EP0332526A1 - Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures - Google Patents

Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures Download PDF

Info

Publication number
EP0332526A1
EP0332526A1 EP89400626A EP89400626A EP0332526A1 EP 0332526 A1 EP0332526 A1 EP 0332526A1 EP 89400626 A EP89400626 A EP 89400626A EP 89400626 A EP89400626 A EP 89400626A EP 0332526 A1 EP0332526 A1 EP 0332526A1
Authority
EP
European Patent Office
Prior art keywords
mercury
catalyst
arsenic
mass
capture mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89400626A
Other languages
German (de)
English (en)
Other versions
EP0332526B1 (fr
Inventor
Michel Roussel
Philippe Courty
Jean-Paul Boitiaux
Jean Cosyns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to AT89400626T priority Critical patent/ATE75767T1/de
Publication of EP0332526A1 publication Critical patent/EP0332526A1/fr
Application granted granted Critical
Publication of EP0332526B1 publication Critical patent/EP0332526B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content

Definitions

  • liquid condensates by-products of gas production can contain many trace metal compounds, generally present in the form of organometallic complexes, in which the metal forms bonds with one or more carbon atoms of the organometallic radical.
  • metal compounds are poisonous catalysts used in petroleum transformation processes. In particular, they poison the hydrotreatment and hydrogenation catalysts by gradually depositing on the active surface.
  • Metallic compounds are found in particular in heavy cuts from the distillation of petroleum crude (nickel, vanadium, arsenic, mercury) or in natural gas condensates (mercury, arsenic).
  • the thermal or catalytic cracking treatments of the above hydrocarbon cuts can allow the elimination of certain metals (for example nickel, vanadium ...) ; on the other hand, certain other metals (for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Certain metals for example nickel, vanadium ...)
  • certain other metals for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Mercury also presents the risk of causing corrosion by the formation of amalgams, for example with aluminum-based alloys, in particular in the process sections operating at a temperature low enough to cause condensation of liquid mercury (cryogenic fractionations , exchangers).
  • Prior methods are known for removing mercury or arsenic from hydrocarbons in the gas phase; one operates in particular in the presence of solid masses, which can be called indifferently: adsorption, capture, trapping, extraction, metal transfer masses.
  • Patent FR 2534826 describes other masses consisting of elemental sulfur and an inorganic support.
  • US Patent 4069140 describes the use of various absorbent masses.
  • the supported iron oxide is described, the use of lead oxide is described in US Pat. No. 3,782,076 and that of copper oxide in US Patent 3,812,653.
  • the object of the invention is a process for removing the mercury contained in a hydrocarbon feed which remedies the defects of the previous processes.
  • a mixture of the charge with hydrogen is passed in contact with a catalyst containing at least one metal from the group formed by iron, cobalt, nickel and palladium followed by - or mixed with - a capture mass containing sulfur or a metal sulphide.
  • the charge also contains arsenic, it is also eliminated.
  • the operation is preferably carried out with the feed at least partly in the liquid phase.
  • sulfur can be introduced either with the feedstock (organic polysulfide) and / or with hydrogen (H 2 S), upstream of the catalyst, it may also be preferable to introduce it between the reactor containing the catalyst and that containing the capture mass, in order to limit the level of sulfurization at equilibrium of said catalyst.
  • the proportion of sulfur introduced can be adjusted, as is known to those skilled in the art, so as to control the equilibria for desulfurization of the capture mass and maintain in it a constant concentration of sulfur, as has just been said, in relation to the equilibria:
  • the sulfur compound is introduced between the reactor containing the catalyst and the reactor containing the capture mass.
  • the catalyst used in the composition of the assembly which is the subject of the present invention consists of at least one metal M chosen from the group formed by iron, nickel, cobalt and palladium, used as it is or preferably deposited on a support.
  • the metal M must be in reduced form for at least 50% of its totality.
  • the support can be chosen from the group formed by alumina, silica-aluminas, silica, zeolites, activated carbon, clays and aluminous cements.
  • alumina silica-aluminas, silica, zeolites, activated carbon, clays and aluminous cements.
  • nickel or the combination of nickel with palladium is used.
  • the proportion of metal M relative to the total weight of catalyst is between 0.1 and 60%, more particularly between 5 and 60% and preferably from 5 to 30%. In the case of the combination with the palladium, the proportion of the metal relative to the total weight of catalyst is between 0.01 and 10% and preferably from 0.05 to 50/0.
  • the solid mineral dispersant may advantageously consist of an alumina or a calcium aluminate. It will preferably have a large surface area and a sufficient pore volume, that is to say respectively at least 50 m2 / g and at least 0.5 cm3 / g, for example 50 to 350 m2 / g and 0.5 to 1.2 cm3 / g.
  • the preparation of such a catalyst is sufficiently known to those skilled in the art not to be repeated in the context of the present invention.
  • the catalyst Before use, the catalyst is, if necessary, reduced by hydrogen or by a gas, enclosing at a temperature of 150 to 600 ° C.
  • the capture mass used in the composition of the assembly which is the subject of the present invention consists of sulfur or a sulfur-containing compound deposited on a solid mineral support or dispersant chosen, for example, from the group formed by alumina , silica-aluminas, silica, zeolites, clays, active carbon, aluminous cements.
  • Use will preferably be made of a compound containing sulfur and a metal P where P is chosen from the group formed by copper, iron, silver and, preferably, by copper or the copper-silver association. At least 50% of the metal P is used in the form of sulphide.
  • the proportion of metal P combined or not in the form of sulphide will preferably be between 0.1 and 200% of the total weight of the capture mass.
  • the assembly constituted by the catalyst and the capture mass can be implemented either in two reactors or in one.
  • reactors When two reactors are used, they can be arranged in series, the reactor containing the catalyst being advantageously placed before that containing the capture mass.
  • the catalyst and the capture mass can be arranged either in two separate beds or mixed intimately.
  • the volume ratio of the catalyst to the capture mass may vary between 1:10 and 5: 1.
  • the operating pressures will preferably be chosen from 1 to 50 bar absolute, more particularly from 2 to 40 bar and more advantageously from 5 to 35 bar.
  • the collecting mass will work at a temperature of 0 to 175 ° C, more particularly between 20 and 120 ° C and more advantageously between 20 and 90 ° C under pressures of 1 to 50 bar absolute, more particularly from 2 to 40 bar and preferably from 5 to 35 bars.
  • the spatial velocities calculated with respect to the capture mass can be from 1 to 50 h -1 and more particularly from 1 to 30 h -1 (volumes - liquid - per mass volume and per hour).
  • the flow of hydrogen, relative to the catalyst is for example between 1 and 500 volumes (gas under normal conditions) per volume of catalyst and per hour.
  • the loads to which applies more particularly the invention contain from 10- 3 to 1 milligram of mercury per kilogram of charge and possibly of 10- 2 to 10 milligrams of arsenic per kilogram of feedstock.
  • Treatment duration was 8 hours until conversion of at least 900/0 of the nickel metal nickel oxide.
  • the mercury content leaving the reactor is approximately 50 ppb.
  • a capture mass consisting of a copper sulphide is prepared, deposited on an alumina support as described in US Patent No. 4094777 of the Applicant.
  • the capture mass does not allow total decontamination to be obtained during the duration of the test.
  • the nickel catalyst of Example 1 is loaded, according to the technique described in said example.
  • Example 2 In a second reactor, 50 cm3 of the capture mass of Example 2 is loaded according to the technique described in said example.
  • test is then stopped and after drying of the catalyst and of the capture mass by nitrogen sweeping, these are discharged bed by bed.
  • the mercury content is measured on each of these.
  • the results are collated in Table 2 as regards the capture mass, no trace of mercury is detected on the catalyst.
  • Example 3 The procedure is as in Example 3 but with a heavy condensate of liquefied gas containing 400 ppb of mercury.
  • the nickel catalyst of Example 1 is loaded according to the technique described in said example.
  • a capture mass composed of 130% by weight of sulfur on activated carbon, of Calgon HGR type is prepared according to US Pat. No. 3,194,629. This capture mass is arranged in 5 separate beds according to the technique used in Example 1, its total volume is equal to that of the catalyst contained in the first reactor.
  • the mercury content by weight on each of the capture mass beds are shown in Table 2.
  • Example 5 The procedure is as in Example 5 except that 50 cm 3 of catalyst containing 20% by weight of nickel and 800% by weight of calcium aluminate are used.
  • the mercury content by weight on each of the beds of the capture mass are collated in Table 2.
  • Example 3 The procedure is as in Example 3 except that the heavy condensate of liquefied gas is replaced by a boiling naphtha in the range of boiling points 50 at 180 ° C., containing 5 ppm of arsenic and 50 ppb of mercury and that the amount of nickel catalyst is 100 cm3 instead of 50 cm3.
  • the combination of the catalyst and the capture mass makes it possible to obtain satisfactory decontamination of the naphtha into arsenic and mercury.
  • Example 7 The procedure is as in Example 7 except that the charge flow rate reduced to the collection mass is 1 1 / hour (WH 20).
  • Example 7 The procedure is as in Example 7 but the charge flow rate reduced to the collection mass is 250 cm3 / hour (WH 5).
  • 100 cm 3 of a catalyst containing 20 ° / o by weight of nickel and 0.5% by weight of palladium are prepared on an alumina support which is loaded into a first steel reactor of 3 cm diameter in five equal beds each separated by a glass wool pad.
  • Example 2 After the catalyst has been reduced according to the conditions of Example 1 but with a maximum temperature of 350 ° C., the two reactors are placed in series under hydrogen.
  • the naptha is allowed to pass for 400 hours.
  • the results of mercury analyzes in the product after 50, 100, 200 and 400 hours are summarized in Table 1.
  • 50 cm 3 of a mass capable of playing both the role of catalyst and of capture mass consisting of a mixture of metallic nickel, copper sulphide and cement, are prepared. aluminous.
  • 100 g of finely dispersed copper sulphide is prepared by reacting basic copper carbonate with a 30% by weight solution of ditertiononyl polysulphide (commercial product TPS 37 from Elf Aquitaine).
  • the paste obtained is dried under nitrogen at 150 ° C for 16 hours and then activated under steam at 150 ° C for 5 hours.
  • the steam flow rate is 1000 volumes per volume of dry product.
  • the two products are mixed with 5000 g of commercial calcium aluminate (Secar 80) and water.
  • the paste obtained, extruded into rods of 2.5 mm in diameter, is matured for 16 hours in a ventilated oven under a mixture of nitrogen and 10% steam at 80 ° C and then dried under nitrogen at 120 ° C for 5 hours. and finally activated at 400 ° C under nitrogen for 2 hours.
  • the product obtained consisting of extrudates with diameters 2.1-2.3 mm and of length less than 5 mm, contains 14.30 / o of CuS, 14.30 / o of nickel and 71.40 / 0 of aluminate calcium.
  • This mixed mass is then loaded into a single steel reactor 3 cm in diameter and arranged in 5 equal beds each separated by a glass wool pad.
  • a naphtha with characteristics identical to those described in example 7 and containing 5 ppm of arsenic and 50 ppb of mercury is then passed in ascending flow under hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

