EP0463044B1 - Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures - Google Patents

Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures Download PDF

Info

Publication number
EP0463044B1
EP0463044B1 EP90904870A EP90904870A EP0463044B1 EP 0463044 B1 EP0463044 B1 EP 0463044B1 EP 90904870 A EP90904870 A EP 90904870A EP 90904870 A EP90904870 A EP 90904870A EP 0463044 B1 EP0463044 B1 EP 0463044B1
Authority
EP
European Patent Office
Prior art keywords
charge
catalyst
metal
mercury
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90904870A
Other languages
German (de)
English (en)
Other versions
EP0463044A1 (fr
Inventor
Philippe Courty
Pierre Dufresne
Jean-Paul Boitiaux
Germain Bâtiment Condé MARTINO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0463044A1 publication Critical patent/EP0463044A1/fr
Application granted granted Critical
Publication of EP0463044B1 publication Critical patent/EP0463044B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content

Definitions

  • liquid condensates by-products of gas production can contain many trace metal compounds, generally present in the form of organometallic complexes, in which the metal forms bonds with one or more carbon atoms of the organometallic radical.
  • metal compounds are poisonous catalysts used in petroleum transformation processes. In particular, they poison the hydrotreatment and hydrogenation catalysts by gradually depositing on the active surface.
  • Metallic compounds are found in particular in heavy cuts from the distillation of petroleum crude (nickel, vanadium, arsenic, mercury) or in natural gas condensates (mercury, arsenic).
  • the thermal or catalytic cracking treatments of the above hydrocarbon cuts can allow the elimination of certain metals (for example nickel, vanadium ...) ; on the other hand, certain other metals (for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Certain metals for example nickel, vanadium ...)
  • certain other metals for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Mercury also presents the risk of causing corrosion by the formation of amalgams, for example with aluminum-based alloys, in particular in the process sections operating at a temperature low enough to cause condensation of liquid mercury (cryogenic fractionations , exchangers).
  • Prior methods are known for removing mercury or arsenic from hydrocarbons in the gas phase; one operates in particular in the presence of solid masses, which can be called indifferently: adsorption, capture, trapping, extraction and metal transfer masses.
  • Patent FR 2534826 describes other masses consisting of elemental sulfur and an inorganic support.
  • Patent DE 2149993 teaches the use of Group VIII metals (nickel, platinum, palladium).
  • US Patent 4069140 describes the use of various absorbent masses.
  • the supported iron oxide is described, the use of lead oxide is described in US Pat. No. 3,782,076 and that of copper oxide in US Patent 3,812,653.
  • the object of the invention is a process for removing mercury and possibly arsenic contained in a hydrocarbon feedstock and which remedies the defects of the previous processes.
  • Another object of the invention is to be able to remove the mercury and possibly the arsenic even in hydrocarbon feedstocks further containing significant proportions of sulfur.
  • significant proportions is meant from 0.005 to 3% by weight and in particular from 0.02 to 2% by weight.
  • a sulfur compound for example an organic sulphide, or alternatively hydrogen sulphide, either in the raw charge (before de-arsenification) or in the charge treated in the presence of hydrogen and of the de-arsenification mass with catalytic properties, before demercurization in the presence of the second bed.
  • a sulfur compound for example an organic sulphide, or alternatively hydrogen sulphide
  • the charge also contains arsenic, it is also eliminated.
  • the operation is preferably carried out with the feed at least partly in the liquid phase.
  • the catalyst also allows hydrodesulfurization, hydrodenitrification and, at least in part, hydrogenation of the unsaturated compounds which may be present in the feed, which can turn out to be advantageous when said fillers are intended for steam cracking.
  • said mass allows effective demetallation if, in addition to arsenic and mercury, vanadium and / or nickel are present.
  • the arsenic capture mass with catalytic properties subsequently designated as "the catalyst" used in the composition of the assembly which is the subject of the present invention therefore consists of at least one metal M chosen from the group formed by iron, nickel, cobalt, palladium, platinum and at least one metal N chosen from the group formed by chromium, molybdenum, tungsten and uranium, these metals, in the form of oxides and / or oxysulfides and / or sulfides, which can be used as such or preferably be deposited on at least one support from the list which follows. Under conditions of use, it is imperative that the metal M and / or the metal N are present in sulfurized form for at least 50% of their totality.
  • the respective amounts of metal or metals M and of metal or metals N contained in the catalyst are usually such that the atomic ratio of metal or metals M to metal or metals N, M / N is approximately 0.3: 1 to 0, 7: 1 and preferably from about 0.3: 1 to about 0.45: 1.
  • the quantity by weight of metals contained in the finished catalyst expressed by weight of metal relative to the weight of the finished catalyst is usually, for the metal or metals N, from about 2 to 30% and preferably from about 5 to 25%, and for the metal or metals M of approximately 0.01 to 15%, more particularly of approximately 0.01 to 5% and preferably of approximately 0.05 to 3% for palladium and / or platinum; and approximately 0.5 to 15% and preferably approximately 1 to 10% in the case of non-noble metals M (Fe, Co, Ni).
  • metals N molybdenum and / or tungsten are preferably used, and among the metals M, the non-noble metals iron, cobalt and / or nickel are preferred.
  • the following combinations of metals are used: nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, cobalt-tungsten, iron-molybdenum and iron-tungsten.
  • the most preferred combinations are nickel-molydene and cobalt-molybdenum. It is also possible to use combinations of three metals, for example nickel-cobalt-molybdenum.
  • the porous mineral matrix is chosen so that the final catalyst has the optimal pore volume characteristics.
  • This matrix usually comprises at least one of the elements of the group formed by alumina, silica, silica-alumina, magnesia, zirconia, titanium oxide, clays, aluminous cements, aluminates, for example magnesium, calcium, strontium, barium, manganese, iron, cobalt, nickel, copper and zinc aluminates, mixed aluminates, for example those comprising at least two of the metals mentioned above.
  • matrices containing alumina for example alumina and silica-alumina or alternatively titanium oxide.
  • the matrix contains silica it is preferable that the quantity of silica is at most equal to 25% by weight relative to the total weight of the matrix.
  • the matrix can also contain, in addition to at least one of the compounds mentioned above, at least one crystalline or natural zeolitic alumino-silicate (zeolite).
  • zeolite crystalline or natural zeolitic alumino-silicate
  • the amount of zeolite usually represents from 0 to 95% by weight and preferably from 1 to 80% by weight relative to the weight of the matrix.
  • mixtures of alumina and zeolite or alternatively mixtures of silica-alumina and zeolite.
  • zeolites with an atomic ratio of framework, silicon to aluminum (Si / Al) greater than about 5: 1.
  • zeolites with faujasite structures are used, and in particular stabilized or ultra-stabilized Y zeolites.
  • the most commonly used matrix is alumina, and transition alumina, pure or mixed, such as ⁇ C ⁇ T , ⁇ , ⁇ , is usually preferred.
  • Said matrix will preferably have a large surface area and a sufficient pore volume, that is to say respectively at least 50 m2 / g and at least 0.5 cm3 / g, for example 50 to 350 m2 / g and 0, 5 to 1.2 cm3 / g.
  • the fraction of macroporous volume, consisting of all the pores with an average diameter at least equal to 0.1 ⁇ m, may represent from 10% to 30% of the total pore volume.
  • the catalyst Before use, the catalyst can, if necessary, be treated with a gas containing hydrogen at a temperature of 50 to 500 ° C. It can also, if necessary, be presulphurized at least in part, for example according to the French SULFICAT (R) process, or else by treatment in the presence of a gas containing hydrogen sulphide and / or any other sulphurized compound.
  • a gas containing hydrogen at a temperature of 50 to 500 ° C.
  • R French SULFICAT
