EP0463044B1 - Verfahren zur entfernung von quecksilber und gegebenenfalls arsen aus kohlenwasserstoffen - Google Patents

Verfahren zur entfernung von quecksilber und gegebenenfalls arsen aus kohlenwasserstoffen Download PDF

Info

Publication number
EP0463044B1
EP0463044B1 EP90904870A EP90904870A EP0463044B1 EP 0463044 B1 EP0463044 B1 EP 0463044B1 EP 90904870 A EP90904870 A EP 90904870A EP 90904870 A EP90904870 A EP 90904870A EP 0463044 B1 EP0463044 B1 EP 0463044B1
Authority
EP
European Patent Office
Prior art keywords
charge
catalyst
metal
mercury
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90904870A
Other languages
English (en)
French (fr)
Other versions
EP0463044A1 (de
Inventor
Philippe Courty
Pierre Dufresne
Jean-Paul Boitiaux
Germain Bâtiment Condé MARTINO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0463044A1 publication Critical patent/EP0463044A1/de
Application granted granted Critical
Publication of EP0463044B1 publication Critical patent/EP0463044B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content

Definitions

  • liquid condensates by-products of gas production can contain many trace metal compounds, generally present in the form of organometallic complexes, in which the metal forms bonds with one or more carbon atoms of the organometallic radical.
  • metal compounds are poisonous catalysts used in petroleum transformation processes. In particular, they poison the hydrotreatment and hydrogenation catalysts by gradually depositing on the active surface.
  • Metallic compounds are found in particular in heavy cuts from the distillation of petroleum crude (nickel, vanadium, arsenic, mercury) or in natural gas condensates (mercury, arsenic).
  • the thermal or catalytic cracking treatments of the above hydrocarbon cuts can allow the elimination of certain metals (for example nickel, vanadium ...) ; on the other hand, certain other metals (for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Certain metals for example nickel, vanadium ...)
  • certain other metals for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Mercury also presents the risk of causing corrosion by the formation of amalgams, for example with aluminum-based alloys, in particular in the process sections operating at a temperature low enough to cause condensation of liquid mercury (cryogenic fractionations , exchangers).
  • Prior methods are known for removing mercury or arsenic from hydrocarbons in the gas phase; one operates in particular in the presence of solid masses, which can be called indifferently: adsorption, capture, trapping, extraction and metal transfer masses.
  • Patent FR 2534826 describes other masses consisting of elemental sulfur and an inorganic support.
  • Patent DE 2149993 teaches the use of Group VIII metals (nickel, platinum, palladium).
  • US Patent 4069140 describes the use of various absorbent masses.
  • the supported iron oxide is described, the use of lead oxide is described in US Pat. No. 3,782,076 and that of copper oxide in US Patent 3,812,653.
  • the object of the invention is a process for removing mercury and possibly arsenic contained in a hydrocarbon feedstock and which remedies the defects of the previous processes.
  • Another object of the invention is to be able to remove the mercury and possibly the arsenic even in hydrocarbon feedstocks further containing significant proportions of sulfur.
  • significant proportions is meant from 0.005 to 3% by weight and in particular from 0.02 to 2% by weight.
  • a sulfur compound for example an organic sulphide, or alternatively hydrogen sulphide, either in the raw charge (before de-arsenification) or in the charge treated in the presence of hydrogen and of the de-arsenification mass with catalytic properties, before demercurization in the presence of the second bed.
  • a sulfur compound for example an organic sulphide, or alternatively hydrogen sulphide
  • the charge also contains arsenic, it is also eliminated.
  • the operation is preferably carried out with the feed at least partly in the liquid phase.
  • the catalyst also allows hydrodesulfurization, hydrodenitrification and, at least in part, hydrogenation of the unsaturated compounds which may be present in the feed, which can turn out to be advantageous when said fillers are intended for steam cracking.
  • said mass allows effective demetallation if, in addition to arsenic and mercury, vanadium and / or nickel are present.
