EP0332526B1 - Verfahren zur Entfernung von Quecksilber und möglichem Arsen aus Kohlenwasserstoffen - Google Patents

Verfahren zur Entfernung von Quecksilber und möglichem Arsen aus Kohlenwasserstoffen Download PDF

Info

Publication number
EP0332526B1
EP0332526B1 EP89400626A EP89400626A EP0332526B1 EP 0332526 B1 EP0332526 B1 EP 0332526B1 EP 89400626 A EP89400626 A EP 89400626A EP 89400626 A EP89400626 A EP 89400626A EP 0332526 B1 EP0332526 B1 EP 0332526B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
capture mass
mass
metal
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89400626A
Other languages
English (en)
French (fr)
Other versions
EP0332526A1 (de
Inventor
Michel Roussel
Philippe Courty
Jean-Paul Boitiaux
Jean Cosyns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to AT89400626T priority Critical patent/ATE75767T1/de
Publication of EP0332526A1 publication Critical patent/EP0332526A1/de
Application granted granted Critical
Publication of EP0332526B1 publication Critical patent/EP0332526B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content

Definitions

  • liquid condensates by-products of gas production can contain many trace metal compounds, generally present in the form of organometallic complexes, in which the metal forms bonds with one or more carbon atoms of the organometallic radical.
  • metal compounds are poisonous catalysts used in petroleum transformation processes. In particular, they poison the hydrotreatment and hydrogenation catalysts by gradually depositing on the active surface.
  • Metallic compounds are found in particular in heavy cuts from the distillation of petroleum crude (nickel, vanadium, arsenic, mercury) or in natural gas condensates (mercury, arsenic).
  • the thermal or catalytic cracking treatments of the above hydrocarbon cuts can allow the elimination of certain metals (for example nickel, vanadium ...) ; on the other hand, certain other metals (for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Certain metals for example nickel, vanadium ...)
  • certain other metals for example mercury, arsenic ...) capable of forming volatile compounds and / or being volatile in the element state (mercury) are found at least in part in the cuts more light and can therefore poison the catalysts of subsequent transformation processes.
  • Mercury also presents the risk of causing corrosion by the formation of amalgams, for example with aluminum-based alloys, in particular in the process sections operating at a temperature low enough to cause condensation of liquid mercury (cryogenic fractionations , exchangers).
  • Prior methods are known for removing mercury or arsenic from hydrocarbons in the gas phase; one operates in particular in the presence of solid masses, which can be called indifferently: adsorption, capture, trapping, extraction and metal transfer masses.
  • Patent FR 2,534,826 describes other masses consisting of elemental sulfur and an inorganic support.
  • Patent DE 2149993 teaches the use of Group VIII metals (nickel, platinum, palladium).
  • US Patent 4,069,140 describes the use of various absorbent masses.
  • the supported iron oxide is described, the use of lead oxide is described in US patent 3,782,076 and that of copper oxide in US patent 3,812,653.
  • the object of the invention is a process for removing the mercury contained in a hydrocarbon feed which remedies the defects of the previous processes.
  • a mixture of the charge with hydrogen is passed into contact with a catalyst containing at least one metal mainly in its reduced form and belonging to the group formed by iron, cobalt, nickel and palladium followed by- or mixed with- a capture mass containing sulfur or a metal sulphide, according to operating conditions which are specified below.
  • the charge also contains arsenic, it is also eliminated.
  • the operation is preferably carried out with the feed at least partly in the liquid phase.
  • sulfur can be introduced either with the feedstock (organic polysulfide) and / or with hydrogen (H2S), upstream of the catalyst, it may also be preferable to introduce it between the reactor containing the catalyst and that containing the capture mass, in order to limit the sulfurization rate at equilibrium of said catalyst.
  • H2S hydrogen
  • the sulfur compound is introduced between the reactor containing the catalyst and the reactor containing the capture mass.
  • the catalyst used in the composition of the assembly which is the subject of the present invention consists of at least one metal M chosen from the group formed by iron, nickel, cobalt and palladium, used as it is or preferably deposited on a support.
  • the metal M must be in reduced form for at least 50% of its totality.
