EP1174485B1 - Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S - Google Patents

Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S Download PDF

Info

Publication number
EP1174485B1
EP1174485B1 EP01401679A EP01401679A EP1174485B1 EP 1174485 B1 EP1174485 B1 EP 1174485B1 EP 01401679 A EP01401679 A EP 01401679A EP 01401679 A EP01401679 A EP 01401679A EP 1174485 B1 EP1174485 B1 EP 1174485B1
Authority
EP
European Patent Office
Prior art keywords
gasoline
catalyst
stage
sulfur
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01401679A
Other languages
German (de)
English (en)
Other versions
EP1174485A1 (fr
Inventor
Blaise c/o Inst. Française du Petrole Didillon
Denis c/o Inst. Française du Petrole Uzio
Jean-Luc c/o Inst. Française du Petrole Nocca
Quentin c/o Inst. Franç. du Petrole Debuisschert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1174485A1 publication Critical patent/EP1174485A1/fr
Application granted granted Critical
Publication of EP1174485B1 publication Critical patent/EP1174485B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen

Definitions

  • the present invention relates to a process for producing gasolines with a low sulfur content, which makes it possible to recover the whole of a sulfur-containing gasoline fraction, to reduce the total sulfur contents of said gasoline fraction to very low levels, without significant reduction in gasoline yield, and minimizing the decrease in octane number due to the hydrogenation of olefins.
  • This method is particularly applicable when the gasoline to be treated is a catalytic cracking gasoline containing a sulfur content greater than 1000 ppm by weight and / or an olefin content greater than 30% by weight, when the desired sulfur content in the Desulfurized gasoline is less than 50 ppm by weight.
  • Cracking gasolines which can represent 30 to 50% of the gasoline pool, have the disadvantage of containing significant concentrations of sulfur, which means that the sulfur present in the reformulated gasolines is attributable, at nearly 90%, to the gasoline species.
  • cracking catalytic cracking gas in fluidized bed or FCC, steam cracking gasoline, coking gasolines .
  • Desulphurisation (hydrodesulphurisation) of gasolines and mainly cracking gasolines is therefore of obvious importance for achieving specifications.
  • the patent application EP-A-0 725 126 discloses a method for hydrodesulfurizing a cracking gasoline in which the gasoline is separated into a plurality of fractions comprising at least a first fraction rich in easily desulfurized compounds and a second fraction rich in difficult to desulphurize compounds. Before carrying out this separation, it is necessary to first determine the distribution of sulfur-containing products by means of analyzes.
  • the present invention relates to a three-stage desulfurization process for gasolines as defined in the wording of claim 1, and with a hydrogenation pretreatment of diolefins in the feed.
  • This process is particularly particularly suitable for cracking gasolines having a sulfur content greater than 1000 ppm by weight, which it is desired to lower to a level of less than 50 ppm by weight and preferably less than 15 ppm by weight.
  • the selective hydrogenation prior to step A of the diene compounds may optionally hydrogenate acetylenic compounds.
  • the present invention therefore relates to a process for the production of gasolines with a low sulfur content, which makes it possible to recover the whole of a petrol fraction containing sulfur and olefins, to reduce the sulfur contents in said petrol fraction to very low levels. levels and generally at a value of less than 50 ppm or even less than 15 ppm by weight, without a substantial decrease in the yield of gasoline, and by minimizing the reduction in the octane number due to the hydrogenation of the olefins.
  • the process is particularly suitable for the treatment of gasolines with a high sulfur content, ie a sulfur content greater than 1000 ppm by weight and / or when the gasoline has a high olefin content, that is to say greater than 30% weight.
  • the process according to the invention comprises a treatment of the feedstock on a first catalyst making it possible to at least partially hydrogenate aromatic sulfur compounds such as, for example, thiophene compounds by placing under conditions in which the hydrogenation of the olefins is limited on this catalyst (step A), a step for removing at least part of the H2S gasoline thus treated (step B), then a third treatment on at least one catalyst for decomposing at least partially saturated sulfur compounds with limited hydrogenation of olefins (step C).
  • aromatic sulfur compounds such as, for example, thiophene compounds
  • step C is carried out on a chain of catalysts, for example the sequence described in the patent. FR-A-279000 while meeting the criteria for the H2S concentration at the entry of the third step according to the present invention.
  • the feedstock of the process according to the invention is a gasoline cutter containing sulfur and olefins, preferably a petrol cut from a cracking unit, and preferably a gasoline predominantly from a catalytic cracking unit.
  • the treated gasoline can also be a mixture of gasolines from different conversion processes such steam cracking processes, coking or visbreaking (visbreaking according to the English terminology) or even gasoline directly from the distillation of petroleum products.
  • the gasolines having high olefin concentrations are particularly suitable for being subjected to the process according to the invention.
  • the sulfur species contained in the fillers treated by the process of the invention may be mercaptans or heterocyclic compounds, such as, for example, thiophenes or alkylthiophenes, or heavier compounds, such as for example benzothiophene or dibenzothiophene.
  • heterocyclic compounds unlike mercaptans, can not be removed by conventional extractive processes.
  • These sulfur compounds are consequently removed by the process according to the invention which leads to their at least partial decomposition into hydrocarbons and H 2 S.
  • the sulfur content of catalytic cracked gasoline (FCC) gasoline cuts depends on the sulfur content of the FCC treated feed as well as the end point of the cut.
  • the sulfur contents of the entirety of a petrol cut, in particular those coming from the FCC are greater than 100 ppm by weight and most of the time greater than 500 ppm by weight.
  • the sulfur contents are often greater than 1000 ppm by weight, and in some cases they may even reach values of the order of 4000 to 5000 ppm by weight.
  • the gasolines which are particularly suitable for the process according to the invention therefore contain olefin concentrations which are generally between 5 and 60% by weight.
  • the gasoline treated in the process according to the invention preferably contains more than 30% by weight of olefins.
  • the gasolines may also contain significant concentrations of diolefins, that is to say diolefin concentrations of up to 15% by weight. Generally the diolefin content is between 0.1 and 10% by weight. The diolefin content is typically greater than 1% by weight or even greater than 0.5% by weight.
  • the gasoline is, before undergoing stages A, B and C subjected to a selective hydrogenation treatment aimed at hydrogenating at least partly the diolefins present in said gasoline, as described in the wording of claim 1.
  • Gasoline can also naturally contain nitrogen compounds.
  • the nitrogen concentration of the gasoline is generally less than 1000 ppm by weight and is generally between 20 and 500 ppm by weight.
  • This gasoline preferably contains a sulfur content greater than 1000 ppm by weight.
  • the range of boiling points typically extends from about the boiling points of the 5-carbon hydrocarbons (C5) to about 250 ° C.
  • the end point of the gasoline cut depends on the refinery from which it comes and the constraints of the market, but generally remains within the limits indicated above.
  • the gasoline may, for example, undergo splitting or other treatment before being subjected to the process according to the invention without these treatments limiting the scope of the invention.
  • sulfur is essentially present in the form of thiophene compounds (thiophene, methylthiophenes, alkylthiophenes, etc.) and, depending on the end point of the gasoline to treated, benzothiophene compounds, alkylbenzothiophene, or even compounds derived from dibenzothiophene.
  • the method according to the invention firstly comprises a treatment (step A) of the gasoline on a catalyst for hydrogenating at least partly unsaturated sulfur compounds such as for example thiophene compounds, in saturated compounds such as by for example thiophanes (or thiacyclopentane) or mercaptans according to a succession of reactions described below:
  • This hydrogenation reaction can be carried out on a conventional hydrotreating (hydrodesulphurization) catalyst comprising a Group VIII metal and a Group VIb metal partially in the form of sulfides.
  • a conventional hydrotreating (hydrodesulphurization) catalyst comprising a Group VIII metal and a Group VIb metal partially in the form of sulfides.
  • the operating conditions are adjusted so as to be able to hydrogenate at least part of the thiophene compounds while limiting the hydrogenation of the olefins.
  • the thiophene, benzothiophenic and dibenzothiophenic compounds if they are present in the gasoline to be treated, are generally transformed significantly, that is to say that at the end of the first stage, the content of Thiophenic, benzothiophene or dibenzothiophene compounds represent at most 20% of that of the starting gasoline.
  • this hydrogenation step is accompanied by the significant production of H2S by total decomposition of the sulfur compounds initially present in the feedstock.
  • the decomposition rate of the sulfur compounds present in the H2S feed which accompanies the hydrogenation of the unsaturated sulfur compounds, is generally greater than 50%.
  • the method according to the invention comprises a second step where the H2S is at least partly removed from the effluent obtained at the end of step A.
  • This step can be carried out using any techniques known to man of career. It can be carried out directly under the conditions in which the effluent is at the end of step A or after these conditions have been changed in order to facilitate the removal of at least a portion of the H2S.
  • a gas / liquid separation (where the gas is concentrated in H2S and the liquid is depleted in H2S and is sent directly to step C), a step of stripping the gasoline practiced on a liquid fraction of the gasoline obtained after step A, an amine washing step, again performed on a liquid fraction of the gasoline obtained after step A, an uptake of the H2S by an absorbing mass operating on the gaseous or liquid effluent obtained after the step, a separation of the H2S from the gaseous or liquid effluent by a membrane.
  • the sulfur content in the form of H 2 S is generally less than 500 ppm by weight relative to the starting gasoline. In a preferred manner, this content is reduced, at the end of step B, to a value of between 0.2 and 300 ppm by weight and even more preferably to a value of between 0.5 and 150 ppm by weight.
  • step C in which the saturated sulfur compounds are converted into H 2 S according to the reactions:
  • This treatment can be carried out using any catalyst allowing the conversion of saturated sulfur compounds (mainly thiophane or mercaptan type compounds). It may for example be carried out using a catalyst based on nickel, molybdenum, cobalt, iron tungsten or tin. Preferably, the treatment is carried out in the presence of a catalyst based on nickel, nickel and tin, cobalt and iron, cobalt and tungsten.
  • the thus desulphurized gasoline is then optionally stripped in order to remove the H2S produced during step C.
  • step C In the case of gasoline with a high sulfur content and / or when the rate of conversion of unsaturated sulfur compounds to saturated sulfur compounds is not in step A, it may be advantageous to carry out step C with a series of catalysts comprising at least one catalyst described for step A and at least one catalyst described for step C.
  • Hydrogenation of dienes is a step which eliminates, before hydrodesulphurization, almost all the dienes present in the gasoline cutter containing sulfur to be treated. It generally takes place in the presence of a catalyst comprising at least one Group VIII metal, preferably selected from the group consisting of platinum, palladium and nickel, and a support.
  • a catalyst comprising at least one Group VIII metal, preferably selected from the group consisting of platinum, palladium and nickel, and a support.
  • a nickel-based catalyst deposited on an inert support, such as, for example, alumina, silica or a support containing at least 50% alumina. This catalyst operates at a pressure of 0.4 to 5 MPa, at a temperature of 50 to 250 ° C, with a liquid hourly space velocity of 1 to 10 h -1 .
  • Another metal may be combined to form a bimetallic catalyst, such as, for example, molybdenum or tungsten.
  • the choice of operating conditions is particularly important.
  • the operation will generally be carried out under pressure in the presence of a quantity of hydrogen in small excess relative to the stoichiometric value necessary for hydrogenating the diolefins.
  • the hydrogen and the feedstock to be treated are injected in ascending or descending streams into a reactor preferably with a fixed bed of catalyst.
  • the temperature is most generally between about 50 and about 250 ° C, and preferably between 80 and 230 ° C, and more preferably between 120 and 200 ° C.
  • the pressure is sufficient to maintain more than 80%, and preferably more than 95% by weight of the gasoline to be treated in the liquid phase in the reactor; it is most generally between 0.4 and 5 MPa and preferably greater than 1 MPa.
  • the pressure is advantageously between 1 and 4 MPa.
  • the space velocity is from about 1 to about 10 h -1 , preferably from 4 to 10 h -1 .
  • the catalytic cracked gasoline may contain up to a few weight percent of diolefins.
  • the diolefin content is generally reduced to less than 3000 ppm, or even less than 2500 ppm and more preferably less than 1500 ppm. In some cases, it can be obtained less than 500 ppm.
  • the diene content after selective hydrogenation can even if necessary be reduced to less than 250 ppm.
  • the step of hydrogenation of the dienes takes place in a catalytic hydrogenation reactor which comprises a catalytic reaction zone traversed by the entire charge and the amount of hydrogen necessary to effect the desired reactions. .
  • This step consists of converting at least a portion of the unsaturated sulfur compounds, such as the thiophene compounds, into saturated compounds, for example thiophanes (or thiacyclopentanes) or mercaptans.
  • This step may, for example, be carried out by passing the feedstock to be treated, in the presence of hydrogen, over a catalyst containing at least one element of group VIII and / or at least one element of group VIb at least partly in sulphide form, at a temperature of between 220 ° C. and 320 ° C. and more preferably between 220 ° C. and 290 ° C., under a pressure generally of between 1 and 5 MPa, preferably between 1 and 4 MPa and more preferably between 1 and 4 MPa. , 5 and 3MPa.
  • the liquid space velocity is between 1 and 10 h -1 (expressed as volume of liquid per volume of catalyst and per hour), preferably between 3 h -1 and 8 h -1.
  • the ratio H 2 / HC is between 100 to 600 liters per liter and preferably 300 to 600 liters per liter.
  • At least one hydrodesulfurization catalyst comprising at least one element of group VIII (metals of groups 8, 9 and 10 of the new classification, ie iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium or platinum) and / or at least one element of group VIb (metals of group 6 of the new classification, ie chromium, molybdenum or tungsten), on a suitable support.
  • group VIII metal of groups 8, 9 and 10 of the new classification, ie iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium or platinum
  • group VIb metal of group 6 of the new classification, ie chromium, molybdenum or tungsten
  • the group VIII element when present, is generally nickel or cobalt
  • the element of group VIb when present, is generally molybdenum or tungsten.
  • Combinations such as nickel-molybdenum or cobalt-molybdenum are preferred.
  • the catalyst support is usually a porous solid, such as for example an alumina, a silica-alumina or other porous solids, such as, for example, magnesia, silica or titanium oxide, alone or in mixture with alumina or silica-alumina.
  • the catalyst After introduction of the element or elements and possibly shaping of the catalyst (when this step is performed on a mixture already containing the base elements), the catalyst is in a first activated step.
  • This activation may correspond to either an oxidation, then a reduction, or a direct reduction, or a calcination only.
  • the calcination step is generally carried out at temperatures of from about 100 to about 600 ° C and preferably from 200 to 450 ° C under an air flow rate.
