EP0043426B1 - Elektromagnetisch arbeitende Stelleinrichtung - Google Patents

Elektromagnetisch arbeitende Stelleinrichtung Download PDF

Info

Publication number
EP0043426B1
EP0043426B1 EP81103710A EP81103710A EP0043426B1 EP 0043426 B1 EP0043426 B1 EP 0043426B1 EP 81103710 A EP81103710 A EP 81103710A EP 81103710 A EP81103710 A EP 81103710A EP 0043426 B1 EP0043426 B1 EP 0043426B1
Authority
EP
European Patent Office
Prior art keywords
switching
adjusting device
electro
spring
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81103710A
Other languages
English (en)
French (fr)
Other versions
EP0043426A1 (de
Inventor
Franz Prof. Dr. Pischinger
Peter Dipl.-Ing. Kreuter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT81103710T priority Critical patent/ATE8426T1/de
Publication of EP0043426A1 publication Critical patent/EP0043426A1/de
Application granted granted Critical
Publication of EP0043426B1 publication Critical patent/EP0043426B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to an electromagnetically operating control device for oscillatingly movable control elements on displacement machines, in particular for flat slides and lifting elements, consisting of a spring-mass system that has the control element and a spring system that is operatively connected to it, that preferably two springs working against each other contains, and from two electrically operating switching magnets, via which the control element can be moved into two discrete, opposite switching positions and can be held there by one of the switching magnets.
  • an adaptable control for the inflow and outflow of the working medium is required in order to be able to optimally influence the working process according to the particular requirements.
  • the control process has a major influence on various parameters, for example the conditions of the working medium before, in and after the working area, the working frequency and the processes in the working area.
  • the need for adaptable control is particularly given in internal combustion engines, since they operate unsteadily in very different operating states and a correspondingly variable positive control of the gas exchange valves is advantageous.
  • camshafts have hitherto been used primarily to control the gas exchange valves in internal combustion engines.
  • these do not allow variable control.
  • electromagnetic controls of gas exchange valves on internal combustion engines have become known, in which the closing force is applied to the gas exchange valve by a spring, while the opening forces are generated by a correspondingly controlled electromagnet.
  • This type of electromagnetic control has the disadvantage that short control times with high actuation frequencies and usual strokes of the gas exchange valves can only be achieved with extensive switchgear and high energy consumption (DE-A No. 2815849.2063158).
  • an electromagnetically operating control for gas exchange valves on internal combustion engines is known (DE-A No. 2335150), which consists of two water-cooled switching coils, each of which cooperate with an armature.
  • the two anchors are attached to a common spindle, which acts on the gas exchange valve.
  • the gas exchange valve has a compression spring which holds the valve in its closed state, in addition to which a further spring of the same stiffness is provided, which acts on one of the armatures and is tensioned by the armature in the closed state of the valve, so that these two springs together with the gas exchange valve and the transmission elements such as the spindle and armature form a spring-mass system.
  • one electromagnet is energized and the other switched off. Due to the preloaded springs of the spring-mass system, the spindle with the armature is accelerated up to half the stroke, in which both armatures are equidistant from the associated switching coils.
  • the switching coils are designed in such a way that when excited they can pull their armature from this central position against the increasing force of the spring system.
  • both anchors When this arrangement is switched off, both anchors also move into their central position, so that the gas exchange valve has already traveled half its stroke and is thus open.
  • This arrangement has the disadvantage that it can practically not be used in internal combustion engines, since switching off the internal combustion engine over a longer period of time with gas exchange valves open for all cylinders can lead to corrosion formation within the cylinders.
  • Another disadvantage of this arrangement is that to start up an internal combustion engine equipped in this way, the switching coils for pulling an armature over half the stroke have to be designed for large forces over long distances, which is a very high energy requirement for an internal combustion engine with several cylinders, in particular for the Starting process means.
  • it is disadvantageous in such an arrangement that, because of the high masses to be accelerated, a high switching frequency can only be achieved with large spring forces due to the two plunger anchors, as a result of which the required magnetic forces and thus the energy requirement increase sharply.
  • a tensioning device is connected to the spring-mass system such that the static rest position of the spring-mass system moves from an essentially central position between the switching positions of the switching magnets to another, preferably in the area of the switching positions of the switching solenoids located.
  • the invention is based on the knowledge that a low power consumption of the switching magnets is only achieved when the static rest position of the spring-mass system can be relocated to start the actuating device.
  • the result of this is that the shift magnets do not have to attract the control element from a central position between the shift positions when moving off, which means a high energy requirement depending on the size of the shift path. Since no high power is required to switch the control element itself, the total power consumption of the arrangement according to the invention is very low.