  • the arsenic capture mass with catalytic properties subsequently designated as "the catalyst" used in the composition of the assembly which is the subject of the present invention therefore consists of at least one metal M chosen from the group formed by iron, nickel, cobalt, palladium, platinum and at least one metal N chosen from the group formed by chromium, molybdenum, tungsten and uranium, these metals, in the form of oxides and / or oxysulfides and / or sulfides, which can be used as such or preferably be deposited on at least one support from the list which follows. Under conditions of use, it is imperative that the metal M and / or the metal N are present in sulfurized form for at least 50% of their totality.
  • the respective amounts of metal or metals M and of metal or metals N contained in the catalyst are usually such that the atomic ratio of metal or metals M to metal or metals N, M / N is approximately 0.3: 1 to 0, 7: 1 and preferably from about 0.3: 1 to about 0.45: 1.
  • the quantity by weight of metals contained in the finished catalyst expressed by weight of metal relative to the weight of the finished catalyst is usually, for the metal or metals N, from about 2 to 30% and preferably from about 5 to 25%, and for the metal or metals M of approximately 0.01 to 15%, more particularly of approximately 0.01 to 5% and preferably of approximately 0.05 to 3% for palladium and / or platinum; and approximately 0.5 to 15% and preferably approximately 1 to 10% in the case of non-noble metals M (Fe, Co, Ni).
  • metals N molybdenum and / or tungsten are preferably used, and among the metals M, the non-noble metals iron, cobalt and / or nickel are preferred.
  • the following combinations of metals are used: nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, cobalt-tungsten, iron-molybdenum and iron-tungsten.
  • the most preferred combinations are nickel-molydene and cobalt-molybdenum. It is also possible to use combinations of three metals, for example nickel-cobalt-molybdenum.
  • the porous mineral matrix is chosen so that the final catalyst has the optimal pore volume characteristics.
  • This matrix usually comprises at least one of the elements of the group formed by alumina, silica, silica-alumina, magnesia, zirconia, titanium oxide, clays, aluminous cements, aluminates, for example magnesium, calcium, strontium, barium, manganese, iron, cobalt, nickel, copper and zinc aluminates, mixed aluminates, for example those comprising at least two of the metals mentioned above.
  • matrices containing alumina for example alumina and silica-alumina or alternatively titanium oxide.
  • the matrix contains silica it is preferable that the quantity of silica is at most equal to 25% by weight relative to the total weight of the matrix.
  • the matrix can also contain, in addition to at least one of the compounds mentioned above, at least one crystalline or natural zeolitic alumino-silicate (zeolite).
  • zeolite crystalline or natural zeolitic alumino-silicate
  • the amount of zeolite usually represents from 0 to 95% by weight and preferably from 1 to 80% by weight relative to the weight of the matrix.
  • mixtures of alumina and zeolite or alternatively mixtures of silica-alumina and zeolite.
  • zeolites with an atomic ratio of framework, silicon to aluminum (Si / Al) greater than about 5: 1.
  • zeolites with faujasite structures are used, and in particular stabilized or ultra-stabilized Y zeolites.
  • the most commonly used matrix is alumina, and transition alumina, pure or mixed, such as ⁇ C ⁇ T , ⁇ , ⁇ , is usually preferred.
  • Said matrix will preferably have a large surface area and a sufficient pore volume, that is to say respectively at least 50 m2 / g and at least 0.5 cm3 / g, for example 50 to 350 m2 / g and 0, 5 to 1.2 cm3 / g.
  • the fraction of macroporous volume, consisting of all the pores with an average diameter at least equal to 0.1 ⁇ m, may represent from 10% to 30% of the total pore volume.
  • the catalyst Before use, the catalyst can, if necessary, be treated with a gas containing hydrogen at a temperature of 50 to 500 ° C. It can also, if necessary, be presulphurized at least in part, for example according to the French SULFICAT (R) process, or else by treatment in the presence of a gas containing hydrogen sulphide and / or any other sulphurized compound.
  • a gas containing hydrogen at a temperature of 50 to 500 ° C.