  • the catalyst preferably used in this step is a catalyst comprising an alumina-based support whose specific surface area is less than 200 m 2 / g, and comprising at least one element selected from the group consisting of cobalt, molybdenum, nickel or tungsten and preferably selected from the group consisting of cobalt, molybdenum and tungsten. Even more preferably, the catalyst according to the invention contains at least cobalt and molybdenum.
  • the molybdenum content, when this element is present is preferably greater than 10% by weight expressed as molybdenum oxide
  • the cobalt content, when this element is present is preferably greater than 1% by weight (expressed as oxide cobalt II).
  • the molybdenum density in the catalyst expressed in grams of MoO3 per square meter of support is greater than 0.05 g / m 2 of support.
  • the reduction step is performed under conditions to convert at least a portion of the oxidized forms of the base metal to metal. Generally, it consists of treating the catalyst under a flow of hydrogen at a temperature of at least 300 ° C. The reduction can also be achieved in part by means of chemical reducers.
  • the catalyst is preferably used at least in part in its sulfurized form.
  • the introduction of sulfur can occur between different activation steps. Preferably, no oxidation step is performed when the sulfur or a sulfur compound is introduced on the catalyst.
  • the sulfur or a sulfur compound can be introduced ex situ, that is to say outside the reactor where the process according to the invention is carried out, or in situ, that is to say in the reactor used for process according to the invention.
  • the catalyst is preferably reduced under the conditions described above, then sulfided by passing a feed containing at least one sulfur compound, which once decomposed leads to the fixation of sulfur on the catalyst.
  • This charge may be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur compound.
  • the sulfur compound is added to the ex situ catalyst .
  • a sulfur compound may be introduced onto the catalyst in the presence of possibly another compound.
  • the catalyst is then dried and then transferred to the reactor for carrying out the process of the invention.
  • the catalyst is then treated in hydrogen to convert at least a portion of the main metal sulfide.
  • a procedure which is particularly suitable for the invention is that described in the patents FR-B-2,708,596 and FR-B-2,708,597 .
  • the conversion of the unsaturated sulfur compounds is greater than 15% and preferably greater than 50%.
  • the degree of hydrogenation of the olefins is preferably less than 50% and preferably less than 40% during this step.
  • stage B which makes it possible to eliminate at least part of the H2S present at the end of stage A.
  • Step B Removal of the H2S from the effluent of step A (Step B):
  • the concentration of H2S is decreased.
  • the removal of the H 2 S can be carried out in various ways, most of which are known to those skilled in the art.
  • This adsorbent mass is preferably regenerable. Its regeneration can be carried out continuously or discontinuously, for example by means of a heat treatment in an oxidizing or reducing atmosphere.
  • the absorbent mass can be used in a fixed bed or in a moving bed.
  • Another method is to perform membrane separation of H2S using a selective membrane operating on a liquid or gaseous effluent from step A.
  • One of the zones of the separation may contain an absorbent mass to promote the transfer H2S through the wall of the membrane.
  • Another method may be to cool the effluent of step A and produce a gas rich in H2S and a liquid phase depleted in H2S.
  • the gas phase can then be treated in an amine washing unit.
  • the liquid phase and the gas phase can then be remixed and sent to step C.
  • the liquid fraction can also undergo other treatments such as stripping with hydrogen, nitrogen or steam. water, extraction of H2S, washing with amines, washing with sodium hydroxide solution in order to reduce its H2S content.
  • the saturated sulfur compounds are converted, in the presence of hydrogen on a suitable catalyst.
  • This transformation is carried out without hydrogenation of the olefins, that is to say that during this step the hydrogenation of the olefins is limited to 20% with respect to the content of the starting gasoline, and preferably limited to 10% in relation to the olefin concentration of gasoline.
  • Catalysts which may be suitable for the invention, without this list being limiting, are catalysts comprising at least one metal selected from the group consisting of nickel, cobalt, iron, molybdenum and tungsten and. More preferably, the catalysts of this step are based on nickel. These metals are preferably supported and used in their sulfurized form.
  • the metal content of the catalyst used according to the invention is generally between about 1 and about 60% by weight and preferably between 5 and 20% by weight.
  • the catalyst is generally shaped, preferably in the form of beads, extrudates, pellets, or trilobes.
  • the metal may be incorporated in the catalyst on the preformed support, it may also be mixed with the support before the shaping step.
  • the metal is generally introduced in the form of a precursor salt, generally soluble in water, such as for example nitrates, heptamolybdates. This mode of introduction is not specific to the invention. Any other mode of introduction known to those skilled in the art is suitable for the implementation of the invention.
  • the supports of the catalysts used in the process of the invention are generally porous solids chosen from refractory oxides, such as, for example, aluminas, silicas and silica-aluminas, magnesia, as well as titanium oxide and zinc oxide, the latter oxides may be used alone or in admixture with alumina or silica-alumina.
  • the supports are transition aluminas or silicas whose specific surface is between 25 and 350 m 2 / g.
  • the natural compounds for example kieselguhr or kaolin may also be suitable as supports for the catalysts of the process according to the invention.
  • the catalyst After introducing the metal and possibly forming the catalyst (when this step is carried out with a mixture already containing the base metal), the catalyst is in a first activated step.
  • This activation may correspond to either an oxidation, then a reduction, or a direct reduction, or a calcination only.
  • the calcination step is generally carried out at temperatures of from about 100 to about 600 ° C and preferably from 200 to 450 ° C under an air flow rate.
  • the reduction step is carried out under conditions making it possible to convert at least a portion of the oxidized forms of the metal basic metal. Generally, it consists of treating the catalyst under a flow of hydrogen at a temperature of at least 300 ° C.
  • the reduction can also be achieved in part by means of chemical reducers.
  • the catalyst is preferably used at least in part in its sulfurized form. This has the advantage of minimizing the risks of hydrogenation of unsaturated compounds such as olefins or aromatic compounds during the start-up phase.
  • the introduction of sulfur can occur between different activation steps. Preferably, no oxidation step is performed when the sulfur or a sulfur compound is introduced on the catalyst.
  • the sulfur or a sulfur compound can be introduced ex situ , that is to say outside the reactor where the process according to the invention is carried out, or in situ , that is to say in the reactor used for process according to the invention.
  • the catalyst is preferably reduced under the conditions described above, then sulfided by passing a feed containing at least one sulfur compound, which once decomposed leads to the fixation of sulfur on the catalyst.
  • This charge may be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur compound.
  • the sulfur compound is added to the ex situ catalyst .
  • a sulfur compound may be introduced onto the catalyst in the presence of possibly another compound.
  • the catalyst is then dried and then transferred to the reactor for carrying out the process according to the invention.
  • the catalyst is then treated in hydrogen to convert at least a portion of the main metal sulfide.
  • a procedure which is particularly suitable for the invention is that described in the patents FR-B-2 708 596 and FR-B-2,708,597 .
  • the sulfur content of the catalyst is generally between 0.5 and 25% by weight, preferably between 4 and 20% by weight.
  • the hydrotreatment carried out during this step is intended to convert the saturated sulfur compounds of gasoline that has already undergone prior treatment to H 2 S, so as to obtain an effluent that will meet the desired specifications in terms of content. in sulfur compounds.
  • the gasoline thus obtained has a slightly higher octane number low, because of the partial but inevitable saturation of olefins, than that of the gasoline to be treated. However this saturation is limited.
  • the operating conditions of the catalyst for decomposing the saturated sulfur compounds into H 2 S must be adjusted to achieve the desired hydrodesulphurization level, and to minimize the octane loss resulting from olefin saturation.
  • the second catalyst (catalyst of step C) used in the process according to the invention generally makes it possible to convert at most 20% of the olefins, preferably at most 10% of the olefins.
  • the treatment for decomposing the saturated sulfur compounds in the first process step (step A) is carried out in the presence of hydrogen, with the metal catalyst, such as more preferably nickel, at a temperature between 200 ° C and 350 ° C, preferably between 250 ° C and 350 ° C, more preferably between 260 ° C and 320 ° C, under a low to moderate pressure generally between 0.5 and 5 MPa, preferably between 0.5 MPa and 3 MPa, more preferably between 1 and 3 MPa.
  • the space velocity of the liquid is generally between 0.5 and 10 h -1 (expressed in volume of liquid per volume of catalyst per hour), preferably between 1 and 8 h -1 .
  • the H 2 / HC ratio is adjusted according to the desired hydrodesulphurization rates in the range generally between about 100 and about 600 liters per liter, preferably between 100 and 300 liters per liter. All or part of this hydrogen can come from stage A or from a recycling of the unconsumed hydrogen resulting from stage C.
  • One of the possibilities of implementing the process according to the invention may, for example, consist in passing the gasoline to be hydrotreated through a reactor containing a catalyst allowing, at least in part, the hydrogenation of the unsaturated sulfur compounds, such as for example the thiophenic compounds, sulfur saturated compounds (step A) and the removal of H 2 S (step B), then through a reactor containing a catalyst for decomposing sulfur saturated compounds into H 2 S (step C) .
  • the step of removing the H2S can also be carried out in the reactor of step C or partly in each of the two reactors.
  • the removal step may also be partly or wholly outside the reactors of steps A and C.
  • the two catalysts of steps A and C are placed in series in the same reactor and an adsorbing mass of H2S is placed between the two catalysts in order to eliminate at least partly the H2S product in the first catalytic zone (step B).
  • the absorbent mass, once saturated with H2S can be either replaced or regenerated. In the latter case the regeneration can be performed discontinuously or continuously depending on the adsorbent mass used.
  • the two catalytic zones can operate under different conditions of pressure, VVH, temperature, H2 / load ratio.
  • Systems can be implanted to dissociate the operating conditions from the two reaction zones.
  • step A it can also be envisaged to carry out a sequence which consists in passing the gasoline to be hydrotreated through a reactor containing a catalyst allowing, at least in part, the hydrogenation of the unsaturated sulfur compounds, into saturated sulfur compounds (stage A). , then separately or simultaneously carry out a step of removing the H 2 S, and then carry out step C in a reactor containing a series of catalysts comprising at least one catalyst of the same type as that used in the first step of the method (step A) and at least one catalyst for decomposing sulfur saturated compounds into H2S (step C).
  • This charge is pretreated by means of a selective hydrogenation step.
  • the hydrogenation of the diolefins is carried out on a HR945® catalyst based on nickel and molybdenum, sold by the company Procatalyse.
  • the test is carried out in a continuous bed-type continuous reactor, the feedstock and the hydrogen being introduced through the bottom of the reactor.
  • 60 ml of catalyst are introduced into the reactor after having been previously sulphurized ex situ for 4 hours, under a pressure of 3.4 MPa, at 350 ° C., in contact with a constituting charge of 2% by weight of sulfur in the form of of dimethylsulfide in n-heptane.
  • the catalyst is then transferred to the reactor where the hydrogenation of the diolefins is carried out.
  • the charge contains // (ppm or% weight) of dienes
  • a catalyst A is obtained by impregnation "without excess solution" of a transition alumina, in the form of beads, with a specific surface area 130 m 2 / g and a pore volume of 0.9 ml / g, with an aqueous solution containing molybdenum and cobalt in the form of ammonium heptamolybdate and cobalt nitrate.
  • the catalyst is then dried and calcined under air at 500 ° C.
  • the cobalt and molybdenum content of this sample is 3% CoO and 10% MoO3. 25 ml of catalyst A are placed in a fixed-bed tubular hydrodesulfurization reactor.
  • the catalyst is first sulphurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C., in contact with a feedstock consisting of 2% of sulfur in the form of dimethyl disulphide in n-heptane.
  • the temperature of the catalytic zone is between 280 ° C and 320 ° C.
  • the hydrogenated gasoline under the conditions of Example 1 is hydrodesulfurized.
  • a second catalyst (catalyst C) is prepared from a transition alumina of 140 m 2 / g in the form of beads 2 mm in diameter. The pore volume is 1 ml / g of support. 1 kilogram of support is impregnated with 1 liter of nickel nitrate solution. The catalyst is then dried at 120 ° C and calcined under a stream of air at 400 ° C for one hour. The nickel content of the catalyst is 20% by weight. 25 ml of catalyst A of Example 1 and 50 ml of catalyst C are placed in the same hydrodesulfurization reactor, so that the feedstock to be treated (heavy fraction) first meets catalyst A and then the Catalyst C.
  • the catalysts are first sulphurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C., in contact with a feedstock consisting of 2% of sulfur in the form of dimethyl disulphide in n-heptane. .
  • the temperature of the catalytic zone comprising catalyst A is 250 ° C to 290 ° C, the temperature of the catalytic zone containing catalyst C is 330 ° C.
  • the hydrogenated gasoline under the conditions of Example 1 is hydrodesulfurized.
  • An experiment is carried out under the same conditions as those of Example 3, except that the two catalysts are placed in two different reactors and that the H2S is separated between these two reactors.
  • the effluent from the first reactor is cooled to room temperature, the liquid phase and the gas phase are separated, the H2S from the liquid phase is stripped by a stream of nitrogen to remove the H2S up to a content of 50 ppm by weight relative to the liquid.
  • the liquid thus obtained is then heated to the temperature of the second catalyst and reinjected in the presence of hydrogen introduced with a hydrogen flow rate of 330 I / I of charge corresponding approximately to the flow rate of hydrogen entering the second reactor of the example 3.
  • Example 5 Another mode of hydrodesulfurization according to steps A, B and C of the process according to the invention.
  • the hydrogenated gasoline under the conditions of Example 1 is hydrodesulfurized. 25 ml of catalyst A are placed in a tubular reactor. This reactor is coupled with a second hydrodesulfurization reactor containing 13 ml of catalyst A of Example 1 and 25 ml of catalyst C of Example 3, so that the feedstock first meets catalyst A and then catalyst C.
  • the effluent of the first reactor is cooled to ambient temperature, the liquid phase and the gas phase are separated, the H2S of the liquid phase is stripped by a stream of nitrogen allowing the H2S to be removed up to at a content of 50 ppm by weight with respect to the liquid.
  • the liquid thus obtained is then heated to the temperature of the second reactor and reinjected in the presence of hydrogen introduced with a flow rate and under a pressure corresponding to that of the second reactor of Example 2.
  • the temperature of the first reactor is indicated in the table. 5.
  • the temperature of the catalyst present in the second zone is raised to 270 ° C and the temperature of the catalyst C present in the second reactor is raised to 330 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