  • the mass of mercury capture used in the composition of the assembly which is the subject of the present invention consists of sulfur or a sulfur compound deposited on a porous mineral support or matrix chosen, for example, from the group formed by l alumina, silica-alumina, silica, zeolites, clays, active carbon, aluminous cements, titanium oxides, zirconium oxide or among the other supports, consisting of a porous mineral matrix, cited for the catalyst.
  • Use will preferably be made of a compound containing sulfur and a metal P, where P is chosen from the group formed by copper, iron, silver and, preferably, by copper or the copper-silver association. At least 50% of the metal P is used in the form of sulphide.
  • This capture mass can be prepared according to the method recommended in US patent 4094777 of the applicant or by depositing copper oxide on an alumina then sulphurization by means of an organic polysulphide as described in the French patent application 87 / 07442 of the plaintiff.
  • the proportion of elementary sulfur combined or not in the capture mass is advantageously between 1 and 40% and preferably between 1 and 20% by weight.
  • the proportion of metal P combined or not in the form of sulphide will preferably be between 0.1 and 20% of the total weight of the capture mass.
  • the assembly consisting of the catalyst and the mercury capture mass can be used either in two reactors or in one.
  • reactors When two reactors are used, they can be arranged in series, the reactor containing the catalyst being advantageously placed before that containing the capture mass.
  • the catalyst and the capture mass can be arranged either in two separate beds or mixed intimately.
  • the volume ratio of the mass of desarsenification with catalytic properties to the mass of demercurization may vary between 1:10 and 5: 1.
  • the one containing the mass of desarsenification with catalytic properties may be operated in a temperature range which can range from 180 to 450 ° C., more advantageously from 230 to 420 ° C. and in a preferred manner, from 260 to 390 ° C.
  • the operating pressures will preferably be chosen from 1 to 50 bars absolute, more particularly from 5 to 40 bars and more advantageously from 10 to 30 bars.
  • the hydrogen flow rate expressed in liters of gaseous hydrogen (TPN) per liter of liquid charge will preferably be chosen between 1 and 1000, more particularly between 10 and 300 and more advantageously from 30 to 200.
  • the hourly volumetric speed calculated with respect to the mass of desarsenification with catalytic properties, may be from 0.1 to 30 hours ⁇ 1 more particularly from 0.5 to 20h ⁇ 1 and preferably from 1 to 10 hours ⁇ 1 (volumes of liquid, per volume of mass and per hour).
  • the demercurization mass will be operated in a temperature range which can range from 0 to 400 ° C, more advantageously from 20 to 350 ° C and, preferably, from 40 to 330 ° C.
  • the operating pressures and the flow rate of hydrogen D will be those defined with respect to the mass of desarsenification with catalytic properties.
  • the hourly volumetric speed, calculated with respect to the mass of demercurization may be that indicated for the mass of desarsenification with catalytic properties, it being understood as indicated above, that the volume ratio of the mass of desarsenification to the mass of demercurization may vary from 1:10 to 5: 1, depending in particular on the proportions of arsenic and mercury contained in the charge. It goes without saying that the relative proportions of the two masses and therefore the hourly volumetric speeds relative to the latter may then be very different (same liquid flow but different mass volumes).
  • the charge treated in the presence of the catalyst can optionally be cooled before passing over the demercurization mass.
  • the two capture masses being then placed in a single reactor, this can be operated in a temperature range which can range from 180 to 400 ° C, more advantageously 190 to 350 ° C and in a way preferred 200 to 330 ° C.
  • the hydrogen-rich gas recovered after separation of the purified liquid product it may prove to be advantageous to recycle at the top, at least in part, the hydrogen-rich gas recovered after separation of the purified liquid product.
  • the said recycling allows better control of the partial pressure ratio pH partiS / pH2 in the reaction medium.
  • the feed contains little sulfur (for example less than 20 ppm by weight) it may also prove to be advantageous to add to the feed and / or in the hydrogen at least one sulfur compound in order to increase the said pH2S / pH2 ratio.
  • the charges to which the invention more particularly applies contain from 10 ⁇ 3 to 2 milligrams of mercury per kilogram of charge and, optionally from 10 ⁇ 2 to 10 milligrams arsenic per kilogram of charge.
  • HR 306 catalyst 250 cm3 of HR 306 catalyst, produced by PROCATALYSE, are loaded into a steel reactor 3 cm in diameter.
  • Said HR 306 catalyst consisting of extrudates with a diameter of 1.2 mm and a length of 2 to 10 mm, contains 2.36% of cobalt and 9.33% of molybdenum by weight; the matrix consists of transition alumina.
  • the specific surface is 210 square meters per gram and the pore volume is 0.48 / cm3 / g.
  • the catalyst is then subjected to a presulfurization treatment.
  • a hydrogen sulfide-hydrogen mixture in the volume proportions 3:97 is injected at a rate of 10 l / h.
  • the temperature rise rate is 1 ° C / min and the final level (350 ° C) is 2 hours.
  • this catalyst has a very low efficiency in retaining mercury; on the other hand, it has good effectiveness in retaining arsenic.
  • a capture mass consisting of a copper sulphide is prepared, deposited on an alumina support as described in US Patent No. 4094777 of the Applicant.
  • the mass contains 12% by weight of copper and 6% by weight of sulfur in the form of sulphide.
  • the matrix consists of transition alumina.
  • the specific surface is 70 m2 / g and the pore volume of 0.4 cm3 / g.
  • the capture mass is not effective in retaining arsenic. On the other hand, it has transient effectiveness in retaining mercury, but it drops very quickly over time.
  • the condensate is allowed to pass for 1000 hours.
  • the results of analyzes of mercury in the product after 50, 100, 200, 500 and 1000 hours are summarized in Table III below.
  • Example 5 according to the invention.
  • the operating conditions remain identical, with the exception of the operating temperature of the HR 306 catalyst, brought to 340 ° C. and to the hydrogen flow rate, brought to 200 liters / liter of charge, ie 100 liters / hour.
  • Example 4 The experiment described in Example 4 is reproduced.
  • the reactor containing 100 cm3 of copper sulphide capture mass is now loaded with: 100 cm3 of said mass and 50 cm3 of demercurization mass composed of 13% by weight of sulfur on activated carbon, of the CALGON HGR type, prepared according to the teaching of patent USP3194629.
  • Example 7 according to the invention.
  • Example 3 The first reactor used in Example 3 is now loaded with 200 cm3 of the HMC 841 catalyst, sold by PROCATALYSE.
  • This catalyst consisting of beads of diameters 1.5 to 3 mm contains 1.96% nickel and 8% molybdenum by weight; the matrix consists of transition alumina. The specific surface is 140 m2 / g and the pore volume of 0.89 cm3 / g.
  • the HMC 841 catalyst was presulphurized before loading (ex-situ sulphurization) according to the SULFICAT (R) process sold by the company EURECAT; its sulfur content is 4.8% by weight.
  • the second reactor is loaded with 200 cm3 of a demercurization mass containing 8% of sulfur, 14.5% of copper and 0.2% by weight of silver, prepared according to the teaching of US Pat. No. 4,094,777, then presulphurized by contacting an organic polysulphide according to the teaching of French patent 87-07442 of the applicant.
  • the analysis of the purified liquid effluent shows that it contains only 60 ppm (weight) of sulfur and 33 ppm (weight) of nitrogen.
  • the hydrodesulfurization rate and the hydrodenitrogenation rate are therefore respectively 95.4 and 24%.
  • the effluent contains only 28% of aromatics (compared to 41% in the fresh feed), which demonstrates, in addition to the activity in desarsenification and in demercurization, the additional properties in hydrodesulfurization in hydrodenitrogenation and in hydrogenation of aromatics of the assembly (catalyst + demercurization mass) according to the invention.
  • the operating temperature is equal to 220 ° C.
  • the operating pressure equal to 50 bars (absolute)
  • the flow rate is 200 liters per liter of charge, or 120 liters per hour.
  • the charge rate is 0.6 liters per hour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