  • R French SULFICAT
  • the mass of mercury capture used in the composition of the assembly which is the subject of the present invention consists of sulfur or a sulfur compound deposited on a porous mineral support or matrix chosen, for example, from the group formed by l alumina, silica-alumina, silica, zeolites, clays, active carbon, aluminous cements, titanium oxides, zirconium oxide or among the other supports, consisting of a porous mineral matrix, cited for the catalyst.
  • Use will preferably be made of a compound containing sulfur and a metal P, where P is chosen from the group formed by copper, iron, silver and, preferably, by copper or the copper-silver association. At least 50% of the metal P is used in the form of sulphide.
  • This capture mass can be prepared according to the method recommended in US patent 4094777 of the applicant or by depositing copper oxide on an alumina then sulphurization by means of an organic polysulphide as described in the French patent application 87 / 07442 of the plaintiff.
  • the proportion of elementary sulfur combined or not in the capture mass is advantageously between 1 and 40% and preferably between 1 and 20% by weight.
  • the proportion of metal P combined or not in the form of sulphide will preferably be between 0.1 and 20% of the total weight of the capture mass.
  • the assembly consisting of the catalyst and the mercury capture mass can be used either in two reactors or in one.
  • reactors When two reactors are used, they can be arranged in series, the reactor containing the catalyst being advantageously placed before that containing the capture mass.
  • the catalyst and the capture mass can be arranged either in two separate beds or mixed intimately.
  • the volume ratio of the mass of desarsenification with catalytic properties to the mass of demercurization may vary between 1:10 and 5: 1.
  • the one containing the mass of desarsenification with catalytic properties may be operated in a temperature range which can range from 180 to 450 ° C., more advantageously from 230 to 420 ° C. and in a preferred manner, from 260 to 390 ° C.
  • the operating pressures will preferably be chosen from 1 to 50 bars absolute, more particularly from 5 to 40 bars and more advantageously from 10 to 30 bars.
  • the hydrogen flow rate expressed in liters of gaseous hydrogen (TPN) per liter of liquid charge will preferably be chosen between 1 and 1000, more particularly between 10 and 300 and more advantageously from 30 to 200.
  • the hourly volumetric speed calculated with respect to the mass of desarsenification with catalytic properties, may be from 0.1 to 30 hours ⁇ 1 more particularly from 0.5 to 20h ⁇ 1 and preferably from 1 to 10 hours ⁇ 1 (volumes of liquid, per volume of mass and per hour).
  • the demercurization mass will be operated in a temperature range which can range from 0 to 400 ° C, more advantageously from 20 to 350 ° C and, preferably, from 40 to 330 ° C.
  • the operating pressures and the flow rate of hydrogen D will be those defined with respect to the mass of desarsenification with catalytic properties.
  • the hourly volumetric speed, calculated with respect to the mass of demercurization may be that indicated for the mass of desarsenification with catalytic properties, it being understood as indicated above, that the volume ratio of the mass of desarsenification to the mass of demercurization may vary from 1:10 to 5: 1, depending in particular on the proportions of arsenic and mercury contained in the charge. It goes without saying that the relative proportions of the two masses and therefore the hourly volumetric speeds relative to the latter may then be very different (same liquid flow but different mass volumes).
  • the charge treated in the presence of the catalyst can optionally be cooled before passing over the demercurization mass.
  • the two capture masses being then placed in a single reactor, this can be operated in a temperature range which can range from 180 to 400 ° C, more advantageously 190 to 350 ° C and in a way preferred 200 to 330 ° C.
  • the hydrogen-rich gas recovered after separation of the purified liquid product it may prove to be advantageous to recycle at the top, at least in part, the hydrogen-rich gas recovered after separation of the purified liquid product.
  • the said recycling allows better control of the partial pressure ratio pH partiS / pH2 in the reaction medium.
