WO2013050668A1 - Mise en forme de masses de captation pour la purification d'une charge gaz ou liquide contenant des métaux lourds - Google Patents

Mise en forme de masses de captation pour la purification d'une charge gaz ou liquide contenant des métaux lourds Download PDF

Info

Publication number
WO2013050668A1
WO2013050668A1 PCT/FR2012/000362 FR2012000362W WO2013050668A1 WO 2013050668 A1 WO2013050668 A1 WO 2013050668A1 FR 2012000362 W FR2012000362 W FR 2012000362W WO 2013050668 A1 WO2013050668 A1 WO 2013050668A1
Authority
WO
WIPO (PCT)
Prior art keywords
extruded
mercury
gas
extrusion
heavy metals
Prior art date
Application number
PCT/FR2012/000362
Other languages
English (en)
Inventor
Fabien Porcheron
Karin Barthelet
Arnaud Baudot
Antoine Daudin
Jean-Marc Schweitzer
Jérémy GAZARIAN
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to US14/349,728 priority Critical patent/US9132375B2/en
Publication of WO2013050668A1 publication Critical patent/WO2013050668A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0218Compounds of Cr, Mo, W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • B01J20/0266Compounds of S
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0285Sulfides of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1128Metal sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/401Further details for adsorption processes and devices using a single bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30223Cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30242Star
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30416Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30475Composition or microstructure of the elements comprising catalytically active material