Procédé d'élimination du mercure dans les charges d'hydrocarbures caractérisé en ce que l'on fait passer, sous hydrogène, ladite charge au contact d'un catalyseur renfermant au moins un métal du groupe formé par le nickel, le cobalt, le fer et le palladium suivi de - ou mélangé à - une masse de captation renfermant du soufre ou un sulfure de métal.

Description

  • Il est connu que les condensats liquides sous-produits de la production du gaz (gaz naturel, gaz associé) et les pétroles bruts peuvent contenir de nombreux composés métalliques à l'état de traces, généralement présents sous forme de complexes organométalliques, dans lesquels le métal forme des liaisons avec un ou plusieurs atomes de carbone du radical organométallique.
  • Ces composés métalliques sont des poisons des catalyseurs utilisés dans les procédés de transformation du pétrole. En particulier, ils empoisonnent les catalyseurs d'hydrotraitement et d'hydrogénation en se déposant progressivement sur la surface active. Des composés métalliques se trouvent notamment dans les coupes lourdes provenant de la distillation du brut pétrolier (nickel, vanadium, arsenic, mercure) ou encore dans les condensats de gaz naturel (mercure, arsenic).
  • Les traitements de craquage thermique ou catalytique des coupes d'hydrocarbures ci-dessus, par exemple leur vapocraquage pour conversion en coupes d'hydrocarbures plus légers, peuvent permettre l'élimination de certains métaux (par exemple le nickel, le vanadium ... ); par contre, certains autres métaux (par exemple le mercure, l'arsenic...) susceptibles de former des composés volatils et/ou étant volatils à l'état d'élément (mercure) se retrouvent au moins en partie dans les coupes plus légères et peuvent, de ce fait, empoisonner les catalyseurs des procédés de transformation subséquents. Le mercure présente en outre le risque de provoquer des corrosions par formation d'amalgames, par exemple avec les alliages à base d'aluminium, notamment dans les sections des procédés opérant à une température suffisamment basse pour provoquer la condensation de mercure liquide (fractionnements cryogéniques, échangeurs).
  • Des procédés antérieurs sont connus pour éliminer le mercure ou l'arsenic dans les hydrocarbures en phase gazeuse; on opère notamment en présence de masses solides, lesquelles peuvent être dénommées indifféremment : masses d'adsorption, de captation, de piégeage, d'extraction, de transfert de métaux.
  • Pour ce qui concerne les masses pour démercurisation : le brevet US 3194629 décrit des masses constituées de soufre ou encore d'iode déposé sur charbon actif.
  • Le brevet US 4094777 de la demanderesse décrit d'autres masses comprenant du cuivre au moins en partie sous forme de sulfure et un support minéral. Ces masses peuvent également renfermer de l'argent.
  • La demande française 87-07442 de la demanderesse décrit un mode de préparation spécifique des dites masses.
  • Le brevet FR 2534826 décrit d'autres masses constituées de soufre élémentaire et d'un support minéral.
  • Pour ce qui concerne la désarsénification :
    • Le brevet DE 2149993 enseigne d'utiliser les métaux du groupe VIII (nickel, platine, palladium).
  • Le brevet US 4069140 décrit l'utilisation de diverses masses absorbantes. L'oxyde de fer supporté est décrit, l'emploi d'oxyde de plomb est décrit dans le brevet US 3782076 et celui d'oxyde de cuivre dans le brevet US 3812653.
  • Or, si certains des produits décrits dans l'art antérieur présentent de bonnes performances pour la démercurisation ou encore pour la désarsénification de gaz (par exemple l'hydrogène) ou de mélanges gazeux (par exemple le gaz naturel) et plus particulièrement lorsque le gaz naturel contient une quantité importante d'hydrocarbures renfermant trois ou plus de trois atomes de carbone, les essais effectués par la demanderesse montrent que les mêmes produits se révèlent peu efficaces dès que les charges contiennent des composés autres que les métaux élémentaires, par exemple pour l'arsenic, des arsines comprenant des chaînes hydrocarbonées renfermant deux ou plus de deux atomes de carbone ou bien, pour le mercure, le diméthylmercure et les autres composés du mercure comprenant des chaînes hydrocarbonées renfermant deux ou plus de deux atomes de carbone et, éventuellement d'autres éléments non métalliques (soufre, azote...).
  • L'objet de l'invention est un procédé d'élimination du mercure contenu dans une charge hydrocarbonée qui remédie aux défauts des procédés antérieurs. Selon ce procédé on fait passer un mélange de la charge avec de l'hydrogène au contact d'un catalyseur renfermant au moins un métal du groupe formé par le fer, le cobalt, le nickel et le palladium suivi de- ou mélangé à- une masse de captation renfermant du soufre ou un sulfure de métal.
  • Lorsque la charge renferme aussi de l'arsenic, celui-ci est également éliminé. On opère de préférence avec la charge au moins en partie en phase liquide.
  • Dans la présente invention on a également constaté que, afin de maintenir dans la masse de captation une concentration constante en soufre total (soufre élémentaire et éventuellement soufre sulfure) il peut se révéler avantageux d'introduire simultanément avec la charge :
    • - du soufre sous forme de sulfure d'hydrogène (H2S) et/ou
    • - du soufre sous forme de polysulfure organique (par exemple, un dialkyl polysulfure).
  • Bien que le soufre puisse être introduit soit avec la charge (polysulfure organique) et/ou soit avec l'hydrogène (H2S), en amont du catalyseur, il peut également se révéler préférable de l'introduire entre le réacteur contenant le catalyseur et celui contenant la masse de captation, afin de limiter le taux de sulfuration à l'équilibre dudit catalyseur.
  • En fonction des conditions opératoires, et notamment de la pression partielle d'hydrogène et/ou de la pression partielle d'eau (si de l'eau est présente), la proportion de soufre introduité pourra être ajustée, comme il est connu de l'homme de métier, de façon à contrôler les équilibres de désulfuration de la masse de captation et de maintenir dans celle-ci une concentration constante en soufre, comme il vient d'être dit, en relation avec les équilibres :
    Figure imgb0001
    Figure imgb0002
  • De préférence, le composé du soufre est introduit entre le réacteur contenant le catalyseur et le réacteur contenant la masse de captation.