  • the support can be chosen from the group formed by alumina, silica-aluminas, silica, zeolites, activated carbon, clays and aluminous cements.
  • alumina silica-aluminas, silica, zeolites, activated carbon, clays and aluminous cements.
  • nickel or the combination of nickel with palladium is used.
  • the proportion of metal M relative to the total weight of catalyst is between 0.1 and 60%, more particularly between 5 and 60% and preferably from 5 to 30%. In the case of association with palladium, the proportion of this metal relative to the total weight of catalyst is between 0.01 and 10% and preferably from 0.05 to 5%.
  • the solid mineral dispersant may advantageously consist of an alumina or a calcium aluminate. It will preferably have a large surface area and a sufficient pore volume, that is to say respectively at least 50 m2 / g and at least 0.5 cm3 / g, for example 50 to 350 m2 / g and 0.5 to 1.2 cm3 / g.
  • the catalyst Before use, the catalyst is, if necessary, reduced by hydrogen or by a gas, enclosing at a temperature of 150 to 600 ° C.
  • the capture mass used in the composition of the assembly which is the subject of the present invention consists of sulfur or a sulfur compound deposited on a solid mineral support or dispersant chosen, for example, from the group formed by alumina, silica-aluminas, silica, zeolites, clays, active carbon, aluminous cements.
  • Use will preferably be made of a compound containing sulfur and a metal P where P is chosen from the group formed by copper, iron, silver and, preferably, by copper or the copper-silver association. At least 50% of the metal P is used in the form of sulphide.
  • This capture mass can be prepared according to the method recommended in US patent 4094777 of the applicant or by depositing copper oxide on an alumina then sulphurization by means of an organic polysulphide as described in the French patent application 87 / 07442 of the plaintiff.
  • the proportion of elementary sulfur combined or not in the capture mass is advantageously between 1 and 40% and preferably between 1 and 20% by weight.
  • the proportion of metal P combined or not in the form of sulphide will preferably be between 0.1 and 20% of the total weight of the capture mass.
  • the assembly constituted by the catalyst and the capture mass can be implemented either in two reactors or in one.
  • reactors When two reactors are used, they can be arranged in series, the reactor containing the catalyst being advantageously placed before that containing the capture mass.
  • the catalyst and the capture mass can be arranged either in two separate beds or mixed intimately.
  • the volume ratio of the catalyst to the capture mass may vary between 1:10 and 5: 1.
  • the catalyst When operating in separate reactors, it will be possible, as regards the catalyst, to operate in a temperature range which may range from 130 to 250 ° C., more advantageously from 130 to 220 ° C. and preferably between 130 and 180 ° C.
  • the operating pressures will preferably be chosen from 1 to 50 bar absolute, more particularly from 2 to 40 bar and more advantageously from 5 to 35 bar.
  • the collecting mass will work at a temperature of 0 to 175 ° C, more particularly between 20 and 120 ° C and more advantageously between 20 and 90 ° C under pressures of 1 to 50 bar absolute, more particularly from 2 to 40 bar and preferably from 5 to 35 bars.
  • the spatial velocities calculated with respect to the capture mass can be from 1 to 50 h ⁇ 1 and more particularly from 1 to 30 h ⁇ 1 (volumes - liquid - per mass volume and per hour).
  • the flow of hydrogen, relative to the catalyst is for example between 1 and 500 volumes (gas under normal conditions) per volume of catalyst and per hour.
  • the charges to which the invention applies more particularly contain from 10 ⁇ 3 to 1 milligram of mercury per kilogram of charge and, optionally from 10 ⁇ 2 to 10 milligrams of arsenic per kilogram of charge.
  • the catalyst is then subjected to a treatment under hydrogen under the following conditions: Pressure: 2 bars Hydrogen flow: 20 l / h Temperature: 400 ° C.
  • the duration of the treatment is 8 hours until at least 90% of the nickel oxide is converted into nickel metal.
  • a heavy condensate of liquefied gas boiling in the range of boiling points from 30 to 350 ° C. and containing 50 ppb of mercury is then passed over the catalyst, in upward flow, with hydrogen under the following conditions: Charging flow: 500 cm3 / h Temperature: 180 ° C Hydrogen pressure: 30 bars Hydrogen flow 2 liters / hour
  • the mercury content leaving the reactor is approximately 50 ppb.