Definitions

  • the present invention relates to the removal of heavy metals such as mercury, arsenic and lead present in a gaseous or liquid effluent, by means of a fixed bed process using an adsorbent in the form of mass extrudates or supported defined below and comprising at least one active phase based on sulfur in the elemental form or in the form of metal sulfide.
  • the invention is advantageously applicable to the treatment of gases of industrial origin, synthesis gas, natural gas, condensates in the gas phase and liquid hydrocarbon feedstocks.
  • Mercury is a metal contaminant found in gaseous or liquid hydrocarbons produced in many parts of the world, such as the Gulf of Niger, South America or North Africa.
  • mercury is volatile and presents a serious risk of inhalation neurotoxicity while its organic forms pose similar risks through skin contact.
  • the mercury amalgamates very easily with noble metals such as platinum or palladium which are used in the form of nanoparticles dispersed on porous supports which can be used for catalytic operations as diverse as the selective hydrogenation of olefins produced by steam cracking or catalytic cracking of liquid hydrocarbons.
  • capture mass or adsorbent in the present invention is meant any type of solid in mass or supported form containing within it or on its surface an active element capable of irreversibly reacting with a impurity such as mercury contained in the charge to be purified.
  • This removal of mercury from liquid or gaseous hydrocarbon cuts is generally carried out by circulating the effluent to be treated through adsorbent beds containing an active phase that can react with mercury.
  • mercury uptake can be easily carried out by reacting the latter with an active phase based on sulfur or on a sulfur compound, and in particular metal sulphides, the mercury thus forming a amalgam with sulfur to form the chemical species HgS called cinnabar or metacinabrium.
  • HgS chemical species
  • adsorbent also called mass capture
  • particles of active phase can be linked together via binders; be supported wherein the active phase is dispersed within or on the surface of a porous solid support.
  • the removal of mercury from liquid or gaseous hydrocarbon cuts is generally accomplished by circulating them through adsorbent beds.
  • the effluent is thus purified from the heavy metal such as mercury which remains trapped in the adsorbent bed or capture mass.
  • the adsorbent used is generally regenerated in the process under consideration.
  • the application US2008 / 0041227 describes the use of a process in which at least two adsorbent beds are used successively in adsorption then regenerative mode.
  • the adsorbent bed in which circulates a stream of natural gas captures at least mercury and water.
  • this bed of adsorbents approaches saturation, the bed is taken offline and goes into regenerative mode in which a heated regenerative gas stream passes to remove mercury and water.
  • the processes for purifying heavy metals are therefore required to maintain extremely high levels of efficiencies for the longest time possible, in order to minimize the frequency of replacement of the capture mass used.
  • the performance of a capture mass in a process for the removal of heavy metals, such as mercury is then characterized by the dynamic capacity of the capture mass bed, that is to say the capacity of the latter to maintain a maximum performance level for the longest possible operating time.
  • This level of performance is defined by the efficiency E, according to: with [Hg] s the concentration of mercury in the effluent leaving the bed and [Hg] 0 the concentration of mercury in the effluent at the entrance of the bed.
  • the adsorbents are very often shaped by methods known to those skilled in the art, and in particular by kneading-extrusion, pelletizing, granulation, dripping in the oil (oil-drop), etc.
  • the adsorbents can thus be present in the form of balls, cylinders, cartwheel, hollow cylinder, honeycomb or any other geometric shape used by those skilled in the art. It is well known to those skilled in the art that this shaping step capture mass is important on the pressure drop experienced during the passage of the gaseous effluent through fixed bed. It is indeed desirable to minimize the pressure drop during the passage in the bed of capture mass because it is necessary to compensate for this pressure drop to compress the gaseous effluent which involves significant investment and operating costs.
  • the Applicant has discovered that the use of an adsorbent in the form of mass extrusions or supported, the shape of the extruded characterized by a length h and a section comprising at least three lobes, according to the invention.
  • the invention makes it possible to obtain improved adsorption performance in that the dynamic capacity is greater than that of adsorbents in the form of beads or in the form of extrudates of other geometries.
  • the subject of the present invention is a fixed-bed removal process for heavy metals, in particular mercury, arsenic and lead, contained in a gaseous or liquid effluent, by bringing the effluent into contact with a capture mass.
  • heavy metals in particular mercury, arsenic and lead
  • a capture mass in the form of mass extruded or supported having an active phase containing at least elemental sulfur or cuprous copper sulphide CuS or metal sulphide FeS 2 , said extruded being characterized by a length h between 0.5 and 100 mm and a section with at least three lobes.
  • the applicant has discovered that the implementation of the method according to the invention allows to obtain significant dynamic capabilities.
  • the implementation of the method according to the invention allows for the same amount of active phase to capture more heavy metals from a gaseous or liquid charge and thus more effectively purify the charge to be treated.
  • the implementation of the process according to the invention has the advantage of a greater efficiency of adsorption of heavy metals, advantageously mercury for the same duration of operation or in other words, a longer time of operation to maintain an adsorption efficiency below a given threshold compared to the adsorbents according to the prior art.
  • the process according to the invention also offers the advantage of reducing the investment cost by using a smaller volume of adsorbents to treat a gaseous or liquid feed containing heavy metals.
  • the invention relates to a fixed-bed removal process for heavy metals, in particular mercury, arsenic and lead, contained in a gaseous or liquid effluent, by bringing the effluent into contact with a mass of capture under the extruded form mass or supported comprising an active phase containing at least elemental sulfur or cuprous copper sulphide CuS or metal sulphide FeS 2 , said extruded being characterized by a length h of between 0.5 and 100 mm and a section comprising at least three lobes.
  • R 0 represents the maximum distance between the center of the extrusion and the wall of the extrusion
  • R represents the distance between the center of the extrusion and the wall of the extrusion for an angle ⁇
  • r represents the radius of the extrusion a lobe of the extrude
  • n corresponds to the number of lobes of the extruded
  • the function Int () represents the integer part of the ratio and represents the absolute value of the sum
  • the Int () function is understood to mean the entire portion of the ratio.
  • the number of lobes of the extrudate n is chosen from the group consisting of the integer values 3, 4, 5, 6, 7, 8, 9 and 10; so preferred the number of lobes n is selected from the group consisting of integer values 3, 4, 5 and 6; more preferably, the number of lobes n is selected from the group consisting of integer values 3 and 4; and very preferably the number of lobes n is 3.
  • FIG. 1 shows an illustrative and nonlimiting diagram of a section of an extrusion in which are represented all the parameters R 0 , R, r and a, n being the number of lobes of the extrudate.
  • the section of the extrusion corresponds to a section of the extrusion in a plane perpendicular to the direction of the extrusion. Referring to Figure 1, the section of the extruded has four lobes.
  • the measurable value R (R mes ) related to the value R defined by the equation (1) of the present invention is advantageously between R-15% R and R + 15% R, preferably between R-10% R and R + 10% R, more preferably between R-5% R and R + 5% R, even more preferably between R-3% R and R + 3% R.
  • the adsorbent according to the invention comprises a pre-active phase that can be activated later.
  • said adsorbent comprises a mixture of active phase and pre-active phase.
  • the active phase corresponds to the sulfur present in the form of elemental sulfur, or to the cuprous copper sulphide CuS, or to the iron sulphide FeS 2 .
  • the active phase is composed of elemental sulfur, or cuprous copper sulphide CuS, or FeS 2 iron sulphide.
  • the active phase is composed of cuprous copper sulphide CuS.
  • the active phase according to the invention can also, in one variant of the invention, be composed of a mixture of sulfur in the elemental form and sulfur in the form of cuprous copper sulphide CuS.
  • the active phase of the adsorbent according to the invention comprises between 1 and 70% by weight of sulfur relative to the total weight of the capture mass, preferably between 2 and 25% and very preferably between 3 and 20% .
  • the pre-active phase within the meaning of the present invention is understood as the phase of the adsorbent containing the metal M in the form of metal oxide wherein the metal M is selected from the group consisting of copper and iron.
  • the metal used is copper.
  • the metal oxide used is copper oxide or copper hydrogencarbonate or copper sulfate or copper acetate, more preferably the metal oxide is copper oxide.
  • the metal oxide used is iron oxide (II) called ferrous FeO or iron oxide (III) called ferric iron Fe 2 C 3 or iron oxide (II, III) Fe 3 O 4 .
  • the metal oxide is iron oxide (III) called ferric iron Fe 2 O 3.