  • This has the further advantage that there is no great heat development in the Switching magnet takes place, so that a separate cooling for them does not have to be provided. Due to the low power consumption, it is also advantageously possible to use the actuating device according to the invention for controlling gas exchange valves in internal combustion engines. According to the invention, it does not matter whether the static rest position of the spring-mass system is moved in the switched-off state or only when the actuating device is started.
  • the tensioning device has at least two discrete positions, the static rest position of the spring-mass system in the first position of the tensioning device in the substantially central position between the switching positions of the switching magnets and in the second position of the Clamping device is in the range of one of the switching positions of the switching magnets. It makes sense to let the tensioning device move into its second position at least when the actuating device is started up. In addition, it is possible for this position to be reached even when the actuating device is not in use. This is particularly useful if a gas exchange valve of internal combustion engines is provided as the control element.
  • Any suitable tensioning device can be provided as a tensioning device in the sense of the invention, depending on the control element used. It can work mechanically, hydraulically, pneumatically or electrically. An embodiment of the tensioning device according to claim 3 is preferred. If gas exchange valves of an internal combustion engine are provided as control elements, it makes sense, for example as a tensioning device, for all gas exchange valves to have a common shaft, which is either eccentrically mounted or acts on the spring-mass system via corresponding levers, to be provided, which is shifted into its two discrete positions by a common switching device, for example an electric motor or a hydraulic cylinder.
  • a common switching device for example an electric motor or a hydraulic cylinder.
  • an electric motor is provided as the tensioning device, it makes sense to control it in its first position and to control it in its second position.
  • This has the advantage that the switched-off position of the tensioning device coincides with the switched-off position of the actuating device, so that no energy requirement is required in the switched-off state.
  • Another advantage is that in the first position there is no air gap between the coil and armature - that is, no field strength weakening - so that the energy requirement of the magnet is low.
  • the development of the invention according to claim 5 includes the advantage that the actuating device can move the control element at a high frequency, since the electromagnetic fields generated by the switching magnets can be built up and broken down at high frequency with low voltage peaks. This is achieved through a low inductance of the switching magnets.
  • the tensioner electromagnet can be much slower, i.e. be equipped with a much higher inductance, since its operating frequency is significantly lower, because it remains in one of its two discrete positions during operation of the actuating device and only has to be switched to the other at least for starting.
  • the switching magnets can hold the control element in one of the switching positions, so that this prevents the tensioning device from moving the static rest position between the two discrete switching positions when starting up.
  • the construction of the actuating device according to the invention makes it possible to design the forces of the switching magnets in such a way that they are greater than the counteracting forces of the spring system only shortly before the switching positions of the control element are reached. This allows switching magnets with a low attraction. force but large holding forces with practically no air gap between magnet and armature are used.
  • the spring system acts on the control element, since it only has to be ensured that the resulting force of the spring system is non-positively transmitted to the control element. If only one armature is provided for both switching magnets, it makes sense to let the spring system engage this armature. It is irrelevant here whether, for example, the spring system consists of two oppositely acting springs or a tension-compression spring.
  • the embodiment of the invention according to claim 9 includes the advantage that the entire switching time is available for the reconstruction of the magnetic field of the switching magnet, to which the control element is not present, that is to say the time which the armature takes to reach the other switching magnet get there and come back from there. Likewise, such an arrangement reduces the control outlay for the actuating device according to the invention, since now only a brief switch-off signal is required to switch the actuating device.
  • the advantage is achieved that deviations from the target dimensions between the seat surface of the control element and the pole surfaces of the switching magnets, which occur due to installation tolerances, thermal expansion and wear and tear and can impair the safe reaching of the two discrete positions of the control element, be prevented. It makes sense to design the spring stiffness of these springs to be significantly higher than the spring stiffness of the spring system.
  • control element does not hit hard when it reaches its discrete positions, but reaches it in a damped manner.
  • the actuating device according to the invention is described in the examples only on control elements which are used in internal combustion engines. However, it is not restricted to this, but it is quite generally possible to equip all oscillatingly movable control elements, which only have to have two discrete positions, with the actuating device according to the invention.
  • the internal combustion engine shown schematically in Figs. 1 to 4 consists of a cylinder block 1, a piston 2 with its piston rings 3, a cylinder head gasket 4, a cylinder head 5 and a poppet valve 6, which is guided in a valve guide-7 and the combustion chamber 8 together seals with its valve seat ring 9 against a gas channel 10.