  • La présente invention concerne un procédé de production d'essences à faible teneur en soufre, qui permet de valoriser la totalité d'une coupe essence contenant du soufre, de réduire les teneurs en soufre total de ladite coupe essence à de très faibles niveaux, sans diminution sensible du rendement en essence, et en minimisant la diminution de l'indice d'octane due à l'hydrogénation des oléfines. Ce procédé s'applique particulièrement lorsque l'essence à traiter est une essence de craquage catalytique contenant une teneur en soufre supérieure à 1000 ppm poids et/ou une teneur en oléfine supérieure à 30 % poids, quand la teneur en soufre recherchée dans l'essence désulfurée est inférieure à 50 ppm poids.
  • Art antérieur :
  • Les spécifications sur les carburants, visant à diminuer les émissions de polluants ce sont fortement sévérisées depuis plusieurs années. Cette tendance risque de se poursuivre dans les années à venir. En ce qui concerne les essences, les spécifications les plus sévères concernent notamment la teneur en oléfines, en benzène et en soufre.
  • Les essences de craquage, qui peuvent représenter 30 à 50 % du pool essence, présentent l'inconvénient de contenir des concentrations importantes en soufre ce qui fait que le soufre présent dans les essences reformulées est imputable, à près de 90 %, aux essences de craquage (essences de craquage catalytique en lit fluidisé ou FCC, essence de vapocraquage, essences de cokage...). La désulfuration (l'hydrodésulfuration) des essences et principalement des essences de craquage est donc d'une importance évidente pour l'atteinte des spécifications.
  • Ces essences contiennent cependant des oléfines qui contribuent de façon significative à l'octane de l'essence reformulée et ainsi il est souhaitable de minimiser ou de contrôler leur saturation lors des traitements de désulfuration afin de minimiser les pertes en octane qui en résultent.
  • De nombreuses recherches ont été menées dans les dernières années afin de proposer des procédés ou des catalyseurs permettant de désulfurer les essences en tentant de minimiser les pertes en oléfines dues à l'hydrogénation. Ce travail à conduit à l'émergence d'un certain nombre de procédés, dont certains sont aujourd'hui commercialisés, et qui sont capables de minimiser le taux d'hydrogénation des oléfines tout en permettant d'atteindre des taux de désulfurations requis pour l'atteinte des spécifications en vigueurs.
  • Cependant les spécifications à venir vont se sévériser, c'est à dire qu'elles vont imposer des spécifications en soufre encore plus sévères. Par conséquent, il y a un continuel besoin de disposer de catalyseurs, ou de procédés, permettant d'atteindre des teneurs en soufre encore plus basses tout en préservant les oléfines et ce même pour des essences de craquage qui peuvent contenir des teneurs en soufre élevées, c'est à dire des teneurs supérieures à 1000 ppm poids et/ou pour des essences contenant des teneurs en oléfines élevées (supérieure à 30 % poids par rapport à l'essence de départ).
  • La demande de brevet EP-A-0 725 126 décrit un procédé d'hydrodésulfuration d'une essence de craquage dans lequel l'essence est séparée en une pluralité de fractions comprenant au moins une première fraction riche en composés faciles à désulfurer et une seconde fraction riche en composés difficiles à désulfurer. Avant d'effectuer cette séparation, il faut au préalable déterminer la distribution de produits soufrés au moyen d'analyses.
  • Le brevet français FR-A-2 790 000 décrit un procédé d'hydrodésulfuration en 2 étapes, une étape d'hydrogénation des composés soufrés insaturés et une étape de décomposition des composés soufrés saturés. Il n'y a pas d'élimination de l'H2S présent ou formé entre ces deux étapes. WO-A-9 807 805 décrit l'elimination des hétéroatomes à l'aide de l'absorption en contre courant. EP-A-0 870 817 décrit un procédé d'HDS des charges hydrocarbures.
  • RESUME DE L'INVENTION:
  • La présente invention concerne un procédé de désulfuration en trois étapes des essences tel que défini dans le libellé de la revendication 1, et avec un prétraitement d'hydrogénation des dioléfines de la charge. Ce procédé est notamment particulièrement bien adapté à des essences de craquage présentant une teneur en soufre supérieure à 1000 ppm poids, que l'on désire abaisser à un niveau inférieur à 50 ppm poids et de préférence inférieure à 15 ppm poids.
  • Le procédé selon l'invention tel que décrit dans le libellé de la revendication 1, comprends au moins trois étapes :
    • A) une première étape dans laquelle les composés soufrés présents dans l'essence sont au moins partiellement transformés en H2S et en composés soufrés saturés.
    • B) une deuxième étape visant à éliminer l'H2S de l'essence produite dans l'étape A) ;
    • C) une troisième étape dans laquelle les composés soufrés saturés restant dans l'essence sont transformés en H2S, et est caractérisé en ce qu'une étape de prétraitement visant à hydrogéner les dioléfines de la charge est effectuée avant l'étape A.
  • L'hydrogénation sélective située avant l'etape A des composés diéniques peut éventuellement hydrogéner des composés acétyléniques.
  • D'autres caractéristiques techniques optionelles de l'invention sont décrites dans les libellés des revendications dépendantes 2 à 10.
  • La présente invention concerne donc un procédé de production d'essences à faible teneur en soufre, qui permet de valoriser la totalité d'une coupe essence contenant du soufre et des oléfines, de réduire les teneurs en soufre dans ladite coupe essence à de très faibles niveaux et généralement à une valeur inférieure à 50 ppm voire inférieur à 15 ppm poids, sans diminution sensible du rendement en essence, et en minimisant la diminution de l'indice d'octane due à l'hydrogénation des oléfines. Le procédé est particulièrement adapté pour le traitement des essences présentant une teneur en soufre élevée, c'est à dire une teneur en soufre supérieure à 1000 ppm poids et/ou lorsque l'essence présente une teneur en oléfine élevée, c'est à dire supérieure à 30 % poids.
  • Le procédé selon l'invention comprend un traitement de la charge sur un premier catalyseur permettant d'hydrogéner au moins partiellement les composés soufrés aromatiques tels que par exemple les composés thiophéniques en se plaçant dans des conditions où l'hydrogénation des oléfines est limitée sur ce catalyseur (étape A), une étape permettant d'éliminer au moins en partie l'H2S de l'essence ainsi traitée (étape B), puis un troisième traitement sur au moins un catalyseur permettant de décomposer au moins en partie les composés soufrés saturés avec une hydrogénation limitée des oléfines (étape C).
  • Dans certain cas il est possible d'envisager que l'étape C soit réalisé sur un enchaînement de catalyseurs par exemple l'enchaînement décrit dans le brevet FR-A-279000 tout en respectant les critères concernant la concentration en H2S à l'entrée de la troisième étape selon la présente invention.
  • La charge du procédé selon l'invention est une coupe essence contenant du soufre et des oléfines, de préférence une coupe essence issue d'une unité de craquage, et de façon préférée une essence provenant majoritairement d'une unité de craquage catalytique. L'essence traitée peut aussi être un mélange d'essences provenant de différents procédés de conversion tels les procédés de vapocraquage, de coking ou de viscoréduction (visbreaking selon la terminologie anglo-saxonne) voire des essences directement issues de la distillation des produits pétroliers. Les essences présentant des concentrations en oléfines importantes sont particulièrement adaptées pour être soumises au procédé selon l'invention.
  • Description détaillée l'invention :
  • II a été décrit dans le brevet FR-A-2790000 que l'association de deux catalyseurs adaptés pour l'hydrotraitement des essences de craquage catalytique dont l'un permettant de transformer les composés insaturés du soufre présents dans l'essence, tels que par exemple les composés thiophéniques, et l'autre permettant de transformer sélectivement les composés saturés du soufre déjà présents dans l'essence ou produits lors de la première étape du traitement de l'essence, permet d'obtenir une essence désulfurée ne présentant pas de diminution importante de la teneur en oléfines ou de l'indice d'octane. On a maintenant découvert et ceci fait l'objet de la présente invention, qu'il était possible d'obtenir des performances accrues du procédé, et ce surtout lorsque la teneur en soufre de l'essence est élevée c'est à dire supérieure à 1000 ppm poids et/ou lorsque la teneur en oléfines est supérieure à 30 % poids et que la teneur en soufre de l'essence visée est inférieure à 50 ppm poids voire inférieure à 15 ppm poids.
  • Les espèces soufrées contenues dans les charges traitées par le procédé de l'invention peuvent être des mercaptans ou des composés hétérocycliques, tels que par exemple les thiophènes ou les alkyl-thiophènes, ou des composés plus lourds, comme par exemple le benzothiophène ou le dibenzothiophène. Ces composés hétérocycliques, contrairement aux mercaptans, ne peuvent pas être éliminés par les procédés extractifs conventionnels. Ces composés soufrés sont par conséquent éliminés par le procédé selon l'invention qui conduit à leur décomposition au moins partielle en hydrocarbures et H2S.
  • La teneur en soufre des coupes essences produites par craquage catalytique (FCC) dépend de la teneur en soufre de la charge traitée au FCC, ainsi que du point final de la coupe. Généralement, les teneurs en soufre de l'intégralité d'une coupe essence, notamment celles provenant du FCC, sont supérieures à 100 ppm en poids et la plupart du temps supérieures à 500 ppm en poids. Pour des essences ayant des points finaux supérieurs à 200°C, les teneurs en soufre sont souvent supérieures à 1000 ppm en poids, elles peuvent même dans certains cas atteindre des valeurs de l'ordre de 4000 à 5000 ppm en poids.
  • Les essences convenant particulièrement au procédé selon l'invention contiennent donc des concentrations en oléfines qui sont généralement comprises entre 5 et 60 % poids. Lorsque l'essence contient une teneur en soufre inférieure à 1000ppm, l'essence traitée dans le procédé selon l'invention contient de préférence plus de 30 % poids d'oléfines.
  • Les essences peuvent aussi contenir des concentrations significatives en dioléfines c'est à dire des concentrations en dioléfines pouvant aller jusqu'à 15 % poids. Généralement la teneur en dioléfines est comprise entre 0,1 et 10 % poids. La teneur en dioléfines est typiquement supérieure à 1 % poids voire supérieure à 0,5 % poids. L'essence est, avant de subir les étapes A, B et C soumise à un traitement d'hydrogénation sélective visant à hydrogéner au moins en partie les dioléfines présente dans ladite essence, tel que décrit dans le libellé de la revendication 1.
  • L'essence peut également contenir de façon naturelle des composés azotés. La concentration en azote de l'essence est généralement inférieure à 1000 ppm poids et est généralement comprise entre 20 et 500 ppm poids.