  • a capture mass consisting of a copper sulphide is prepared, deposited on an alumina support as described in US Patent No. 4094777 of the Applicant.
  • the capture mass does not allow total decontamination to be obtained during the duration of the test.
  • the nickel catalyst of Example 1 is loaded, according to the technique described in said example.
  • Example 2 In a second reactor, 50 cm3 of the capture mass of Example 2 is loaded according to the technique described in said example.
  • the operating conditions are as follows: Charging flow (reduced to the collection mass): 500 cm3 / h Nickel catalyst Temperature: 180 ° C Hydrogen pressure: 30 bar absolute Hydrogen flow: 2 liters / hour Copper sulfide capture mass Temperature: 20 ° C Hydrogen pressure: 30 bar absolute Hydrogen flow: 2 liters / hour.
  • test is then stopped and after drying of the catalyst and of the capture mass by nitrogen sweeping, these are discharged bed by bed.
  • the mercury content is measured on each of these.
  • the results are collated in Table 2 as regards the capture mass, no trace of mercury is detected on the catalyst.
  • Example 3 The procedure is as in Example 3 but with a heavy condensate of liquefied gas containing 400 ppb of mercury.
  • the nickel catalyst of Example 1 is loaded according to the technique described in said example.
  • This capture mass is arranged in 5 separate beds according to the technique used in Example 1, its total volume is equal to that of the catalyst contained in the first reactor.
  • the mercury content by weight on each of the capture mass beds are shown in Table 2.
  • Example 5 The procedure is as in Example 5 except that 50 cm 3 of catalyst containing 20% by weight of nickel and 80% by weight of calcium aluminate are used.
  • the mercury content by weight on each of the beds of the capture mass are collated in Table 2.
  • Example 3 The procedure is as in Example 3 except that the heavy condensate of liquefied gas is replaced by a boiling naphtha in the range of boiling points 50 at 180 ° C., containing 5 ppm of arsenic and 50 ppb of mercury and that the amount of nickel catalyst is 100 cm3 instead of 50 cm3.
  • the combination of the catalyst and the capture mass makes it possible to obtain satisfactory decontamination of the naphtha into arsenic and mercury.
  • Example 7 The procedure is as in Example 7 except that the charge flow rate reduced to the collection mass is 1 l / hour (VVH 20).
  • 100 cm 3 of a catalyst containing 20% by weight of nickel and 0.5% by weight of palladium are prepared on an alumina support which is loaded into a first steel reactor 3 cm in diameter. five equal beds each separated by a glass wool pad.
  • Example 2 After the catalyst has been reduced according to the conditions of Example 1 but with a maximum temperature of 350 ° C., the two reactors are placed in series under hydrogen.
  • the naptha is allowed to pass for 400 hours.
  • the results of mercury analyzes in the product after 50, 100, 200 and 400 hours are summarized in Table 1.
  • 50 cm3 of a mass capable of playing both the role of catalyst and of capture mass consisting of a mixture of metallic nickel, copper sulphide and aluminous cement, are prepared.
  • 100 g of finely dispersed copper sulfide is prepared by reacting basic copper carbonate with a 30% by weight solution of ditertiononyl polysulfide (commercial product TPS 37 from Elf Aquitaine).
  • the paste obtained is dried under nitrogen at 150 ° C for 16 hours and then activated under steam at 150 ° C for 5 hours.
  • the steam flow rate is 1000 volumes per volume of dry product.
  • the two products are mixed with 5000 g of commercial calcium aluminate (Secar 80) and water.
  • the dough obtained, extruded into rods of 2.5 mm in diameter, is matured for 16 hours in a ventilated oven under a mixture of nitrogen and 10% steam at 80 ° C and then dried under nitrogen at 120 ° C for 5 hours. and finally activated at 400 ° C under nitrogen for 2 hours.
  • the product obtained consisting of extrudates with diameters 2.1-2.3 mm and a length of less than 5 mm, contains 14.3% CuS, 14.3% nickel and 71.4% calcium aluminate.
  • This mixed mass is then loaded into a single steel reactor 3 cm in diameter and arranged in 5 equal beds each separated by a glass wool pad.
  • a naphtha with characteristics identical to those described in Example 7 and containing 5 ppm of arsenic and 50 ppb of mercury is then passed in ascending flow under hydrogen.
  • the operating conditions are as follows: Charging flow: 500 cm3 / hour Temperature: 80 ° C Hydrogen pressure: 30 bars Hydrogen flow: 2 liters / hour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Gas Separation By Absorption (AREA)