  • the proportion by weight of metal relative to the total weight of the capture mass according to the invention is between 1 and 60%, preferably between 2 and 40%, preferably between 5 and 30%, very preferably between 5 and 20%.
  • the process of the invention comprises a sulphurization step of transforming all or at least a part of the pre-active phase in the form of a metal oxide such as defined in the invention in a sulphide active phase as defined above.
  • Said sulphurization step can be carried out in situ, that is to say during the process used according to the invention to remove heavy metals such as mercury. In the latter case, it is necessary to have a sulfur element in the load to be treated.
  • the sulphurization step may also be carried out ex-situ, that is to say, the sulphurization step is carried out before the use of the adsorbent (or capture mass) in the elimination process according to the invention. invention.
  • the porous support may be indifferently chosen from the families of aluminas, silica-aluminas, silicas, zeolites and activated carbons.
  • the active phase is deposited on the porous support.
  • the porous support is based on active alumina or carbon.
  • the porous support is at least composed of gel-obtained alumina, otherwise known as gel alumina in the present invention.
  • aluminas may be obtained by any method of synthesis known to those skilled in the art, in particular by precipitation using the contacting of an aqueous solution of acid salts with an alkaline solution of aluminum salts or a mixture of the two types of salts.
  • the porous support consists of alumina having been obtained at least from an aluminum oxy (hydroxide) precursor of aluminum, gamma or aluminum delta-oxy (hydroxide).
  • the porous support of the capture mass according to the invention consists of at least 50% by weight of gamma-alumina and more preferably by at least 99% of gamma-alumina.
  • the porous support of the capture mass consists of at least 50% by weight of delta alumina and preferably of 80% of delta alumina.
  • the porous support of the capture mass according to the invention consists of 100% alumina gel, preferably obtained from an oxy (hydroxide) aluminum precursor characterized by a surface specific between 150 and 600 m 2 . g "1, most preferably between 200 and 400 m 2. g" 1, even more preferably between 150 and 320 m 2. g "1.
  • adsorbents according to the invention are shaped by the means known to those skilled in the art, and preferably by kneading-extrusion.
  • the adsorbents according to the invention are in the form of mass or supported extrudates of diameter generally between 0.5 and 100 mm, preferably between 0.5 and 50 mm, preferably between 0.5 and 50 mm. 10 mm.
  • the adsorbents according to the invention are in the form of mass or supported extrusions of length h generally between 0.5 and 100 mm, preferably between 0.5 and 50 mm, more preferably between 0 and 50 mm. , 5 and 30 mm and even more preferably between 0.5 and 10 mm.
  • the adsorbents according to the invention can be used to purify gaseous or liquid effluents containing heavy metals.
  • gaseous or liquid effluents containing heavy metals For example, combustion fumes, synthesis gas or even natural gas, liquid cuts of natural gas, oil, petroleum cuts, petrochemical intermediates.
  • the process according to the invention comprises the different steps referring to FIG. 2, namely that a gaseous or liquid feed 1 containing heavy metals such as mercury, arsenic or lead is introduced. by a line 2 in a bed containing the capture mass 3 according to the invention.
  • the bed of adsorption mass adsorbs the heavy metals, preferably the mercury contained in the feed so as to obtain at the outlet of said bed a purified effluent 4, that is to say that the concentration of heavy metals in the effluent at the outlet of the fixed bed is less than the heavy metal concentration of the input charge of the capture mass bed.
  • the method according to the invention comprises the various steps referring to FIG. 3, namely that a gaseous or liquid feed 1 containing heavy metals is introduced via a line 2 into a dryer 5 allowing extracting water from said charge.
  • the effluent obtained at the outlet of the dryer is then introduced into a line 6 to a bed of capture mass 3 according to the invention.
  • the bed of adsorption mass adsorbs the heavy metals preferentially the mercury contained in the feed so as to obtain at the outlet of said bed a purified effluent 4, that is to say that the concentration of heavy metals in the effluent leaving the fixed bed is lower than the concentration of heavy metals in the effluent entering the bed of capture mass.
  • the feedstock of the process according to the invention generally corresponds to gaseous or liquid effluents containing heavy metals such as mercury, arsenic and lead.
  • the synthesis gas containing carbon monoxide CO hydrogen H 2 (generally in a ratio H 2 / CO close to 2), water vapor (generally at saturation at the temperature where the washing is carried out) and carbon dioxide C0 2 (of the order of about ten percent).
  • the pressure of the charge is generally between 2 and 3 MPa, but can reach up to 7 MPa.
  • the filler may further contain sulfur (H 2 S, COS, etc.), nitrogen (NH 3 , HCN) and halogenated impurities.
  • the filler according to the invention may also comprise natural gas mainly consisting of gaseous hydrocarbons, but also the following acidic compounds: CO 2 , H 2 S, mercaptans, COS, CS 2 .
  • the content of these acidic compounds is very variable and can be up to 40% for C0 2 and H 2 S.
  • the temperature of natural gas is advantageously between 20 ° C and 100 ° C and the pressure of natural gas to be treated is advantageously between 1 and 12 MPa.
  • the filler according to the invention contains heavy metals in variable proportions.
  • the filler according to the invention comprises, mercury, arsenic, lead, vanadium and cadmium, preferably mercury, arsenic, lead, preferably mercury and mercury. arsenic, more preferably mercury.
  • the latter contains between 10 nanograms and 1 gram of mercury per Nm 3 of gas.
  • the feed to be treated according to the invention may also contain water in variable proportions.
  • the hygrometry rate in the gaseous effluents is advantageously between 0 and 100%, preferably between 0 and 99% and very preferably between 0 and 90%.
  • the charge to be treated according to the invention contains heavy metals in different forms.
  • mercury is found in a form called Hg (0), corresponding to elemental or atomic mercury, in molecular form, or in ionic form, for example Hg 2+ and its complexes.
  • the temperature of the charge to be treated is generally between -50 and + 200 ° C, preferably between 0 and 150 ° C and very preferably between 20 and 100 ° C, preferably between 30 and 75 ° C.
  • the pressure of the charge to be treated may be between 1 and 50 M Pa, preferably between 1 and 40 M Pa, preferably between 5 and 40 M Pa, preferably between 10 and 35 MPa and very preferably between 10 and 35 MPa. and 30 MPa.
  • the implementation of the process according to the invention is carried out with a VVH (volume of the charge per volume of capture mass and per hour) of between 500 and 50000 h -1 , preferably between 1000 and 40000 h. "1 , more preferably between 2000 and 30000 h '1 .
  • the VVH is between 4000 and 20000 h -1 , preferably in the case of a liquid filler, the VVH is between 0.1 and 50 h -1 .
  • Example A Preparation of an adsorbent based on CuS f M lf according to the invention.
  • the trilobal extrusion has a diameter of 1.6 mm and a length of 4 mm.
  • An adsorbent, M2 is prepared by considering a porous alumina support identical to that used in Example A, in the form of a cylindrical extrusion in which is has an active phase based on CuS at a concentration of 4.7% by weight sulfur.
  • the extruded cylindrical has a diameter of 1.6 mm and a length of 4 mm.
  • An adsorbent, M 3 is prepared by considering a porous alumina support identical to that used in Example A, in the form of a bead in which there is an active phase based on CuS at a concentration of 4.7 % wt in sulfur.
  • the ball has a diameter of 3 mm.
  • Example D Preparation of an adsorbent based on S, M 4 according to the invention.
  • the trilobal extrusion has a diameter of 1.6 mm and a length of 4 mm.
  • An adsorbent, M 5 is prepared by considering a porous alumina support identical to that used in Example A, in the form of a cylindrical extrusion in which there is an active phase based on S at a concentration of 4.7. % wt in sulfur.
  • the extruded cylindrical has a diameter of 1.6 mm and a length of 4 mm.
  • An adsorbent, M 6 is prepared by considering a porous support of alumina identical to that used in Example A, in the form of a bead in which is present an active phase based on S at a concentration of 4.7 % wt in sulfur.
  • the ball has a diameter of 3 mm.
  • Example G Mercury removal test by the M 1 , M 2 , M 3 , M 4 capture masses
  • the mercury adsorption performance of the capture masses thus prepared are tested in a fixed bed device.
  • the pressure drop defined as the difference between the pressure of the gas flow at the outlet and at the inlet of the reactor is identical for all the tests.
  • the performance of the capture masses can also be expressed with respect to the same efficiency of mercury absorption. We can then compare the maximum time of use of the process during which this efficiency is ensured by the adsorbent bed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La présente invention concerne l'élimination de métaux lourds et notamment de mercure et éventuellement d'arsenic et de plomb présents dans un effluent gazeux ou liquide, au moyen d'un procédé en lit fixe mettant en œuvre un adsorbant, sous la forme d'extrudés massiques ou supportés, lesdits extrudés étant caractérisés par une longueur h et une section comportant au moins trois lobes. L'adsorbant est composé au moins d'une phase active à base de soufre sous la forme élémentaire ou sous la forme de sulfure métallique. L'invention s'applique avantageusement au traitement de gaz d'origine industrielle, de gaz de synthèse, de gaz naturel, de condensats en phase gazeuse et de charges hydrocarbonées liquides.