  • Il a enfin été découvert, d'une façon surprenante, qu'en présence de concentrations élevées en arsenic ou encore en présence de vitesses volumétriques horaires "liquides" élevées provoquant une captation imparfaite de l'arsenic (par exemple moins de 90%) sur le catalyseur, la masse de captation du mercure fonctionne également de manière très satisfaisante pour la captation de l'arsenic.
  • Le catalyseur entrant dans la composition de l'ensemble faisant l'objet de la présente invention est constitué d'au moins un métal M choisi dans le groupe formé par le fer, le nickel, le cobalt et le palladium, utilisé tel quel ou de préférence déposé sur un support. Le métal M doit se trouver sous forme réduite au moins pour 50% de sa totalité.
  • Le support peut être choisi dans le groupe formé par l'alumine, les silices-alumines, la silice, les zéolithes, le charbon actif, les argiles et les ciments alumineux. On utilise de préférence le nickel ou l'association du nickel avec le palladium.
  • La proportion de métal M par rapport au poids total de catalyseur est comprise entre 0,1 et 60%, plus particulièrement entre 5 et 60% et de façon préférée de 5 à 30%. Dans le cas de l'association avec du palladium, la proportion de ce métal par rapport au poids total de catalyseur est comprise entre 0,01 et 10% et de façon préférée de 0,05 à 50/0.
  • Le dispersant minéral solide pourra être constitué avantageusement par une alumine ou un aluminate de calcium. Il présentera de préférence une grande surface et un volume poreux suffisant, c'est-à-dire respectivement au moins 50 m2/g et au moins 0,5 cm3/g, par exemple 50 à 350 m2/g et 0,5 à 1,2 cm3/g. La préparation d'un tel catalyseur est suffisamment connue de l'homme de métier pour ne pas être répétée dans le cadre de la présente invention.
  • Avant utilisation, le catalyseur est, si nécessaire, réduit par de l'hydrogène ou par un gaz en renfermant à une température de 150 à 600°C.
  • La masse de captation entrant dans la composition de l'ensemble faisant l'objet de la présente invention est constituée par du soufre ou un composé soufré déposé sur un support ou dispersant minéral solide choisi, par exemple, dans le groupe formé par l'alumine, les silice-alumines, la silice, les zéolithes, les argiles, les charbons actifs, les ciments alumineux.
  • On peut utiliser comme masse de captation du soufre déposé sur un support et par exemple un produit commercial tel le calgon HGR et plus généralement tout produit constitué par du soufre déposé sur un charbon actif ou sur une alumine macroporeuse tel que décrit dans le brevet français 2534826.
  • On utilisera de préférence un composé renfermant du soufre et un métal P où P est choisi dans le groupe formé par le cuivre, le fer, l'argent et, de façon préférée, par le cuivre ou l'association cuivre-argent. Au moins 50% du métal P est employé sous forme de sulfure.
  • Cette masse de captation peut être préparée selon la méthode préconisée dans le brevet US 4094777 de la demanderesse ou encore par dépôt d'oxyde de cuivre sur une alumine puis sulfuration au moyen d'un polysulfure organique tel que décrit dans la demande de brevet français 87/07442 de la demanderesse:
    • La proportion de soufre élémentaire combiné ou non dans la masse de captation est avantageusement comprise entre 1 et 400/o et de façon préférée entre 1 et 20% en poids.
  • La proportion en métal P combiné ou non sous forme de sulfure sera de préférence comprise entre 0,1 et 200/o du poids total de la masse de captation.
  • L'ensemble constitué par le catalyseur et la masse de captation pourra être mis en oeuvre soit dans deux réacteurs soit en un seul.
  • Lorsque deux réacteurs seront utilisés, ils pourront être disposés en série, le réacteur renfermant le catalyseur étant avantageusement placé avant celui renfermant la masse de captation.
  • Lorsqu'un seul réacteur est utilisé, le catalyseur et la masse de captation pourront être disposés soit en deux lits séparés soit mélangés intimement .
  • Selon les quantités de mercure et/ou d'arsenic (calculées sous forme élémentaire) contenues dans la charge, le rapport volumique du catalyseur à la masse de captation pourra varier entre 1:10 et 5:1. Lorsque l'on opère en réacteurs séparés, on pourra, en ce qui concerne le catalyseur, opérer dans un domaine de température pouvant aller de 130 à 250°C, plus avantageusement de 130 à 220°C et de façon préférée entre 130 et 180°C.
  • Les pressions opératoires seront choisies de préférence de 1 à 50 bars absolus, plus particulièrement de 2 à 40 bars et de façon plus avantageuse de 5 à 35 bars.
  • La masse de captation travaillera à une température de 0 à 175° C, plus particulièrement entre 20 et 120°C et plus avantageusement entre 20 et 90° C sous des pressions de 1 à 50 bars absolus, plus particulièrement de 2 à 40 bars et préférentiellement de 5 à 35 bars.
  • Les vitesses spatiales calculées par rapport à la masse de captation peuvent être de 1 à 50 h-1 et plus particulièrement de 1 à 30 h-1 (volumes - liquide - par volume de masse et par heure).
  • Le débit d'hydrogène, rapporté au catalyseur est compris par exemple entre 1 et 500 volumes (gaz aux conditions normales) par volume de catalyseur et par heure.
  • Lorsqu'on opère en un réacteur unique, on a intérêt à adopter plus particulièrement une gamme de températures comprise entre 130 et 175°C et de façon préférée entre 130 et 150°C.
  • Les charges auxquelles s'applique plus particulièrement l'invention renferment de 10-3 à 1 milligramme de mercure par kilogramme de charge et, éventuellement de 10-2 à 10 milligrammes d'arsenic par kilogramme de charge.
  • EXEMPLE 1 (comparaison)
  • 5 kilogrammes d'un support d'alumine macroporeux (préparé par autoclavage à la vapeur d'alumine de transition) sous forme de billes de 2-4 mm de diamètre, présentant une surface spécifique de 160 m2/g et un volume poreux total de 1,05 cm3/g - volume macroporeux (pores de diamètres supérieurs à 0,1 pm ) :0,4 cm3/g - sont imprégnés par 20°/o en poids de nickel sous forme d'une solution aqueuse de nitrate. Après séchage à 120°C durant 5 heures et activation thermique à 450°C pendant deux heures sous balayage d'air, on obtient 6,25 kg de billes contenant 200/o de nickel en poids.
  • 50 cm3 de catalyseur sont alors chargés dans un réacteur en acier de 3 cm de diamètre, en 5 lits égaux séparés chacun par un tampon de laine de verre.