Claims (9)

1. Verfahren zur Entfernung des Quecksilber-Gehalts aus einer Kohlenwasserstoff-Charge, dadurch gekennzeichnet, daß man ein Gemisch aus Wasserstoff und der besagten Charge mit einem Katalysator in Kontakt bringt, der zumindest ein Metall M enthält, das aus Nickel, Kobalt, Eisen und/oder Palladium besteht, wobei sich das Metall M zumindest zu 50 % seines Gesamtgehalts in reduziertem Zustand befindet, gefolgt von der Behandlung durch mindestens eine Fängermasse, die Schwefel oder ein Metallsulfid enthält, wobei folgende Verfahrensbedingungen eingehalten werden:
a) der Druck liegt zwischen 1 und 50 bar (absolut),
b) der Chargendurchsatz,bezogen auf die Fängermasse,liegt zwischen 1 und 50 Volumenteilen (flüssig) pro Volumenteil Fängermasse und pro Stunde,
c) der Wasserstoffdurchsatz,bezogen auf den Katalysator, liegt zwischen 1 und 500 Volumenteilen (gasförmig bei normalen Bedingungen) pro Katalysatorvolumen und pro Stunde,
d) die Temperatur liegt zwischen 130 und 250°C bezüglich des Katalysators und zwischen 0 und 175°C bezüglich der Fängermasse, wenn in getrennten Reaktoren gearbeitet wird, die Temperatur liegt zwischen 130 und 175°C, wenn in einem einzigen Reaktor gearbeitet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator 0,1 bis 60 Gew.-% an Metall auf einem Träger enthält, der aus der Gruppe besteht, die aus Aluminiumoxid, Siliciumdioxid-Aluminiumoxid, Siliciumdioxid, Zeolithen, Tonen, Aktivkohle und Tonerdezement besteht.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fängermasse 1 bis 40 % an Schwefel bezogen auf die Gesamtmasse enthält und der Rest aus zumindest einem Inhaltsstoff besteht, der der Gruppe angehört, die aus Aluminiumoxid, Siliciumdioxid-Aluminiumoxid, Siliciumdioxid, den Zeolithen, Aktivkohle, Tonen oder Tonerdezement besteht.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Fängermasse 0,1 bis 20 Gew.-% zumindest eines Metalls P enthält, das der Gruppe angehört, die aus Kupfer, Eisen und Silber gebildet ist, wobei das Metall P zumindest teilweise in Gestalt des Sulfids vorliegt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Metall (M) des Katalysators aus Nickel und das Metall (P) der Fängermasse aus Kupfer besteht.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Metalle M, P und der Schwefel in fester Form vorliegen und zwar bezüglich des Katalysators und der Fängermasse.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Katalysator bzw. die Fängermasse in zwei Einzelreaktoren angeordnet sind, wobei die Charge zunächst mit dem Katalysator und sodann mit der Fängermasse in Berührung gebracht wird und der Katalysator bei 130 bis 250°C unter einem Wasserstoffdruck von 1 bis 50 bar (absolut) funktioniert und ferner die Fängermasse zwischen 0 und 175°C im gleichen Druckbereich funktioniert sowie das Katalysatorvolumen, bezogen auf das Volumen der Fängermasse 1 : 10 bis 5 : 1 beträgt.
8. Verfahren nach einem der Aansprüche 1 bis 7, dadurch gekennzeichnet, daß die Charge abgesehen von Quecksilber ferner auch einen Arsen-Gehalt aufweist.
9. Verfahren nach Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß man zum Zweck der Aufrechterhaltung einer konstanten Gesamtschwefelkonzentration in der Fängermasse, gleichzeitig mit der Charge eine Schwefel-Verbindung einführt, die der Gruppe angehört, die aus Schwefelwasserstoff und zumindest einem organischen Polysulfid besteht.
EP89400626A 1988-03-10 1989-03-06 Verfahren zur Entfernung von Quecksilber und möglichem Arsen aus Kohlenwasserstoffen Expired - Lifetime EP0332526B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89400626T ATE75767T1 (de) 1988-03-10 1989-03-06 Verfahren zur entfernung von quecksilber und moeglichem arsen aus kohlenwasserstoffen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8803258 1988-03-10
FR8803258A FR2628338B1 (fr) 1988-03-10 1988-03-10 Procede pour l'elimination du mercure dans les hydrocarbures

Publications (2)

Publication Number Publication Date
EP0332526A1 EP0332526A1 (de) 1989-09-13
EP0332526B1 true EP0332526B1 (de) 1992-05-06