Description

MISE EN FORME DE MASSES DE CAPTATION POUR LA PURIFICATION D'UNE CHARGE GAZ OU LIQUIDE CONTENANT DES METAUX LOURDS
Domaine de l'invention
La présente invention concerne l'élimination de métaux lourds tels que le mercure, l'arsenic et le plomb présents dans un effluent gazeux ou liquide, au moyen d'un procédé en lit fixe mettant en uvre un adsorbant sous la forme d'extrudés massiques ou supportés définis ci-après et comprenant au moins une phase active à base de soufre sous la forme élémentaire ou sous la forme de sulfure métallique. L'invention s'applique avantageusement au traitement de gaz d'origine industrielle, de gaz de synthèse, de gaz naturel, de condensais en phase gazeuse et de charges hydrocarbonées liquides.
Art antérieur
Le mercure est un contaminant métallique que l'on trouve dans des hydrocarbures gazeux ou liquides produits dans de nombreuses régions du monde, telles que le golfe du Niger, l'Amérique du Sud ou l'Afrique du Nord.
L'élimination du mercure des coupes hydrocarbures est souhaitée au niveau industriel pour plusieurs raisons. Pour des raisons de sécurité des opérateurs, le mercure élémentaire est volatil et présente de graves risques de neurotoxicité par inhalation alors que ses formes organiques présentent des risques similaires par contact cutané. Pour des raisons de prévention de la désactivation des catalyseurs hétérogènes servant à valoriser ces coupes hydrocarbures liquides, le mercure s'amalgame très facilement avec les métaux nobles tels que le platine ou le palladium qui sont utilisés sous forme de nanoparticules dispersées sur des supports poreux pouvant servir à des opérations catalytiques aussi diverses que l'hydrogénation sélective des oléfines produites par vapocraquage ou craquage catalytique des hydrocarbures liquides.
Industriellement, l'élimination de métaux lourds, en particulier du mercure des coupes hydrocarbures liquides ou gazeuses est réalisée en les faisant circuler à travers des lits de masse de captation. On entend par masse de captation ou adsorbant dans la présente invention tout type de solide sous forme massique ou supporté contenant en son sein ou à sa surface un élément actif capable de réagir irréversiblement avec une impureté tel que le mercure contenue dans la charge à purifier. Cette élimination du mercure des coupes hydrocarbonées liquides ou gazeuses est en général réalisée en faisant circuler l'effluent à traiter au travers de lits d'adsorbants contenant une phase active pouvant réagir avec le mercure. Il est notamment connu de l'homme du métier que la captation du mercure peut être conduite facilement en faisant réagir ce dernier avec une phase active à base de soufre ou d'un composé soufré, et notamment des sulfures métalliques, le mercure formant alors un amalgame avec le soufre pour former l'espèce chimique HgS appelée cinabre ou métacinabre. Pour exemple, il est montré dans le brevet US 7645306 B2, que le sulfure de cuivre cuivreux CuS réagit de manière irréversible avec le mercure élémentaire de la façon suivante :
Figure imgf000004_0001
Dans le brevet US 5053209, il est montré que le soufre réagit de manière réversible avec le mercure élémentaire de la façon suivante:
Figure imgf000004_0002
Martellaro et al. (Environmental application of minerai sulfides for removal of gas- phase Hg(0) and aqueous Hg2; Séparation Science and Technology, 2001, 36, 1183- 1196), ont également montré que le sulfure d'or peut réagir avec le mercure élémentaire de la façon suivante :
Figure imgf000004_0003
Ces réactions sont spécifiques en ce sens que le ou les produits formés et contenant le mercure sont insolubles dans l'effluent à purifier et permettent donc d'extraire les métaux lourds tel que le mercure de l'effluent et d'éviter ainsi les désavantages tels que décrits précédemment.
Ces différentes réactions chimiques sont mises en œuvre généralement dans un procédé par le biais d'un contact de l'effluent à traiter avec un adsorbant (encore appelé masse de captation) soit massique dans laquelle notamment des particules de phase active peuvent être liés entre elles par l'intermédiaire de liants; soit supporté dans lequel la phase active est dispersée au sein ou en surface d'un support solide poreux.
Industriellement, l'élimination du mercure des coupes hydrocarbures liquides ou gazeuses est généralement réalisée en les faisant circuler à travers des lits d'adsorbants. L'effluent est ainsi purifié du métal lourd tel que le mercure qui reste piégé dans le lit d'adsorbant ou de masse de captation. L'adsorbant utilisé est généralement régénéré dans le procédé considéré. Pour exemple, la demande US2008/0041227 décrit l'utilisation d'un procédé dans lequel au moins deux lits d'adsorbants sont utilisés successivement en mode adsorption puis régénératif. Lors du mode adsorption, le lit d'adsorbants dans lequel circule un flux de gaz naturel capte au moins le mercure et l'eau. Lorsque ce lit d'adsorbants approche de la saturation, le lit est mis hors ligne et passe en mode régénératif dans lequel un flux gazeux régénératif chauffé passe pour enlever le mercure et l'eau.
Cependant, ce type de procédé régénératif présente des inconvénients d'un point de vue économique puisqu'il implique la mise en uvre et le fonctionnement de plusieurs lits d'adsorbants en parallèle et la gestion complexe de plusieurs flux gazeux contenant du mercure. Un autre problème majeur dans les procédés de captation de métaux lourds, en particulier du mercure est que la quantité de mercure que peut recevoir un adsorbant est limitée par sa capacité à saturation c'est à dire la quantité totale de mercure qui peut réagir avec la phase active présente dans l'adsorbant. Il est bien connu de l'homme du métier qu'il n'est pas favorable dans le procédé d'atteindre cette capacité à saturation car l'efficacité de l'adsorbant aux alentours de ces conditions est très fortement amoindrie, en ce sens qu'une quantité importante de mercure n'est déjà plus captée par la phase active.
Les procédés de purification de métaux lourds sont de ce fait tenus de maintenir des niveaux d'efficacités extrêmement élevés pendant le plus long temps possible, ceci afin de réduire au maximum la fréquence de remplacement de la masse de captation mise en oeuvre.
Bien souvent, la performance d'une masse de captation dans un procédé d'élimination de métaux lourds, tel que le mercure, est alors caractérisée par la capacité dynamique du lit de masse de captation c'est à dire la capacité de ce dernier à maintenir un niveau de performance maximal pendant la plus grande durée de fonctionnement possible. Ce niveau de performance est définie par l'efficacité E, selon :
Figure imgf000006_0001
avec [Hg]s la concentration de mercure dans l'effluent en sortie du lit et [Hg]0 la concentration de mercure dans l'effluent en entrée du lit.
Les adsorbants sont très souvent mis en forme par des méthodes connues de l'homme du métier, et en particulier par malaxage-extrusion, pastillage, granulation, égouttage dans l'huile (oil-drop), etc.. Les adsorbants peuvent ainsi se présenter sous forme de billes, cylindres, roue de charrette, cylindre creux, nid d'abeille ou tout autre forme géométrique utilisées par l'homme du métier. Il est bien connu de l'homme du métier que cette étape de mise en forme des masse de captation revêt une importance sur la perte de charge subie lors du passage de l'effluent gazeux à travers lit fixe. Il est en effet souhaitable de minimiser la perte de charge lors du passage dans le lit de masse de captation car il est nécessaire pour compenser cette perte de charge de comprimer l'effluent gazeux ce qui implique des coûts d'investissements et de fonctionnements importants.
Cependant, aucune différenciation n'est apportée sur l'avantage de la mise en forme de l'adsorbant sur la capacité dynamique d'un lit de masse de captation utilisé pour purifier un effluent contenant des métaux lourds et du mercure en particulier. La mise en forme de l'adsorbant à iso-propriétés structurales et texturales de l'adsorbant n'influe à priori donc pas sur les performances d'adsorption du procédé.
Cependant, de façon surprenante, la demanderesse a découvert que la mise en œuvre d'un adsorbant sous forme d'extrudés massiques ou supportés, la forme de l'extrudé caractérisés par une longueur h et une section comportant au moins trois lobes, selon l'invention, permet l'obtention de performances d'adsorption améliorées en ce sens que la capacité dynamique est plus importante que celles des adsorbants sous forme de billes ou sous forme d'extrudés d'autres géométries.
L'utilisation de telles masses de captation dans un procédé de purification présente un intérêt et un avantage importants dans l'ensemble des procédés de traitement d'effluents gazeux ou liquides pour l'élimination de métaux lourds présents dans ces charges.
Résumé de l'invention
La présente invention a pour objet un procédé d'élimination en lit fixe de métaux lourds, notamment le mercure, l'arsenic et le plomb, contenus dans un effluent gazeux ou liquide, par mise en contact de l'effluent avec une masse de captation sous la forme d'extrudé massique ou supporté comportant une phase active contenant au moins du soufre sous la forme élémentaire ou du sulfure de cuivre cuivreux CuS ou du sulfure métallique FeS2, ledit extrudé étant caractérisé par une longueur h comprise entre 0,5 et 100 mm et une section comportant au moins trois lobes.