  • Cette essence contient de préférence une teneur en soufre supérieure à 1000 ppm poids. La gamme de points d'ébullition s'étend typiquement depuis environ les points d'ébullitions des hydrocarbures à 5 atomes de carbone (C5) jusqu'à environ 250°C. Le point final de la coupe essence dépend de la raffinerie dont elle est issue et des contraintes du marché, mais reste généralement dans les limites indiquées ci-avant. Dans certains cas, et afin d'optimiser la configuration du procédé, il peut être avantageux de faire subir à l'essence différents traitements avant de la soumettre au procédé selon l'invention. L'essence peut, par exemple, subir des fractionnements ou tout autre traitement avant d'être soumise au procédé selon l'invention sans que ces traitement ne limite la portée de l'invention.
  • Pour ce type d'essence, l'analyse de la nature des composés soufrés montrent que le soufre est essentiellement présent sous forme de composés thiophéniques (thiophène, méthylthiophènes, alkylthiophènes...) et, en fonction du point final de l'essence à traitée, de composés benzothiophéniques, alkylbenzothiophéniques, voire de composés dérivés du dibenzothiophène.
  • Le procédé selon l'invention comprend tout d'abord un traitement (étape A) de l'essence sur un catalyseur permettant d'hydrogéner au moins en partie des composés soufrés insaturés tels que par exemple les composés thiophéniques, en composés saturés tels que par exemple les thiophanes (ou thiacyclopentane) ou en mercaptans selon une succession de réactions décrites ci-après:
    Figure imgb0001
  • Cette réaction d'hydrogénation peut être réalisée sur un catalyseur d'hydrotraitement (d'hydrodésulfuration) conventionnel comprenant un métal du groupe VIII et un métal du groupe Vlb en partie sous forme de sulfures. Quand un tel catalyseur est utilisé, les conditions opératoires sont ajustées afin de pouvoir hydrogéner au moins en partie les composés thiophéniques tout en limitant l'hydrogénation des oléfines.
  • Lors de cette étape, les composés thiophéniques, benzothiophéniques et dibenzothiophéniques s'ils sont présents dans l'essence à traiter, sont généralement transformés de façon significative, c'est à dire qu'à l'issue de la première étape, la teneur en composés thiophéniques, benzothiophéniques ou dibenzothiophéniques représente au plus 20 % de celle de l'essence de départ. De plus, cette étape d'hydrogénation s'accompagne de la production significative d'H2S par décomposition totale des composés soufrés initialement présent dans la charge. Le taux de décomposition des composés soufrés présents dans la charge en H2S, qui accompagne l'hydrogénation des composés soufrés insaturés, est généralement supérieur à 50 %.
  • Le procédé selon l'invention comprend une deuxième étape où l'H2S est au moins en partie éliminé de l'effluent obtenu à l'issu de l'étape A. Cette étape peut être réalisée au moyen de toutes techniques connues de l'homme du métier. Elle peut être réalisée directement dans les conditions dans lesquelles se trouve l'effluent à l'issue de l'étape A où après que ces conditions aient été changées afin de faciliter l'élimination d'au moins une partie de l'H2S. Comme technique envisageable, on peut par exemple citer, une séparation gaz/liquide (où le gaz se concentre en H2S et le liquide est appauvri en H2S et est envoyé directement à l'étape C), une étape de stripage de l'essence pratiquée sur une fraction liquide de l'essence obtenue après l'étape A, une étape de lavage aux amines, là encore pratiquée sur une fraction liquide de l'essence obtenue après l'étape A, une captation de l'H2S par une masse absorbante opérant sur l'effluent gazeux ou liquide obtenu après l'étape, une séparation de l'H2S de l'effluent gazeux ou liquide par une membrane. A l'issue de ce traitement la teneur en soufre sous forme d'H2S est généralement inférieure à 500 ppm poids par rapport à l'essence de départ. D'une façon préférée cette teneur est ramenée, à l'issue de l'étape B à une valeur comprise entre 0,2 et 300 ppm poids et de façon encore préférée à une valeur comprise entre 0,5 et 150 ppm poids.
  • Le procédé selon l'invention comprend une troisième étape (étape C) dans laquelle les composés saturés soufrés sont convertis en H2S selon les réactions :
    Figure imgb0002
  • Ce traitement peut être réalisé au moyen de tout catalyseur permettant la conversion des composés saturés du soufre (principalement les composés de type thiophanes ou de type mercaptans). Il peut par exemple être effectué en utilisant un catalyseur à base de nickel, de molybdène, de cobalt, de tungstène de fer où d'étain. De façon préférée, le traitement est effectué en présence d'un catalyseur à base de nickel, de nickel et d'étain, de cobalt et de fer, de cobalt et de tungstène.
  • L'essence ainsi désulfurée est ensuite éventuellement strippée, afin d'éliminer l'H2S produit lors de l'étape C.
  • Par rapport à l'invention décrite dans le brevet FR-A-2790000 . l'invention ici proposée présente comme avantage:
    • de pouvoir atteindre des taux de désulfuration de l'essence plus élevées, c'est à dire des teneurs en soufre résiduelles beaucoup plus basse et ce notamment lorsque l'essence à traiter présente une teneur élevée en soufre c'est à dire une teneur en soufre supérieure à 1000 ppm et/ou une teneur en oléfine supérieure à 30 % poids;
    • d'opérer l'étape C dans des conditions de températures beaucoup plus douces, ce qui présente des avantages au niveau du procédé notamment en permettant une intégration thermique mieux optimisée entre la section réactionnelle de l'étape A et de l'étape C.
  • Dans le cas d'essence à forte teneur en soufre et/ou lorsque le taux de transformation des composés soufrés insaturés en composés soufrés saturés n'est pas suffisant dans l'étape A, il peut être avantageux de réaliser l'étape C avec un enchaînement de catalyseurs comprenant au moins un catalyseur décrit pour l'étape A et au moins un catalyseur décrit pour l'étape C.
  • Les étapes du procédé selon l'invention sont décrites plus en détail ci après.
  • - Hydrogénation des diènes (étape avant l'étape A) :
  • L'hydrogénation des diènes est une étape qui permet d'éliminer, avant hydrodésulfuration, la presque totalité des diènes présents dans la coupe essence contenant du soufre à traiter. Elle se déroule généralement en présence d'un catalyseur comprenant au moins un métal du groupe VIII, de préférence choisi dans le groupe formé par le platine, le palladium et le nickel, et un support. On emploiera par exemple un catalyseur à base de nickel déposé sur un support inerte, tel que par exemple de l'alumine, de la silice ou un support contenant au moins 50 % d'alumine. Ce catalyseur opère sous une pression de 0,4 à 5 MPa, à une température de 50 à 250 °C, avec une vitesse spatiale horaire du liquide de 1 à 10 h-1. Un autre métal peut être associé pour former un catalyseur bimétallique, tel que par exemple le molybdène ou le tungstène.
  • Il peut être particulièrement avantageux, surtout lorsqu'on traite des coupes dont le point d'ébullition est inférieur à 160°C, d'opérer dans des conditions telles qu'un adoucissement au moins partiel de l'essence soit obtenu, c'est-à-dire une certaine réduction de la teneur en mercaptans. Pour ce faire, on peut utiliser la procédure décrite dans la demande de brevet FR-A-2 753 717 , qui utilise un catalyseur à base de palladium.
  • Le choix des conditions opératoires est particulièrement important. On opérera le plus généralement sous pression en présence d'une quantité d'hydrogène en faible excès par rapport à la valeur stoechiométrique nécessaire pour hydrogéner les dioléfines. L'hydrogène et la charge à traiter sont injectés en courants ascendants ou descendants dans un réacteur de préférence à lit fixe de catalyseur. La température est comprise le plus généralement entre environ 50 et environ 250 °C, et de préférence entre 80 et 230 °C, et de manière plus préférée entre 120 et 200 °C.
  • La pression est suffisante pour maintenir plus de 80 %, et de préférence plus de 95 % en poids de l'essence à traiter en phase liquide dans le réacteur ; elle est le plus généralement comprise entre 0,4 et 5 MPa et de préférence supérieure à 1 MPa. La pression est avantageusement comprise entre 1 et 4 MPa. La vitesse spatiale est comprise entre environ 1 et environ 10 h-1, de préférence entre 4 et 10 h-1.
  • L'essence de craquage catalytique peut contenir jusqu'à quelques % poids de dioléfines. Après hydrogénation, la teneur en dioléfines est généralement réduite à moins de 3000 ppm, voire moins de 2500 ppm et de manière plus préférée moins de 1500 ppm. Dans certains cas, il peut être obtenu moins de 500 ppm. La teneur en diènes après hydrogénation sélective peut même si nécessaire être réduite à moins de 250 ppm.
  • Selon une réalisation de l'invention, l'étape d'hydrogénation des diènes se déroule dans un réacteur catalytique d'hydrogénation qui comprend une zone réactionnelle catalytique traversée par la totalité de la charge et la quantité d'hydrogène nécessaire pour effectuer les réactions désirées.
  • - Hydrogénation des composés insaturés du soufre (étape A) :
  • Cette étape consiste à transformer au moins une partie des composés insaturés du soufre tels que les composés thiophéniques, en composés saturés par exemple en thiophanes (ou thiacyclopentanes) ou en mercaptans.
  • Cette étape peut par exemple est réalisée par passage de la charge à traiter, en présence d'hydrogène, sur un catalyseur contenant au moins un élément du groupe VIII et/ou au moins un élément du groupe Vlb au moins en partie sous forme sulfure, à une température comprise entre 220°C et 320°C et de manière plus préférée entre 220°C et 290°C, sous une pression généralement comprise entre 1 et 5 MPa, de préférence entre 1 et 4MPa et de manière plus préférée entre 1,5 et 3MPa. La vitesse spatiale du liquide est comprise entre 1 et 10 h-1 (exprimée en volume de liquide par volume de catalyseur et par heure), de préférence entre 3h-1 et 8 h-1. Le rapport H2/HC est compris entre 100 à 600 litres par litre et préférentiellement de 300 à 600 litres par litre.
  • Pour réaliser, au moins en partie, l'hydrogénation des composés soufrés insaturés de l'essence selon le procédé de l'invention, on utilise en général au moins un catalyseur d'hydrodésulfuration, comprenant au moins un élément du groupe VIII (métaux des groupes 8, 9 et 10 de la nouvelle classification, c'est-à-dire le fer, le ruthénium, l'osmium, le cobalt, le rhodium, l'iridium, le nickel, le palladium ou le platine) et/ou au moins un élément du groupe Vlb (métaux du groupe 6 de la nouvelle classification, c'est-à-dire le chrome, le molybdène ou le tungstène), sur un support approprié. De préférence, l'élément du groupe VIII, lorsqu'il est présent, est généralement le nickel ou le cobalt, et l'élément du groupe Vlb, lorsqu'il est présent, est généralement le molybdène ou le tungstène. Des combinaisons telles que nickel-molybdène ou cobalt-molybdène sont préférées. Le support du catalyseur est habituellement un solide poreux, tel que par exemple une alumine, une silice-alumine ou d'autres solides poreux, tels que par exemple de la magnésie, de la silice ou de l'oxyde de titane, seuls ou en mélange avec de l'alumine ou de la silice-alumine.