  • the feed contains little sulfur (for example less than 20 ppm by weight) it may also prove to be advantageous to add to the feed and / or in the hydrogen at least one sulfur compound in order to increase the said pH2S / pH2 ratio.
  • the charges to which the invention more particularly applies contain from 10 ⁇ 3 to 2 milligrams of mercury per kilogram of charge and, optionally from 10 ⁇ 2 to 10 milligrams arsenic per kilogram of charge.
  • HR 306 catalyst 250 cm3 of HR 306 catalyst, produced by PROCATALYSE, are loaded into a steel reactor 3 cm in diameter.
  • Said HR 306 catalyst consisting of extrudates with a diameter of 1.2 mm and a length of 2 to 10 mm, contains 2.36% of cobalt and 9.33% of molybdenum by weight; the matrix consists of transition alumina.
  • the specific surface is 210 square meters per gram and the pore volume is 0.48 / cm3 / g.
  • the catalyst is then subjected to a presulfurization treatment.
  • a hydrogen sulfide-hydrogen mixture in the volume proportions 3:97 is injected at a rate of 10 l / h.
  • the temperature rise rate is 1 ° C / min and the final level (350 ° C) is 2 hours.
  • this catalyst has a very low efficiency in retaining mercury; on the other hand, it has good effectiveness in retaining arsenic.
  • a capture mass consisting of a copper sulphide is prepared, deposited on an alumina support as described in US Patent No. 4094777 of the Applicant.
  • the mass contains 12% by weight of copper and 6% by weight of sulfur in the form of sulphide.
  • the matrix consists of transition alumina.
  • the specific surface is 70 m2 / g and the pore volume of 0.4 cm3 / g.
  • the capture mass is not effective in retaining arsenic. On the other hand, it has transient effectiveness in retaining mercury, but it drops very quickly over time.
  • the condensate is allowed to pass for 1000 hours.
  • the results of analyzes of mercury in the product after 50, 100, 200, 500 and 1000 hours are summarized in Table III below.
  • Example 5 according to the invention.
  • the operating conditions remain identical, with the exception of the operating temperature of the HR 306 catalyst, brought to 340 ° C. and to the hydrogen flow rate, brought to 200 liters / liter of charge, ie 100 liters / hour.
  • Example 4 The experiment described in Example 4 is reproduced.
  • the reactor containing 100 cm3 of copper sulphide capture mass is now loaded with: 100 cm3 of said mass and 50 cm3 of demercurization mass composed of 13% by weight of sulfur on activated carbon, of the CALGON HGR type, prepared according to the teaching of patent USP3194629.
  • Example 7 according to the invention.
  • Example 3 The first reactor used in Example 3 is now loaded with 200 cm3 of the HMC 841 catalyst, sold by PROCATALYSE.
  • This catalyst consisting of beads of diameters 1.5 to 3 mm contains 1.96% nickel and 8% molybdenum by weight; the matrix consists of transition alumina. The specific surface is 140 m2 / g and the pore volume of 0.89 cm3 / g.
  • the HMC 841 catalyst was presulphurized before loading (ex-situ sulphurization) according to the SULFICAT (R) process sold by the company EURECAT; its sulfur content is 4.8% by weight.
  • the second reactor is loaded with 200 cm3 of a demercurization mass containing 8% of sulfur, 14.5% of copper and 0.2% by weight of silver, prepared according to the teaching of US Pat. No. 4,094,777, then presulphurized by contacting an organic polysulphide according to the teaching of French patent 87-07442 of the applicant.
  • the analysis of the purified liquid effluent shows that it contains only 60 ppm (weight) of sulfur and 33 ppm (weight) of nitrogen.
  • the hydrodesulfurization rate and the hydrodenitrogenation rate are therefore respectively 95.4 and 24%.
  • the effluent contains only 28% of aromatics (compared to 41% in the fresh feed), which demonstrates, in addition to the activity in desarsenification and in demercurization, the additional properties in hydrodesulfurization in hydrodenitrogenation and in hydrogenation of aromatics of the assembly (catalyst + demercurization mass) according to the invention.
  • the operating temperature is equal to 220 ° C.
  • the operating pressure equal to 50 bars (absolute)
  • the flow rate is 200 liters per liter of charge, or 120 liters per hour.
  • the charge rate is 0.6 liters per hour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Claims (17)