Family

ID=9364217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400626A Expired - Lifetime EP0332526B1 (de) 1988-03-10 1989-03-06 Verfahren zur Entfernung von Quecksilber und möglichem Arsen aus Kohlenwasserstoffen

Country Status (12)

Country Link
US (1) US4911825A (de)
EP (1) EP0332526B1 (de)
JP (1) JP3038390B2 (de)
CN (1) CN1021409C (de)
AT (1) ATE75767T1 (de)
AU (1) AU612244B2 (de)
CA (1) CA1335270C (de)
DE (1) DE68901407D1 (de)
DZ (1) DZ1327A1 (de)
FR (1) FR2628338B1 (de)
MY (1) MY104718A (de)
NO (1) NO173321C (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131850A1 (fr) 2010-04-23 2011-10-27 IFP Energies Nouvelles Procede d'elimination des especes mercuriques presentes dans une charge hydrocarbonee

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU607037B2 (en) * 1988-01-22 1991-02-21 Mitsui Chemicals, Inc. Method of removing mercury from hydrocarbon oils
US5401392A (en) * 1989-03-16 1995-03-28 Institut Francais Du Petrole Process for eliminating mercury and possibly arsenic in hydrocarbons
US4933159A (en) * 1989-11-02 1990-06-12 Phillips Petroleum Company Sorption of trialkyl arsines
AU7671691A (en) * 1990-04-04 1991-10-30 Exxon Chemical Patents Inc. Mercury removal by dispersed-metal adsorbents
FR2666343B1 (fr) * 1990-08-29 1992-10-16 Inst Francais Du Petrole Procede d'elimination du mercure des installations de vapocraquage.
FR2668465B1 (fr) * 1990-10-30 1993-04-16 Inst Francais Du Petrole Procede d'elimination de mercure ou d'arsenic dans un fluide en presence d'une masse de captation de mercure et/ou d'arsenic.
US5085844A (en) * 1990-11-28 1992-02-04 Phillips Petroleum Company Sorption of trialkyl arsines
WO1993012201A1 (en) * 1991-12-09 1993-06-24 Dow Benelux N.V. Process for removing mercury from organic media
FR2690923B1 (fr) * 1992-05-11 1994-07-22 Inst Francais Du Petrole Procede de captation de mercure et d'arsenic dans une coupe d'hydrocarbure.
FR2698372B1 (fr) * 1992-11-24 1995-03-10 Inst Francais Du Petrole Procédé d'élimination de mercure et éventuellement d'arsenic dans des hydrocarbures.
FR2701270B1 (fr) * 1993-02-08 1995-04-14 Inst Francais Du Petrole Procédé d'élimination du mercure dans les hydrocarbures par passage sur un catalyseur présulfuré.
FR2701269B1 (fr) * 1993-02-08 1995-04-14 Inst Francais Du Petrole Procédé d'élimination d'arsenic dans des hydrocarbures par passage sur une masse de captation présulfurée.
BE1007049A3 (nl) * 1993-05-05 1995-02-28 Dsm Nv Werkwijze voor het verwijderen van kwik.
US5777188A (en) * 1996-05-31 1998-07-07 Phillips Petroleum Company Thermal cracking process
US6117333A (en) * 1997-04-22 2000-09-12 Union Oil Company Of California Removal of hydrocarbons, mercury and arsenic from oil-field produced water
US6350372B1 (en) 1999-05-17 2002-02-26 Mobil Oil Corporation Mercury removal in petroleum crude using H2S/C
FR2803597B1 (fr) 2000-01-07 2003-09-05 Inst Francais Du Petrole Procede de captation du mercure et d'arsenic d'une coupe d'hydrocarbures distillee
US6797178B2 (en) * 2000-03-24 2004-09-28 Ada Technologies, Inc. Method for removing mercury and mercuric compounds from dental effluents
US6793805B2 (en) * 2000-05-05 2004-09-21 Institut Francais du Pétrole Process for capturing mercury and arsenic comprising evaporation then condensation of a hydrocarbon-containing cut
FR2808532B1 (fr) * 2000-05-05 2002-07-05 Inst Francais Du Petrole Procede de captation de mercure et d'arsenic comprenant une evaporation puis une condensation de la charge hydrocarbonnee
DE10045212A1 (de) * 2000-09-13 2002-03-28 Seefelder Mestechnik Gmbh & Co Verfahren zur Bestimmung von Quecksilber
US6719828B1 (en) 2001-04-30 2004-04-13 John S. Lovell High capacity regenerable sorbent for removal of mercury from flue gas
US6942840B1 (en) 2001-09-24 2005-09-13 Ada Technologies, Inc. Method for removal and stabilization of mercury in mercury-containing gas streams
US7183235B2 (en) * 2002-06-21 2007-02-27 Ada Technologies, Inc. High capacity regenerable sorbent for removing arsenic and other toxic ions from drinking water
