EP0611182A1 - Procédé d'elimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée - Google Patents

Procédé d'elimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée Download PDF

Info

Publication number
EP0611182A1
EP0611182A1 EP94400193A EP94400193A EP0611182A1 EP 0611182 A1 EP0611182 A1 EP 0611182A1 EP 94400193 A EP94400193 A EP 94400193A EP 94400193 A EP94400193 A EP 94400193A EP 0611182 A1 EP0611182 A1 EP 0611182A1
Authority
EP
European Patent Office
Prior art keywords
sulfur
metal
mass
organic
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94400193A
Other languages
German (de)
English (en)
Other versions
EP0611182B1 (fr
Inventor
Charles Cameron
Jean Cosyns
Partick Sarrazin
Jean-Paul Boitiaux
Philippe Courty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0611182A1 publication Critical patent/EP0611182A1/fr
Application granted granted Critical
Publication of EP0611182B1 publication Critical patent/EP0611182B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03

Definitions

  • the present invention relates to the removal of arsenic from hydrocarbons. More particularly, the invention relates to the pretreatment of an arsenic capture mass allowing its capture with very high efficiency from the initial start-up period of the process.
  • liquid condensates byproducts of gas production
  • certain crude oils can contain many metallic compounds in trace amounts and often in the form of organometallic complexes. These metal compounds are very often poisons from the catalysts used during the transformation of these cuts into commercial products.
  • the applicant's processes have good performances for the demercurization and the de-arsenification of liquid hydrocarbons serving as feedstocks of various treatment processes.
  • the patent US Pat. No. 4,911,825 clearly shows the advantage of carrying out a capture of mercury and possibly arsenic in a two-step process where the first step consists in bringing the charge in contact in the presence of hydrogen with a catalyst containing at least one metal from the group consisting of nickel, cobalt, iron and palladium.
  • the mercury is not (or very little) captured by the catalyst but is captured, in a second step, by a mass containing sulfur or sulfur-containing compounds.
  • US Pat. No. 4,046,674 describes a process for removing arsenic (in an amount greater than 2 ppm) with a capture mass containing at least one nickel compound (which is at least a sulfide) in an amount of 30-70% by weight NiO , and at least one molybdenum compound (which is at least one sulfide) in an amount 2-20% by weight Mo O3.
  • This mixed absorbent sulfide requires, in order not to desulfurize, the presence of large amounts of sulfur (greater than 0.1%) in the feed and high operating temperatures (of the order of 288 and 343 ° C. in the examples ).
  • the present invention overcomes these drawbacks.
  • the object of the present invention is a method for removing arsenic in which the capture mass is pretreated before being brought into contact with the charge to be purified.
  • a mixture of the charge with hydrogen is brought into contact with a presulfurized capture mass containing at least one metal from the group formed by iron, nickel, cobalt, molybdenum, tungsten, chromium and palladium where at least 5% of the metal is in the sulphide state, and in general at most 50%.
  • the capture mass used in the composition of the present invention consists of at least one metal M chosen from the group formed by iron, nickel, cobalt, molybdenum, tungsten and palladium and a support.
  • the metal M must be in sulphide form for at least 5% of its totality and for at most, in general, 50%.
  • nickel or the combination of nickel with palladium is used.
  • the solid mineral dispersant (support) can be chosen from the group formed by alumina, silica-aluminas, silica, zeolites, activated carbon, clays and aluminous cements. It will preferably have a large surface, a sufficient pore volume and an adequate average pore diameter.
  • the BET surface should be greater than 50 m2 / g and preferably between approximately 100 and 350 m2 / g.
  • the preparation of a solid (or precursor of the capture mass) containing at least one metal M in metallic form or in the form of supported metal oxide is sufficiently known to those skilled in the art not to be described in the context of the present invention.
  • the content of metal M in the mass (calculated in oxide form) is preferably at least 5% by weight and at most 60% by weight, and even more advantageously at most 30%.
  • the case of palladium is particular, we can have at most 0.2% by weight of palladium (calculated as metal).