  1. Verfahren zur Eliminierung (Entfernung) von Quecksilber aus einer Kohlenwasserstoff-Beschickung, welche die Elemente Quecksilber und Schwefel enthält, dadurch gekennzeichnet, daß man eine Mischung aus Wasserstoff und der genannten Beschickung reagieren läßt in Gegenwart einer Arsen-Einfangmasse mit katalytischen Eingenschaften, hier als "Katalysator" bezeichnet, die enthält mindestens ein Metall M, ausgewählt aus der Gruppe, die besteht aus Nickel, Kobalt, Eisen, Palladium und Platin, mindestens ein Mettal N, ausgewählt aus der Gruppe, die besteht aus Chrom, Molybdän, Wolfram und Uran, und gegebenenfalls mindestens einen Träger mit aktiver Phase auf Basis mindestens einer porösen mineralischen Matrix, wobei auf die genannte Arsen-Einfangmasse mit katalytischen Eigenschaften auf dem Weg der Beschickung folgt oder dieser zugemischt wird eine Quecksilber-Einfangmasse, die Enthält ein Sulfid mindestens eines Metalls P, ausgewählt aus der Gruppe, die besteht aus Kupfer, Eisen und Silber, oder Schewefel und einen Träger mit aktiver Phase.
  2. Verfahren nach Anspruch 1, bei dem die Beschickung außer dem Quecksilber und dem Schwefel Arsen enthält, dadurch gekennzeichnet, daß man das Arsen und das Quecksilber gleichzeitig eliminiert (entfernt), indem man sie in Wechselwirkung treten läßt jeweils mit der Arsen-Entfernungsmasse mit katalytischen Eigenschaften, hier als "Katalysator" bezeichnet, und mit der Quecksilber-Entfernungsmasse.
  3. Verfahren nach den Ansprüchen 1 und 2, bei dem die Beschickung gleichzeitig mit der Eliminierung der Metalle Quecksilber und Arsen auch zum Teil hydrodesulfuriert, hydrodeazotiert und hydriert wird in bezug auf ihre Fraktion an ungesättigten Kohlenwasserstoffen.
  4. Verfahren nach den Ansprüchen 1 bis 3, bei dem man der Beschickung gegebenenfalls mindestens eine Schwefelverbindung zusetzt, ausgewählt aus der Gruppe, die besteht aus Schwefelwasserstoff und schwefelhaltigen organischen Verbindungen.
  5. Verfahren nach den Ansprüchen 1 bis 4, bei dem der Katalysator enthält 0,01 bis 15 Gew.-% mindestens eines Metalls M, 2 bis 30 Gew.-% mindestens eines Metalls N und bei dem das Atomverhältnis M/N 0,3:1 bis 0,7:1 beträgt.
  6. Verfahren nach Anspruch 5, bei dem die Metalle M Kobalt und Nickel sind und die Metalle N Molybdän und Wolfram sind und bei dem der Katalysator enthält 0,5 bis 15 Gew.-% mindestens eines Metalls M und 5 bis 25 Gew.-% mindestens eines Metalls N.
  7. Verfahren nach den Ansprüchen 5 und 6, bei dem der Katalysator unter den Metallen M enthält mindestens ein Edelmetall, das ausgewählt wird aus der Gruppe Palladium und Platin, und wobei der genannte Katalysator 0,01 bis 5 % der Metalle M enthält.
  8. Verfahren nach einem der Ansprüche 5 bis 7, bei dem der Katalysator außer den Metallen M und N enthält einen Träger mit einer aktiven Phase, der besteht aus einer porösen mineralischen Matrix, die enthält mindestens einen Vertreter aus der Gruppe, die besteht aus Aluminiumoxid, Siliciudioxid, Siliciumdioxid-Aluminiumoxid, Magnesiumoxid, Zirkoniumoxid, Titanoxid, den Tonen, den aluminiumhaltigen Zementen, den Aluminaten, den sunthetischen oder natürlichen zeolithischen Aluminosilicaten.