La demanderesse a découvert que la mise en œuvre du procédé selon l'invention permettait d'obtenir des capacités dynamiques importantes. La mise en œuvre du procédé selon l'invention permet pour une même quantité de phase active, de capturer plus de métaux lourds d'une charge gazeuse ou liquide et donc de purifier plus efficacement la charge à traiter. Plus précisément, la mise en oeuvre du procédé selon l'invention présente l'avantage d'une plus grande efficacité d'adsorption de métaux lourds, avantageusement de mercure pour une même durée de fonctionnement ou autrement dit, d'un plus grand temps de fonctionnement permettant de maintenir une efficacité d'adsorption en deçà d'un seuil donné par rapport aux adsorbants selon l'art antérieur. Le procédé selon l'invention offre aussi l'avantage de réduire le coût d'investissement en utilisant un volume d'adsorbants moindre pour traiter une charge gazeuse ou liquide contenant des métaux lourds.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite, ci-après.
Description détaillée de l'invention
L'invention concerne un procédé d'élimination en lit fixe de métaux lourds, notamment le mercure, l'arsenic et le plomb, contenus dans un effluent gazeux ou liquide, par mise en contact de l'effluent avec une masse de captation sous la forme d'extrudé massique ou supporté comportant une phase active contenant au moins du soufre sous la forme élémentaire ou du sulfure de cuivre cuivreux CuS ou du sulfure métallique FeS2, ledit extrudé étant caractérisé par une longueur h comprise entre 0,5 et 100 mm et une section comportant au moins trois lobes.
La section de l'extrudé peut être caractérisée par un rayon R répondant à l'équation
Figure imgf000008_0001
où R0 représente la distance maximale entre le centre de l'extrudé et la paroi de l'extrudé, R représente la distance entre le centre de l'extrudé et la paroi de l'extrudé pour un angle α, r représente le rayon d'un lobe de l'extrudé, n correspond au nombre de lobes de l'extrudé, la fonction Int() représente la partie entière du rapport et représente la valeur absolue de la somme
Figure imgf000008_0003
Figure imgf000008_0004
Figure imgf000008_0002
Selon la présente invention, on entend par la fonction Int(), la partie entière du rapport Ainsi, de manière illustrative, l'application de la fonction Int () pour
Figure imgf000008_0005
un rapport égal à 1,8 correspond à la valeur entière 1 c'est à dire Int(l,8) = l, et l'application de la fonction Int () pour un rapport égal à 2,1 correspond à la valeur entière 2 c'est à dire Int(2,l)=2.
Avantageusement selon l'invention, le nombre de lobes de l'extrudé n est choisi dans le groupe constitué par les valeurs entières 3, 4, 5, 6, 7, 8, 9 et 10; de manière préférée le nombre de lobes n est choisi dans le groupe constitué par les valeurs entières 3, 4, 5 et 6; de manière plus préférée, le nombre de lobes n est choisi dans le groupe constitué par les valeurs entières 3 et 4; et de manière très préférée le nombre de lobes n est 3.
Pour plus de clarté dans l'application de l'équation (1) selon l'invention, la figure 1 montre un schéma illustratif et non limitatif d'une section d'un extrudé dans lequel sont représentés tous les paramètres R0, R, r et a, n étant le nombre de lobes de l'extrudé. La section de l'extrudé correspond à une coupe de l'extrudé selon un plan perpendiculaire à la direction de l'extrusion. En référence à la figure 1 , la section de l'extrudé comporte quatre lobes.
Les procédés de fabrication d'extrudés massiques ou supportés connus de l'homme du métier engendrent souvent des imperfections de forme liées à la mécanique des phases en présence, ce qui peut engendrer un écart entre la valeur R mesurable ( Rmes) et la valeur R définie par l'équation (1). La valeur R mesurable (Rmes) liée à la valeur R définie par l'équation (1) de la présente invention est avantageusement comprise entre R-15%R et R+15%R, de préférence entre R-10%R et R+10%R, de manière plus préférée entre R-5%R et R+5%R, de manière encore plus préférée entre R-3%R et R+3%R.
Dans une variante du procédé selon l'invention, l'adsorbant selon l'invention comprend une phase pré-active pouvant être activée ultérieurement. Dans une autre variante du procédé selon l'invention, ledit adsorbant comprend un mélange de phase active et de phase pré-active.
La phase active au sens de la présente invention correspond au soufre présent sous forme de soufre élémentaire, ou au sulfure de cuivre cuivreux CuS, ou au sulfure de fer FeS2. De préférence, au moins 90% poids, voir 95% poids ou 98% poids de la phase active est composé de soufre élémentaire, ou de sulfure de cuivre cuivreux CuS, ou de sulfure de fer FeS2. De manière préférée, la phase active est composée de sulfure de cuivre cuivreux CuS. La phase active selon l'invention peut également, dans une variante de l'invention, être composée d'un mélange de soufre sous la forme élémentaire et de soufre sous la forme de sulfure de cuivre cuivreux CuS.
Avantageusement, la phase active de l'adsorbant selon l'invention comprend entre 1 et 70 % poids en soufre par rapport au poids total de la masse de captation, de préférence entre 2 et 25% et de manière très préférée entre 3 et 20%.
La phase pré-active au sens de la présente invention est entendue comme la phase de l'adsorbant contenant le métal M sous forme d'oxyde métallique où le métal M est choisi dans le groupe constitué par le cuivre et le fer. De manière très préférée, le métal utilisé est le cuivre. De préférence l'oxyde métallique utilisé est l'oxyde de cuivre ou l'hydrogénocarbonate de cuivre ou le sulfate de cuivre ou l'acétate de cuivre, de manière plus préférée, l'oxyde métallique est l'oxyde de cuivre. De préférence l'oxyde métallique utilisé est l'oxyde de Fer(II) dit ferreux FeO ou l'oxyde de Fer(III) dit ferrique Fe2C"3 ou l'oxyde de Fer(II,III) Fe3Û4. De manière très préférée l'oxyde métallique est l'oxyde de Fer(III) dit ferrique Fe2Û3.
La proportion en poids de métal par rapport au poids totale de la masse de captation selon l'invention est comprise entre 1 et 60%, de préférence entre 2 et 40%, de manière préférée entre 5 et 30%, de manière très préférée entre 5 et 20%.
Dans le cas de l'utilisation d'une phase pré-active, le procédé de l'invention comprend une étape de sulfuration consistant à transformer la totalité ou au moins une partie de la phase pré-active sous forme d'oxyde métallique telle que définie dans l'invention en une phase active sulfurée telle que définie ci-avant. Ladite étape de sulfuration peut être conduite in situ, c'est à dire au cours du procédé utilisé selon l'invention pour éliminer les métaux lourds tels que le mercure. Dans ce dernier cas, il est nécessaire de disposer d'un élément soufré dans la charge à traiter. L'étape de sulfuration peut également être réalisée ex-situ, c'est à dire, l'étape de sulfuration est effectuée préalablement avant l'utilisation de l'adsorbant (ou masse de captation) dans le procédé d'élimination selon l'invention. Le fait d'effectuer l'étape de sulfuration permet d'obtenir les forme de sulfures CuS ou FeS2 qui réagissent au mieux avec le mercure. Ainsi, la masse de captation obtenue après l'étape de sulfuration est directement mise en œuvre pour capter les métaux lourds contenus dans une charge, sans subir d'étape complémentaire de réduction.
Dans le cas où l'adsorbant mis en oeuvre selon l'invention est composé d'un support poreux, le support poreux peut être indifféremment choisi parmi les familles des alumines, des silices-alumines, des silices, des zéolithes, des charbons actifs. Dans ce cas, la phase active est déposé sur le support poreux. Avantageusement, le support poreux est à base d'alumine ou de charbon actifs. Dans une variante préférée de l'invention, le support poreux est au moins constitué d'alumine obtenue par voie gel, autrement dénommé alumine gel dans la présente invention. Ces alumines peuvent être obtenues par toute méthode de synthèse connue de l'homme du métier, notamment par précipitation en utilisant la mise en contact d'une solution aqueuse de sels acides avec une solution alcaline de sels d'aluminium ou un mélange des deux types de sels. De manière préférée, le support poreux est constitué d'alumine ayant été obtenue au moins à partir d'un précurseur de type oxy(hydroxyde) d'aluminium, gamma ou delta-oxy(hydroxyde) d'aluminium.
Dans une variante préférée, le support poreux de la masse de captation selon l'invention est constitué par au moins 50% massiques d'alumine gamma et de manière plus préférée par au moins 99% d'alumine gamma. Dans une autre variante de l'invention, le support poreux de la masse de captation est constitué par au moins 50% massiques d'alumine delta et de manière préférée de 80% d'alumine delta. Dans une variante plus préférée, le support poreux de la masse de captation selon l'invention est constitué à 100% d'alumine gel, de préférence obtenue à partir d'un précurseur de type oxy(hydroxyde) d'aluminium caractérisé par une surface spécifique comprise entre 150 et 600 m2. g"1, de manière préférée entre 200 et 400 m2. g'1, de manière encore plus préférée entre 150 et 320 m2. g"1.
Les adsorbants selon l'invention sont mis en forme par les moyens connus de l'homme du métier, et de préférence par malaxage-extrusion.
De manière préférée, les adsorbants selon l'invention se présentent sous la forme d'extrudés massiques ou supportés de diamètre généralement compris entre 0,5 et 100 mm, de préférence entre 0,5 et 50 mm, de préférence entre 0,5 et 10 mm. De manière préférée, les adsorbants selon l'invention se présentent sous la forme d'extrudés massiques ou supportés de longueur h généralement compris entre 0,5 et 100 mm, de préférence entre 0,5 et 50 mm, de manière plus préférée entre 0,5 et 30 mm et de manière encore plus préférée entre 0,5 et 10 mm.
Les adsorbants selon l'invention peuvent être mis en œuvre pour purifier des effluents gazeux ou liquides contenant des métaux lourds. On peut citer par exemple les fumées de combustion, le gaz de synthèse ou bien encore le gaz naturel, les coupes liquides du gaz naturel, du pétrole, coupes pétrolières, des intermédiaires pétrochimiques.