  • the addition of sulfur can be done, off-site, by impregnating the precursor of the capture mass either with ammonium sulphide and / or a colloidal suspension of sulfur in water or with a sulfur-containing agent. say sulfur and / or one or more sulfur compounds, in an organic solution.
  • a reducing agent is for example, formaldehyde, acetaldehyde, hydrazine, methyl formate, formic acid, etc.
  • the collection mass Before being brought into contact with the load to be treated, the collection mass is, if necessary, reduced by hydrogen or by a gas containing hydrogen at a temperature of 120 to 600 ° C. and preferably of 140 to 400 ° C.
  • the solid thus prepared, presulfurized then reduced constitutes the capture mass, in its active form, of the present invention.
  • the capture mass can be used in a temperature range which can range from 120 to 250 ° C, more advantageously from 130 to 220 ° C or even 130-200 ° C, preferably 140-190 ° C and even more preferred from 140 to 180 ° C.
  • the operating pressures will preferably be chosen from 1 to 40 bars and more advantageously from 5 to 35 bars.
  • the spatial velocities calculated with respect to the capture mass can be from 1 to 50 h -1 and more particularly from 1 to 30 h -1 (volume of liquid per volume of mass per hour).
  • the hydrogen flow rate relative to the capture mass is for example between 1 and 500 volumes (gas under normal conditions) per volume of the mass per hour.
  • the charges to which the invention applies more particularly contain from 0 to 1000 milligrams of sulfur per kilogram of charge and from 10 ⁇ 3 to 5 milligrams of arsenic per kilogram of charge.
  • Capture mass A Fifteen kilograms of a macroporous alumina support in the form of beads 1.5-3 mm in diameter and having a specific surface of 160 m2 / g, a total pore volume of 1.05 cm3 / g and a macroporous volume (diameter> 0.1 ⁇ m) of 0.4 cm3 / g are impregnated with 20% by weight of nickel in the form of an aqueous nitrate solution. After drying at 120 ° C for 5 h and thermal activation at 450 ° C for 2 h under air sweep, beads containing 25.4% by weight of nickel oxide are obtained.
  • Capture mass B Five kilograms of mass A are dry impregnated with a solution containing 175 g of DEODS diethanoldisulfide (including 74 g of sulfur) in 5150 cm3 of a 15% methyl formate solution in a white spirit. The catalyst thus prepared is activated at 150 ° C for 1 h.
  • the capture mass A was reduced to 400 ° C. under a flow rate of 20 l / h of hydrogen at 2 bar of pressure for 4 h. Then, the reactor was cooled to the reaction temperature 180 ° C. A heavy condensate of liquefied gas with hydrogen is then passed over the collection mass. The charge flow rate is 400 cm3 / h and that of hydrogen is 3.5 l / h. The test is carried out under a pressure of 35 bars.
  • the condensate used during this test (condensate A) has the following characteristics: initial boiling point: 21 ° C final boiling point: 470 ° C arsenic content: 65 ⁇ g / kg sulfur content: 237 mg / kg
  • a second arsenic uptake test was carried out using a condensate (condensate B) having the following characteristics: initial boiling point: 21 ° C final boiling point: 491 ° C arsenic content 80: ⁇ g / kg sulfur content: 117 mg / kg
  • Example 1 The pre-reduction and operating conditions are identical to those of the test of Example 1. It is noted, as in Example 1, of arsenic contents in the effluents, from 5 to 10 ⁇ g / kg, during the 240 first hours of warm-up.
  • the reactor was loaded with 50 cm3 of capture mass B, presulfurized as described above. All the other test conditions are identical to those indicated in Example 1 including the charge (condensate A). The arsenic content remains below the detection limit ( ⁇ 5 ⁇ g / kg) throughout the test.
  • the capture mass B was reduced to 300 ° C under a flow rate of 20 l / h of hydrogen at 2 bar of pressure for 6 h before cooling it to the reaction temperature 180 ° C. It is also noted that the content of arsenic in the effluent is below the detection limit ( ⁇ 5 ⁇ g / kg) throughout the test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

L'invention concerne un procédé d'élimination d'arsenic dans des hydrocarbures dans lequel la masse de captation est prétraitée avant d'être mise au contact de la charge à épurer. La masse de captation renferme au moins un élément choisi dans le groupe formé par le fer, le nickel, le cobalt, le molybdène, le tungstène, le palladium et le chrome et au moins 5 % en poids dudit (desdits) élément(s) est sous forme de sulfure. Le prétraitement consiste en une imprégnation avec un composé soufré opérée simultanément avec réduction. Le procédé d'élimination d'arsenic a lieu entre 120 et 250°C en présence de 0-1 000 mg de soufre/kg de charge.

