmeverlust für die Vorerwärmung entsprechend erhöhte Temperatur aufweist.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß das Mutterband von unten nach oben durch das Schmelzbad hindurchgeführt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    daß die sauerstofffreie Umgebung durch eine mit leichtem Überdruck aufrechterhaltene Atmosphäre eines Inertgases, insbesondere Argon oder Stickstoff, geschaffen wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß die Vorerwärmung bis auf mindestens 300 °C, insbesondere mindestens 400 °C vorgenommen wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß für das Mutterband ein aus einem üblichen Kohlenstoffstahl bestehender Werkstoff eingesetzt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    daß als Schmelzbad die Metallschmelze eines dem Mutterband artgleichen Werkstoffs eingesetzt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    daß als Schmelzbad die Metallschmelze eines gegenüber dem Werkstoff des Mutterbandes höherlegierten Stahlwerkstoffs eingesetzt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    daß ein Mutterband mit einer Dicke von weniger als 3 mm, vorzugsweise weniger als 2 mm und besonders bevorzugt weniger als 1 mm eingesetzt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    daß die Temperatur der frisch zugeführten Schmelze in der Weise eingestellt wird, daß unter Berücksichtigung der Wärmeabgabe zur Vorwärmung des Mutterbandes das Schmelzbad im Nahbereich der Eintrittsstelle des Mutterbandes in die Metallschmelze (Bereich des "Meniskus") eine Isotherme aufweist, die zwischen Liquidustemperatur Tliq und Solidustemperatur Tsol liegt.
  10. Anlage zur Durchführung des Verfahrens nach Anspruch 1, mit einem Schmelzenbehälter (9), mit einer Dichteinrichtung (10) im Bereich der Außenwandung des Schmelzenbehälters (9), durch die hindurch das Mutterband (1) in die Metallschmelze (14) ein- oder ausführbar ist, mit einer Vorschubeinrichtung (Treibrollen 2, 5) für das Mutterband (1) und mit einer Walzeinrichtung (Glättwalzenpaar 15) zum Glätten der ankristallisierten Beschichtung,
    dadurch gekennzeichnet,
    daß die Dichteinrichtung (10) in Form eines flachen, in Transportrichtung des Mutterbandes (1) tief in die Metallschmelze (14) hineinragenden, im wesentlichen quaderförmigen Gehäuses ausgebildet ist, dessen parallel zur Ebene des Mutterblechs (1) sich erstreckende Breitseitenwände (11) aus einem Feuerfestmaterial bestehen und unter Bildung eines flachen Durchführkanals (12) das Mutterband (1) als Strahlungsheizflächen in geringem Abstand umgeben, und daß eine Einrichtung zur Aufrechterhaltung einer sauerstofffreien Atmosphäre im Bereich des Durchführkanals (12) an die Dichteinrichtung (10) angeschlossen ist.
  11. Anlage nach Anspruch 10,
    dadurch gekennzeichnet,
    daß die Dichteinrichtung (10) im Bodenbereich des Schmelzenbehälters (9) angeordnet und die Förderrichtung der Transporteinrichtung (Treibrollenpaar 2, 5) vertikal nach oben gerichtet ist.
  12. Anlage nach Anspruch 10 oder 11,
    dadurch gekennzeichnet,
    daß die Dichteinrichtung (10) aus einem Feuerfestmaterial mit einem vergleichsweise hohen Wärmeleitkoeffizienten gebildet ist.
  13. Anlage nach Anspruch 12,
    dadurch gekennzeichnet,
    daß die Zuführung für die Metallschmelze (14) im Nahbereich des Bodens des Schmelzenbehälters (9), insbesondere in Form mehrerer mit ihrer Austrittsrichtung auf den unteren Teil der Breitseitenwände (11) gerichteter Schmelzeneinlaßstutzen (13) ausgebildet ist.
  14. Anlage nach einem der Ansprüche 10 bis 13,
    dadurch gekennzeichnet,
    daß die Einrichtung zur Aufrechterhaltung einer sauerstofffreien Atmosphäre als Inertgasabschirmung ausgebildet ist.
  15. Anlage nach Anspruch 14,
    dadurch gekennzeichnet,
    daß die Inertgasabschirmung einen den Eintrittsbereich für das Mutterband (1) am Durchführkanal (12) überwölbenden Abschirmkasten (6) aufweist, dem durch einen Gasanschlußstutzen (8) unter leichtem Überdruck stehendes Inertgas zuführbar und in den das Mutterband (1) durch eine schlitzförmige Öffnung einführbar ist.
  16. Anlage nach Anspruch 15,
    dadurch gekennzeichnet,
    daß die schlitzförmige Öffnung des Abschirmkastens (6) durch eine Lamellendichtung (4) oder ein Paar elastischer Rollen (Dichtrollen 3), insbesondere ein Paar Hartgummirollen, nach außen abgedichtet ist.
  17. Anlage nach einem der Ansprüche 10 bis 16,
    dadurch gekennzeichnet,
    daß die Dichteinrichtung (10) mindestens 0,5 m, insbesondere mindestens 1 m in die Metallschmelze (14) hineinragt (Länge a).
  18. Anlage nach einem der Ansprüche 10 bis 17,
    dadurch gekennzeichnet,
    daß die lichte Weite im Austrittsbereich des Mutterbandes (1) am Durchführkanal (12) zur Vermeidung eines Schmelzenaustritts enger ist als im übrigen Bereich über die Länge a des Durchführkanals (12).
EP96902223A 1995-03-07 1996-02-05 Verfahren und anlage zur kontinuierlichen erzeugung bandförmiger bleche Expired - Lifetime EP0814925B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19509681A DE19509681C1 (de) 1995-03-07 1995-03-07 Verfahren und Anlage zur kontinuierlichen Erzeugung bandförmiger Bleche
DE19509681 1995-03-07
PCT/DE1996/000210 WO1996027464A1 (de) 1995-03-07 1996-02-05 Verfahren und anlage zur kontinuierlichen erzeugung bandförmiger bleche