US7361209B1 (en) 2003-04-03 2008-04-22 Ada Environmental Solutions, Llc Apparatus and process for preparing sorbents for mercury control at the point of use
WO2005032394A2 (en) * 2003-10-01 2005-04-14 Ada Technologies, Inc. System for removing mercury and mercuric compounds from dental wastes
CN1901982B (zh) * 2003-10-31 2010-04-21 金属合金回收公司 从废弃物流减少无机污染物的方法
US7666318B1 (en) 2005-05-12 2010-02-23 Ferro, LLC Process, method and system for removing mercury from fluids
US20070092418A1 (en) * 2005-10-17 2007-04-26 Chemical Products Corporation Sorbents for Removal of Mercury from Flue Gas
KR20090031900A (ko) * 2006-06-21 2009-03-30 바스프 에스이 수은 제거를 위한 흡착 조성물 및 방법
BRPI0717195A2 (pt) * 2006-11-21 2014-01-21 Dow Global Technologies Inc "método para remover mercúrio de uma corrente líquida ou gasosa de hidrocarbonetos compreendendo mercúrio"
US7910005B2 (en) * 2007-06-05 2011-03-22 Amcol International Corporation Method for removing mercury and/or arsenic from contaminated water using an intimate mixture of organoclay and elemental sulfur
US7553792B2 (en) * 2007-06-05 2009-06-30 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
US8025160B2 (en) * 2007-06-05 2011-09-27 Amcol International Corporation Sulfur-impregnated organoclay mercury and/or arsenic ion removal media
US7510992B2 (en) * 2007-06-05 2009-03-31 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
US20080302733A1 (en) 2007-06-05 2008-12-11 Amcol International Corporation Coupling agent-reacted mercury removal media
US7871524B2 (en) * 2007-06-05 2011-01-18 Amcol International Corporation Method for removing merury and/or arsenic from water using a silane coupling agent reacted organoclay
JP5455939B2 (ja) * 2008-03-10 2014-03-26 ビーエーエスエフ ソシエタス・ヨーロピア 炭化水素流から水銀を除去する方法
JP2010111770A (ja) * 2008-11-06 2010-05-20 Japan Energy Corp 精製炭化水素油の製造方法および精製炭化水素油
JP2010111771A (ja) * 2008-11-06 2010-05-20 Japan Energy Corp 精製炭化水素油の製造方法および精製炭化水素油
GB0900965D0 (en) * 2009-01-21 2009-03-04 Johnson Matthey Plc Sorbents
US8535422B2 (en) * 2009-01-26 2013-09-17 St. Cloud Mining Company Metal contaminant removal compositions and methods for making and using the same
WO2011005742A1 (en) * 2009-07-06 2011-01-13 Mar Systems, Llc Media for removal of contaminants from fluid streams and method of making and using same
US8690991B2 (en) * 2010-09-24 2014-04-08 Phillips 66 Company Supported silver sulfide sorbent
KR101796792B1 (ko) * 2011-02-09 2017-11-13 에스케이이노베이션 주식회사 촉매를 이용하여 수소화 처리 반응을 통해 황 및 수은이 포함된 탄화수소 원료로부터 이들을 동시에 제거하는 방법
US9381492B2 (en) * 2011-12-15 2016-07-05 Clariant Corporation Composition and process for mercury removal
US8876958B2 (en) * 2011-12-15 2014-11-04 Clariant Corporation Composition and process for mercury removal
US8876952B2 (en) 2012-02-06 2014-11-04 Uop Llc Method of removing mercury from a fluid stream using high capacity copper adsorbents
FR2987368B1 (fr) * 2012-02-27 2015-01-16 Axens Procede d'elimination de mercure contenu dans une charge hydrocarbure avec recycle d'hydrogene
US8734740B1 (en) 2013-03-15 2014-05-27 Clariant Corporation Process and composition for removal of arsenic and other contaminants from synthetic gas
JP6076854B2 (ja) 2013-08-07 2017-02-08 Jxエネルギー株式会社 炭化水素油中の水銀の除去方法
CN105126557B (zh) * 2014-05-30 2017-03-01 北京三聚环保新材料股份有限公司 一种硫化铜脱汞剂的制备方法
CN104785278A (zh) * 2015-03-25 2015-07-22 江苏佳华新材料科技有限公司 一种脱汞催化剂及其制备方法
FR3039164B1 (fr) 2015-07-24 2019-01-25 IFP Energies Nouvelles Procede d'elimination de mercure d'une charge hydrocarbonee lourde en amont d'une unite de fractionnement
FR3039163B1 (fr) 2015-07-24 2019-01-25 IFP Energies Nouvelles Procede d'eliminiation du mercure d'une charge en aval d'une unite de fractionnement
FR3039161B1 (fr) 2015-07-24 2019-01-25 IFP Energies Nouvelles Procede de traitement de coupes hydrocarbures comprenant du mercure
LU93014B1 (en) * 2016-04-04 2017-10-05 Ajo Ind S A R L Catalyst mixture for the treatment of waste gas
LU93013B1 (en) * 2016-04-04 2017-11-08 Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A Process for the removal of heavy metals from fluids
LU93012B1 (en) 2016-04-04 2017-11-08 Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A Sulfur dioxide removal from waste gas