Description

  • La présente invention concerne l'élimination d'arsenic dans des hydrocarbures. Plus particulièrement l'invention concerne le prétraitement d'une masse de captation d'arsenic permettant la captation de celui-ci avec une très grande efficacité dès la période initiale de démarrage du procédé.
  • Il est connu que les condensats liquides (sous produits de la production du gaz) et certains pétroles bruts peuvent contenir de nombreux composés métalliques à l'état de traces et souvent sous forme de complexes organométalliques. Ces composés métalliques sont très souvent des poisons des catalyseurs utilisés lors des transformations de ces coupes en produits commerciaux.
  • Il est donc avantageux d'épurer les charges destinées à être envoyées dans des procédés de transformation de condensats ou de bruts pour éviter un entraînement d'arsenic. L'épuration de la charge en amont des procédés de traitement permet de protéger l'ensemble de l'installation.
  • Des procédés de la demanderesse présentent de bonnes performances pour la démercurisation et la désarsenification des hydrocarbures liquides servant comme charges de diverses procédés de traitement. Le brevet US 4,911,825 de la demanderesse montre clairement l'avantage d'effectuer une captation de mercure et éventuellement d'arsenic dans un procédé en deux étapes où la première étape consiste à mettre en contact la charge en présence d'hydrogène avec un catalyseur renfermant au moins un métal du groupe constitué par le nickel, le cobalt, le fer et le palladium. Le mercure n'est pas (ou très peu) capté par le catalyseur mais est capté, dans une deuxième étape, par une masse renfermant du soufre ou des composés soufrés.
  • La demande de brevet WO 90/10.684 de la demanderesse décrit un procédé d'élimination du mercure et éventuellement d'arsenic présent dans des hydrocarbures liquides. Cette invention concerne des catalyseurs ayant la propriété de résister à l'empoisonnement par le soufre (thiorésistance). Ces nouveaux catalyseurs permettent la captation du mercure et d'arsenic dans des conditions trop sévères pour les catalyseurs décrits dans l'art antérieur.
  • Ce procédé est particulièrement utile pour l'épuration de charges difficiles comme, par exemple, des gasoils provenant d'un fractionnement du pétrole brut dans lequel la teneur en soufre est souvent entre 0,4 et 1,0 % poids. Par contre, le procédé décrit dans le brevet US 4,911,825 est plus performant pour des charges ayant des teneurs en soufre moins élevées, par exemple inférieures à 0,15 % poids.
  • Mais on a constaté qu'avec certaines charges ayant de faibles teneurs en soufre, par exemple inférieures à 0,07 % poids, I'efficacité de captation d'arsenic au début de la mise en oeuvre du procédé de désarsenification est plus faible dans les premières centaines d'heures de mise en régime que par la suite. Il a été aussi trouvé que l'efficacité de captation d'arsenic est moins bonne pour des charges très pauvres en soufre, par exemple inférieures à 0,02 % pds. Dans ce dernier cas, il est nécessaire d'augmenter la température de fonctionnement du réacteur de plusieurs dizaines de degrés et/ou le débit d'hydrogène pour permettre une captation suffisante d'arsenic.
  • Le brevet US-4,046,674 décrit un procédé d'élimination d'arsenic (en quantité supérieure à 2 ppm) avec une masse de captation contenant au moins un composé du nickel (qui est au moins un sulfure) en quantité 30-70% poids NiO, et au moins un composé du molybdène (qui est au moins un sulfure) en quantité 2-20% poids Mo O₃. Ce sulfure mixte absorbant nécessite, pour ne pas se désulfurer, la présence de grandes quantités de soufre (supérieures à 0,1%) dans la charge et des températures élevées de fonctionnement (de l'ordre de 288 et 343°C dans les exemples).
  • La présente invention permet de s'affranchir de ces inconvénients.
  • Il a en effet été découvert que le prétraitement des masses de captation d'arsenic par un agent soufré en présence d'un agent réducteur, conduit à une réduction importante de la durée de mise en régime du procédé et à une bonne efficacité de captation d'arsenic même avec une charge très pauvre en soufre, et à des températures basses (inférieures ou égales à 250°C).