Le procédé selon l'invention peut être mis en oeuvre selon toute méthode connue de l'homme du métier. A titre indicatif et non limitative, la mise en oeuvre du procédé selon l'invention est réalisée selon les différentes étapes se référant à la figure 2 ou 3.
Dans un premier mode de réalisation, le procédé selon l'invention comprend les différentes étapes se référant à la figure 2 à savoir qu'une charge gazeuse ou liquide 1 contenant des métaux lourds tels que le mercure, l'arsenic ou le plomb est introduite par une ligne 2 dans un lit contenant la masse de captation 3 selon l'invention. Le lit de masse de captation adsorbe les métaux lourds, préférentiel lement le mercure contenu dans la charge de manière à obtenir en sortie dudit lit un effluent purifié 4, c'est à dire que la concentration en métaux lourds dans l'effluent en sortie du lit fixe est inférieure à la concentration en métaux lourds de la charge en entrée du lit de masse de captation.
Dans un second mode de réalisation, le procédé selon l'invention comprend les différentes étapes se référant à la figure 3 à savoir qu'une charge gazeuse ou liquide 1 contenant des métaux lourds est introduite par une ligne 2 dans un sécheur 5 permettant d'extraire l'eau de ladite charge. L'effluent obtenu en sortie du sécheur est alors introduit dans une ligne 6 vers un lit de masse de captation 3 selon l'invention. Le lit de masse de captation adsorbe les métaux lourds préférentiellement le mercure contenu dans la charge de manière à obtenir en sortie dudit lit un effluent purifié 4, c'est à dire que la concentration en métaux lourds dans l'effluent en sortie du lit fixe est inférieure à la concentration en métaux lourds de l'effluent en entrée du lit de masse de captation. La charge du procédé selon l'invention correspond généralement à des effluents gazeux ou liquides contenant des métaux lourds tels que le mercure, l'arsenic et le plomb. On peut citer pour exemple, les fumées de combustion produites notamment par la combustion d'hydrocarbures, de biogaz, de charbon dans une chaudière ou par une turbine à gaz de combustion, par exemple dans le but de produire de l'électricité. Ces fumées ont une température comprise entre 20 et 60°C, une pression comprise entre 1 et 5 bars (1 bar = 0,1 MPa) et peuvent comporter entre 50 et 80 % d'azote, entre 5 et 40 % de dioxyde de carbone, entre 1 et 20 % d'oxygène, et quelques impuretés comme des SOx et des NOx, si elles n'ont pas été éliminées en aval du procédé de désacidification. On peut également citer le gaz de synthèse contenant du monoxyde de carbone CO, de l'hydrogène H2 (généralement dans un ratio H2/CO proche de 2), de la vapeur d'eau (généralement à saturation à la température où le lavage est effectué) et du dioxyde de carbone C02 (de l'ordre de la dizaine de pourcent). La pression de la charge est généralement comprise entre 2 et 3 MPa, mais peut atteindre jusqu'à 7 MPa. La charge peut en outre contenir des impuretés soufrées (H2S, COS, etc.), azotées (NH3, HCN) et halogénées.
La charge selon l'invention peut également comprendre du gaz naturel constitué majoritairement d'hydrocarbures gazeux, mais aussi des composés acides suivants : le C02, l'H2S, des mercaptans, du COS, du CS2. La teneur de ces composés acides est très variable et peut aller jusqu'à 40% pour le C02 et l'H2S. La température du gaz naturel est avantageusement comprise entre 20°C et 100°C et la pression du gaz naturel à traiter est avantageusement comprise entre 1 et 12 MPa.
La charge selon l'invention contient des métaux lourds en proportions variables. De manière générale, la charge selon l'invention comprend, du mercure, de l'arsenic, du plomb, du vanadium et du cadmium, de préférence du mercure, de l'arsenic, du plomb, de préférence du mercure et de l'arsenic, de manière plus préférée du mercure. Avantageusement dans le cas d'un effluent de gaz naturel, ce dernier contient entre 10 nanogrammes et 1 gramme de mercure par Nm3 de gaz. La charge à traiter selon l'invention peut également contenir de l'eau en proportions variables. Le taux d'hygrométrie dans les effluents gazeux est avantageusement compris entre 0 et 100%, de préférence entre 0 et 99% et de manière très préférée entre 0 et 90%. Dans tous les cas de figure, la charge à traiter selon l'invention contient des métaux lourds sous différentes formes. Par exemple, on trouve du mercure sous une forme dite Hg(0), correspondant à du mercure élémentaire ou atomique, sous forme moléculaire, ou sous forme ionique, par exemple Hg2+ et ses complexes.
La température de la charge à traiter est généralement comprise entre -50 et +200°C, de préférence entre 0 et 150°C et de manière très préférée entre 20 et 100°C, de préférence entre 30 et 75°C. La pression de la charge à traiter peut être à comprise entre 1 et 50 M Pa, de préférence entre 1 et 40 M Pa, de préférence entre 5 et 40 M Pa, de préférence entre 10 et 35 MPa et de manière très préférée entre 15 et 30 MPa.
De manière préférée, la mise en oeuvre du procédé selon l'invention est réalisée avec un V.V.H. (volume de la charge par volume de masse de captation et par heure) compris entre 500 et 50000 h"1, de préférence entre 1000 et 40000 h"1, de manière plus préférée entre 2000 et 30000 h'1. De préférence, dans le cas d'une charge gaz, le V.V.H. est compris entre 4000 et 20000 h"1. De préférence, dans le cas d'une charge liquide, le V.V.H. est compris entre 0,1 et 50 h"1.
Les exemples donnés ci-après permettent d'illustrer l'invention mais ne sont en aucun cas limitatifs.
Exemples
Exemple A. Préparation d'un adsorbant à base de CuSf Mlf selon l'invention.
Un adsorbant, Ml, selon l'invention est préparé en considérant un support poreux d'alumine sous forme d'extrudé selon l'équation (1) pour lequel n=3, dans lequel est présente une phase active à base de CuS à une concentration de 4,7% pds (poids) en soufre. L'extrudé trilobé a un diamètre de 1,6 mm et une longueur de 4 mm.
Exemple B. Préparation d'un adsorbant à base de CuSf M? (comparatif)
Un adsorbant, M2, est préparé en considérant un support poreux d'alumine identique à celui utilisé dans l'exemple A, sous forme d'extrudé cylindrique dans lequel est présente une phase active à base de CuS à une concentration de 4,7% pds en soufre. L'extrudé cylindrique a un diamètre de 1,6 mm et une longueur de 4 mm.
Exemple C. Préparation d'un adsorbant à base de CuS, M3 (comparatif)
Un adsorbant, M3, est préparé en considérant un support poreux d'alumine identique à celui utilisé dans l'exemple A, sous forme d'une bille dans laquelle est présente une phase active à base de CuS à une concentration de 4,7% pds en soufre. La bille a un diamètre de 3 mm.
Exemple D. Préparation d'un adsorbant à base de S, M4, selon l'invention.
Un adsorbant, M4, selon l'invention est préparé en considérant un support poreux d'alumine sous forme d'extrudé selon l'équation (1) pour lequel n=3, dans lequel est présente une phase active à base de S à une concentration de 4,7%pds en soufre. L'extrudé trilobé a un diamètre de 1,6 mm et une longueur de 4 mm.
Exemple E. Préparation d'un adsorbant à base de S. M 5 (comparatif)
Un adsorbant, M5, est préparé en considérant un support poreux d'alumine identique à celui utilisé dans l'exemple A, sous forme d'extrudé cylindrique dans lequel est présente une phase active à base de S à une concentration de 4,7%pds en soufre. L'extrudé cylindrique a un diamètre de 1,6 mm et une longueur de 4 mm.
Exemple F. Préparation d'un adsorbant à base de S, M6 (comparatif)
Un adsorbant, M6, est préparé en considérant un support poreux d'alumine identique à celui utilisé dans l'exemple A, sous forme d'une bille dans laquelle est présente une phase active à base de S à une concentration de 4,7%pds en soufre. La bille a un diamètre de 3 mm.
Exemple G. Test d'élimination du mercure par les masses de captation M1, M2, M3, M4,
Les performances d'adsorption mercure des masses de captation ainsi préparées sont testées dans un dispositif en lit fixe. Un volume, Vm=18cm3, d'adsorbants est préparé sous une configuration lit fixe. Un flux gazeux d'azote contenant du mercure à la concentration suivante [Hg]e=1060 μg.Nm-3 en mercure est passé à travers le lit d'adsorbants à un débit de 300 NI. h-1 (V.V.H = 1666 h-1), une température de 50°C et une pression de 20 MPa. La perte de charge définie comme la différence entre la pression du flux gazeux en sortie et en entrée du réacteur est identique pour tous les tests.
Le niveau de performance est défini par l'efficacité, E, selon : E(%) = [([Hg]0 - [Hg]s) / [Hg]0] x 100 avec [Hg]s la concentration de mercure dans l'effluent en sortie du lit et [Hg]0 la concentration de mercure dans l'effluent en entrée du lit.
Les performances des masses de captation sont comparées aux mêmes temps relatifs
Figure imgf000016_0001
défini par rapport au temps tf pour lequel on obtient la relation [Hg]s=0,lx[Hg]0.
Figure imgf000016_0002
Les performances des masses de captation peuvent également être exprimées par rapport à une même efficacité d'absorption de mercure. On peut alors comparer le temps maximal d'utilisation du procédé pendant lequel cette efficacité est assurée par le lit d'adsorbant
Figure imgf000017_0001
Les exemples ci-dessus illustrent la faculté des adsorbants selon l'invention à offrir de plus grandes efficacité d'adsorption mercure pour une même durée de fonctionnement ou de plus grands temps de fonctionnement permettant de maintenir une efficacité d'adsorption mercure en deçà d'un seuil donné, par rapport aux adsorbants selon l'art antérieur.