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3069350A (en) * 1959-07-14 1962-12-18 Socony Mobil Oil Co Inc Reforming naphthas containing deleterious amounts of nitrogen or arsenic
US3043574A (en) * 1959-11-02 1962-07-10 William E Leibing Fuel supply system for engine
JPS501477A (de) * 1973-05-12 1975-01-09
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
JPS5251756A (en) * 1975-10-23 1977-04-25 Kurita Water Ind Ltd Method of treating wastewater containing heavy metals
DE2656803C2 (de) * 1975-12-18 1986-12-18 Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine Verfahren zur Entfernung von in einem Gas oder in einer Flüssigkeit vorhandenem Quecksilber
DE2644721A1 (de) * 1976-10-04 1978-04-06 Metallgesellschaft Ag Verfahren zur entfernung von chemischen verbindungen des arsens und/oder des antimons
US4101631A (en) * 1976-11-03 1978-07-18 Union Carbide Corporation Selective adsorption of mercury from gas streams
DE2726490A1 (de) * 1977-06-11 1978-12-21 Metallgesellschaft Ag Verfahren zur entfernung des arsens und/oder antimons
US4462896A (en) * 1982-10-26 1984-07-31 Osaka Petrochemical Industries Ltd. Method of removing arsenic in hydrocarbons
CA1216136A (en) * 1983-03-03 1987-01-06 Toshio Aibe Method for removal of poisonous gases
US4474896A (en) * 1983-03-31 1984-10-02 Union Carbide Corporation Adsorbent compositions
US4708853A (en) * 1983-11-03 1987-11-24 Calgon Carbon Corporation Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
US4605812A (en) * 1984-06-05 1986-08-12 Phillips Petroleum Company Process for removal of arsenic from gases
US4743435A (en) * 1985-03-13 1988-05-10 Japan Pionics., Ltd. Method for cleaning exhaust gases
US4593148A (en) * 1985-03-25 1986-06-03 Phillips Petroleum Company Process for removal of arsine impurities from gases containing arsine and hydrogen sulfide
US4719006A (en) * 1985-07-31 1988-01-12 Amoco Corporation Process and system continuously removing arsenic from shale oil with a catalyst and regenerating the catalyst
US4709118A (en) * 1986-09-24 1987-11-24 Mobil Oil Corporation Removal of mercury from natural gas and liquid hydrocarbons utilizing downstream guard chabmer
US4814152A (en) * 1987-10-13 1989-03-21 Mobil Oil Corporation Process for removing mercury vapor and chemisorbent composition therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131850A1 (fr) 2010-04-23 2011-10-27 IFP Energies Nouvelles Procede d'elimination des especes mercuriques presentes dans une charge hydrocarbonee