  • On fait ensuite subir au catalyseur un traitement sous hydrogène dans les conditions suivantes :
    • Pression : 2 bars
    • Débit d'hydrogène : 20 I/h
    • Température : 400° C.
  • La durée du traitement est de 8 heures jusqu'à conversion d'au moins 900/0 de l'oxyde de nickel en nickel métal.
  • On fait ensuite passer sur le catalyseur, en flux ascendant, un condensat lourd de gaz liquéfié bouillant dans la gamme des points d'ébullition de 30 à 350° C et contenant 50 ppb de mercure, avec de l'hydrogène dans les conditions suivantes :
    • Débit de charge : 500 cm3/h
    • Température : 180°C
    • Pression d'hydrogène : 30 bars
    • Débit d'hydrogène 2 litres/ heure
  • On laisse passer le condensat et l'hydrogène durant 200 heures. Les résultats d'analyses du mercure dans le produit au bout de 50, 100, 200 et 400 heures sont résumés dans le tableau 1.
  • Pendant les 400 heures de l'essai, la teneur en mercure sortant du réacteur est d'environ 50 ppb.
  • Le test est alors arrêté et après séchage du catalyseur par balayage à l'azote, ce dernier est déchargé lit par lit. Sur chacun d'eux, on mesure la teneur pondérale en mercure. Les résultats sont rassemblés dans le Tableau 2.
  • On voit que ce catalyseur présente une efficacité très faible pour retenir le mercure.
  • EXEMPLE 2 (comparaison)
  • Dans cet exemple, on prépare une masse de captation constituée d'un sulfure de cuivre, déposé sur un support d'alumine telle que décrite dans le brevet US n°4094777 de la demanderesse.
  • 50 cm3 de cette masse sont alors chargés dans un réacteur identique à celui décrit dans l'exemple 1.
  • La disposition de la masse en 5 lits séparés ainsi que son volume total sont en tous points comparables à l'exemple 1. On fait ensuite passer sur la masse, en flux ascendant, un condensat lourd de gaz liquéfié identique à celui décrit dans l'exemple 1 et contenant 50 ppb de mercure dans les conditions suivantes :
    • Débit de charge : 500 cm3/h
    • Pression totale : 30 bars absolus
    • Température : ambiante
  • On laisse passer le condensat durant 400 heures. Les résultats d'analyses du mercure dans le produit au bout de 50, 100, 200 et 400 heures sont résumés dans le tableau 1.
  • On constate que la masse de captation ne permet pas d'obtenir une décontamination totale pendant la durée du test.
  • Le test est ensuite arrêté et, après séchage de la masse de captation par balayage à l'azote, celle ci est déchargée lit par lit. Sur chacun, on mesure la.teneur pondérale en mercure, les résultats sont rassemblés dans le tableau 2.
  • On constate la présence de mercure sur l'ensemble des 5 lits, indice d'une certaine saturation de la masse de captation.
  • EXEMPLE 3 (selon l'invention)
  • Dans un premier réacteur, on charge le catalyseur au nickel de l'exemple 1, selon la technique décrite dans ledit-exemple.
  • Dans un second réacteur, on charge 50 cm3 de la masse de captation de l'exemple 2 selon la technique décrite dans ledit exemple.
  • Après que le catalyseur ait été réduit selon les conditions de l'exemple 1, les deux réacteurs sont mis en série sous hydrogène.
  • On fait alors passer en flux ascendant sous hydrogène le même condensat lourd de gaz liquéfié que dans l'exemple 1 renfermant 50 ppb de mercure, successivement sur le catalyseur puis sur la masse de captation. Les conditions opératoires sont les suivantes :
    • Débit de charge (ramené à la masse de captation): 500 cm3/h
    • Catalyseur au nickel
    • Température : 180°C
    • Pression d'hydrogène : 30 bars absolus
    • Débit d'hydrogène : 2 litres/heure
    • Masse de captation au sulfure de cuivre
    • Température : 20°C
    • Pression d'hydrogène : 30 bars absolus
    • Débit d'hydrogène : 2 litres/heure.
  • On laisse passer le condensat durant 400 heures. Les résulats d'analyses de mercure dans le produit au bout de 50, 100, 200 et 400 heures sont résumés dans le tableau 1 ci-après.
  • On constate, d'une façon inattendue, que l'association du catalyseur et d'une masse de captation permet d'obtenir une décontamination satisfaisante du condensat.
  • Le test est ensuite arrêté et après séchage du catalyseur et de la masse de captation par balayage à l'azote, celles-ci sont déchargée lit par lit.
  • Sur chacun de ceux-ci on mesure la teneur en mercure. Les résultats sont rassemblés dans le tableau 2 pour ce qui concerne la masse de captation, aucune trace de mercure n'est détectée sur le catalyseur.
  • On voit que plus de 900/o du mercure sont fixés sur le premier lit de la masse de captation soit 1/5 de ladite masse. Les 4/5 de la masse restent donc encore disponibles pour fixer le mercure au bout de 400 heures. On peut donc s'attendre à des durées de fonctionnement efficace très importantes.
  • EXEMPLE 4 selon l'invention
  • On opère comme dans l'exemple 3 mais avec un condensat lourd de gaz liquéfié renfermant 400 ppb de mercure.
  • L'efficacité de la masse de captation ainsi que le gradient des concentrations en mercure restent, toutes proportions gardées, sensiblement égales à ceux indiqués dans l'exemple 3.
  • EXEMPLE 5 selon l'invention
  • Dans un premier réacteur, on charge le catalyseur au nickel de l'exemple 1 selon la technique décrite dans ledit exemple.
  • Dans un second réacteur identique au premier, on charge une masse de captation composée de 130/o en poids de soufre sur charbon actif, de type Calgon HGR, préparée selon le brevet US 3194629. Cette masse de captation est disposé en 5 lits, séparés selon la technique utilisée dans l'exemple 1, son volume total est égal à celui du catalyseur contenu dans le premier réacteur.
  • Après que le catalyseur ait été réduit selon les conditions de l'exemple 1, les deux réacteurs sont mis en série sous hydrogène.
  • On fait alors passer le même condensat renfermant 50 ppb de mercure selon des conditions en tous points identiques à celles décrites dans l'exemple 3 et ceci durant 400 heures.
  • Les résultats d'analyses de mercure dans le produit au bout de 50, 100, 200 et 400 heures sont résumés dans le tableau 1.
  • Le test est arrêté après 400 heures de fonctionnement; catalyseur et masse de captation sont séchés puis déchargés selon le protocole de l'exemple 3.
  • Les teneurs pondérales en mercure sur chacun des lits de la masse de captation sont indiquées dans le tableau 2.
  • EXEMPLE 6 selon l'invention