  • Après introduction du ou des éléments et éventuellement mise en forme du catalyseur (lorsque cette étape est réalisée sur un mélange contenant déjà les éléments de base), le catalyseur est dans une première étape activé. Cette activation peut correspondre soit à une oxydation, puis à une réduction, soit à une réduction directe, soit à une calcination uniquement. L'étape de calcination est généralement réalisée à des températures allant d'environ 100 à environ 600 °C et de préférence comprises entre 200 et 450 °C, sous un débit d'air.
  • Le catalyseur préférentiellement utilisé dans cette étape est un catalyseur comprenant un support à base d'alumine dont la surface spécifique est inférieure à 200 m2/g, et comprenant au moins un élément choisi dans le groupe constitué par le cobalt, le molybdène, le nickel ou le tungstène et de préférence choisi dans le groupe constitué par le cobalt, le molybdène et le tungstène. De façon encore plus préférée le catalyseur selon l'invention contient au moins du cobalt et du molybdène. De plus, la teneur en molybdène, lorsque cet élément est présent est de préférence supérieure à 10 % poids exprimée en oxyde de molybdène, la teneur en cobalt, lorsque cet élément est présent, est de préférence supérieure à 1 % poids (exprimée en oxyde de cobalt II). Pour les catalyseurs à base de molybdène, la densité de molybdène dans le catalyseur, exprimée en gramme de MoO3 par mètre carré de support est supérieure à 0,05 g/m2 de support.
  • L'étape de réduction est réalisée dans des conditions permettant de convertir au moins une partie des formes oxydées du métal de base en métal. Généralement, elle consiste à traiter le catalyseur sous un flux d'hydrogène à une température au moins égale à 300 °C. La réduction peut également être réalisée en partie au moyen de réducteurs chimiques.
  • Le catalyseur est de préférence utilisé au moins en partie sous sa forme sulfurée. L'introduction du soufre peut intervenir entre différentes étapes d'activation. De préférence, aucune étape d'oxydation n'est réalisée lorsque le soufre ou un composé soufré est introduit sur le catalyseur. Le soufre ou un composé soufré peut être introduit ex situ, c'est-à-dire en dehors du réacteur où le procédé selon l'invention est réalisé, ou in situ, c'est-à-dire dans le réacteur utilisé pour le procédé selon l'invention. Dans ce dernier cas, le catalyseur est de préférence réduit dans les conditions décrites précédemment, puis sulfuré par passage d'une charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l'hydrogène contenant de l'H2S, ou un liquide contenant au moins un composé soufré.
  • D'une façon préférée, le composé soufré est ajouté sur le catalyseur ex situ. Par exemple, après l'étape de calcination, un composé soufré peut être introduit sur le catalyseur en présence éventuellement d'un autre composé. Le catalyseur est ensuite séché, puis transféré dans le réacteur servant à mettre en oeuvre le procédé de l'invention. Dans ce réacteur, le catalyseur est alors traité sous hydrogène afin de transformer au moins une partie du métal principal en sulfure. Une procédure qui convient particulièrement à l'invention est celle décrite dans les brevets FR-B- 2 708 596 et FR-B- 2 708 597 .
  • Dans le procédé selon l'invention la conversion des composés soufrés insaturés est supérieure à 15 % et de préférence supérieure à 50 %. Dans le même temps le taux d'hydrogénation des oléfines est de préférence inférieur à 50 % et de façon préférée inférieure à 40 % au cours de cette étape.
  • L'effluent qui a subi ce premier traitement est ensuite envoyé à l'étape B qui permet d'éliminer au moins en partie l'H2S présent à l'issue de l'étape A.
  • - Elimination de l'H2S de l'effluent de l'étape A (Etape B):
  • Dans cette étape la concentration en H2S est diminuée. L'élimination de l'H2S peut être réalisée de différentes manières pour la plupart connues de l'homme du métier. On peut par exemple citer l'adsorption d'une partie de l'H2S contenu dans l'effluent de l'étape A par une masse absorbante à base d'un oxyde métallique, de préférence choisie dans le groupe constitué par l'oxyde de zinc, l'oxyde de cuivre ou l'oxyde de molybdène. Cette masse adsorbante est de préférence régénérable. Sa régénération peut être réalisée de façon continue ou discontinue par exemple au moyen d'un traitement thermique sous atmosphère oxydante ou réductrice. La masse absorbante peut être utilisé en lit fixe ou en lit mobile. Elle peut opérer directement sur l'effluent de l'étape A, ou sur cet effluent ayant subi des traitements (par exemple un refroidissement ou une séparation...). Une autre méthode consiste à réaliser une séparation membranaire de l'H2S en utilisant une membrane sélective opérant sur un effluent liquide ou gazeux issue de l'étape A. L'une des zones de la séparation peut contenir une masse absorbante afin de favoriser le transfert de l'H2S à travers la paroi de la membrane. Une autre méthode peut consister à refroidir l'effluent de l'étape A et à produire un gaz riche en H2S et une phase liquide appauvrie en H2S. La phase gaz peut alors être traitée dans une unité de lavage aux amines. La phase liquide et la phase gaz peuvent ensuite être remélangées et envoyées à l'étape C. La fraction liquide peut par ailleurs subir d'autres traitements tels qu'un stripage avec de l'hydrogène, de l'azote ou de la vapeur d'eau, une extraction de l'H2S, un lavage aux amines, un lavage par une solution de soude afin de diminuer sa teneur en H2S.
  • - Décomposition des composés saturés du soufre (Etape C):
  • Dans cette étape, les composés saturés du soufre sont transformés, en présence d'hydrogène sur un catalyseur adapté. Cette transformation est réalisée, sans hydrogénation des oléfines, c'est à dire qu'au cours de cette étape l'hydrogénation des oléfines est limitée à 20 % par rapport à la teneur de l'essence de départ, et de préférence, limitée à 10 % par rapport à la concentration en oléfines de l'essence.
  • Les catalyseurs qui peuvent convenir à l'invention, sans que cette liste soit limitative, sont des catalyseurs comprenant au moins un métal choisi dans le groupe constitué par le nickel, le cobalt , le fer, le molybdène et le tungstène et. De manière plus préférée les catalyseurs de cette étape sont à base de nickel. Ces métaux sont de préférence supportés et utilisés sous leur forme sulfurée.
  • La teneur en métal du catalyseur utilisé selon l'invention est généralement comprise entre environ 1 et environ 60 % poids et de préférence entre 5 et 20 % poids. De façon préférée, le catalyseur est généralement mis en forme, de préférence sous forme de billes, d'extrudés, de pastilles, ou de trilobes. Le métal peut être incorporé au catalyseur sur le support préformé, il peut également être mélangé avec le support avant l'étape de mise en forme. Le métal est généralement introduit sous la forme d'un sel précurseur, généralement soluble dans l'eau, tel que par exemple les nitrates, les heptamolybdates. Ce mode d'introduction n'est pas spécifique de l'invention. Tout autre mode d'introduction connu de l'homme du métier convient pour la mise en oeuvre de l'invention.
  • Les supports des catalyseurs utilisés dans le procédé de l'invention sont généralement des solides poreux choisis parmi les oxydes réfractaires, tels que par exemple, les alumines, les silices et les silices-alumines, la magnésie, ainsi que l'oxyde de titane et l'oxyde de zinc, ces derniers oxydes pouvant être utilisés seuls ou en mélange avec de l'alumine ou de la silice-alumine. De préférence, les supports sont des alumines de transition ou des silices dont la surface spécifique est comprise entre 25 et 350 m2/g. Les composés naturels (par exemple kieselguhr ou kaolin) peuvent également convenir comme supports pour les catalyseurs du procédé selon l'invention.
  • Après introduction du métal et éventuellement mise en forme du catalyseur (lorsque cette étape est réalisée avec un mélange contenant déjà le métal de base), le catalyseur est dans une première étape activé. Cette activation peut correspondre soit à une oxydation, puis à une réduction, soit à une réduction directe, soit à une calcination uniquement. L'étape de calcination est généralement réalisée à des températures allant d'environ 100 à environ 600 °C et de préférence comprises entre 200 et 450 °C, sous un débit d'air. L'étape de réduction est réalisée dans des conditions permettant de convertir au moins une partie des formes oxydées du métal de base en métal. Généralement, elle consiste à traiter le catalyseur sous un flux d'hydrogène à une température au moins égale à 300 °C. La réduction peut aussi être réalisée en partie au moyen de réducteurs chimiques.
  • Le catalyseur est de préférence utilisé au moins en partie sous sa forme sulfurée. Ceci présente l'avantage de limiter au maximum les risques d'hydrogénation des composés insaturés tels que les oléfines ou les composés aromatiques pendant la phase de démarrage. L'introduction du soufre peut intervenir entre différentes étapes d'activation. De préférence, aucune étape d'oxydation n'est réalisée lorsque le soufre ou un composé soufré est introduit sur le catalyseur. Le soufre ou un composé soufré peut être introduit ex situ, c'est-à-dire en dehors du réacteur où le procédé selon l'invention est réalisé, ou in situ, c'est-à-dire dans le réacteur utilisé pour le procédé selon l'invention. Dans ce dernier cas, le catalyseur est de préférence réduit dans les conditions décrites précédemment, puis sulfuré par passage d'une charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l'hydrogène contenant de l'H2S, ou un liquide contenant au moins un composé soufré.
  • D'une façon préférée, le composé soufré est ajouté sur le catalyseur ex situ. Par exemple, après l'étape de calcination, un composé soufré peut être introduit sur le catalyseur en présence éventuellement d'un autre composé. Le catalyseur est ensuite séché, puis transféré dans le réacteur servant à mettre en oeuvre le procédé selon l'invention. Dans ce réacteur, le catalyseur est alors traité sous hydrogène afin de transformer au moins une partie du métal principal en sulfure. Une procédure qui convient particulièrement à l'invention est celle décrite dans les brevets FR-B-2 708 596 et FR-B- 2 708 597 .
  • Après sulfuration, la teneur en soufre du catalyseur est en général comprise entre 0,5 et 25 % poids, de préférence entre 4 et 20 % poids.
  • L'hydrotraitement réalisé au cours de cette étape a pour but de convertir en H2S les composés soufrés saturés de l'essence qui a déjà subi un traitement préalable, de façon à obtenir un effluent, qui répondra aux spécifications désirées en terme de teneur en composés soufrés. L'essence ainsi obtenue présente un indice d'octane un peu plus faible, du fait de la saturation partielle mais inévitable des oléfines, que celui de l'essence à traiter. Toutefois cette saturation est limitée.
  • Les conditions opératoires du catalyseur permettant de décomposer les composés saturés du soufre en H2S doivent être ajustées de manière à atteindre le niveau d'hydrodésulfuration désiré, et afin de minimiser la perte en octane résultant de la saturation des oléfines. Le second catalyseur (catalyseur de l'étape C) utilisé dans le procédé selon l'invention permet généralement de ne convertir qu'au plus 20 % des oléfines, de préférence au plus 10 % des oléfines.