Procédé d'élimination du mercure et éventuellement d'arsenic dans les charges d'hydrocarbures contenant mercure et soufre, caractérisé en ce que l'on fait passer, sous hydrogène, ladite charge au contact d'une masse de captation d'arsenic à propriétés catalytiques renfermant au moins un métal du groupe formé par nickel, cobalt, fer, palladium et platine, au moins un métal du groupe formé par chrome, molybdène, tungstène et uranium et un support de phase active, ladite masse étant suivie sur le trajet de la charge de, ou mélangée à, une masse de captation du mercure renfermant un sulfure d'au moins un métal du groupe cuivre, fer et argent ou du soufre et un support de phase active.

Description

  • Il est connu que les condensats liquides sous-produits de la production du gaz (gaz naturel, gaz associé) et les pétroles bruts peuvent contenir de nombreux composés métalliques à l'état de traces, généralement présents sous forme de complexes organométalliques, dans lesquels le métal forme des liaisons avec un ou plusieurs atomes de carbone du radical organométallique.
  • Ces composés métalliques sont des poisons des catalyseurs utilisés dans les procédés de transformation du pétrole. En particulier, ils empoisonnent les catalyseurs d'hydrotraitement et d'hydrogénation en se déposant progressivement sur la surface active. Des composés métalliques se trouvent notamment dans les coupes lourdes provenant de la distillation du brut pétrolier (nickel, vanadium, arsenic, mercure) ou encore dans les condensats de gaz naturel (mercure, arsenic).
  • Les traitements de craquage thermique ou catalytique des coupes d'hydrocarbures ci-dessus, par exemple leur vapocraquage pour conversion en coupes d'hydrocarbures plus légers, peuvent permettre l'élimination de certains métaux (par exemple le nickel, le vanadium...); par contre, certains autres métaux (par exemple le mercure, l'arsenic...) susceptibles de former des composés volatils et/ou étant volatils à l'état d'élément (mercure) se retrouvent au moins en partie dans les coupes plus légères et peuvent, de ce fait, empoisonner les catalyseurs des procédés de transformation subséquents. Le mercure présente en outre le risque de provoquer des corrosions par formation d'amalgames, par exemple avec les alliages à base d'aluminium, notamment dans les sections des procédés opérant à une température suffisamment basse pour provoquer la condensation de mercure liquide (fractionnements cryogéniques, échangeurs).
  • Des procédés antérieurs sont connus pour éliminer le mercure ou l'arsenic dans les hydrocarbures en phase gazeuse; on opère notamment en présence de masses solides, lesquelles peuvent être dénommées indifferemment : masses d'adsorption, de captation, de piégeage, d'extraction, de transfert de métaux.
  • Pour ce qui concerne les masses pour démercurisation : le brevet US 3194629 décrit des masses constituées de soufre ou encore d'iode déposé sur charbon actif.
  • Le brevet US 4094777 de la demanderesse décrit d'autres masses comprenant du cuivre au moins en partie sous forme de sulfure et un support minéral. Ces masses peuvent également renfermer de l'argent.
  • La demande française 87-07442 de la demanderesse décrit un mode de préparation spécifique des dites masses.
  • Le brevet FR 2534826 décrit d'autres masses constituées de soufre élémentaire et d'un support minéral.
  • Pour ce qui concerne la désarsénification:
  • Le brevet DE 2149993 enseigne d'utiliser les métaux du groupe VIII (nickel, platine, palladium).
  • Le brevet US 4069140 décrit l'utilisation de diverses masses absorbantes. L'oxyde de fer supporté est décrit, l'emploi d'oxyde de plomb est décrit dans le brevet US 3782076 et celui d'oxyde de cuivre dans le brevet US 3812653.
  • Or, si certains des produits décrits dans l'art antérieur présentent de bonnes performances pour la démercurisation ou encore pour la désarsénification de gaz (par exemple l'hydrogène) ou de mélanges gazeux (par exemple le gaz naturel) et plus particulièrement lorsque le gaz naturel contient une quantité importante d'hydrocarbures renfermant trois ou plus de trois atomes de carbone, les essais effectués par la demanderesse montrent que les mêmes produits se révèlent peu efficaces dès que les charges contiennent des composés autres que les métaux élémentaires, par exemple pour l'arsenic, des arsines comprenant des chaînes hydrocarbonées renfermant deux ou plus de deux atomes de carbone ou bien, pour le mercure, le diméthylmercure et les autres composés du mercure comprenant des chaînes hydrocarbonées renfermant deux ou plus de deux atomes de carbone et, éventuellement d'autres éléments non métalliques (soufre, azote...).
  • En outre, d'autres essais menés à bien par la demanderesse, montrent que lorsque du soufre est présent dans la charge, il peut interagir avec les éléments métalliques actifs pour la désarsénification lesquels, alors transformés en sulfures au moins pour partie, peuvent alors présenter une perte d'activité significative.
  • L'objet de l'invention est un procédé d'élimination du mercure et éventuellement d'arsenic contenus dans une charge hydrocarbonée et qui remédie aux défauts des procédés antérieurs.
  • Un autre objet de l'invention est de pouvoir éliminer le mercure et éventuellement l'arsenic même dans des charges hydrocarbonées contenant en outre des proportions significatives de soufre. Par proportions significatives on entend de 0,005 à 3% poids et notamment de 0,02 à 2% poids.
  • Selon le procédé de l'invention, on fait passer un mélange de la charge et d'hydrogène au contact d'un catalyseur que par la suite on appellera arbitrairement masse de captation d'arsenic, à propriétés catalytiques, renfermant :
    • au moins un métal M du groupe formé par le fer, le cobalt, le nickel, le palladium et le platine
    • au moins un métal N du groupe formé par le chrome, le molybdène, le tungstène et l'uranium
    • et éventuellement un support de phase active, à base d'au moins une matrice minérale poreuse, le dit catalyseur étant suivi sur le trajet de la charge de,,ou mélangé à, une masse de captation du mercure, renfermant du soufre et/ou au moins un sulfure métallique d'au moins un métal P choisi dans le groupe formé par le cuivre, le fer et l'argent, et un support de phase active.
  • Selon un autre mode de réalisation de l'invention, on peut également ajouter un composé du soufre; par exemple un sulfure organique, ou encore du sulfure d'hydrogène, soit dans la charge brute (avant désarsénification), soit dans la charge traitée en présence d'hydrogène et de la masse de désarsénéfication à propriétés catalytiques, avant démercurisation en présence du deuxième lit.
  • Lorsque la charge renferme aussi de l'arsenic, celui-ci est également éliminé. On opère de préférence avec la charge au moins en partie en phase liquide.
  • Il a aussi été découvert, d'une façon surprenante, qu'en présence de concentrations élevées en arsenic ou encore en présence de vitesses volumétriques horaires "liquides" élevées pouvant provoquer une captation imparfaite de l'arsenic (par exemple moins de 90%) sur la masse de captation d'arsenic à propriétés catalytiques, la masse de captation du mercure fonctionne également de manière très satisfaisante pour la captation de l'arsenic.
  • Il a enfin été découvert que, d'une manière surprenante, le catalyseur permet également une hydrodésulfuration, une hydrodenitrification et, au moins pour partie une hydrogénation des composés insaturés pouvant se trouver dans la charge, ce qui peut se révèler avantageux lorsque les dites charges sont destinées au vapocraquage. Enfin la dite masse permet une démétallation efficace si, outre l'arsenic et le mercure, du vanadium et/ou du nickel sont présents.
  • D'une façon surprenante, les propriétés catalytiques de ladite masse de captation d'arsenic demeurent inchangées, même en cas d'absence stricte du dit métal dans la charge.
  • La dite masse de captation d'arsenic à propriétés catalytiques est donc un solide complexe, lequel, en présence d'hydrogène et sous les conditions opératoires décrites ci-après :
    • active par catalyse les composés de mercure et d'arsenic (si l'arsenic est présent) et les transforme en composés réactifs vis-à-vis des masses de captation objet de l'invention,
    • capte sélectivement l'arsenic (si de l'arsenic est présent)
    • active par catalyse les dits composés du mercure même en l'absence stricte de composés d'arsenic.
  • La masse de captation d'arsenic à propriétés catalytiques désignée par la suite comme "le catalyseur" entrant dans la composition de l'ensemble faisant l'objet de la présente invention est donc constituée d'au moins un métal M choisi dans le groupe formé par le fer, le nickel, le cobalt, le palladium, le platine et d'au moins un métal N choisi dans le groupe formé par le chrome le molybdène, le tungstène et l'uranium, ces métaux, sous forme d'oxydes et/ou d'oxysulfures et/ou de sulfures, pouvant être utilisés tels quels ou de préférence être déposé sur au moins un support de la liste qui fait suite. En conditions d'usage il est impératif que le métal M et/ou le métal N se trouvent sous forme sulfurée pour au moins 50% de leur totalité.
  • Il est connu de l'homme de métier que l'état d'équilibre entre les formes réduites et sulfurées dépend entre autres des conditions opératoires et notamment, outre la température, des pressions partielles en hydrogène, en sulfure d'hydrogène, et en vapeur d'eau dans le milieu réactionnel, e.g. :
    Figure imgb0001
    Figure imgb0002
  • Les quantités respectives de métal ou métaux M et de métal ou métaux N contenues dans le catalyseur sont habituellement telles que le rapport atomique métal ou métaux M sur métal ou métaux N, M/N soit d'environ 0,3:1 à 0,7:1 et de préférence d'environ 0,3:1 à environ 0,45:1 .
  • La quantité pondérale de métaux contenus dans le catalyseur fini exprimée en poids de métal par rapport au poids du catalyseur fini est habituellement, pour le métal ou les métaux N d'environ 2 à 30% et de préférence d'environ 5 à 25%, et pour le métal ou les métaux M d'environ 0,01 à 15%, plus particulièrement d'environ 0,01 à 5% et de préférence d'environ 0,05 à 3% pour le palladium et/ou le platine; et d'environ 0,5 à 15% et de préférence d'environ 1 à 10% dans le cas des métaux M non-nobles (Fe, Co, Ni).