Publications (2)

Publication Number Publication Date
EP0814925A1 EP0814925A1 (de) 1998-01-07
EP0814925B1 true EP0814925B1 (de) 1999-05-19

Family

ID=7756936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96902223A Expired - Lifetime EP0814925B1 (de) 1995-03-07 1996-02-05 Verfahren und anlage zur kontinuierlichen erzeugung bandförmiger bleche

Country Status (9)

Country Link
US (1) US5855238A (de)
EP (1) EP0814925B1 (de)
JP (1) JP2914585B2 (de)
KR (1) KR100264945B1 (de)
AT (1) ATE180189T1 (de)
DE (2) DE19509681C1 (de)
RU (1) RU2146984C1 (de)
WO (1) WO1996027464A1 (de)
ZA (1) ZA961531B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545259A1 (de) * 1995-11-24 1997-05-28 Mannesmann Ag Verfahren und Vorrichtung zum Erzeugen von dünnen Metallsträngen
DE19638906C1 (de) * 1996-09-23 1998-01-02 Schloemann Siemag Ag Verfahren und Vorrichtung zur Erzeugung von beschichteten Strängen aus Metall, insbesondere von Bändern aus Stahl
DE19638905C1 (de) * 1996-09-23 1998-01-02 Schloemann Siemag Ag Verfahren zur Erzeugung von beschichteten Metallsträngen, insbesondere Metallbändern und Beschichtungsanlage
DE19731124C1 (de) * 1997-07-19 1999-01-21 Schloemann Siemag Ag Verfahren und Vorrichtung zur Erzeugung von beschichtetem Warm- und Kaltband
DE19813528A1 (de) * 1998-03-26 1999-10-07 Siemens Sa Vorrichtung zur Behandlung von plattenförmigen Werkstücken, insbesondere Leiterplatten
DE19902066A1 (de) * 1999-01-20 2000-08-03 Sms Demag Ag Verfahren und Vorrichtung zur Erzeugung von beschichteten Strängen aus Metall, insbesondere von Bändern aus Stahl
FI116453B (fi) * 2000-12-20 2005-11-30 Outokumpu Oy Menetelmä kerrosmetallituoteaihion valmistamiseksi ja kerrosmetallituoteaihio
NZ549911A (en) * 2006-10-19 2009-04-30 Syft Technologies Ltd Improvements in or relating to SIFT-MS instruments
EP3301200A1 (de) 2011-05-27 2018-04-04 Ak Steel Properties, Inc. Meniskusbeschichtungsgerät und verfahren
CN103252369B (zh) * 2012-02-20 2017-05-10 秋海滨 固‑液相金属铸轧复合方法及设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561399A (en) * 1964-07-02 1971-02-09 Homer W Giles Metal coating apparatus
US3470939A (en) * 1965-11-08 1969-10-07 Texas Instruments Inc Continuous chill casting of cladding on a continuous support
US3568753A (en) * 1967-12-18 1971-03-09 Texas Instruments Inc Process of fabricating a composite zinc printing plate
SU582042A1 (ru) * 1975-05-21 1977-11-30 Иркутский филиал Всесоюзного научно-исследовательского и проектного института алюминиевой, магниевой и электродной промышленности Устройство дл непрерывного лить биметаллического полуфабриката
JPS56151163A (en) * 1980-04-22 1981-11-24 Mitsubishi Electric Corp Dip forming device
JPS5797862A (en) * 1980-12-08 1982-06-17 Mitsubishi Electric Corp Producing device for rough drawn wire
JPS57175069A (en) * 1981-04-20 1982-10-27 Fujikura Ltd Method and device for dip forming
JPS60127068A (ja) * 1983-12-14 1985-07-06 Fujikura Ltd ディップフォ−ミング法
JPS6117351A (ja) * 1984-07-02 1986-01-25 Daido Steel Co Ltd 複合線材の製造方法
JPS6211944A (ja) * 1985-07-10 1987-01-20 Nec Corp アドレス割込み回路
JPS62148073A (ja) * 1985-12-23 1987-07-02 Kawasaki Steel Corp 浸漬成形方法
EP0311602B1 (de) * 1986-05-27 1991-07-24 MANNESMANN Aktiengesellschaft Verfahren zum erzeugen von dünnen metallsträngen
JPH01237069A (ja) * 1988-03-18 1989-09-21 Nippon Telegr & Teleph Corp <Ntt> 非晶質合金被覆鋼線の製造法
DE4319569C1 (de) * 1993-06-08 1994-06-16 Mannesmann Ag Verfahren und Vorrichtung zur Erzeugung von Halbzeug