  9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem die Einfangmasse besteht aus 1 bis 40 Gew.-% Schwefel, bezogen auf ihre Gesamtmasse, und mindestens einem Träger, ausgewählt aus der Gruppe, die besteht aus Aluminiumoxid, den Siliciumdioxid-Aluminiumoxiden, Siliciumdioxid, Ti- tanoxid, Zirkoniumoxid, den Zeolithen, den Aktivkohlen, den Tonen und den aluminiumhaltigen Zementen.
  10. Verfahren nach Anspruch 9, bei dem die Einfangmasse auch enthält 0,1 bis 20 Gew.-% mindestens eines Metalls P, ausgewählt aus der Gruppe, die besteht aus Kupfer, Eisen und Silber, und wobei das Metall P mindestens zum Teil in Form eines Sulfids vorliegt.
  11. Verfahren nach einem der vorhergehenden Ansprüche, bei dem
    - der Arbeits- bzw. Betriebsdruck ausgewählt wird zwischen 1 und 50 bar absolut,
    - die Wassertoff-Durchflußmenge ausgewählt wird zwischen 1 und 1000 l gasförmigem Wasserstoff (TPN) pro 1 flüssiger Beschickung,
    - die stündliche Raumgeschwindigkeit, ausgedrückt in Volumenteilen flüssiger Beschickung, 0,1 bis 30 Volumina pro Volumen Katalysator und 0,1 bis 30 Volumina pro Volumen Quecksilber-Entfernungsmasse beträgt,
    - die Arbeits- bzw. Betriebstemperatur des Katalysators 180 bis 450°C beträgt,
    - die Arbeit- bzw. Betriebstemperatur der Quecksilber-Entfernungsmasse 0 bis 400°C beträgt,
    - der Katalysator und die Quecksilber-Entfernungsmasse in zwei getrennten Reaktoren angeordnet sind, wobei die Beschickung zuerst mit dem Katalysator und dann mit der Einfangmasse (Entfernungsmasse) in Kontakt gebracht wird.
  12. Verfahren nach Anspruch 11, bei dem
       - der Katalysator und die Quecksilber-Entfernungsmasse in einem einzigen Reaktor angeordnet sind und bei dem die Arbeits- bzw. Betriebstemperatur 180 bis 400°C beträgt.
  13. Verfahren nach einem der Ansprüche 11 bis 12, bei dem das an Wasserstoff reiche Gas von dem Abstrom des Reaktors oder der Reaktoren abgetrennt und dann mindestens zum Teil in den Kopf des ersten Reaktors recyclisiert wird.
  14. Verfahren nach einem des Ansprüche 1 bis 13, bei dem der Katalysator zwischen 50 und 500°C vorbehandelt wird mit einem Gasgemisch, das mindestens eine Verbindung enthält, die ausgewählt wird aus der Gruppe, die besteht aus Wassertoff, Schwefelwasserstoff und organischen Schwefelverbindungen, bevor er mit der Kohlenwasserstoffbeschickung behandelt wird.
  15. Verfahren nach einem der Ansprüche 1 bis 14, bei dem die Beschickung, die mindestens zum Teil aus bei Umgebungstemperatur und Umgebungsdruck flüssigen Kohlenwasserstoffen besteht, 10⁻³ bis 2 mg Quecksilber pro kg Beschickung und gegebenenfalls 10⁻² bis 10 mg Arsen pro kg Beschickung enthält.
  16. Verfahren nach einem der Ansprüche 1 bis 15, bei dem die behandelten Beschickungen schwere Beschickungen oder Abströme aus thermischen und/oder katalytischen Umwandlungsverfahren sind.
  17. Verfahren nach einem der Ansprüche 1 bis 15, bei dem die behandelten Beschickungen Gaskondensate sind.
EP90904870A 1989-03-16 1990-03-09 Verfahren zur entfernung von quecksilber und gegebenenfalls arsen aus kohlenwasserstoffen Expired - Lifetime EP0463044B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8903581 1989-03-16
FR8903581A FR2644472B1 (fr) 1989-03-16 1989-03-16 Procede pour l'elimination du mercure et eventuellement d'arsenic dans les hydrocarbures