  • L'objet de la présente invention est un procédé d'élimination d'arsenic dans lequel la masse de captation est prétraitée avant d'être mise en contact avec la charge à épurer. Selon ce procédé, un mélange de la charge avec de l'hydrogène est mis en contact avec une masse de captation présulfurée renfermant au moins un métal du groupe formé par le fer, le nickel, le cobalt, le molybdène, le tungstène, le chrome et le palladium où au moins 5 % du métal est à l'état de sulfure, et en général au plus 50%.
  • La masse de captation entrant dans la composition de la présente invention est constituée d'au moins un métal M choisi dans le groupe formé par le fer, le nickel, le cobalt, le molybdène, le tungstène et le palladium et d'un support. Le métal M doit se trouver sous forme sulfure pour au moins 5 % de sa totalité et pour au plus, en général, 50%. On utilise de préférence le nickel ou l'association du nickel avec le palladium.
  • Le dispersant minéral solide (support) peut être choisi dans le groupe formé par l'alumine, les silices-alumines, la silice, les zéolithes, le charbon actif, les argiles et les ciments alumineux. Il présentera de préférence une grande surface, un volume poreux suffisant et un diamètre moyen des pores adéquat. La surface BET devra être supérieure à 50 m2/g et de préférence entre environ 100 et 350 m2/g. Le support devra posséder un volume poreux, mesuré par désorption d'azote, d'au moins 0,5 cm3/g et de préférence entre 0,6 et 1,2 cm3/g et un diamètre moyen des pores au moins égal à 70 nm et de préférence supérieur à 80 nm (1 nm = 10⁻⁹m).
  • La préparation d'un solide (ou précurseur de la masse de captation) contenant au moins un métal M sous forme métallique ou sous forme d'oxyde métallique supporté est suffisamment connue de l'homme de métier pour ne pas être décrite dans le cadre de la présente invention. La teneur en métal M dans la masse (calculée sous forme oxyde) est de préférence d'au moins 5 % en poids et d'au plus 60 % en poids, et encore plus avantageusement au plus 30%. Le cas du palladium est particulier, on pourra avoir au plus 0,2% en poids de palladium (calculé forme métal).
  • Le procédé de présulfuration est décrit dans le brevet EP-466.568 (dont l'enseignement est ci-inclus).
    Le précurseur de la masse renfermant le(s) métal (métaux) supporté(s) sous forme métallique et/ou oxyde, est
    • a) dans une première étape, imprégné par une solution aqueuse ou organique ou une suspension aqueuse ou organique renfermant d'une part au moins un agent réducteur organique , et d'autre part au moins un agent sulfuré choisi dans le groupe constitué par :
      • · au moins un polysulfure organique en mélange avec du soufre élémentaire,
      • · au moins un disulfure organique éventuellement en mélange avec du soufre élémentaire,
      • · au moins un sulfure organique ou minéral éventuellement en mélange avec du soufre élémentaire,
      • · le soufre élémentaire,
    • b) dans une seconde étape, on traite thermiquement le précurseur ainsi imprégné. La température est par exemple entre 100-200°C, généralement entre 130-170°C et plus particulièrement autour de 150°C. La durée de traitement est de 30 mn à 3 h.
  • L'addition du soufre peut se faire, hors site, en imprégnant le précurseur de la masse de captation soit par le sulfure d'ammonium et/ou une suspension colloïdale de soufre dans l'eau soit par un agent soufré, c'est à dire le soufre et/ou un ou plusieurs composés soufrés, dans une solution organique. Un agent réducteur est par exemple, le formaldéhyde, I'acétaldéhyde, l'hydrazine, le formiate de méthyle, l'acide formique, etc...
  • Avant d'être mise au contact de la charge à traiter, la masse de captation est, si nécessaire, réduite par de l'hydrogène ou par un gaz renfermant de l'hydrogène à une température de 120 à 600°C et de préférence de 140 à 400°C.
  • Le solide ainsi préparé, présulfuré puis réduit constitue la masse de captation, dans sa forme active, de la présente invention.