  • Le traitement visant à décomposer les composés soufrés saturés lors de la première étape du procédé (étape A) est effectué en présence d'hydrogène, avec le catalyseur à base d'un métal, tel que de manière plus préférée le nickel, à une température comprise entre 200°C et 350°C, de préférence entre 250°C et 350°C, de manière plus préférée entre 260°C et 320°C, sous une pression faible à modérée généralement comprise entre 0,5 et 5 MPa , de préférence entre 0,5 MPa et 3 MPa, de manière plus préférée entre 1 et 3 MPa. La vitesse spatiale du liquide est généralement comprise entre 0,5 et 10 h-1 (exprimée en volume de liquide par volume de catalyseur et par heure), de préférence entre 1 et 8 h-1. Le rapport H2/HC est ajusté en fonction des taux d'hydrodésulfuration désirés dans la gamme généralement comprise entre environ 100 et environ 600 litres par litres, de préférence entre 100 et 300 litres par litres. Tout ou partie de cet hydrogène peut provenir de l'étape A ou d'un recyclage de l'hydrogène non consommé issu de l'étape C.
  • - Mise en oeuvre du procédé :
  • Une des possibilités de mise en oeuvre du procédé selon l'invention, peut par exemple consister à faire passer l'essence à hydrotraiter à travers un réacteur contenant un catalyseur permettant, au moins en partie, l'hydrogénation des composés soufrés insaturés, tel que par exemple les composés thiophéniques, en composés saturés du soufre (étape A) et l'élimination de l'H2S (étape B), puis à travers un réacteur contenant un catalyseur permettant de décomposer les composés saturés du soufre en H2S (étape C). L'étape d'élimination de l'H2S peut également être effectuée dans le réacteur de l'étape C ou encore pour partie dans chacun des 2 réacteurs. L'étape d'élimination peut également être en partie ou intégralement située en dehors des réacteurs des étapes A et C.
  • Dans une autre configuration qui convient également, les deux catalyseurs des étapes A et C sont placés en série dans le même réacteur et une masse adsorbante de l'H2S est placée entre les deux catalyseurs afin d'éliminer au moins en partie l'H2S produit dans la première zone catalytique (étape B). Dans une telle configuration la masse absorbante, une fois saturée en H2S peut être soit remplacée, soit régénérée. Dans ce dernier cas la régénération peut être réalisée de façon discontinue ou de façon continue en fonction de la masse adsorbante utilisée.
  • Dans tous les cas, les deux zones catalytiques peuvent opérer dans des conditions différentes de pression, de VVH, de température, de rapport H2/charge. Des systèmes peuvent être implantés afin de dissocier les conditions opératoires des deux zones de réactionnelles.
  • Il peut également être envisagée de réaliser un enchaînement qui consiste à faire passer l'essence à hydrotraiter à travers un réacteur contenant un catalyseur permettant, au moins en partie, l'hydrogénation des composés soufrés insaturés, en composés saturés du soufre (étape A), puis à réaliser séparément ou de manière simultanée une étape d'élimination de l'H2S, puis à réaliser l'étape C dans un réacteur contenant un enchaînement de catalyseurs comprenant au moins un catalyseur du même type que celui utilisé dans la première étape du procédé (étape A) et au moins un catalyseur permettant de décomposer les composés saturés du soufre en H2S (étape C).
  • Avec les enchaînements proposés pour le procédé selon l'invention, il est possible d'atteindre des taux d'hydrodésulfuration élevés tout en limitant la perte en oléfines et par conséquent la diminution de l'indice d'octane.
  • Les exemples ci-après illustrent l'invention sans en limiter la portée.
  • Exemple 1 : Prétraitement de la charge par hydrogénation sélective
  • Le tableau 1 présente les caractéristiques de la charge (essences de craquage catalytique) traitées par le procédé selon l'invention. Les méthodes d'analyses utilisées pour caractériser les charges et effluents sont les suivantes :
    • chromatographie en phase gaz (CPG) pour les constituants hydrocarbonés ;
    • méthode NF M 07052 pour le soufre total ;
    • méthode NF EN 25164/M 07026-2/ISO 5164/ASTM D 2699 pour l'indice d'octane recherche ;
    • méthode NF EN 25163/M 07026-1/ISO 5163/ASTM D 2700 pour l'indice d'octane moteur.
    Tableau 1 : Caractéristiques de la charge utilisée
    Charge
    Densité 0,78
    Point initial (°C) 63°C
    Point final (°C) 250°C
    Teneur en oléfines (% pds) 31.3
    Teneur en diènes 1,4
    S total (ppm) 2062
    RON 91
    MON 80
    (RON + MON)/2 85.5
  • Cette charge est prétraitée au moyen d'une étape d'hydrogénation sélective. L'hydrogénation des dioléfines est effectuée sur un catalyseur HR945® à base de nickel et de molybdène, commercialisé par la société Procatalyse. Le test est effectué en réacteur continu de type lit traversé, la charge et l'hydrogène étant introduit par le bas du réacteur. 60 ml de catalyseur sont introduits dans le réacteur après avoir été préalablement sulfurés ex situ pendant 4 heures, sous une pression de 3,4 Mpa, à 350°C, au contact d'une charge consitutée de 2 % en poids de soufre sous forme de diméthylsisulfure dans du n-heptane. Le catalyseur est ensuite transféré dans le réacteur où l'hydrogénation des dioléfines est réalisée. L'hydrogénation est ensuite réalisée dans les conditions suivantes: T=190°C, P=2,7 Mpa, VVH=6h-1 et H2/HC=151/1. Après hydrogénation des dioléfines, la teneur en dioléfines est de .,1 % poids.
  • Après hydrogénation, la charge contient.....(ppm ou % poids) de diènes
  • EXEMPLE 2 : Hydrodésulfuration de l'essence hydrogénée selon l'étape A (comparatif)
  • L'essence hydrogénée dans les conditions de l'exemple 1 est hydrodésulfurée.
    Un catalyseur A est obtenu par imprégnation « sans excès de solution » d'une alumine de transition, se présentant sous forme de billes, de surface spécifique 130 m2/g et de volume poreux 0,9 ml/g, par une solution aqueuse contenant du molybdène et du cobalt sous forme d'heptamolybdate d'ammonium et de nitrate de cobalt . Le catalyseur est ensuite séché et calciné sous air à 500°C. La teneur en cobalt et en molybdène de cette échantillon est de 3 % de CoO et 10 % de MoO3.
    25 ml du catalyseur A sont placés dans un réacteur d'hydrodésulfuration tubulaire à lit fixe. Le catalyseur est tout d'abord sulfuré par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2% de soufre sous forme de diméthyldisulfure dans du n-heptane.
    Les conditions opératoires de l'hydrodésulfuration sont les suivantes : VVH = 4 h-1 (VVH = volume de charge traité par heure et par volume de catalyseur), H2/HC = 360 I/I, P = 2,0 MPa. La température de la zone catalytique est entre 280°C et 320°C. Les résultats obtenus sont présentés dans le tableau 2 Tableau 2
    Température de la zone catalytique (°C) Teneur en Soufre de l'essence désulfurée (ppm) Teneur en oléfine de l'essence désulfurée (% poids) Octane de l'essence désulfurée (RON+MON)/2
    280°C 184 23,9 83.5
    300°C 90 20,2 82.4
    305°C 50 17,1 80.4
    320°C 12 13,6 76.5
  • Exemple 3 : Hydrodésulfuration selon les étapes A et C (comparatif)
  • L'essence hydrogénée dans les conditions de l'exemple 1 est hydrodésulfurée. Un second catalyseur (catalyseur C) est préparé à partir d'une alumine de transition de 140 m2/g se présentant sous forme de billes de 2 mm de diamètre. Le volume poreux est de 1 ml/g de support.1 kilogramme de support est imprégné par 1 litre de solution de nitrate de nickel. Le catalyseur est ensuite séché à 120°C et calciné sous courant d'air à 400°C pendant une heure. La teneur en nickel du catalyseur est de 20 % poids. 25 ml du catalyseur A de l'exemple 1 et 50 ml du catalyseur C, sont placés dans un même réacteur d'hydrodésulfuration, de manière à ce que la charge à traiter (fraction lourde) rencontre tout d'abord le catalyseur A puis le catalyseur C. Les catalyseurs sont tout d'abord sulfurés par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2 % de soufre sous forme de diméthyldisulfure dans du n-heptane.
  • Les conditions opératoires de l'hydrodésulfuration sont les suivantes : VVH = 1,33 h-1 par rapport à l'ensemble du lit catalytique H2/HC = 360 I/I, P = 2,0 MPa. La température de la zone catalytique comprenant le catalyseur A est de 250°C à 290°C, la température de la zone catalytique contenant le catalyseur C est de 330°C.
  • Les résultats obtenus dans ces conditions sont reportés dans le tableau 3. Tableau 3.
    Température de la zone catalytique A (°C) Teneur en Soufre de l'essence désulfurée (ppm) Teneur en oléfine de l'essence désulfurée (% poids) Octane de l'essence désulfurée (RON+MON)/2
    270°C 50 20,4 82.3
    290°C 13 15,6 78.7
  • Exemple 4 : Hydrodésulfuration selon les étapes A, B et C du procédé selon l'invention.
  • L'essence hydrogénée dans les conditions de l'exemple 1 est hydrodésulfurée. Un essai est réalisé dans les mêmes conditions que celles de l'exemple 3, si ce n'est que les deux catalyseurs sont placés dans deux réacteurs différents et que l'H2S est séparé ente ces deux réacteurs. L'effluent du premier réacteur est refroidi à température ambiante, la phase liquide et la phase gazeuse sont séparées, l'H2S de la phase liquide est strippé par un courant d'azote permettant d'éliminer l'H2S jusqu'à une teneur de 50 ppm poids par rapport au liquide. Le liquide ainsi obtenu est alors réchauffé à la température du second catalyseur et réinjecté en présence d'hydrogène introduit avec un débit d'hydrogène de 330 I/I de charge correspondant approximativement au débit d'hydrogène entrant dans le second réacteur de l'exemple 3.
  • Les conditions de sulfuration et de test correspondent à celles de l'exemple 3.
  • Les résultats obtenus dans ces conditions sont reportés dans le tableau 4. Tableau 4.
    Température de la zone catalytique A (°C) Teneur en Soufre de l'essence désulfurée (ppm) Teneur en oléfine de l'essence désulfurée (% poids) Octane de l'essence désulfurée (RON+MON)/2
    260°C 48 21,3 82.5
    280°C 12 16,2 79.4
  • Exemple 5 : Autre mode d'hydrodésulfuration selon les étapes A, B et C du procédé selon l'invention.
  • L'essence hydrogénée dans les conditions de l'exemple 1 est hydrodésulfurée. 25 ml de catalyseur A sont placé dans un réacteur tubulaire. Ce réacteur est couplé avec un second réacteur d'hydrodésulfuration contenant 13 ml du catalyseur A de l'exemple 1 et 25 ml du catalyseur C de l'exemple 3, de manière à ce que la charge rencontre tout d'abord le catalyseur A puis le catalyseur C. L'effluent du premier réacteur est refroidi à température ambiante, la phase liquide et la phase gazeuse sont séparées, l'H2S de la phase liquide est strippé par un courant d'azote permettant d'éliminer l'H2S jusqu'à une teneur de 50 ppm poids par rapport au liquide. Le liquide ainsi obtenu est alors rechauffé à la température du second réacteur et réinjecté en présence d'hydrogène introduit avec un débit et sous une pression correspondant à celui du second réacteur de l'exemple 2. La température du premier réacteur est indiquée dans le tableau 5. La température du catalyseur A présent dans la seconde zone est portée à 270°C et la température du catalyseur C présent dans le second réacteur est portée à 330°C.
  • Les résultats obtenus sont consignés dans le tableau 5. Tableau 5.
    Température de la zone catalytique A (°C) Teneur en Soufre de l'essence désulfurée (ppm) Teneur en oléfine de l'essence désulfurée (% poids) Octane de l'essence désulfurée (RON+MON)/2
    260°C 49 23,6 83.3
    280°C 10 20,2 82.3