Also Published As

Publication number Publication date
NO890993L (no) 1989-09-11
MY104718A (en) 1994-05-31
NO173321C (no) 1993-12-01
CN1037466A (zh) 1989-11-29
FR2628338A1 (fr) 1989-09-15
FR2628338B1 (fr) 1991-01-04
ATE75767T1 (de) 1992-05-15
CN1021409C (zh) 1993-06-30
DZ1327A1 (fr) 2004-09-13
AU3117889A (en) 1989-09-14
CA1335270C (fr) 1995-04-18
DE68901407D1 (de) 1992-06-11
NO890993D0 (no) 1989-03-08
JPH01231920A (ja) 1989-09-18
US4911825A (en) 1990-03-27
AU612244B2 (en) 1991-07-04
JP3038390B2 (ja) 2000-05-08
EP0332526A1 (de) 1989-09-13
NO173321B (no) 1993-08-23

Similar Documents

Publication Publication Date Title
EP0332526B1 (de) Verfahren zur Entfernung von Quecksilber und möglichem Arsen aus Kohlenwasserstoffen
EP0628337B1 (de) Verfahren zur Beseitigung von Arsen aus einem Fluidum in Gegenwart einer Sorptionsmasse
EP0463044B1 (de) Verfahren zur entfernung von quecksilber und gegebenenfalls arsen aus kohlenwasserstoffen
EP0611183B1 (de) Verfahren zur Entfernung von Quecksilber aus Kohlenwasserstoffen mittels einem vorgeschwefeltem Katalysator
EP0293298B1 (de) Verfahren zur Herstellung und Regeneration einer Kupfer enthaltenden , festen Quecksilber-Adsorbtionsmasse
EP0484233B1 (de) Verfahren zur Herstellung eines festen Quecksilber-Sorbentmittels
EP0599702B1 (de) Verfahren zur Entfernung von Quecksilber und möglichen Arsen aus Kohlenwasserstoffen
CA2022896C (fr) Masse de captation a base de nickel pour l'elimination de l'arsenic et du phosphore contenus dans les coupes d'hydrocarbures liquides, sa preparation et son utilisation
EP0570261B1 (de) Verfahren zur Beseitigung von Quecksilber und Arsen aus einem Kohlenwasserstoffschnitt
CA2239075C (fr) Catalyseur pour le traitement de coupes essences contenant des diolefines, des composes styreniques et eventuellement des mercaptans
EP0487370B1 (de) Verfahren zur Entfernung von Arsen aus Gasen mittels eines Feststoffs auf der Basis von einem Träger und Kupfersulfid
EP0611182B1 (de) Verfahren zur Entfernung von Arsen aus Kohlenwasserstoffen mittels einem vorgeschwefeltem Absorbens
BE1012739A3 (fr) Masse d'elimination d'arsenic et de mercure dans des hydrocarbures a base de nickel supporte.
FR2857276A1 (fr) Procede d'elimination de composes soufres par oxydation directe
FR2521448A1 (fr) Procede pour l'hydrodesulfuration de gaz naturel contenant des composes organiques du soufre et de l'oxygene
FR2673191A1 (fr) Procede d'enlevement de mercure et/ou d'arsenic des charges des unites de desaromatisation de solvants. .
US20010050246A1 (en) Process for capturing mercury and arsenic comprising evaporation then condensation of a hydrocarbon-containing cut
WO2023117552A1 (fr) Procede de rejuvenation de masses de captation de metaux lourds
JPH0633071A (ja) 液状炭化水素中の水銀の除去方法
FR2788452A1 (fr) Masse de captation pour l'elimination d'arsenic dans les hydrocarbures
FR2673192A1 (fr) Procede pour l'elimination du mercure et eventuellement d'arsenic dans les charges des procedes catalytiques producteurs d'aromatiques. .
FR2806092A1 (fr) Procede d'elimination d'arsenic en presence d'une masse d'absorption comprenant de l'oxyde de plomb partiellement presulfure
FR2615754A1 (fr) Masse solide, de captation du mercure contenu dans un fluide, sa preparation et son utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE GB IT NL SE

17P Request for examination filed

Effective date: 19891023

17Q First examination report despatched

Effective date: 19901002

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT NL SE

REF Corresponds to:

Ref document number: 75767

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68901407

Country of ref document: DE

Date of ref document: 19920611

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89400626.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010326

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020307

EUG Se: european patent has lapsed

Ref document number: 89400626.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030224

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030321

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU *PETROLE

Effective date: 20040331

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080319

Year of fee payment: 20

Ref country code: NL

Payment date: 20080326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080415

Year of fee payment: 20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090306