  • On opère comme dans l'exemple 5 à ceci près que l'on utilise 50 cm3 de catalyseur renfermant 20°/o en poids de nickel et 800/o en poids d'aluminate de calcium.
  • Les résultats d'analyses de mercure dans le produit au bout de 50, 100, 200, 400 heures sont indiqués dans le tableau 1.
  • Après 400 heures de fonctionnement, le test est arrêté, catalyseur et masse de captation sont séchés et déchargés selon la méthode décrite dans l'exemple 3.
  • Les teneurs pondérales en mercure sur chacun des lits de la masse de captation sont regroupées dans le tableau 2.
  • EXEMPLE 7 selon l'invention
  • On opère comme dans l'exemple 3 à ceci près que le condensat lourd de gaz liquéfié est remplacé par un naphta bouillant dans la gamme de points d'ébullition 50 à 180°C, contenant 5 ppm d'arsenic et 50 ppb de mercure et que la quantité de catalyseur au nickel est de 100 cm3 au lieu de 50 cm3.
  • Les résultats d'analyses d'arsenic et de mercure dans le produit au bout de 50, 100, 200 et 400 heures sont résumés dans le tableau 2.
  • On constate que l'association du catalyseur et de la masse de captation permet d'obtenir une décontamination satisfaisante du naphta en arsenic et en mercure.
  • Après séchage et déchargement des réacteurs selon le protocole de l'exemple 3, on mesure sur chaque lit les teneurs pondérales en arsenic et en mercure.
  • Les résultats figurent sur le tableau 2.
  • On voit que 90% de l'arsenic sont fixés sur le premier lit de catalyseur et 90°/o du mercure sont fixés sur le premier lit de la masse de captation .
  • EXEMPLE 8 selon l'invention
  • On opère ainsi que dans l'exemple 7 à ceci près que le débit de charge ramené à la masse de captation est de 1 1/heure (WH 20).
  • EXEMPLE 9 selon l'invention
  • On opère ainsi que dans l'exemple 7 mais le débit de charge ramené à la masse de captation est de 250 cm3/heure (WH 5).
  • Les analyses d'arsenic et de mercure donnent les résultats mentionnés dans le tableau 1.
  • Les teneurs pondérales en arsenic et mercure dans chacun des lits du catalyseur et de la masse de captation sont indiquées dans le tableau 2.
  • On voit que les taux d'épuration du mercure et de l'arsenic ne varient guère lorsqu'évolue la WH.
  • EXEMPLE 10 selon l'invention
  • Dans cet exemple on prépare 100 cm3 d'un catalyseur renfermant 20°/o en poids de nickel et 0,5% en poids de palladium sur un support d'alumine que l'on charge dans un premier réacteur en acier de 3 cm de diamètre en cinq lits égaux séparés chacun par un tampon de laine de verre.
  • Dans un second réacteur identique au premier, on charge 50 cm3 d'une masse de captation obtenue par sulfuration au moyen d'un polysulfure organique d'un précurseur renfermant 100/o en poids de cuivre sur un support d'alumine. Cette masse est elle-même répartie en cinq lits égaux.
  • Après que le catalyseur ait été réduit selon les conditions de l'exemple 1 mais avec une température maximum de 350° C, les deux réacteurs sont mis en série sous hydrogène.
  • On fait alors passer, en flux ascendant, sous hydrogène, un naphta de caractéristiques identiques à celles décrites dans l'exemple 7, renfermant 5 ppm d'arsenic et 50 ppb de mercure, successivement sur le catalyseur puis sur la masse de captation.
  • Les conditions opératoires sont les suivantes :
    • Débit de charge (ramené à la masse de captation):500 cm3/h
    • Pour le catalyseur :
    • Température : 100°C
    • pression d'hydrogène : 30 bars absolus
    • Débit d'hydrogène : 2 litres/heure
    • Pour la masse de captation :
    • Température : 60° C
    • Pression d'hydrogène : 30 bars absolus
    • Débit d'hydrogène : 2 litres/heure
  • On laisse passer le naptha durant 400 heures. Les résultats d'analyses de mercure dans le produit au bout de 50, 100, 200 et 400 heures sont résumés dans le tableau 1.
  • Après séchage puis déchargement des réacteurs, les teneurs pondérales en arsenic et mercure sont mesurées sur chaque lit, tant du catalyseur que de la masse de captation.
  • Les résultats figurent sur le tableau 2.
  • On observe que les efficacités de captation du mercure et de l'arsenic sont en tous points comparables à celles du catalyseur et de la masse décrits dans l'exemple 7. De plus, l'ajout de palladium au nickel dans le catalyseur permet de travailler à plus basse température.
  • EXEMPLE 11, suivant l'invention
  • Dans cet exemple, on prépare 50 cm3 d'une masse susceptible de jouer à la fois le rôle de catalyseur et de masse de captation, constituée d'un mélange de nickel métallique, de sulfure de cuivre et de ciment alumineux.
  • On prépare d'abord 100 g de sulfure de cuivre finement dispersé en faisant réagir du carbonate basique de cuivre avec une solution à 30% en poids de ditertiononyl polysulfure (produit commercial TPS 37 d'Elf Aquitaine). La pâte obtenue est séchée sous azote à 150° C pendant 16 heures puis activée sous vapeur d'eau à 150°C pendant 5 heures. Le débit de vapeur est de 1000 volumes par volume de produit sec.
  • On prépare séparément 1000 g de nickel de Raney dépyrophorisé (NiPS2 de Procatalyse).
  • Les deux produits sont malaxés avec 5000 g d'aluminate de calcium commercial (Sécar 80) et de l'eau. La pâte obtenue, extrudée en joncs de 2,5 mm de diamètre est mûrie 16 heures en étuve ventilée sous mélange d'azote et de 10% de vapeur d'eau à 80° C puis séchée sous azote à 120° C durant 5 heures et enfin activée à 400° C sous azote pendant 2 heures.
  • Le produit obtenu, constitué d'extrudés de diamètres 2,1-2,3 mm et de longueur inférieure à 5 mm contient 14,30/o de CuS, 14,30/o de nickel et 71,40/0 d'aluminate de calcium.
  • Cette masse mixte est alors chargée dans un seul réacteur en acier de 3 cm de diamètre et disposée en 5 lits égaux séparés chacun par un tampon de laine de verre.
  • On fait alors passer, en flux ascendant, sous hydrogène, un naphta de caractéristiques identiques à celles décrites dans l'exemple 7 et renfermant 5 ppm d'arsenic et 50 ppb de mercure.
  • Les conditions opératoires sont les suivantes :
    • Débit de charge : 500 cm3/heure
    • Température : 80° C
    • Pression d'hydrogène : 30 bars
    • Débit d'hydrogène : 2 litres/heure.
  • On laisse passer la charge durant 400 heures . Les résultats d'analyses sur les recettes figurent dans le tableau 1.
  • Après séchage et déchargement du réacteur, les teneurs en arsenic et mercure dans la masse sont mesurées dans chaque lit et répertoriées dans le tableau 2.
    Figure imgb0003