Claims

Revendications
1. Procédé d'élimination en lit fixe de métaux lourds contenus dans un effluent gazeux ou liquide, par mise en contact de l'effluent avec une masse de captation sous la forme d'extrudé massique ou supporté comportant une phase active contenant au moins du soufre sous la forme élémentaire ou du sulfure de cuivre cuivreux CuS ou du sulfure métallique FeS2, ledit extrudé étant caractérisé par une longueur h comprise entre 0,5 et 100 mm et une section comportant au moins trois lobes.
2. Procédé selon la revendication 1 , dans lequel la section de l'extrudé est caractérisé par un rayon R, répondant à l'équation (1 ):
Figure imgf000018_0001
où R0 représente la distance maximale entre le centre de l'extrudé et la paroi de l'extrudé, R représente la distance entre le centre de l'extrudé et la paroi de l'extrudé pour un angle a, r représente le rayon d'un lobe de l'extrudé, n correspond au nombre de lobes de l'extrudé, la fonction lnt() représente la partie entière du rapport représente la valeur absolue de la somme
Figure imgf000018_0003
Figure imgf000018_0002
3. Procédé selon l'une des revendications 1 et 2, tel que l'extrudé est caractérisé par un nombre de lobes n choisi dans le groupe constitué par les valeurs entières 3, 4, 5, 6, 7, 8, 9 et 10.
4. Procédé selon la revendication 3, tel que l'extrudé est caractérisé par un nombre de lobes n choisi dans le groupe constitué par les valeurs entières 3, 4, 5 et 6.
5. Procédé selon l'une des revendications précédentes tel que la longueur h de l'extrudé est comprise entre 0,5 et 50 mm.
6. Procédé selon l'une des revendications précédentes dans lequel l'extrudé supporté est au moins constitué d'un support poreux à base d'alumine gel.
7. Procédé selon la revendication 6 dans lequel le support poreux est à 100% constitué par une alumine gel.
8. Procédé selon l'une des revendications précédentes dans lequel la phase active contient au moins entre 1 et 70 % poids en soufre.
9. Procédé selon l'une des revendications précédentes, dans lequel au moins 90% poids de la phase active est sous forme de sulfure de cuivre cuivreux CuS ou sous forme de sulfure de fer FeS2.
10. Procédé selon l'une des revendications précédentes dans lequel les extrudés sont inscrits dans un cylindre de diamètre entre 0,5 et 100 mm.
11. Procédé selon l'une des revendications précédentes dans lequel l'effluent est à une température comprise entre -50 et +200°C, une pression comprise entre 1 et 50 MPa et un Volume de charge par Volume de masse de captation et par Heure compris entre 500 et 50000 h"1.
12. Procédé selon l'une des revendications précédentes tel que la charge est un gaz d'origine industrielle, un gaz de synthèse, un gaz naturel, des condensais en phase gazeuse ou de charges hydrocarbonées liquides contenant au moins des métaux lourds choisi dans le groupe constitué par le mercure, l'arsenic et le plomb.
13. Procédé selon l'une des revendications précédentes tel que la charge est un gaz d'origine industrielle, un gaz de synthèse, un gaz naturel, des condensats en phase gazeuse ou de charges hydrocarbonées liquides contenant au moins du mercure.
PCT/FR2012/000362 2011-10-04 2012-09-12 Mise en forme de masses de captation pour la purification d'une charge gaz ou liquide contenant des métaux lourds WO2013050668A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/349,728 US9132375B2 (en) 2011-10-04 2012-09-12 Shaping capture masses for the purification of a liquid or gas feed containing heavy metals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/03.015 2011-10-04
FR1103015A FR2980721B1 (fr) 2011-10-04 2011-10-04 Mise en forme de masses de captation pour la purification d'une charge gaz ou liquide contenant du mercure

Publications (1)

Publication Number Publication Date
WO2013050668A1 true WO2013050668A1 (fr) 2013-04-11

Family

ID=47022941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000362 WO2013050668A1 (fr) 2011-10-04 2012-09-12 Mise en forme de masses de captation pour la purification d'une charge gaz ou liquide contenant des métaux lourds

Country Status (3)