  • La masse de captation peut être employée dans un domaine de température pouvant aller de 120 à 250°C, plus avantageusement de 130 à 220°C ou encore 130-200°C, de façon préférée 140-190°C et de façon encore plus préférée de 140 à 180°C. Les pressions opératoires seront choisies de préférence de 1 à 40 bars et plus avantageusement de 5 à 35 bars. Les vitesses spatiales calculées par rapport à la masse de captation peuvent être de 1 à 50 h-1 et plus particulièrement de 1 à 30 h-1 (volume de liquide par volume de masse par heure).
  • Le débit d'hydrogène rapporté à la masse de captation est compris par exemple entre 1 et 500 volumes (gaz aux conditions normales) par volume de la masse par heure.
  • Les charges auxquelles s'appliquent plus particulièrement l'invention renferment de 0 à 1000 milligrammes de soufre par kilogramme de charge et de 10⁻³ à 5 milligrammes d'arsenic par kilogramme de charge.
  • Les exemples qui suivent précisent le procédé à titre indicatif sans toutefois en limiter la portée.
  • EXEMPLES
  • Masse de captation A : Quinze kilogrammes d'un support d'alumine macroporeux sous forme de billes de 1,5-3 mm de diamètre et présentant une surface spécifique de 160 m²/g, un volume poreux total de 1,05 cm³/g et un volume macroporeux (diamètre > 0,1 µm) de 0,4 cm³/g sont imprégnés par 20 % en poids de nickel sous forme d'une solution aqueuse de nitrate. Après séchage à 120°C durant 5 h et activation thermique à 450°C pendant 2 h sous balayage d'air, on obtient des billes contenant 25,4 % en poids d'oxyde de nickel.
  • Masse de captation B : Cinq kilogrammes de la masse A sont imprégnés à sec par une solution renfermant 175 g de DEODS diéthanoldisulfure (dont 74 g de soufre) dans 5150 cm³ d'une solution de formiate de méthyle à 15 % dans un white spirit. Le catalyseur ainsi préparé est activé à 150°C pendant 1 h.
  • La masse de captation (50 cm³) travaille dans tous les exemples ci-dessous à 180 °C et en flux ascendant. Les tests de captation ont duré 21 jours. Les résultats sont rassemblés sur la Figure 1.
  • EXEMPLE 1 (comparatif)
  • La masse de captation A a été réduit à 400°C sous un débit de 20 l/h de d'hydrogène à 2 bars de pression pendant 4 h. Ensuite, le réacteur a été refroidi à la température de réaction 180°C. On fait ensuite passer sur la masse de captation un condensat lourd de gaz liquéfié avec de l'hydrogène. Le débit de la charge est de 400 cm³/h et celui de l'hydrogène de 3,5 l/h. Le test est effectué sous une pression de 35 bars.
  • Le condensat utilisé pendant ce test (condensat A) possède les caractéristiques suivantes :
       point d'ébullition initial : 21°C
       point d'ébullition final : 470°C
       teneur en arsenic : 65 µg/kg
       teneur en soufre : 237 mg/kg
  • Une quantité d'arsenic, de 5 à 10 µg/kg, a été détectée dans les échantillons de l'effluent prélevés pendant les 72 premières heures.
  • EXEMPLE 2 (comparatif)
  • Un deuxième test de captation d'arsenic a été effectué utilisant un condensat (condensat B) ayant les caractéristiques suivantes :
       point d'ébullition initial : 21°C
       point d'ébullition final : 491°C
       teneur en arsenic 80 : µg/kg
       teneur en soufre : 117 mg/kg
  • Les conditions de préréduction et d'opération sont identiques à celles du test de l'exemple 1. On note, comme dans l'exemple 1, de teneurs d'arsenic dans les effluents, de 5 à 10 µg/kg, pendant les 240 premières heures de mise en régime.
  • EXEMPLE 3 (selon l'invention)
  • Le réacteur a été chargé de 50 cm³ de la masse de captation B, présulfuré comme décrit ci-dessus. Toutes les autres conditions de test sont identiques à celles indiquées dans l'exemple 1 incluant la charge (condensat A). La teneur en arsenic reste inférieure à la limite de détection (< 5 µg/kg) pendant tout le test.
  • EXEMPLE 4 (selon l'invention)
  • Cette fois ci, la masse de captation B a été réduite à 300°C sous un débit de 20 l/h de d'hydrogène à 2 bars de pression pendant 6 h avant de le refroidir à la température de réaction 180°C. On note aussi que la teneur d'arsenic dans l'effluent est inférieure à la limite de détection (< 5 µg/kg) pendant tout le test.
  • Les résultats des tests sont reportés sur la figure 1.
  • Les valeurs au-dessous de la ligne indiquent des concentrations inférieures à la limite de détection. Les symboles sont décalés uniquement pour faciliter leur visualisation et ne représentent pas les valeurs réelles.