Publications (2)

Publication Number Publication Date
EP0463044A1 EP0463044A1 (de) 1992-01-02
EP0463044B1 true EP0463044B1 (de) 1993-08-25

Family

ID=9379843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90904870A Expired - Lifetime EP0463044B1 (de) 1989-03-16 1990-03-09 Verfahren zur entfernung von quecksilber und gegebenenfalls arsen aus kohlenwasserstoffen

Country Status (12)

Country Link
EP (1) EP0463044B1 (de)
JP (1) JP2620811B2 (de)
CN (1) CN1024675C (de)
AU (1) AU634763B2 (de)
CA (1) CA2012344C (de)
DE (1) DE69002941T2 (de)
DZ (1) DZ1402A1 (de)
FR (1) FR2644472B1 (de)
MY (1) MY106411A (de)
NO (1) NO180121C (de)
WO (1) WO1990010684A1 (de)
ZA (1) ZA893265B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112440A1 (de) * 2008-03-10 2009-09-17 Basf Se Verfahren zur abtrennung von quecksilber aus kohlenwasserstoffströmen

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666343B1 (fr) * 1990-08-29 1992-10-16 Inst Francais Du Petrole Procede d'elimination du mercure des installations de vapocraquage.
FR2668465B1 (fr) * 1990-10-30 1993-04-16 Inst Francais Du Petrole Procede d'elimination de mercure ou d'arsenic dans un fluide en presence d'une masse de captation de mercure et/ou d'arsenic.
FR2668385B1 (fr) * 1990-10-30 1993-10-15 Institut Francais Petrole Procede d'elimination d'arsenic dans un gaz par passage sur une masse a base d'un support de sulfure de cuivre.
US5064626A (en) * 1990-11-28 1991-11-12 Phillips Petroleum Company Trialkyl arsine sorbents
US5085844A (en) * 1990-11-28 1992-02-04 Phillips Petroleum Company Sorption of trialkyl arsines
FR2673192B1 (fr) * 1991-02-27 1994-07-22 Inst Francais Du Petrole Procede pour l'elimination du mercure et eventuellement d'arsenic dans les charges des procedes catalytiques producteurs d'aromatiques. .
FR2673191B1 (fr) * 1991-02-27 1994-02-04 Institut Francais Petrole Procede d'enlevement de mercure et/ou d'arsenic des charges des unites de desaromatisation de solvants. .
FR2690923B1 (fr) * 1992-05-11 1994-07-22 Inst Francais Du Petrole Procede de captation de mercure et d'arsenic dans une coupe d'hydrocarbure.
FR2698372B1 (fr) * 1992-11-24 1995-03-10 Inst Francais Du Petrole Procédé d'élimination de mercure et éventuellement d'arsenic dans des hydrocarbures.
FR2701269B1 (fr) * 1993-02-08 1995-04-14 Inst Francais Du Petrole Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
FR2701270B1 (fr) * 1993-02-08 1995-04-14 Inst Francais Du Petrole Procédé d'élimination du mercure dans les hydrocarbures par passage sur un catalyseur présulfuré.
US6350372B1 (en) 1999-05-17 2002-02-26 Mobil Oil Corporation Mercury removal in petroleum crude using H2S/C
FR2803597B1 (fr) * 2000-01-07 2003-09-05 Inst Francais Du Petrole Procede de captation du mercure et d'arsenic d'une coupe d'hydrocarbures distillee
JP2002241767A (ja) * 2001-02-15 2002-08-28 Idemitsu Petrochem Co Ltd 液状炭化水素からの水銀除去方法
CN100392046C (zh) * 2003-08-07 2008-06-04 上海化工研究院 低温或常温脱除液态石油烃中高沸点砷化物的脱砷剂
GB0611316D0 (en) * 2006-06-09 2006-07-19 Johnson Matthey Plc Improvements in the removal of metals from fluid streams
KR101796792B1 (ko) * 2011-02-09 2017-11-13 에스케이이노베이션 주식회사 촉매를 이용하여 수소화 처리 반응을 통해 황 및 수은이 포함된 탄화수소 원료로부터 이들을 동시에 제거하는 방법
FR2987368B1 (fr) * 2012-02-27 2015-01-16 Axens Procede d'elimination de mercure contenu dans une charge hydrocarbure avec recycle d'hydrogene
CN104507551B (zh) * 2012-08-20 2018-08-07 艺康美国股份有限公司 汞吸附剂
FR3007415B1 (fr) * 2013-06-21 2016-05-27 Ifp Energies Now Procede d'elimination de l'arsenic d'une charge d'hydrocarbures
CN104645927B (zh) * 2013-11-25 2018-01-16 北京三聚环保新材料股份有限公司 一种银系脱汞剂的制备方法
CN108456574A (zh) * 2018-04-12 2018-08-28 西南石油大学 一种用于湿气脱汞的脱汞剂及其制备方法
CN114073961A (zh) * 2021-12-08 2022-02-22 辽宁石油化工大学 具有脱砷性能的Cr-Cu/SiO2催化剂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110569A (en) * 1958-02-05 1963-11-12 Socony Mobil Oil Co Inc Removal of arsenic from reformer feed
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
US4474896A (en) * 1983-03-31 1984-10-02 Union Carbide Corporation Adsorbent compositions
US4709118A (en) * 1986-09-24 1987-11-24 Mobil Oil Corporation Removal of mercury from natural gas and liquid hydrocarbons utilizing downstream guard chabmer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112440A1 (de) * 2008-03-10 2009-09-17 Basf Se Verfahren zur abtrennung von quecksilber aus kohlenwasserstoffströmen