Claims (1)

1.
EP89400626A 1988-03-10 1989-03-06 Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures Expired - Lifetime EP0332526B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89400626T ATE75767T1 (de) 1988-03-10 1989-03-06 Verfahren zur entfernung von quecksilber und moeglichem arsen aus kohlenwasserstoffen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8803258 1988-03-10
FR8803258A FR2628338B1 (fr) 1988-03-10 1988-03-10 Procede pour l'elimination du mercure dans les hydrocarbures

Publications (2)

Publication Number Publication Date
EP0332526A1 true EP0332526A1 (fr) 1989-09-13
EP0332526B1 EP0332526B1 (fr) 1992-05-06

Family

ID=9364217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400626A Expired - Lifetime EP0332526B1 (fr) 1988-03-10 1989-03-06 Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures

Country Status (12)

Country Link
US (1) US4911825A (fr)
EP (1) EP0332526B1 (fr)
JP (1) JP3038390B2 (fr)
CN (1) CN1021409C (fr)
AT (1) ATE75767T1 (fr)
AU (1) AU612244B2 (fr)
CA (1) CA1335270C (fr)
DE (1) DE68901407D1 (fr)
DZ (1) DZ1327A1 (fr)
FR (1) FR2628338B1 (fr)
MY (1) MY104718A (fr)
NO (1) NO173321C (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425984A1 (fr) * 1989-11-02 1991-05-08 Phillips Petroleum Company Sorption des trialkyl arsines
FR2698372A1 (fr) * 1992-11-24 1994-05-27 Inst Francais Du Petrole Procédé d'élimination de mercure et éventuellement d'arsenic dans des hydrocarbures.
FR2701270A1 (fr) * 1993-02-08 1994-08-12 Inst Francais Du Petrole Procédé d'élimination du mercure dans les hydrocarbures par passage sur un catalyseur présulfuré.
FR2701269A1 (fr) * 1993-02-08 1994-08-12 Inst Francais Du Petrole Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
WO1994025540A1 (fr) * 1993-05-05 1994-11-10 Dsm N.V. Procede d'extraction de mercure