Claims (12)

1. Procédé d'élimination d'arsenic dans une charge hydrocarbonée contenant de 0 à 1000 mg de soufre/kg, caractérisé en ce que la charge avec de l'hydrogène est mise au contact à une température de 120-250°C, une pression de 1-40 bars et une vitesse spatiale de 1 à 50h-1, avec une masse de captation renfermant un support et au moins un métal choisi dans le groupe formé par le fer, le nickel, le cobalt, le molybdène, le tungstène, le chrome et le palladium, 5-50% en poids dudit ou desdits métaux étant combiné à l'état de sulfure, et que la masse est obtenue par imprégnation du précurseur renfermant ledit ou lesdits métaux supporté, sous forme métallique et/ou oxyde, à l'aide d'une solution aqueuse ou organique ou une suspension aqueuse ou organique renfermant d'une part au moins un agent réducteur et d'autre part au moins un agent sulfuré choisi dans le groupe constitué par :
· au moins un polysulfure organique en mélange avec du soufre élémentaire,
· au moins un disulfure organique éventuellement en mélange avec du soufre élémentaire,
· au moins un sulfure organique ou minéral éventuellement en mélange avec du soufre élémentaire,
· le soufre élémentaire
ledit précurseur imprégné étant ensuite traité thermiquement.
2. Procédé selon la revendication 1 caractérisé en ce que le débit d'hydrogène est compris entre 1 et 500 volume de gaz par volume de masse de captation et par heure.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que la charge renferme 10⁻³ à 5 mg de mercure par kg de charge.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le métal est le nickel.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que les métaux sont le nickel et le palladium.
6 Procédé selon l'une des revendications précédentes, caractérisé en ce que le support est choisi dans le groupe constitué par l'alumine, les silice-alumines, la silice, les zéolithes, le charbon actif, les argiles et les ciments alumineux.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'état de sulfure est obtenu par imprégnation, hors du réacteur, du précurseur de la masse de captation, à l'aide d'au moins un liquide contenant du soufre choisi dans le groupe constitué par le sulfure d'ammonium, une suspension colloïdal de soufre dans l'eau, une solution organique de soufre, une solution organique de composé(s) soufré(s).
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la charge est mise au contact de la masse à une température de 130-200°C.
9 Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en métal dans la masse (calculée en oxyde de métal) est d'au plus 30% en poids, le métal n'étant pas le palladium.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en palladium (calculée en métal) est d'au plus 0,2%.
11. Procédé selon l'une des revendications précédentes, caractérisé en ce que le précurseur est réduit sous hydrogène à 120-600°C avant d'être mis en contact de la charge.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que le précurseur est traité thermiquement entre 100 et 200°C dans la seconde étape.
EP94400193A 1993-02-08 1994-01-28 Procédé d'elimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée Expired - Lifetime EP0611182B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9301442A FR2701269B1 (fr) 1993-02-08 1993-02-08 Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
FR9301442 1993-02-08

Publications (2)

Publication Number Publication Date
EP0611182A1 true EP0611182A1 (fr) 1994-08-17
EP0611182B1 EP0611182B1 (fr) 1999-06-09

Family

ID=9443891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400193A Expired - Lifetime EP0611182B1 (fr) 1993-02-08 1994-01-28 Procédé d'elimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée

Country Status (7)

Country Link
US (1) US5531886A (fr)
EP (1) EP0611182B1 (fr)
JP (1) JP3486756B2 (fr)
KR (1) KR100285674B1 (fr)
CN (1) CN1048036C (fr)
DE (1) DE69418911T2 (fr)
FR (1) FR2701269B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037884A1 (fr) * 2004-10-06 2006-04-13 Institut Francais Du Petrole Procede de captation selective de l'arsenic dans les essences riches en soufre et en olefines
WO2019197352A1 (fr) 2018-04-11 2019-10-17 IFP Energies Nouvelles Procédé de captation de l'arsenic mettant en œuvre une masse de captation à base de particules d'oxyde de nickel
WO2019197351A1 (fr) 2018-04-11 2019-10-17 IFP Energies Nouvelles Masse de captation de l'arsenic à base de nanoparticules de sulfure de nickel
FR3116828A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091796C (zh) * 1999-07-17 2002-10-02 巴陵石化鹰山石油化工厂 一种硫化镍-钼系加氢脱硫脱砷催化剂的方法
CN100392046C (zh) * 2003-08-07 2008-06-04 上海化工研究院 低温或常温脱除液态石油烃中高沸点砷化物的脱砷剂
GB0611316D0 (en) * 2006-06-09 2006-07-19 Johnson Matthey Plc Improvements in the removal of metals from fluid streams
US20140291246A1 (en) 2013-03-16 2014-10-02 Chemica Technologies, Inc. Selective Adsorbent Fabric for Water Purification
FR3104460A1 (fr) 2019-12-17 2021-06-18 IFP Energies Nouvelles Masse de captation d'impuretés organométalliques préparée par la voie sels fondus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046674A (en) * 1976-06-25 1977-09-06 Union Oil Company Of California Process for removing arsenic from hydrocarbons
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
EP0332526A1 (fr) * 1988-03-10 1989-09-13 Institut Français du Pétrole Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures
WO1990010684A1 (fr) * 1989-03-16 1990-09-20 Institut Français Du Petrole Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures
EP0466568A1 (fr) * 1990-07-13 1992-01-15 EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) Procédé de prétraitement d'un catalyseur par un mélange d'un agent soufre et d'un agent réducteur organique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804750A (en) * 1972-12-22 1974-04-16 Atlantic Richfield Co Shale oil treatment
US4853110A (en) * 1986-10-31 1989-08-01 Exxon Research And Engineering Company Method for separating arsenic and/or selenium from shale oil
DZ1209A1 (fr) * 1987-05-26 2004-09-13 Inst Francais Du Petrole Procédé de préparation et de régeneration d'une masse solide de captation du mercure renfermant du cuivre.
DE3822132C2 (de) * 1987-07-02 1997-11-20 Inst Francais Du Petrole Verwendung eines Katalysators zur Entfernung von Arsen und/oder Phosphor aus diese enthaltenden flüssigen Kohlenwasserstoffen
EP0357873B1 (fr) * 1988-08-10 1992-08-26 Jgc Corporation Méthode pour enlever du mercure d'hydrocarbures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
US4046674A (en) * 1976-06-25 1977-09-06 Union Oil Company Of California Process for removing arsenic from hydrocarbons
EP0332526A1 (fr) * 1988-03-10 1989-09-13 Institut Français du Pétrole Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures
WO1990010684A1 (fr) * 1989-03-16 1990-09-20 Institut Français Du Petrole Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures
EP0466568A1 (fr) * 1990-07-13 1992-01-15 EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) Procédé de prétraitement d'un catalyseur par un mélange d'un agent soufre et d'un agent réducteur organique

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037884A1 (fr) * 2004-10-06 2006-04-13 Institut Francais Du Petrole Procede de captation selective de l'arsenic dans les essences riches en soufre et en olefines
US7901567B2 (en) 2004-10-06 2011-03-08 IFP Energies Nouvelles Process for selective capture of arsenic in gasolines rich in sulphur and olefins
WO2019197352A1 (fr) 2018-04-11 2019-10-17 IFP Energies Nouvelles Procédé de captation de l'arsenic mettant en œuvre une masse de captation à base de particules d'oxyde de nickel
WO2019197351A1 (fr) 2018-04-11 2019-10-17 IFP Energies Nouvelles Masse de captation de l'arsenic à base de nanoparticules de sulfure de nickel
FR3116828A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone

Also Published As

Publication number Publication date
FR2701269A1 (fr) 1994-08-12
EP0611182B1 (fr) 1999-06-09
CN1091767A (zh) 1994-09-07
JP3486756B2 (ja) 2004-01-13
KR940019837A (ko) 1994-09-15
CN1048036C (zh) 2000-01-05
JPH06256772A (ja) 1994-09-13
KR100285674B1 (ko) 2001-05-02
FR2701269B1 (fr) 1995-04-14
DE69418911D1 (de) 1999-07-15
DE69418911T2 (de) 1999-09-30
US5531886A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
EP0611183B1 (fr) Procédé d&#39;élimination du mercure dans des hydrocarbures par passage sur un catalyseur présulfure
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d&#39;octane
EP0332526B1 (fr) Procédé pour l&#39;élimination du mercure et éventuellement d&#39;arsenic dans les hydrocarbures
EP0628337B1 (fr) Procédé d&#39;élimination de l&#39;arsenic dans un fluide, en présence d&#39;une masse de captation
EP0484233B1 (fr) Procédé de préparation d&#39;une masse solide de captation de mercure
EP0463044B1 (fr) Procede pour l&#39;elimination du mercure et eventuellement d&#39;arsenic dans les hydrocarbures
EP2816093B1 (fr) Procédé d&#39;élimination de l&#39;arsenic d&#39;une charge d&#39;hydrocarbures
EP0611182B1 (fr) Procédé d&#39;elimination d&#39;arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée
EP0599702A1 (fr) Procédé d&#39;elimination de mercure et eventuellement d&#39;arsenic dans des hydrocarbures
EP0302771B1 (fr) Procédé pour l&#39;élimination conjointe d&#39;arsenic et d&#39;oxysulfure de carbone d&#39;une coupe d&#39;hydrocarbures insaturés en phase liquide
EP0570261B1 (fr) Procédé de captation de mercure et d&#39;arsenic dans une coupe d&#39;hydrocarbure
BE1012739A3 (fr) Masse d&#39;elimination d&#39;arsenic et de mercure dans des hydrocarbures a base de nickel supporte.
FR2937045A1 (fr) Mise en oeuvre de solides a base de ferrite de zinc dans un procede de desulfuration profonde de charges oxygenees
FR2857276A1 (fr) Procede d&#39;elimination de composes soufres par oxydation directe
CA1094294A (fr) Production de soufre
FR2762004A1 (fr) Procede pour l&#39;elimination d&#39;arsenic dans les charges hydrocarbonees liquides
EP0169828B1 (fr) Procédé pour enlever le sulfure de carbonyle des charges d&#39;hydrocarbures liquides oléfiniques
WO2023117552A1 (fr) Procede de rejuvenation de masses de captation de metaux lourds
FR2512830A1 (fr) Procede d&#39;adoucissement d&#39;hydrocarbures
FR3130635A1 (fr) Procede de captation de metaux lourds par co-alimentation d’un flux sulfurant
FR2808532A1 (fr) Procede de captation de mercure et d&#39;arsenic comprenant une evaporation puis une condensation de la charge hydrocarbonnee
FR2788452A1 (fr) Masse de captation pour l&#39;elimination d&#39;arsenic dans les hydrocarbures
FR2720957A1 (fr) Catalyseur d&#39;hydrogénation contenant du palladium et au moins un métal alcalin ou alcalino terreux et procédé d&#39;hydrogénation utilisant ce catalyseur.
LU85308A1 (fr) Procede pour enlever le sulfure de carbonyle des charges d&#39;hydrocarbures liquides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19950217

17Q First examination report despatched

Effective date: 19961220

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APBJ Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOS IRAPE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 69418911

Country of ref document: DE

Date of ref document: 19990715

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69418911

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130128

Year of fee payment: 20

Ref country code: FR

Payment date: 20130222

Year of fee payment: 20

Ref country code: DE

Payment date: 20130304

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130121

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69418911

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140128

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140127

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140129