Also Published As

Publication number Publication date
ZA893265B (en) 1990-04-25
JPH02248493A (ja) 1990-10-04
CN1045596A (zh) 1990-09-26
AU5331990A (en) 1990-10-09
DE69002941D1 (de) 1993-09-30
DZ1402A1 (fr) 2004-09-13
CN1024675C (zh) 1994-05-25
WO1990010684A1 (fr) 1990-09-20
JP2620811B2 (ja) 1997-06-18
NO180121B (no) 1996-11-11
CA2012344C (fr) 2001-05-08
MY106411A (en) 1995-05-30
AU634763B2 (en) 1993-03-04
FR2644472B1 (fr) 1991-06-21
DE69002941T2 (de) 1993-12-23
FR2644472A1 (fr) 1990-09-21
NO913622L (no) 1991-09-13
NO913622D0 (no) 1991-09-13
NO180121C (no) 1997-02-19
EP0463044A1 (de) 1992-01-02
CA2012344A1 (fr) 1990-09-16

Similar Documents

Publication Publication Date Title
EP0463044B1 (de) Verfahren zur entfernung von quecksilber und gegebenenfalls arsen aus kohlenwasserstoffen
EP2169032B1 (de) Katalysator zur teilweise oder ganz Zersetzung oder Hydrierung von ungesättigten schwefelhaltigen Verbindungen
EP1002853B1 (de) Verfahren zur Herstellung von Benzin mit niedrigem Schwefelgehalt
EP1174485B1 (de) Zweistufiges Benzin Entschwefelungsverfahren mit zwischenzeitlicher Entfernung von H2S
EP0332526B1 (de) Verfahren zur Entfernung von Quecksilber und möglichem Arsen aus Kohlenwasserstoffen
EP1923452B1 (de) Verfahren zur Tiefenentschwefelung von Krack-Benzinstoffen mit einem geringen Oktanzahlverlust
EP0611183B1 (de) Verfahren zur Entfernung von Quecksilber aus Kohlenwasserstoffen mittels einem vorgeschwefeltem Katalysator
CA2299152C (fr) Procede de production d'essences a faible teneur en soufre
EP1354930A1 (de) Verfahren zur Herstellung von Kohlenwasserstoffen mit niedrigem Schwefel- und Merkaptangehalt.
WO2019197352A1 (fr) Procédé de captation de l'arsenic mettant en œuvre une masse de captation à base de particules d'oxyde de nickel
CA2474525C (fr) Procede integre de desulfuration d'un effluent de craquage ou de vapocraquage d'hydrocarbures
EP0570261B1 (de) Verfahren zur Beseitigung von Quecksilber und Arsen aus einem Kohlenwasserstoffschnitt
FR2673191A1 (fr) Procede d'enlevement de mercure et/ou d'arsenic des charges des unites de desaromatisation de solvants. .
EP1370627B1 (de) Verfahren zur herstellung von benzin mit niedrigem schwefelgehalt
FR2701269A1 (fr) Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
FR2762004A1 (fr) Procede pour l'elimination d'arsenic dans les charges hydrocarbonees liquides
FR2673192A1 (fr) Procede pour l'elimination du mercure et eventuellement d'arsenic dans les charges des procedes catalytiques producteurs d'aromatiques. .
CA2440189C (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage
FR2785833A1 (fr) Catalyseur comprenant du nickel et son utilisation dans un procede d'hydrodesulfuration de charges hydrocarbonees
FR3116828A1 (fr) Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone
FR2788452A1 (fr) Masse de captation pour l'elimination d'arsenic dans les hydrocarbures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17Q First examination report despatched

Effective date: 19921028

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 69002941

Country of ref document: DE

Date of ref document: 19930930

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020402

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020404

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20030331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090327

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20100309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100309