  • Parmi les métaux N on utilise de préférence le molybdène et/ou le tungstène et parmi les métaux M on préfère employer les métaux non nobles fer, cobalt et/ou nickel. D'une manière avantageuse on utilise les associations de métaux suivantes : nickel-molybdène, nickel-tungstène, cobalt-molybdène, cobalt-tungstène, fer-molybdène et fer-tungstène. Les associations les plus préférées sont nickel-molydène et cobalt-molybdène. Il est également possible d'utiliser des associations de trois métaux, par exemple nickel-cobalt-molybdène.
  • La matrice minérale poreuse est choisie de manière à ce que le catalyseur final ait les caractéristiques de volume poreux optimales. Cette matrice comprend habituellement au moins un des éléments du groupe formé par l'alumine, la silice, la silice-alumine, la magnésie, la zircone, l'oxyde de titane, les argiles, les ciments alumineux, les aluminates, par exemple les aluminates de magnésium, de calcium , de strontium, de barium, de manganèse, de fer, de cobalt, de nickel, de cuivre et de zinc, les aluminates mixtes par exemple ceux comprenant au moins deux des métaux cités ci-avant.
  • On peut préférer utiliser des matrices contenant de l'alumine par exemple l'alumine et la silice-alumine ou encore de l'oxyde de titane. Lorsque la matrice contient de la silice il est préférable que la quantité de silice soit au plus égale à 25% en poids par rapport au poids total de la matrice.
  • La matrice peut également renfermer outre au moins l'un des composés cités ci-avant, au moins un alumino-silicate zéolithique cristallin, (zéolithe) synthétique ou naturel. La quantité de zéolithe représente habituellement de 0 à 95% en poids et de préférence de 1 à 80% en poids par rapport au poids de la matrice.
  • On peut aussi utiliser avantageusement des mélanges d'alumine et de zéolithe,ou encore des mélanges de silice-alumine et de zéolithe.
  • Parmi les zéolithes on préfère habituellement employer des zéolithes dont le rapport atomique de charpente, silicium sur aluminium (Si/Al) est supérieur à environ 5:1. On emploie avantageusement des zéolithes de structures faujasite et en particulier les zéolithes Y stabilisées ou ultrastabilisées.
  • La matrice la plus couramment employée est l'alumine, et on préfère usuellement les alumines de transition, pures ou en mélange, telles que γC γT, δ, ϑ.
  • La dite matrice présentera de préférence une grande surface et un volume poreux suffisant, c'est-à-dire respectivement au moins 50 m2/g et au moins 0,5 cm3/g, par exemple 50 à 350 m2/g et 0,5 à 1,2 cm3/g. La fraction de volume macroporeux, constituée de l'ensemble des pores de diamètre moyen au moins égal à 0,1 µm pourra représenter de 10% à 30% du volume poreux total.
  • La préparation d'un tel catalyseur est suffisamment connue de l'homme de métier pour ne pas être répétée dans le cadre de la présente invention.
  • Avant utilisation, le catalyseur peut, si nécessaire, être traité par un gaz contenant de l'hydrogène à une température de 50 à 500°C. Il peut également, si nécessaire, être présulfuré au moins pour partie, par exemple selon le procédé français SULFICAT (R), ou encore par traitement en présence d'un gaz contenant du sulfure d'hydrogène et/ou tout autre composé sulfuré.
  • La masse de captation du mercure entrant dans la composition de l'ensemble faisant l'objet de la présente invention est constituée par du soufre ou un composé soufré déposé sur un support ou matrice minérale poreuse choisie, par exemple, dans le groupe formé par l'alumine, les silice-alumines, la silice, les zéolithes, les argiles, les charbons actifs, les ciments alumineux, les oxydes de titane, l'oxyde de zirconium ou encore parmi les autres supports, constitués d'une matrice minérale poreuse, cités pour le catalyseur.
  • On peut utiliser, comme masse de captation, du soufre déposé sur un support et par exemple un produit commercial tel le CALGON HGR, et plus généralement tout produit constitué par du soufre déposé sur un charbon actif ou sur une alumine macroporeuse tel que décrit dans le brevet français 2534826.
  • On utilisera de préférence un composé renfermant du soufre et un métal P, où P est choisi dans le groupe formé par le cuivre, le fer, l'argent et, de façon préférée, par le cuivre ou l'association cuivre-argent. Au moins 50% du métal P est employé sous forme de sulfure.
  • Cette masse de captation peut être préparée selon la méthode préconisée dans le brevet US 4094777 de la demanderesse ou encore par dépôt d'oxyde de cuivre sur une alumine puis sulfuration au moyen d'un polysulfure organique tel que décrit dans la demande de brevet français 87/07442 de la demanderesse.
  • La proportion de soufre élémentaire combiné ou non dans la masse de captation est avantageusement comprise entre 1 et 40% et de façon préférée entre 1 et 20% en poids.
  • La proportion en métal P combiné ou non sous forme de sulfure sera de préférence comprise entre 0,1 et 20% du poids total de la masse de captation.
  • L'ensemble constitué par le catalyseur et la masse de captation du mercure pourra être mis en oeuvre soit dans deux réacteurs soit en un seul.
  • Lorsque deux réacteurs seront utilisés, ils pourront être disposés en série, le réacteur renfermant le catalyseur étant avantageusement placé avant celui renfermant la masse de captation.
  • Lorsqu'un seul réacteur est utilisé, le catalyseur et la masse de captation pourront être disposés soit en deux lits séparés soit mélangés intimement.
  • Selon les quantités de mercure et/ou d'arsenic (calculées sous forme élémentaire) contenues dans la charge, le rapport volumique de la masse de désarsénification à propriétés catalytiques à la masse de démercurisation pourra varier entre 1:10 et 5:1.
  • Lorsque l'on opère en réacteur séparés, on pourra opérer celui contenant la masse de désarsénification à propriétés catalytiques dans un domaine de température pouvant aller de 180 à 450°C, plus avantageusement de 230 à 420°C et d'une façon préférée, de 260 à 390°C.
  • Les pressions opératoires seront choisies de préférence de 1 à 50 bars absolus, plus particulièrement de 5 à 40 bars et de façon plus avantageuse de 10 à 30 bars.
  • Le débit d'hydrogène, exprimé en litres d'hydrogène gazeux (TPN) par litre de charge liquide sera choisi de préférence entre 1 et 1000, plus particulièrement entre 10 et 300 et de façon plus avantageuse de 30 à 200.
  • La vitesse volumétrique horaire, calculée par rapport à la masse de désarsénification à propriétés catalytiques, pourra être de 0,1 à 30 heures⁻¹ plus particulièrement de 0,5 à 20h⁻¹ et d'une façon préférée, de 1 à 10 h⁻¹ (volumes de liquide, par volume de masse et par heure).
  • La masse de démercurisation sera opérée dans un domaine de température pouvant aller de 0 à 400°C, plus avantageusement de 20 à 350°C et, d'une façon préférée, de 40 à 330°C.
  • Les pressions opératoires et le débit d'hydrogène D seront ceux définis par rapport à la masse de désarsénification à propriétés catalytiques.
  • La vitesse volumétrique horaire, calculée par rapport à la masse de démercurisation, pourra être celle indiquée pour la masse de désarsénification à propriétés catalytiques, étant bien entendu comme indiqué ci-avant, que le rapport volumique de la masse de désarsénification à la masse de démercurisation pourra varier de 1:10 à 5:1, en fonction notamment des'proportions en arsenic et en mercure contenues dans la charge. Il va'donc de soi que les proportions relatives des deux masses et donc les vitesses volumétriques horaires par rapport à ces dernières pourront alors être très différentes (même débit liquide mais volumes de masse différents).
  • Dans un mode de réalisation de l'invention, la charge traitée en présence du catalyseur peut éventuellement être refroidie avant passage sur la masse de démercurisation.
  • Dans un autre mode, les deux masses de captation étant alors disposées dans un réacteur unique, on pourra opérer celui-ci dans un domaine de température pouvant aller de 180 à 400°C, plus avantageusement 190 à 350°C et d'une façon préférée 200 à 330°C.
  • Enfin, comme il est connu de l'homme de métier, il peut se révèler avantageux de recycler en tête, au moins pour partie, le gaz riche en hydrogène récupéré après séparation du produit liquide purifié. Outre une diminution importante de la consommation en hydrogène, le dit recyclage permet un meilleur contrôle du rapport de pressions partielles pH₂S/pH₂ dans le mileu réactionnel. Comme indiqué ci-avant, pour le cas où la charge contient peu de soufre (par exemple moins de 20 ppm poids) il peut se révèler en outre avantageux de rajouter dans la charge et/ou dans l'hydrogène au moins un composé de soufre afin d'augmenter le dit rapport pH₂S/pH₂.
  • Les charges auxquelles s'applique plus particulièrement l'invention renferment de 10⁻³ à 2 milligrammes de mercure par kilogramme de charge et, éventuellement de 10⁻² à 10 milligrammes d'arsenic par kilogramme de charge.
  • Les exemples qui font suite permettent d'illustrer les différents aspects de l'invention sans en limiter la portée. Il ira de soi pour l'homme de métier, vu les exemples, que si la masse de désarsénification seule est.suffisante pour traiter des charges ne contenant que de l'arsenic; il est par contre nécessaire d'utiliser la masse de démercurisation et la masse de désarsénification à propriétés catalytiques, pour démercuriser efficacement des charges ne contenant que du mercure. Des essais comparatifs identiques à la série d'exemples 1 à 4 ont été menés en l'absence d'arsenic dans la charge; ils ont conduit à des résultats semblables.
  • Exemple 1 (comparaison)
  • 250 cm3 de catalyseur HR 306, produit par PROCATALYSE, sont chargés dans un réacteur en acier de 3 cm de diamètre.
  • Le dit catalyseur HR 306, constitué d'extrudés de diamètre 1,2 mm et de longueur 2 à 10 mm, contient 2,36% de cobalt et 9,33% de molybdène en poids; la matrice est constituée d'alumine de transition. La surface spécifique est de 210 mètres carrés par gramme et le volume poreux, de 0,48/cm3/g.
  • On fait ensuite subir au catalyseur un traitement de présulfuration. Un mélange sulfure d'hydrogène-hydrogène dans les proportions volumiques 3:97 est injecté à raison de 10 l/h. La vitesse de montée en température est de 1°C/mn et le palier final (350°C) est de 2 heures.
  • Le débit d'hydrogène étant seul maintenu, on fait enfin passer sur le catalyseur, en flux, ascendant, un condensat lourd de gaz liquéfié, dont les caractéristiques sont indiquées au tableau I, et de l'hydrogène dans les conditions suivantes :
  • Débit de charge
    : 500 cm3/h
    Température
    : 320°C
    Pression totale
    : 30 bars absolus