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946582A (en) * 1988-01-22 1990-08-07 Mitsui Petrochemical Industries, Ltd. Method of removing mercury from hydrocarbon oils
US5401392A (en) * 1989-03-16 1995-03-28 Institut Francais Du Petrole Process for eliminating mercury and possibly arsenic in hydrocarbons
WO1991015559A2 (fr) * 1990-04-04 1991-10-17 Exxon Chemical Patents Inc. Procede d'elimination de mercure a l'aide d'adsorbants de metal disperse
FR2666343B1 (fr) * 1990-08-29 1992-10-16 Inst Francais Du Petrole Procede d'elimination du mercure des installations de vapocraquage.
FR2668465B1 (fr) * 1990-10-30 1993-04-16 Inst Francais Du Petrole Procede d'elimination de mercure ou d'arsenic dans un fluide en presence d'une masse de captation de mercure et/ou d'arsenic.
US5085844A (en) * 1990-11-28 1992-02-04 Phillips Petroleum Company Sorption of trialkyl arsines
AU9038391A (en) * 1991-12-09 1993-07-19 Dow Benelux N.V. Process for removing mercury from organic media
FR2690923B1 (fr) * 1992-05-11 1994-07-22 Inst Francais Du Petrole Procede de captation de mercure et d'arsenic dans une coupe d'hydrocarbure.
US5777188A (en) * 1996-05-31 1998-07-07 Phillips Petroleum Company Thermal cracking process
US6117333A (en) * 1997-04-22 2000-09-12 Union Oil Company Of California Removal of hydrocarbons, mercury and arsenic from oil-field produced water
US6350372B1 (en) 1999-05-17 2002-02-26 Mobil Oil Corporation Mercury removal in petroleum crude using H2S/C
FR2803597B1 (fr) * 2000-01-07 2003-09-05 Inst Francais Du Petrole Procede de captation du mercure et d'arsenic d'une coupe d'hydrocarbures distillee
US6797178B2 (en) * 2000-03-24 2004-09-28 Ada Technologies, Inc. Method for removing mercury and mercuric compounds from dental effluents
FR2808532B1 (fr) * 2000-05-05 2002-07-05 Inst Francais Du Petrole Procede de captation de mercure et d'arsenic comprenant une evaporation puis une condensation de la charge hydrocarbonnee
US6793805B2 (en) * 2000-05-05 2004-09-21 Institut Francais du Pétrole Process for capturing mercury and arsenic comprising evaporation then condensation of a hydrocarbon-containing cut
DE10045212A1 (de) * 2000-09-13 2002-03-28 Seefelder Mestechnik Gmbh & Co Verfahren zur Bestimmung von Quecksilber
US6719828B1 (en) 2001-04-30 2004-04-13 John S. Lovell High capacity regenerable sorbent for removal of mercury from flue gas
US6942840B1 (en) 2001-09-24 2005-09-13 Ada Technologies, Inc. Method for removal and stabilization of mercury in mercury-containing gas streams
US7183235B2 (en) * 2002-06-21 2007-02-27 Ada Technologies, Inc. High capacity regenerable sorbent for removing arsenic and other toxic ions from drinking water
US7361209B1 (en) 2003-04-03 2008-04-22 Ada Environmental Solutions, Llc Apparatus and process for preparing sorbents for mercury control at the point of use
CA2534082A1 (fr) * 2003-10-01 2005-04-14 Ada Technologies, Inc. Systeme pour enlever le mercure et les composes de mercure de dechets dentaires
US7341667B2 (en) * 2003-10-31 2008-03-11 Mar Systems, Llc Process for reduction of inorganic contaminants from waste streams
US7666318B1 (en) 2005-05-12 2010-02-23 Ferro, LLC Process, method and system for removing mercury from fluids
US20070092418A1 (en) * 2005-10-17 2007-04-26 Chemical Products Corporation Sorbents for Removal of Mercury from Flue Gas
WO2007147781A1 (fr) * 2006-06-21 2007-12-27 Basf Se Masse absorbante et procédé d'extraction de mercure
RU2443758C2 (ru) * 2006-11-21 2012-02-27 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Способ удаления ртути из углеводородного исходного сырья
US8025160B2 (en) * 2007-06-05 2011-09-27 Amcol International Corporation Sulfur-impregnated organoclay mercury and/or arsenic ion removal media
US20080302733A1 (en) 2007-06-05 2008-12-11 Amcol International Corporation Coupling agent-reacted mercury removal media
US7510992B2 (en) * 2007-06-05 2009-03-31 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
US7553792B2 (en) * 2007-06-05 2009-06-30 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
US7871524B2 (en) * 2007-06-05 2011-01-18 Amcol International Corporation Method for removing merury and/or arsenic from water using a silane coupling agent reacted organoclay
US7910005B2 (en) * 2007-06-05 2011-03-22 Amcol International Corporation Method for removing mercury and/or arsenic from contaminated water using an intimate mixture of organoclay and elemental sulfur
EP2265695A1 (fr) * 2008-03-10 2010-12-29 Basf Se Procédé pour éliminer le mercure de flux d hydrocarbures
JP2010111770A (ja) * 2008-11-06 2010-05-20 Japan Energy Corp 精製炭化水素油の製造方法および精製炭化水素油
JP2010111771A (ja) * 2008-11-06 2010-05-20 Japan Energy Corp 精製炭化水素油の製造方法および精製炭化水素油
GB0900965D0 (en) * 2009-01-21 2009-03-04 Johnson Matthey Plc Sorbents
US8535422B2 (en) 2009-01-26 2013-09-17 St. Cloud Mining Company Metal contaminant removal compositions and methods for making and using the same
WO2011005742A1 (fr) 2009-07-06 2011-01-13 Mar Systems, Llc Milieux pour l'élimination de contaminants à partir de courants de fluides et procédé de fabrication et d'utilisation de ceux-ci
FR2959240B1 (fr) 2010-04-23 2014-10-24 Inst Francais Du Petrole Procede d'elimination des especes mercuriques presentes dans une charge hydrocarbonee
US8690991B2 (en) * 2010-09-24 2014-04-08 Phillips 66 Company Supported silver sulfide sorbent
KR101796792B1 (ko) * 2011-02-09 2017-11-13 에스케이이노베이션 주식회사 촉매를 이용하여 수소화 처리 반응을 통해 황 및 수은이 포함된 탄화수소 원료로부터 이들을 동시에 제거하는 방법
US8876958B2 (en) * 2011-12-15 2014-11-04 Clariant Corporation Composition and process for mercury removal
US9381492B2 (en) * 2011-12-15 2016-07-05 Clariant Corporation Composition and process for mercury removal
US8876952B2 (en) 2012-02-06 2014-11-04 Uop Llc Method of removing mercury from a fluid stream using high capacity copper adsorbents
FR2987368B1 (fr) * 2012-02-27 2015-01-16 Axens Procede d'elimination de mercure contenu dans une charge hydrocarbure avec recycle d'hydrogene
US8734740B1 (en) 2013-03-15 2014-05-27 Clariant Corporation Process and composition for removal of arsenic and other contaminants from synthetic gas
JP6076854B2 (ja) 2013-08-07 2017-02-08 Jxエネルギー株式会社 炭化水素油中の水銀の除去方法
CN105126557B (zh) * 2014-05-30 2017-03-01 北京三聚环保新材料股份有限公司 一种硫化铜脱汞剂的制备方法
CN104785278A (zh) * 2015-03-25 2015-07-22 江苏佳华新材料科技有限公司 一种脱汞催化剂及其制备方法
FR3039164B1 (fr) 2015-07-24 2019-01-25 IFP Energies Nouvelles Procede d'elimination de mercure d'une charge hydrocarbonee lourde en amont d'une unite de fractionnement
FR3039163B1 (fr) 2015-07-24 2019-01-25 IFP Energies Nouvelles Procede d'eliminiation du mercure d'une charge en aval d'une unite de fractionnement
FR3039161B1 (fr) 2015-07-24 2019-01-25 IFP Energies Nouvelles Procede de traitement de coupes hydrocarbures comprenant du mercure
LU93012B1 (en) 2016-04-04 2017-11-08 Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A Sulfur dioxide removal from waste gas
LU93013B1 (en) 2016-04-04 2017-11-08 Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A Process for the removal of heavy metals from fluids
LU93014B1 (en) 2016-04-04 2017-10-05 Ajo Ind S A R L Catalyst mixture for the treatment of waste gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3069350A (en) * 1959-07-14 1962-12-18 Socony Mobil Oil Co Inc Reforming naphthas containing deleterious amounts of nitrogen or arsenic
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
US4094777A (en) * 1975-12-18 1978-06-13 Institut Francais Du Petrole Process for removing mercury from a gas or a liquid by absorption on a copper sulfide containing solid mass
US4474896A (en) * 1983-03-31 1984-10-02 Union Carbide Corporation Adsorbent compositions

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3043574A (en) * 1959-11-02 1962-07-10 William E Leibing Fuel supply system for engine
JPS501477A (fr) * 1973-05-12 1975-01-09
JPS5251756A (en) * 1975-10-23 1977-04-25 Kurita Water Ind Ltd Method of treating wastewater containing heavy metals
DE2644721A1 (de) * 1976-10-04 1978-04-06 Metallgesellschaft Ag Verfahren zur entfernung von chemischen verbindungen des arsens und/oder des antimons
US4101631A (en) * 1976-11-03 1978-07-18 Union Carbide Corporation Selective adsorption of mercury from gas streams
DE2726490A1 (de) * 1977-06-11 1978-12-21 Metallgesellschaft Ag Verfahren zur entfernung des arsens und/oder antimons
US4462896A (en) * 1982-10-26 1984-07-31 Osaka Petrochemical Industries Ltd. Method of removing arsenic in hydrocarbons
CA1216136A (fr) * 1983-03-03 1987-01-06 Toshio Aibe Methode de captage de gaz nocifs
US4708853A (en) * 1983-11-03 1987-11-24 Calgon Carbon Corporation Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
US4605812A (en) * 1984-06-05 1986-08-12 Phillips Petroleum Company Process for removal of arsenic from gases
US4743435A (en) * 1985-03-13 1988-05-10 Japan Pionics., Ltd. Method for cleaning exhaust gases
US4593148A (en) * 1985-03-25 1986-06-03 Phillips Petroleum Company Process for removal of arsine impurities from gases containing arsine and hydrogen sulfide
US4719006A (en) * 1985-07-31 1988-01-12 Amoco Corporation Process and system continuously removing arsenic from shale oil with a catalyst and regenerating the catalyst
US4709118A (en) * 1986-09-24 1987-11-24 Mobil Oil Corporation Removal of mercury from natural gas and liquid hydrocarbons utilizing downstream guard chabmer
US4814152A (en) * 1987-10-13 1989-03-21 Mobil Oil Corporation Process for removing mercury vapor and chemisorbent composition therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3069350A (en) * 1959-07-14 1962-12-18 Socony Mobil Oil Co Inc Reforming naphthas containing deleterious amounts of nitrogen or arsenic
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
US4094777A (en) * 1975-12-18 1978-06-13 Institut Francais Du Petrole Process for removing mercury from a gas or a liquid by absorption on a copper sulfide containing solid mass
US4474896A (en) * 1983-03-31 1984-10-02 Union Carbide Corporation Adsorbent compositions