Also Published As

Publication number Publication date
KR100264945B1 (ko) 2000-09-01
EP0814925A1 (de) 1998-01-07
US5855238A (en) 1999-01-05
JPH10511313A (ja) 1998-11-04
WO1996027464A1 (de) 1996-09-12
JP2914585B2 (ja) 1999-07-05
DE59601950D1 (de) 1999-06-24
ZA961531B (en) 1996-08-28
ATE180189T1 (de) 1999-06-15
KR19980702596A (ko) 1998-08-05
DE19509681C1 (de) 1996-05-02
RU2146984C1 (ru) 2000-03-27

Similar Documents

Publication Publication Date Title
EP0814925B1 (de) Verfahren und anlage zur kontinuierlichen erzeugung bandförmiger bleche
DE2119920A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Metallisierung eines langgestreckten metallischen Grundmaterials
DE2921124A1 (de) Verfahren und vorrichtung zur aufbringung einer beschichtung aus einer metallschmelze
DE102017221969A1 (de) Verfahren und Vorrichtung zur Herstellung eines bandförmigen Verbundmaterials
DE69302260T2 (de) Induktionsgeheizter Behälter zur Meniskusüberziehung
WO2021001495A1 (de) Schmelzezuführung für bandgussanlagen
DE3214211A1 (de) Verfahren und vorrichtung zur oxidationsverhinderung bei frisch gegossenen kupferprodukten nach dem austritt aus giessmascchinen mit zwei giessbaendern
DE4319569C1 (de) Verfahren und Vorrichtung zur Erzeugung von Halbzeug
DE10343648A1 (de) Vorrichtung zur Schmelztauchbeschichtung eines Metallstranges und Verfahren zur Schmelztauchbeschichtung
DE60316568T2 (de) Bandtemperaturregelvorrichtung in einer kontinuierlichen bandgiessanlage
DE1596439C3 (de) Verfahren zur Herstellung von Flachglas nach dem Schwimmverfahren
EP2445663B1 (de) Verfahren und vorrichtung zum erzeugen von stahlbändern mittels bandgiessen
DE2548941A1 (de) Verfahren zur erzeugung von strangfoermigen, metallischen gegenstaenden
DE19814988C2 (de) Gießverfahren für ein dünnes Metallband
DE1939917B2 (de) Verfahren und vorrichtung zum herstellen von floatglas groesserer dicke
DE60015432T2 (de) Vorrichtung und Verfahren zum Wärmebehandeln von metallischem Material
DE3829423C1 (de)
DE19638905C1 (de) Verfahren zur Erzeugung von beschichteten Metallsträngen, insbesondere Metallbändern und Beschichtungsanlage
DE1796141B2 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung eines durch eine metalldrahteinlage verstaerkten glasbandes
DE709181C (de) Verfahren zum Vorbehandeln von Metallkoerpern vor dem schmelzfluessigen UEberziehen mit anderen Metallen
DE19758140A1 (de) Verfahren zum Erzeugen von Metallprodukten aus Verbundwerkstoff
AT285280B (de) Vorrichtung und Verfahren zum Aufbringen von geschmolzenem Metall auf einen stangen-, rohr- oder bandförmigen Kern
DE1471937C (de) Verfahren und Einrichtung zum Herstellen von Tafelglas
DE10333589A1 (de) Verfahren zur Herstellung eines bandförmigen Verbundwerkstoffes für die Gleitlagerherstellung und Vorrichtung zur Durchführung des Verfahrens
DE19850213A1 (de) Gießverfahren für ein dünnes Metallband und zugehörige Gießvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT

17Q First examination report despatched

Effective date: 19980119

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 180189

Country of ref document: AT

Date of ref document: 19990615

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990519

REF Corresponds to:

Ref document number: 59601950

Country of ref document: DE

Date of ref document: 19990624

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000114

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000124

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000125

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010205

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010205

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090219

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901