    Débit d'hydrogène 100 litres/litre de charge, soit 50 litres/heure.
  • On laisse passer le condensat et l'hydrogène durant 500 heures. Les résultats d'analyses de mercure et d'arsenic dans le produit au bout de 20, 50, 100, 200 et 500 heures sont résumés dans le tableau III.
  • On voit que ce catalyseur présente une efficacité très faible pour retenir le mercure; il présente par contre une bonne efficacité pour retenir l'arsenic.
  • Exemple 2 (comparaison)
  • Dans cet exemple, on prépare une masse de captation constituée d'un sulfure de cuivre, déposé sur un support d'alumine telle que décrite dans le brevet US n° 4094777 de la demanderesse.
  • La masse contient 12% poids de cuivre et 6% poids de soufre sous forme de sulfure. La matrice est constituée d'alumine de transition. La surface spécifique est de 70 m2/g et le volume poreux de 0,4 cm3/g.
  • 100 cm3 de cette masse sont alors chargés dans un réacteur identique à celui décrit dans l'exemple 1. On fait ensuite passer sur la masse, en flux ascendant, un condensat lourd de gaz liquéfié identique à celui utilisé dans l'exemple 1 (cf. Tableau I) dans les conditions suivantes :
  • Débit de charge :
    500 cm3/h
    Pression totale :
    30 bars absolus
    Température :
    40°C
    Débit d'hydrogène :
    100 litres par litre de charge, soit 50 litres par heure
  • On laisse passer le condensat durant 500 heures. Les résultats d'analyses de mercure et d'arsenic dans le produit au bout de 20, 50, 100, 200 et 500 heures sont résumés dans le tableau III.
  • On constate que la masse de captation ne présente pas d'efficacité pour retenir l'arsenic. Elle présente par contre une efficacité transitoire pour retenir le mercure, mais celle-ci chute très rapidement avec le temps.
  • Exemple 3 (comparaison)
  • On répète l'expérimentation de l'exemple 2, mais en supprimant le débit d'hydrogène.
  • Les résultats indiqués au tableau III montrent que les performances ne sont pas améliorées.
  • Exemple 4 (selon l'invention)
  • Dans un premier réacteur, on charge puis on prétraite 250 cm3 du catalyseur HR 306 de l'exemple 1, selon la technique et le prétraitement décrits dans ledit exemple.
  • Dans un second réacteur, on charge 100 cm3 de la masse de captation de l'exemple 2 selon la technique décrite dans ledit exemple.
  • On fait alors passer en flux ascendant sous hydrogène le même condensat lourd de gaz liquéfié que dans l'exemple 1, successivement sur le catalyseur puis sur la masse de captation.
  • Les conditions opératoires sont les suivantes :
  • Débit de charge :
    500 cm3/h
    Catalyseur HR 306 :
    250 cm3
    Température :
    320°C
    Pression totale :
    30 bars absolus
    Débit d'hydrogène :
    100 litres par litre de charge, soit 50 litres par heure.