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425984A1 (fr) * 1989-11-02 1991-05-08 Phillips Petroleum Company Sorption des trialkyl arsines
FR2698372A1 (fr) * 1992-11-24 1994-05-27 Inst Francais Du Petrole Procédé d'élimination de mercure et éventuellement d'arsenic dans des hydrocarbures.
EP0599702A1 (fr) * 1992-11-24 1994-06-01 Institut Français du Pétrole Procédé d'elimination de mercure et eventuellement d'arsenic dans des hydrocarbures
EP0611182A1 (fr) * 1993-02-08 1994-08-17 Institut Francais Du Petrole Procédé d'elimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée
FR2701269A1 (fr) * 1993-02-08 1994-08-12 Inst Francais Du Petrole Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
EP0611183A1 (fr) * 1993-02-08 1994-08-17 Institut Francais Du Petrole Procédé d'élimination du mercure dans des hydrocarbures par passage sur un catalyseur présulfure
FR2701270A1 (fr) * 1993-02-08 1994-08-12 Inst Francais Du Petrole Procédé d'élimination du mercure dans les hydrocarbures par passage sur un catalyseur présulfuré.
US5531886A (en) * 1993-02-08 1996-07-02 Institut Francals Du Petrole Process for the elimination of arsenic from hydrocarbons by passage over a presulphurated retention mass
US5601701A (en) * 1993-02-08 1997-02-11 Institut Francais Du Petrole Process for the elimination of mercury from hydrocarbons by passage over a presulphurated catalyst
CN1048036C (zh) * 1993-02-08 2000-01-05 法国石油公司 烃通过预硫化捕集体而除去砷的方法
WO1994025540A1 (fr) * 1993-05-05 1994-11-10 Dsm N.V. Procede d'extraction de mercure
BE1007049A3 (nl) * 1993-05-05 1995-02-28 Dsm Nv Werkwijze voor het verwijderen van kwik.
US5702590A (en) * 1993-05-05 1997-12-30 Dsm N.V. Process for the removal of mercury
CN1047189C (zh) * 1993-05-05 1999-12-08 Dsm有限公司 除汞的方法

Also Published As

Publication number Publication date
JP3038390B2 (ja) 2000-05-08
NO173321C (no) 1993-12-01
ATE75767T1 (de) 1992-05-15
FR2628338B1 (fr) 1991-01-04
AU3117889A (en) 1989-09-14
NO890993D0 (no) 1989-03-08
JPH01231920A (ja) 1989-09-18
US4911825A (en) 1990-03-27
CN1021409C (zh) 1993-06-30
MY104718A (en) 1994-05-31
NO890993L (no) 1989-09-11
CN1037466A (zh) 1989-11-29
CA1335270C (fr) 1995-04-18
NO173321B (no) 1993-08-23
DE68901407D1 (de) 1992-06-11
AU612244B2 (en) 1991-07-04
DZ1327A1 (fr) 2004-09-13
FR2628338A1 (fr) 1989-09-15
EP0332526B1 (fr) 1992-05-06

Similar Documents

Publication Publication Date Title
EP0332526B1 (fr) Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures
EP0463044B1 (fr) Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures
EP0628337B1 (fr) Procédé d'élimination de l'arsenic dans un fluide, en présence d'une masse de captation
EP0611183B1 (fr) Procédé d'élimination du mercure dans des hydrocarbures par passage sur un catalyseur présulfure
EP0293298B1 (fr) Procédés de préparation et de régénération d'une masse solide de captation du mercure renfermant du cuivre
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
EP0448435B1 (fr) Procédé de présulfuration de catalyseurs de traitement d'hydrocarbures
EP0599702B1 (fr) Procédé d'elimination de mercure et eventuellement d'arsenic dans des hydrocarbures
CA2022896C (fr) Masse de captation a base de nickel pour l'elimination de l'arsenic et du phosphore contenus dans les coupes d'hydrocarbures liquides, sa preparation et son utilisation
EP0570261B1 (fr) Procédé de captation de mercure et d'arsenic dans une coupe d'hydrocarbure
CA2239075C (fr) Catalyseur pour le traitement de coupes essences contenant des diolefines, des composes styreniques et eventuellement des mercaptans
EP0302771A1 (fr) Procédé pour l'élimination conjointe d'arsenic et d'oxysulfure de carbone d'une coupe d'hydrocarbures insaturés en phase liquide
FR2568262A1 (fr) Procede pour enlever le sulfure de carbonyle des charges d'hydrocarbures liquides
EP0487370B1 (fr) Procédé d'élimination d'arsenic dans un gaz par passage sur une masse à base d'un support et de sulfure de cuivre
BE1012739A3 (fr) Masse d'elimination d'arsenic et de mercure dans des hydrocarbures a base de nickel supporte.
CA1127138A (fr) Procede de preparation d'un catalyseur de metal noble du groupe viii presentant une resistance amelioree au soufre et son utilisation pour l'hydrogenation d'hydrocarbures aromatiques
FR2673191A1 (fr) Procede d'enlevement de mercure et/ou d'arsenic des charges des unites de desaromatisation de solvants. .
EP2606969B1 (fr) Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique
WO2023117552A1 (fr) Procede de rejuvenation de masses de captation de metaux lourds
JPH0633071A (ja) 液状炭化水素中の水銀の除去方法
US20010050246A1 (en) Process for capturing mercury and arsenic comprising evaporation then condensation of a hydrocarbon-containing cut
FR2788452A1 (fr) Masse de captation pour l'elimination d'arsenic dans les hydrocarbures
CA2239078C (fr) Procede de traitement de coupes essences contenant des diolefines, des composes styreniques et eventuellement des mercaptans
FR2673192A1 (fr) Procede pour l'elimination du mercure et eventuellement d'arsenic dans les charges des procedes catalytiques producteurs d'aromatiques. .
WO2013050668A1 (fr) Mise en forme de masses de captation pour la purification d'une charge gaz ou liquide contenant des métaux lourds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE GB IT NL SE

17P Request for examination filed

Effective date: 19891023

17Q First examination report despatched

Effective date: 19901002

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT NL SE

REF Corresponds to:

Ref document number: 75767

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68901407

Country of ref document: DE

Date of ref document: 19920611

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89400626.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010326

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020307

EUG Se: european patent has lapsed

Ref document number: 89400626.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030224

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030321

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20040331

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080319

Year of fee payment: 20

Ref country code: NL

Payment date: 20080326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080415

Year of fee payment: 20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090306