Claims (10)

  1. Procédé de production d'essence à faible teneur en soufre comprenant au moins trois étapes :
    A) une première étape dans laquelle les composés soufrés présents dans l'essence sont au moins partiellement transformés en H2S et en composés soufrés saturés par passage de la charge, en présence d'hydrogène, sur un catalyseur comprenant au moins un élément du groupe VIII et/ou au moins un élément du groupe Vlb, au moins en partie sous forme sulfure, ladite étape étant effectuée à une température comprise entre 220°C et 320°C, sous une pression généralement comprise entre 1 et 5 MPa, avec une vitesse spatiale du liquide comprise entre 1 et 10 h-1, et un rapport H2/HC compris entre 100 et 600 litres par litre.
    B) une deuxième étape visant à éliminer l'H2S de l'essence produite dans l'étape A,
    C) une troisième étape en présence d'un catalyseur au moins en partie sous sa forme sulfurée comprenant au moins un métal de base choisi dans le groupe formé par le nickel, le cobalt, le fer, le molybdène et le tungstène, dans laquelle les composés soufrés saturés restant dans l'essence sont transformés en H2S, ladite étape étant effectuée à une température comprise entre 200°C et 350°C, une pression comprise entre 0,5 et 5 MPa, une vitesse spatiale du liquide comprise entre 0,5 et 10 h-1 et un rapport H2/HC entre 100 et 600 litres par litres
    caractérisé en ce qu' une étape de prétraitement visant à hydrogéner les dioléfines de la charge est effectuée avant l'étape A.
  2. Procédé selon la revendication 1 dans lequel la charge est une essence de craquage catalytique.
  3. Procédé selon l'une des revendications 1 ou 2 dans lequel à l'étape A l'élément du groupe VIII, lorsqu'il est présent, est le nickel ou le cobalt, et l'élément du groupe Vlb, lorsqu'il est présent, est le molybdène ou le tungstène.
  4. Procédé selon l'une des revendications 1 à 3 dans lequel la teneur en métal de base de l'étape C est comprise entre 1 et 60 % poids.
  5. Procédé selon l'une des revendications 1 à 4 dans lequel le métal de base de l'étape C est le nickel.
  6. Procédé selon l'une des revendications 1 à 5 dans lequel la teneur en soufre du catalyseur de l'étape C est comprise entre 0,5 et 25 % poids.
  7. Procédé selon l'une quelconque des revendications 1 à 6 mis en oeuvre au moyen d'au moins deux réacteurs séparés, réacteur de prétraitement de la charge non compris, le premier réacteur contenant le catalyseur nécessaire à l'étape A et le deuxième au moins celui nécessaire à l'étape B.
  8. Procédé selon l'une quelconque des revendications 1 à 7 mis en oeuvre au moyen d'au moins deux réacteurs séparés, réacteur de prétraitement de la charge non compris, le premier réacteur contenant au moins une partie du catalyseur nécessaire à l'étape A et le deuxième au moins l'autre partie de celui nécessaire à l'étape A et celui nécessaire à l'étape B.
  9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel l'étape B d'élimination d'H2S est réalisée par adsorption en présence d'une masse adsorbante choisie dans le groupe constitué par l'oxyde de zinc, l'oxyde de cuivre et l'oxyde de molybdène.
  10. Procédé selon la revendication 1 à 9 dans lequel l'H2S est séparé au moyen d'une membrane.
EP01401679A 2000-07-06 2001-06-25 Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S Expired - Lifetime EP1174485B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0008860A FR2811328B1 (fr) 2000-07-06 2000-07-06 Procede comprenant deux etapes d'hydrodesulfuration d'essence et une elimination intermediaire de l'h2s forme au cours de la premiere etape
FR0008860 2000-07-06