       Masse de captation au sulfure de cuivre : 100 cm3
       Température : 40°C
       Pression totale : 30 bars absolus
       Débit d'hydrogène : 100 litres par litre de charge, soit 50 litres par heure.
  • On laisse passer le condensat durant 1000 heures. Les résultats d'analyses de mercure dans le produit au bout de 50, 100, 200, 500 et 1000 heures sont résumés dans le tableau III ci-après.
  • On constate, d'une façon inattendue, que l'association du catalyseur HR 306 et d'une masse de captation permet d'obtenir un taux élevé de désarsénification et de démercurisation du condensat.
  • L'analyse du catalyseur HR 306 montre que plus de 90% de l'arsenic fixé est présent dans ledit catalyseur; la concentration en mercure est par contre inférieure à 20 ppm poids. L'analyse de la masse de démercurisation montre qu'elle contient pratiquement 100% du mercure et moins de 10% de l'arsenic fixés.
  • Ces métaux sont essentiellement présents dans les premiers 50 cm3 du lit. On peut donc s'attendre à une durée de vie très importante.
  • Exemple 5, selon l'invention.
  • Afin de démontrer la thiorésistance du système catalytique, on rajoute 0,5% poids de soufre sous forme de thiophène à la charge traitée dans l'exemple 1.
  • Les conditions opératoires restent identiques, à l'exception de la température opératoire du catalyseur HR 306, portée à 340°C et au débit d'hydrogène, porté à 200 litres/litre de charge, soit 100 litres/heure.
  • Les performances, résumées au tableau III, sont identiques à la précision des analyses.
  • Exemple 6, selon l'invention
  • On reproduit l'expérimentation décrite à l'exemple 4. Le réacteur contenant 100 cm3 de masse de captation au sulfure de cuivre est maintenant chargé avec :
       100 cm3 de ladite masse et
       50 cm3 de masse de démercurisation composée de 13% poids en soufre sur charbon actif, de type CALGON HGR, préparée selon l'enseignement du brevet USP3194629.
  • Les autres conditions opératoires demeurent strictement identiques et l'essai est limité à 500 heures.
  • Les résultats d'expérience reproduits au tableau III montrent que l'addition de la masse de démercurisation au charbon actif permet une légère amélioration des performances en démercurisation. Les performances en désarsénification demeurent, par contre, inchangées.
  • Exemple 7, selon l'invention.
  • Le premier réacteur utilisé à l'exemple 3 est maintenant chargé avec 200 cm3 du catalyseur HMC 841, commercialisé par PROCATALYSE.
  • Ce catalyseur constitué de billes de diamètres 1,5 à 3 mm contient 1,96% de nickel et 8% de molybdène en poids; la matrice est constituée d'alumine de transition. La surface spécifique est de 140 m2/g et le volume poreux de 0,89 cm3/g. Le catalyseur HMC 841 a été présulfuré avant chargement (sulfuration ex-situ) selon le procédé SULFICAT (R) commercialisé par la société EURECAT; sa teneur en soufre est de 4,8% poids.
  • Le deuxième réacteur est chargé avec 200 cm3 d'une masse de démercurisation contenant 8% de soufre, 14,5% de cuivre et 0,2% poids d'argent, préparée selon l'enseignement du brevet US 4094777 de la demanderesse, puis présulfurée par mise en contact avec un polysulfure organique selon l'enseignement du brevet français 87-07442 de la demanderesse.
  • Les caractéristiques de la nouvelle charge traitée (condensat lourd de gaz liquéfié) sont indiquées au tableau II; le durée du test est de 1000 heures.
  • Les conditions opératoires retenues sont les suivantes :
  • Débit de charge :
    0,6 litre/heure
    Catalyseur HMC 841 :
    200 cm3
    Température :
    390°C
    Pression :
    40 bars
    Débit d'hydrogène :
    150 litres par litre de charge, soit 90 litres/heure.

    Masse de captation aux sulfures de cuivre et d'argent :
    200 cm3
    Température
    : 100°C
    Pression
    : 40 bars.
  • Les résultats d'analyse de mercure et d'arsenic dans le produit au bout de 20, 50, 100, 200, 500 et 1000 heures sont résumés au tableau III. On voit que la désarsénification de la charge reste toujours supérieure à 99% et que la démercurisation reste toujours supérieure à 98,8%.
  • De plus, l'analyse de l'effluent liquide purifié, au bout de 500 heures d'essai, montre qu'il contient seulement 60 ppm (poids) de soufre et 33 ppm (poids) d'azote. Le taux d'hydrodésulfuration et le taux d'hydrodéazotation sont donc respectivement de 95,4 et de 24%. Par ailleurs l'effluent contient seulement 28% d'aromatiques (par rapport à 41% dans la charge fraîche) ce qui démontre, outre l'activité en désarsénification et en démercurisation, les propriétés additionnelles en hydrodésulfuration en hydrodéazotation et en hydrogénation des aromatiques de l'ensemble (catalyseur + masse de démercurisation) selon l'invention.
  • Exemple 8, selon l'invention
  • La charge traitée est toujours celle décrite au tableau II.
  • On utilise maintenant un seul réacteur, de diamètre 4 cm, contenant de l'entrée à la sortie :
    0,5 litre du catalyseur HMC 841, présulfuré hors site comme à l'exemple 7,
    0,2 litre de la masse aux sulfures de cuivre et d'argent utilisée à l'exemple 7.
  • La température opératoire est égale à 220°C, la pression opératoire égale à 50 bars (absolus) et le débit est de 200 litres par litre de charge, soit 120 litres par heure.
  • Le débit de charge est de 0,6 litre par heure.
  • L'analyse de l'hydrogène, récupéré en sortie après séparation (séparateur haute pression) de la charge purifiée, montre qu'il contient du sulfure d'hydrogène, formé par hydrodésulfuration de ladite charge en présence du catalyseur HMC 841.
  • L'essai dure 500 heures et les performances obtenues sont résumées au tableau III.
  • On voit que l'utilisation des deux catalyseurs dans un réacteur unique conduit à une bonne efficacité pour la démercurisation et pour la désarsénification de la charge.
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006