Country Link
US (1) US9132375B2 (fr)
FR (1) FR2980721B1 (fr)
WO (1) WO2013050668A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014143566A1 (fr) * 2013-03-15 2014-09-18 Clariant Corporation Procédé et composition pour l'élimination d'arsenic et d'autres contaminants de gaz de synthèse

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966644A (en) * 1973-08-03 1976-06-29 American Cyanamid Company Shaped catalyst particles
EP0218147A1 (fr) * 1985-10-07 1987-04-15 American Cyanamid Company Forme pour particules extrudées utilisées comme supports de catalyseurs et catalyseurs
US5053209A (en) 1988-01-09 1991-10-01 Mobil Oil Corporation Removal of mercury from natural gas and liquid hydrocarbons utilizing silver on alumina adsorbent
US20080041227A1 (en) 2006-08-15 2008-02-21 Mulvaney Iii Robert C Process for Removal of Mercury from Gas Stream
US7645306B2 (en) 2007-12-13 2010-01-12 Uop Llc Removal of mercury from fluids by supported metal oxides
WO2010061212A1 (fr) * 2008-11-25 2010-06-03 Johnson Matthey Plc Sorbant de sulfure de cuivre réduit pour l'élimination de métaux lourds
WO2011021024A1 (fr) * 2009-08-17 2011-02-24 Johnson Matthey Plc Sorbant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2615756B1 (fr) * 1987-05-26 1993-05-14 Inst Francais Du Petrole Procede de regeneration d'une masse d'absorption du mercure renfermant du cuivre
US6214765B1 (en) * 1999-11-02 2001-04-10 Howard A. Fromson Catalyst product and method of manufacture
DE19959413A1 (de) * 1999-12-09 2001-06-21 Consortium Elektrochem Ind Trägerkatalysatoren und deren Verwendung bei der Gasphasenoxidation von Kohlenwasserstoffen
TW200719968A (en) * 2005-10-31 2007-06-01 Sued Chemie Ag Catalyst molding for partial oxidation reactions
US7775507B2 (en) * 2007-11-05 2010-08-17 Saint-Gobain Ceramics & Plastics, Inc. Packing elements for mass transfer applications
TWI468223B (zh) * 2008-10-20 2015-01-11 Huntsman Petrochemical Llc 經改良之三瓣形馬來酸酐觸媒及製造馬來酸酐的方法
US9006508B2 (en) * 2012-02-06 2015-04-14 Uop Llc Protected adsorbents for mercury removal and method of making and using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966644A (en) * 1973-08-03 1976-06-29 American Cyanamid Company Shaped catalyst particles
EP0218147A1 (fr) * 1985-10-07 1987-04-15 American Cyanamid Company Forme pour particules extrudées utilisées comme supports de catalyseurs et catalyseurs
US5053209A (en) 1988-01-09 1991-10-01 Mobil Oil Corporation Removal of mercury from natural gas and liquid hydrocarbons utilizing silver on alumina adsorbent
US20080041227A1 (en) 2006-08-15 2008-02-21 Mulvaney Iii Robert C Process for Removal of Mercury from Gas Stream
US7645306B2 (en) 2007-12-13 2010-01-12 Uop Llc Removal of mercury from fluids by supported metal oxides
WO2010061212A1 (fr) * 2008-11-25 2010-06-03 Johnson Matthey Plc Sorbant de sulfure de cuivre réduit pour l'élimination de métaux lourds
WO2011021024A1 (fr) * 2009-08-17 2011-02-24 Johnson Matthey Plc Sorbant

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUFFUS J H ET AL: "Heavy Metals-a meaningless term ?", PURE & APPLIED CHEMISTRY, PERGAMON PRESS, OXFORD, GB, vol. 74, no. 5, 1 January 2002 (2002-01-01), pages 793 - 807, XP002486816, ISSN: 0033-4545, DOI: 10.1351/PAC200274050793 *
MARTELLARO ET AL.: "Environmental application of mineral sulfides for removal of gas- phase Hg(0) and aqueous Hg2", SEPARATION SCIENCE AND TECHNOLOGY, vol. 36, 2001, pages 1183 - 1196

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014143566A1 (fr) * 2013-03-15 2014-09-18 Clariant Corporation Procédé et composition pour l'élimination d'arsenic et d'autres contaminants de gaz de synthèse

Also Published As

Publication number Publication date
FR2980721B1 (fr) 2015-03-13
US20140308189A1 (en) 2014-10-16
FR2980721A1 (fr) 2013-04-05
US9132375B2 (en) 2015-09-15

Similar Documents

Publication Publication Date Title
EP0611183B1 (fr) Procédé d'élimination du mercure dans des hydrocarbures par passage sur un catalyseur présulfure
WO2013050667A1 (fr) Masse de captation a performances ameliorees et son utilisation dans la captation de metaux lourds
EP0332526A1 (fr) Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures
CA2748004C (fr) Procede d'elimination d'impuretes soufrees, azotees et halogenees contenues dans un gaz de synthese
WO2019197352A1 (fr) Procédé de captation de l'arsenic mettant en œuvre une masse de captation à base de particules d'oxyde de nickel
EP3174631B1 (fr) Adsorbant a base d'alumine contenant du sodium et dopee par un element alcalin pour la captation de molecules acides
FR2992233A1 (fr) Masse de captation composee de soufre elementaire depose sur un support poreux pour la captation des metaux lourds
CA2693038A1 (fr) Procede pour eliminer le mercure d'un gaz contenant du co2 et de l'oxygene
EP1132341A1 (fr) Charbon actif amélioré par traitement à l'acide et son utilisation pour séparer des gaz
EP1696018B1 (fr) Procédé de désulfuration profonde par adsorption d'une coupe hydrocarboné de type gazole
WO2013050668A1 (fr) Mise en forme de masses de captation pour la purification d'une charge gaz ou liquide contenant des métaux lourds
FR2857276A1 (fr) Procede d'elimination de composes soufres par oxydation directe
WO2019197351A1 (fr) Masse de captation de l'arsenic à base de nanoparticules de sulfure de nickel
EP3599020A1 (fr) Alumine à acidité et structure de porosité optimales
EP1636133A1 (fr) PURIFICATION D’UN MELANGE H sb 2 /sb /CO PAR CATALYSE DES IMPURETES
FR2794381A1 (fr) Masse d'elimination d'arsenic et de mercure dans des hydrocarbures a base de nickel supporte
FR3052686A1 (fr) Masse de captation de metaux lourds a performances ameliorees
EP2606969B1 (fr) Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique
WO2004022482A2 (fr) Procede de purificatin d'un gaz de synthese a base de sulfure dhydrogene
FR3009204A1 (fr) Procede de captation d'un metal lourd contenu dans un gaz humide avec dilution du gaz humide pour controler l'humidite relative du gaz.
WO2023117552A1 (fr) Procede de rejuvenation de masses de captation de metaux lourds
FR2999952A1 (fr) Masse de captation polymetallique ayant une surconcentration en metal autre que le cuivre en surface pour la captation des metaux lourds
FR2806092A1 (fr) Procede d'elimination d'arsenic en presence d'une masse d'absorption comprenant de l'oxyde de plomb partiellement presulfure
FR2999951A1 (fr) Masse de captation polymetallique pour la captation des metaux lourds
WO2009071767A2 (fr) Procédé d'elimination des mercaptans par adsorption sur un tamis moléculaire avec régénération réactive du tamis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14349728

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12773006

Country of ref document: EP

Kind code of ref document: A1