Publications (2)

Publication Number Publication Date
EP1174485A1 EP1174485A1 (fr) 2002-01-23
EP1174485B1 true EP1174485B1 (fr) 2010-10-27

Family

ID=8852221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01401679A Expired - Lifetime EP1174485B1 (fr) 2000-07-06 2001-06-25 Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S

Country Status (9)

Country Link
US (1) US6972086B2 (fr)
EP (1) EP1174485B1 (fr)
JP (1) JP2002047497A (fr)
KR (1) KR100807159B1 (fr)
CA (1) CA2352408C (fr)
DE (1) DE60143332D1 (fr)
ES (1) ES2352835T3 (fr)
FR (1) FR2811328B1 (fr)
MX (1) MXPA01006856A (fr)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374666B2 (en) * 2001-12-13 2008-05-20 Lehigh University Oxidative desulfurization of sulfur-containing hydrocarbons
JP2006500202A (ja) * 2002-09-23 2006-01-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 触媒粒子及びその脱硫への使用法
US7785461B2 (en) * 2004-11-10 2010-08-31 Petroleo Brasileiro S.A. - Petrobras Process for selective hydrodesulfurization of naphtha
US7507328B2 (en) * 2004-12-27 2009-03-24 Exxonmobile Research And Engineering Company Selective hydrodesulfurization and mercaptan decomposition process with interstage separation
US20060151359A1 (en) * 2005-01-13 2006-07-13 Ellis Edward S Naphtha desulfurization process
FR2888583B1 (fr) * 2005-07-18 2007-09-28 Inst Francais Du Petrole Nouveau procede de desulfuration d'essences olefiniques permettant de limiter la teneur en mercaptans
CN101134914B (zh) * 2006-08-31 2012-02-15 中国石油化工股份有限公司 一种烃油在固定床反应器内临氢催化吸附脱硫的方法
FR2908781B1 (fr) * 2006-11-16 2012-10-19 Inst Francais Du Petrole Procede de desulfuration profonde des essences de craquage avec une faible perte en indice d'octane
JP5123635B2 (ja) * 2007-10-12 2013-01-23 Jx日鉱日石エネルギー株式会社 ガソリン基材の製造方法及びガソリン
CN101619234B (zh) * 2008-07-04 2012-09-12 中国石油化工股份有限公司 一种轻质汽油生产低硫汽油的方法
CA2683148A1 (fr) * 2009-10-07 2011-04-07 Lyle E. Carnegie Appareillage et procede de production d'hydrogene
FR2984762B1 (fr) 2011-12-21 2014-04-25 IFP Energies Nouvelles Adsorbant catalytique pour la captation de l'arsenic et l'hydrodesulfuration selective des essences de craquage catalytique
FR2988732B1 (fr) 2012-03-29 2015-02-06 IFP Energies Nouvelles Procede d'hydrogenation selective d'une essence
FR2993569B1 (fr) 2012-07-17 2015-12-04 IFP Energies Nouvelles Procede de desulfuration d'une essence
FR3004969B1 (fr) 2013-04-26 2016-01-29 IFP Energies Nouvelles Adsorbant catalytique pour la captation de l'arsenic et l'hydrodesulfuration selective des essences.
FR3020376B1 (fr) * 2014-04-28 2017-10-20 Ifp Energies Now Procede de production d'une essence a basse temperature en soufre et en marcaptans.
FR3007416B1 (fr) * 2013-06-19 2018-03-23 IFP Energies Nouvelles Procede de production d'une essence a basse teneur en soufre et en mercaptans
EP2816094B1 (fr) 2013-06-19 2020-04-29 IFP Energies nouvelles Procédé de production d'une essence à basse teneur en soufre et en mercaptans
FR3014896B1 (fr) 2013-12-18 2018-07-27 IFP Energies Nouvelles Procede d'hydrodesulfuration de coupes d'hydrocarbures
KR101590107B1 (ko) 2014-10-17 2016-01-29 고등기술연구원연구조합 습식탈황공정용 부유황 분리 재생 구조체
FR3035117B1 (fr) 2015-04-15 2019-04-19 IFP Energies Nouvelles Procede d'adoucissement en composes du type sulfure d'une essence olefinique
US10308883B2 (en) 2015-10-07 2019-06-04 Axens Process for desulfurizing cracked naphtha
FR3049955B1 (fr) 2016-04-08 2018-04-06 IFP Energies Nouvelles Procede de traitement d'une essence
FR3056599B1 (fr) * 2016-09-26 2018-09-28 IFP Energies Nouvelles Procede de traitement d'une essence par separation en trois coupes.
FR3057578B1 (fr) 2016-10-19 2018-11-16 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une essence olefinique.
WO2018104056A1 (fr) * 2016-12-06 2018-06-14 Haldor Topsøe A/S Procédé pour l'élimination sélective de dioléfines à partir d'un flux gazeux
CN107335445B (zh) * 2017-08-17 2020-05-15 江苏天东新材料科技有限公司 一种双功能精脱硫剂的制备方法和应用
FR3080048B1 (fr) 2018-04-11 2020-07-31 Ifp Energies Now Masse de captation de l'arsenic a base de nanoparticules de sulfure de nickel
FR3080117B1 (fr) 2018-04-11 2020-04-03 IFP Energies Nouvelles Procede de captation de l'arsenic mettant en œuvre une masse de captation a base de particules d'oxyde de nickel
WO2019229049A1 (fr) * 2018-05-30 2019-12-05 Haldor Topsøe A/S Procédé de désulfuration d'hydrocarbures
FR3090006B1 (fr) 2018-12-18 2021-07-30 Ifp Energies Now Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur réjuvéné à un composé organique.
FR3089824B1 (fr) 2018-12-18 2021-05-07 Ifp Energies Now Procédé de réjuvénation d’un catalyseur usé et régénéré d’un procédé d'hydrodésulfuration d'essences.
FR3089825B1 (fr) 2018-12-18 2021-05-07 Ifp Energies Now Procédé de réjuvénation d’un catalyseur usé non régénéré d’un procédé d'hydrodésulfuration d'essences.
FR3090005B1 (fr) 2018-12-18 2021-07-30 Ifp Energies Now Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur régénéré.
FR3099174B1 (fr) 2019-07-23 2021-11-12 Ifp Energies Now Procédé de production d'une essence a basse teneur en soufre et en mercaptans
FR3099175B1 (fr) 2019-07-23 2021-07-16 Ifp Energies Now Procédé de production d'une essence a basse teneur en soufre et en mercaptans
FR3099172B1 (fr) 2019-07-23 2021-07-16 Ifp Energies Now Procede de traitement d'une essence par separation en trois coupes
FR3099173B1 (fr) 2019-07-23 2021-07-09 Ifp Energies Now Procédé de production d'une essence a basse teneur en soufre et en mercaptans
FR3104460A1 (fr) 2019-12-17 2021-06-18 IFP Energies Nouvelles Masse de captation d'impuretés organométalliques préparée par la voie sels fondus
FR3104602A1 (fr) 2019-12-17 2021-06-18 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par la voie sels fondus
FR3104459B1 (fr) 2019-12-17 2022-07-01 Ifp Energies Now Masse de captation de mercaptans préparée par voie sels fondus
FR3106506A1 (fr) 2020-01-28 2021-07-30 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par additivation
FR3108333B1 (fr) 2020-03-20 2022-03-11 Ifp Energies Now Procédé de production d'une essence a basse teneur en soufre et en mercaptans
FR3116825A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé d’hydrodésulfuration d’une coupe essence mettant en œuvre un catalyseur ayant une porosité bimodale particulière
FR3116740A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé de préparation d’un catalyseur d’hydrodésulfuration d’une coupe essence comprenant un métal du groupe VIB, un métal du groupe VIII et du carbone graphitique
FR3116833B1 (fr) 2020-11-27 2023-11-03 Ifp Energies Now Procede de captation d’impuretes organometalliques en presence d’une masse de captation sur support meso-macroporeux
FR3116827A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé d’hydrodésulfuration d’une coupe essence mettant en œuvre un catalyseur contenant un matériau graphitique caractérisé par spectroscopie RMN13C MAS
FR3116832B1 (fr) 2020-11-27 2023-11-03 Ifp Energies Now Procede d’hydrodesulfuration de finition en presence d’un catalyseur sur support meso-macroporeux
FR3116830B1 (fr) 2020-11-27 2023-11-03 Ifp Energies Now Procédé d’hydrodésulfuration d’une coupe essence mettant en œuvre un catalyseur contenant un matériau graphitique caractérisé par son rapport H/C
FR3116828A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone
FR3130830A1 (fr) 2021-12-17 2023-06-23 IFP Energies Nouvelles Procédé de captation de mercaptans mettant en œuvre une masse de captation mésoporeuse
FR3130829A1 (fr) 2021-12-17 2023-06-23 IFP Energies Nouvelles Procédé de captation de mercaptans avec sélection de température et rapport en Ni/NiO spécifique
FR3130827A1 (fr) 2021-12-17 2023-06-23 IFP Energies Nouvelles Procédé de captation de mercaptans mettant en œuvre une masse de captation ayant subi une étape de passivation au CO2
FR3130828A1 (fr) 2021-12-17 2023-06-23 IFP Energies Nouvelles Procédé de captation de mercaptans mettant en œuvre une masse de captation macro et mésoporeuse
FR3130831A1 (fr) 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de production d'une coupe essence légère à basse teneur en soufre
FR3130835A1 (fr) 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de traitement d'une essence contenant des composés soufrés comprenant une étape de dilution
FR3130834A1 (fr) 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de traitement d'une essence contenant des composés soufrés

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679183A (en) * 1979-12-03 1981-06-29 Jgc Corp Low-temperature steam reformation
US4442223A (en) * 1979-12-17 1984-04-10 Mobil Oil Corporation Catalyst and catalyst support compositions
US4925549A (en) * 1984-10-31 1990-05-15 Chevron Research Company Sulfur removal system for protection of reforming catalyst
US4952306A (en) * 1989-09-22 1990-08-28 Exxon Research And Engineering Company Slurry hydroprocessing process
US5114562A (en) * 1990-08-03 1992-05-19 Uop Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons
US5360532A (en) * 1991-08-15 1994-11-01 Mobil Oil Corporation Gasoline upgrading process
JPH0734073A (ja) * 1993-07-23 1995-02-03 Jgc Corp 石油類の水素化処理方法及び水素化処理装置
EP0840772B1 (fr) * 1995-07-13 1999-09-22 Engelhard De Meern B.V. Procede d'hydrogenation d'une alimentation en hydrocarbures contenant du soufre thiophenique
JP3387700B2 (ja) * 1995-07-26 2003-03-17 新日本石油株式会社 接触分解ガソリンの脱硫方法
JP2000516663A (ja) * 1996-08-23 2000-12-12 エクソン・ケミカル・パテンツ・インク 向流収着によるヘテロ原子の除去
FR2753717B1 (fr) * 1996-09-24 1998-10-30 Procede et installation pour la production d'essences de craquage catalytique a faible teneur en soufre
EP0870817A1 (fr) * 1997-04-11 1998-10-14 Akzo Nobel N.V. Procédé pour l'hydrodésulphuration poussé de charges hydrocarbonées
US6083378A (en) * 1998-09-10 2000-07-04 Catalytic Distillation Technologies Process for the simultaneous treatment and fractionation of light naphtha hydrocarbon streams
FR2785908B1 (fr) * 1998-11-18 2005-12-16 Inst Francais Du Petrole Procede de production d'essences a faible teneur en soufre
FR2790000B1 (fr) * 1999-02-24 2001-04-13 Inst Francais Du Petrole Procede de production d'essences a faible teneur en soufre
US6303020B1 (en) * 2000-01-07 2001-10-16 Catalytic Distillation Technologies Process for the desulfurization of petroleum feeds
US6444118B1 (en) * 2001-02-16 2002-09-03 Catalytic Distillation Technologies Process for sulfur reduction in naphtha streams

Also Published As

Publication number Publication date
FR2811328B1 (fr) 2002-08-23
FR2811328A1 (fr) 2002-01-11
EP1174485A1 (fr) 2002-01-23
CA2352408C (fr) 2010-06-15
CA2352408A1 (fr) 2002-01-06
MXPA01006856A (es) 2004-07-16
KR20020005488A (ko) 2002-01-17
DE60143332D1 (de) 2010-12-09
JP2002047497A (ja) 2002-02-12
US6972086B2 (en) 2005-12-06
US20030209467A1 (en) 2003-11-13
KR100807159B1 (ko) 2008-02-27
ES2352835T3 (es) 2011-02-23

Similar Documents

Publication Publication Date Title
EP1174485B1 (fr) Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
EP1002853B1 (fr) Procédé de production d'essences à faible teneur en soufre
EP2169032B1 (fr) Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
EP1138749B1 (fr) Procédé de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
CA2299152C (fr) Procede de production d'essences a faible teneur en soufre
EP1849850A1 (fr) Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration
FR2993570A1 (fr) Procede de production d'une essence legere basse teneur en soufre
FR2837831A1 (fr) Procede de production d'hydrocarbures a faible teneur en soufre et en mercaptans
FR2872516A1 (fr) Procede d'hydrodesulfuration des essences mettant en oeuvre un catalyseur a porosite controlee
WO2014013154A1 (fr) Procede de desulfuration d'une essence
EP3228683B1 (fr) Procede de traitement d'une essence
WO2014108612A1 (fr) Procede de production d'une essence basse teneur en soufre
EP1370627B1 (fr) Procede de production d'essence a faible teneur en soufre
FR2997415A1 (fr) Procede de production d'une essence a basse teneur en soufre
CA2440189C (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage
FR2785833A1 (fr) Catalyseur comprenant du nickel et son utilisation dans un procede d'hydrodesulfuration de charges hydrocarbonees
EP1370629B1 (fr) Procede de production d'essence a faible teneur en soufre
WO2021013526A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020723

AKX Designation fees paid

Free format text: DE ES GB IT NL

17Q First examination report despatched

Effective date: 20050331

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60143332

Country of ref document: DE

Date of ref document: 20101209

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60143332

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60143332

Country of ref document: DE

Effective date: 20110728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200618

Year of fee payment: 20

Ref country code: GB

Payment date: 20200630

Year of fee payment: 20

Ref country code: NL

Payment date: 20200625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200827

Year of fee payment: 20

Ref country code: ES

Payment date: 20200710

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60143332

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210624

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210624

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210626