Claims (17)

  1. Procédé d'élimination du mercure d'une charge d'hydrocarbures contenant les éléments mercure et soufre, caractérisé en ce qu'on fait réagir un mélange d'hydrogène et de ladite charge en présence d'une masse de captation d'arsenic, à propriétés catalytiques, dite "le catalyseur" renfermant au moins un métal M choisi dans le groupe formé par nickel cobalt fer palladium et platine, au moins un métal N choisi dans le groupe formé par chrome molybdène tungstène et uranium et éventuellement au moins un support de phase active à base d'au moins une matrice minérale poreuse, ladite masse de captation d'arsenic à propriétés catalytiques étant suivie sur le trajet de la charge de, ou mélangée à, une masse de captation de mercure renfermant un sulfure d'au moins un métal P choisi dans le groupe formé par le cuivre le fer et l'argent, ou du soufre, et un support de phase active.
  2. Procédé selon la revendication 1 dans lequel, outre le mercure et le soufre la charge contient de l'arsenic, caractérisé en ce que l'on élimine simultanément l'arsenic et le mercure, respectivement par interaction avec la masse de désarsénification à propriétés catalytiques dite "le catalyseur" et avec la masse de démercurisation.
  3. Procédé, selon les revendications 1 et 2, selon lequel, simultanément à l'élimination des métaux mercure et arsenic, la charge est également pour partie hydrodésulfurée, hydrodéazotée et hydrogénée pour sa fraction d'hydrocarbures insaturés.
  4. Procédé selon les revendications 1 à 3 dans lequel on rajoute éventuellement dans la charge au moins un composé du soufre choisi dans le groupe formé par le sulfure d'hydrogène et les composés organiques sulfurés.
  5. Procédé selon les revendications 1 à 4 dans lequel le catalyseur renferme de 0,01 à 15% en poids d'au moins un métal M, de 2 à 30% en poids d'au moins un métal N et où le rapport atomique M/N est de 0,3:1 à 0,7:1.
  6. Procédé selon la revendication 5, dans lequel les métaux M sont le cobalt et le nickel et les métaux N sont le molybdène et le tungstène et où le catalyseur renferme 0,5 à 15% en poids d'au moins un métal M, de 5 à 25% en poids d'au moins un métal N.
  7. Procédé selon les revendications 5 et 6, dans lequel le catalyseur renferme, parmi les métaux M, au moins un métal noble, choisi parmi le palladium et le platine, et où ledit catalyseur contient de 0,01 à 5% de métaux M.
  8. Procédé selon l'une des revendications 5 à 7 dans lequel, outre les métaux M et N, le catalyseur renferme un support de phase active constitué d'une matrice minérale poreuse comprenant au moins un des éléments du groupe formé par l'alumine, la silice, la silice-alumine, la magnésie, la zircone, l'oxyde de titane, les argiles, les ciments alumineux, les aluminates, les aluminosilicates zéolithiques synthétiques ou naturels.
  9. Procédé, selon l'une des revendications 1 à 8 dans lequel la masse de captation est constituée de 1 à 40% de soufre par rapport à sa masse totale et d'au moins un support choisi dans le groupe formé par l'alumine, les silice-alumines, la silice, l'oxyde de titane, la zircone, les zéolithes, les charbons actifs, les argiles et les ciments alumineux.
  10. Procédé selon la revendication 9 dans lequel la masse de captation renferme également 0,1 à 20% en poids d'au moins un métal P choisi dans le groupe formé par le cuivre, le fer et l'argent, et où le métal P est au moins en partie sous forme de sulfure.
  11. Procédé selon l'une des revendications précédentes, dans lequel :
    - la pression opératoire est choisie entre 1 et 50 bars absolus
    - le débit d'hydrogène est choisi entre 1 et 1000 litres d'hydrogène gazeux (TPN) par litre de charge liquide
    - la vitesse volumétrique horaire, exprimée en volumes de charge liquide est de 0,1 à 30 volumes par volume de catalyseur et de 0,1 à 30 volumes par volume de masse de démercurisation,
    - la température opératoire du catalyseur est de 180 à 450°C
    - la température opératoire de la masse de démercurisation est de 0 à 400°C
    - le catalyseur et la masse de démercurisation sont disposés dans deux réacteurs distincts, la charge étant d'abord mise en contact avec le catalyseur puis avec la masse de captation.
  12. Procédé selon la revendication 11 dans lequel
       - le catalyseur et la masse de démercurisation sont disposés dans un réacteur unique, et dans lequel la température opératoire est de 180 à 400°C.
  13. Procédé selon l'une des revendications 11 à 12 dans lequel le gaz riche en hydrogène est séparé de l'effluent du ou des réacteurs, puis est recyclé, au moins pour partie, en tête du premier réacteur.
  14. Procédé selon l'une des revendications 1 à 13 dans lequel le catalyseur est prétraité entre 50 et 500°C par un mélange gazeux contenant au moins un composé choisi dans le groupe formé par l'hydrogène le sulfure d'hydrogène et les composés organiques du soufre, préalablement au traitement par la charge d'hydrocarbures.
  15. Procédé selon l'une des revendications 1 à 14 dans lequel la charge, constituée d'hydrocarbures au moins en partie liquides à température et pression ambiantes, contient 10⁻³ à 2 milligrammes de mercure par kilogramme de charge et, éventuellement, 10⁻² à 10 milligrammes d'arsenic par kilogramme de charge.
  16. Procédé selon l'une des revendications 1 à 15 dans lequel les charges traitées sont des charges lourdes ou des effluents de procédés de conversion thermique et/ou catalytique.
  17. Procédé selon l'une des revendications 1 à 15 dans lequel les charges traitées sont des condensats de gaz.
EP90904870A 1989-03-16 1990-03-09 Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures Expired - Lifetime EP0463044B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8903581A FR2644472B1 (fr) 1989-03-16 1989-03-16 Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures
FR8903581 1989-03-16

Publications (2)

Publication Number Publication Date
EP0463044A1 EP0463044A1 (fr) 1992-01-02
EP0463044B1 true EP0463044B1 (fr) 1993-08-25

Family

ID=9379843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90904870A Expired - Lifetime EP0463044B1 (fr) 1989-03-16 1990-03-09 Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures

Country Status (12)

Country Link
EP (1) EP0463044B1 (fr)
JP (1) JP2620811B2 (fr)
CN (1) CN1024675C (fr)
AU (1) AU634763B2 (fr)
CA (1) CA2012344C (fr)
DE (1) DE69002941T2 (fr)
DZ (1) DZ1402A1 (fr)
FR (1) FR2644472B1 (fr)
MY (1) MY106411A (fr)
NO (1) NO180121C (fr)
WO (1) WO1990010684A1 (fr)
ZA (1) ZA893265B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112440A1 (fr) * 2008-03-10 2009-09-17 Basf Se Procédé pour éliminer le mercure de flux d’hydrocarbures

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666343B1 (fr) * 1990-08-29 1992-10-16 Inst Francais Du Petrole Procede d'elimination du mercure des installations de vapocraquage.
FR2668385B1 (fr) * 1990-10-30 1993-10-15 Institut Francais Petrole Procede d'elimination d'arsenic dans un gaz par passage sur une masse a base d'un support de sulfure de cuivre.
FR2668465B1 (fr) * 1990-10-30 1993-04-16 Inst Francais Du Petrole Procede d'elimination de mercure ou d'arsenic dans un fluide en presence d'une masse de captation de mercure et/ou d'arsenic.
US5085844A (en) * 1990-11-28 1992-02-04 Phillips Petroleum Company Sorption of trialkyl arsines
US5064626A (en) * 1990-11-28 1991-11-12 Phillips Petroleum Company Trialkyl arsine sorbents
FR2673192B1 (fr) * 1991-02-27 1994-07-22 Inst Francais Du Petrole Procede pour l'elimination du mercure et eventuellement d'arsenic dans les charges des procedes catalytiques producteurs d'aromatiques. .
FR2673191B1 (fr) * 1991-02-27 1994-02-04 Institut Francais Petrole Procede d'enlevement de mercure et/ou d'arsenic des charges des unites de desaromatisation de solvants. .
FR2690923B1 (fr) * 1992-05-11 1994-07-22 Inst Francais Du Petrole Procede de captation de mercure et d'arsenic dans une coupe d'hydrocarbure.
FR2698372B1 (fr) * 1992-11-24 1995-03-10 Inst Francais Du Petrole Procédé d'élimination de mercure et éventuellement d'arsenic dans des hydrocarbures.
FR2701269B1 (fr) * 1993-02-08 1995-04-14 Inst Francais Du Petrole Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
FR2701270B1 (fr) * 1993-02-08 1995-04-14 Inst Francais Du Petrole Procédé d'élimination du mercure dans les hydrocarbures par passage sur un catalyseur présulfuré.
US6350372B1 (en) * 1999-05-17 2002-02-26 Mobil Oil Corporation Mercury removal in petroleum crude using H2S/C
FR2803597B1 (fr) * 2000-01-07 2003-09-05 Inst Francais Du Petrole Procede de captation du mercure et d'arsenic d'une coupe d'hydrocarbures distillee
JP2002241767A (ja) * 2001-02-15 2002-08-28 Idemitsu Petrochem Co Ltd 液状炭化水素からの水銀除去方法
CN100392046C (zh) * 2003-08-07 2008-06-04 上海化工研究院 低温或常温脱除液态石油烃中高沸点砷化物的脱砷剂
GB0611316D0 (en) * 2006-06-09 2006-07-19 Johnson Matthey Plc Improvements in the removal of metals from fluid streams
KR101796792B1 (ko) * 2011-02-09 2017-11-13 에스케이이노베이션 주식회사 촉매를 이용하여 수소화 처리 반응을 통해 황 및 수은이 포함된 탄화수소 원료로부터 이들을 동시에 제거하는 방법
FR2987368B1 (fr) * 2012-02-27 2015-01-16 Axens Procede d'elimination de mercure contenu dans une charge hydrocarbure avec recycle d'hydrogene
US9387434B2 (en) * 2012-08-20 2016-07-12 Ecolab Usa Inc. Mercury sorbents
FR3007415B1 (fr) * 2013-06-21 2016-05-27 Ifp Energies Now Procede d'elimination de l'arsenic d'une charge d'hydrocarbures
CN104645927B (zh) * 2013-11-25 2018-01-16 北京三聚环保新材料股份有限公司 一种银系脱汞剂的制备方法
CN108456574A (zh) * 2018-04-12 2018-08-28 西南石油大学 一种用于湿气脱汞的脱汞剂及其制备方法
CN114073961A (zh) * 2021-12-08 2022-02-22 辽宁石油化工大学 具有脱砷性能的Cr-Cu/SiO2催化剂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110569A (en) * 1958-02-05 1963-11-12 Socony Mobil Oil Co Inc Removal of arsenic from reformer feed
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
US4474896A (en) * 1983-03-31 1984-10-02 Union Carbide Corporation Adsorbent compositions
US4709118A (en) * 1986-09-24 1987-11-24 Mobil Oil Corporation Removal of mercury from natural gas and liquid hydrocarbons utilizing downstream guard chabmer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112440A1 (fr) * 2008-03-10 2009-09-17 Basf Se Procédé pour éliminer le mercure de flux d’hydrocarbures

Also Published As

Publication number Publication date
CA2012344A1 (fr) 1990-09-16
AU634763B2 (en) 1993-03-04
DE69002941T2 (de) 1993-12-23
DZ1402A1 (fr) 2004-09-13
NO913622L (no) 1991-09-13
WO1990010684A1 (fr) 1990-09-20
ZA893265B (en) 1990-04-25
CA2012344C (fr) 2001-05-08
FR2644472A1 (fr) 1990-09-21
NO913622D0 (no) 1991-09-13
FR2644472B1 (fr) 1991-06-21
CN1024675C (zh) 1994-05-25
JP2620811B2 (ja) 1997-06-18
AU5331990A (en) 1990-10-09
EP0463044A1 (fr) 1992-01-02
MY106411A (en) 1995-05-30
JPH02248493A (ja) 1990-10-04
NO180121C (no) 1997-02-19
NO180121B (no) 1996-11-11
DE69002941D1 (de) 1993-09-30
CN1045596A (zh) 1990-09-26

Similar Documents

Publication Publication Date Title
EP0463044B1 (fr) Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures
EP2169032B1 (fr) Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés
EP1002853B1 (fr) Procédé de production d'essences à faible teneur en soufre
EP1174485B1 (fr) Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
EP0332526B1 (fr) Procédé pour l'élimination du mercure et éventuellement d'arsenic dans les hydrocarbures
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
EP0611183B1 (fr) Procédé d'élimination du mercure dans des hydrocarbures par passage sur un catalyseur présulfure
CA2299152C (fr) Procede de production d'essences a faible teneur en soufre
FR3080117A1 (fr) Procede de captation de l'arsenic mettant en œuvre une masse de captation a base de particules d'oxyde de nickel
EP1354930A1 (fr) Procédé de production d'hydocarbures à faible teneur en soufre et en mercaptans
CA2474525C (fr) Procede integre de desulfuration d'un effluent de craquage ou de vapocraquage d'hydrocarbures
EP0570261B1 (fr) Procédé de captation de mercure et d'arsenic dans une coupe d'hydrocarbure
FR2673191A1 (fr) Procede d'enlevement de mercure et/ou d'arsenic des charges des unites de desaromatisation de solvants. .
EP1370627B1 (fr) Procede de production d'essence a faible teneur en soufre
FR2701269A1 (fr) Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
FR2762004A1 (fr) Procede pour l'elimination d'arsenic dans les charges hydrocarbonees liquides
FR2673192A1 (fr) Procede pour l'elimination du mercure et eventuellement d'arsenic dans les charges des procedes catalytiques producteurs d'aromatiques. .
CA2440189C (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage
FR2785833A1 (fr) Catalyseur comprenant du nickel et son utilisation dans un procede d'hydrodesulfuration de charges hydrocarbonees
FR3116828A1 (fr) Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone
FR2788452A1 (fr) Masse de captation pour l'elimination d'arsenic dans les hydrocarbures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17Q First examination report despatched

Effective date: 19921028

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 69002941

Country of ref document: DE

Date of ref document: 19930930

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020402

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020404

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20030331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090327

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20100309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100309