  • the actuating device according to the invention for this poppet valve 6 consists of an armature 11, which is fastened to the shaft of the valve 6, and of two switching magnets or switching coils 12, 13, of which the switching coil 12 is designed as a closing coil and the switching coil 13 as an opening coil.
  • a spring system which consists of a compression spring 16 and a compression spring 17, acts on the armature 11, so that the spring system 16, 17 forms a spring-mass system with the poppet valve 6 and the armature 11 fastened thereon.
  • the compression spring 17 is the valve spring known per se, which exerts a force in the closing direction on the poppet valve 6.
  • the spring 16 is arranged such that it exerts a force on the poppet valve 6 in the opening direction.
  • the compression spring 16 interacts with a prestressing anchor 15 which belongs to a prestressing coil 14 and forms a tensioning device.
  • the preload anchor 15 bears against the preload coil 14, so that the compression spring 16 is tensioned.
  • the bias coil 14 is energized.
  • the poppet valve 6 remains in the position shown, it is also necessary that the closing coil 12 is energized so that the armature 11 is held on it against the force of the compression spring 16.
  • the position of the actuating device shown in FIG. 1 corresponds to an operating position, namely the operating position poppet valve 6 closed. In this position, the valve spring 17 has its greatest length and accordingly exerts the least force on the armature 11.
  • the spacer sleeve 18 and the magnetic cover 19 serve to fasten the switching coils 12, 13 and the biasing coil 14 in the cylinder head 5, which is closed by the cover 20 at the top.
  • FIGS. 7 and 8 The mode of operation of the device according to the invention will be explained in more detail with reference to the diagrams in FIGS. 7 and 8.
  • the forces in the closing direction are denoted by + and in the opening direction by - on the ordinate.
  • the possible stroke of the poppet valve 6 is entered on the abscissa. 8 also shows the acceleration and the speed when opening, which are also entered positively in the closing direction, on the ordinate.
  • the biasing armature 15 is at rest, i.e. that it comes up against the magnetic ceiling 19.
  • the compression spring 16 is relaxed, so that the poppet valve 6 with the armature is pressed by the valve spring 17 against the switching coil 12 designed as a closing coil.
  • the combustion chamber 8 is closed.
  • the switching coil 12 is briefly switched off.
  • the full force of the spring system (FIG. 7) thus acts in the opening direction, so that the armature 11 accelerates in the opening direction with the poppet valve 6 becomes.
  • the switching coil 12 can be switched on again immediately afterwards, since after a short stroke of the poppet valve 6 the attraction force of the switching coil 12 is less than the opening force of the spring system.
  • FIG. 7 further shows, practically no force acts on the moving poppet valve 6 at half the stroke.
  • the entire potential energy present in the closing direction of the valve has thus been converted into kinetic energy.
  • the speed (curve 78) has its greatest value at half the stroke.
  • valve spring 17 acts decelerating (at the same time, the force of the switching coil 13 on the armature 11 increases with increasing distance from the half stroke). This means that the acceleration of the poppet valve 6 and its speed decrease. As curve 79 clearly shows for the acceleration, this reverses shortly before reaching the open position. This means that the poppet valve 6 is braked and reaches the open position, with the result that a hard impact of the armature 11 on the switching coil 13 is avoided.
  • FIG. 2 differs from the embodiment according to FIG. 1 in that the springs 16, 17 are arranged within the switching coils 12, 13, while in FIG. 1 they are arranged within the laminated cores interacting with the switching coils.
  • the two springs 16, 17 enclose the switching coils 12, 13.
  • the bias anchor 15.3 serves to receive the bias coil 14 and the switching coil 12. It is therefore necessary that the armature 11 in its rest position is pressed by the valve spring 17 against a bushing 21 which is held in position by the magnetic cover 19.
  • Fig. 4 shows a further alternative arrangement of the springs 16, 17. These are arranged outside the switching coils 12, 13. The bias anchor 15.4 of the relaxing spring 16 is pressed against the magnetic cover 19. As a result, almost the full force of the valve spring 17 acts on the armature 11, so that the armature 11 and thus the poppet valve 6 remain in their closed position.
  • actuating device in Fig. 5 is shown using a flat slide. It does not differ in structure and mode of operation from the arrangements previously described.
  • the flat slide valve is known in its structure and mode of operation from DE-A No. 2929195 and is therefore not described in detail.
  • Fig. 6 an elastic fastening possibility of the armature 11 on the stem of the control element, here the poppet valve 6, is recorded.
  • the armature 11 is clamped between the plate springs 22 and 23.
  • the plate springs 22 and 23 are preloaded and are fixed on the stem of the poppet valve by the insert rings 24 and 25, which are secured against falling out by locking rings 26 and 27.
  • the plate springs 22 and 23 have a high spring stiffness, so that the relative movements between the stem of the poppet valve 6 and the armature 11 are dampened by the friction of the plate springs 22 and 23 on the armature 11.

Description

  • Die Erfindung bezieht sich auf eine elektromagnetisch arbeitende Stelleinrichtung für oszillierend bewegbare Steuerelemente an Verdrängungsmaschinen, insbesondere für Flachschieber und Hubelemente, bestehend aus einem Feder-Masse-System, das das Steuerelement und ein mit diesem in Wirkverbindung stehendes Federsystem aufweist, dass vorzugsweise zwei gegeneinander arbeitende Federn enthält, und aus zwei elektrisch arbeitenden Schaltmagneten, über die das Steuerelement in zwei diskrete, gegenüberliegende Schaltpositionen bewegbar und dort von je einem der Schaltmagneten haltbar ist.
  • Bei Verdrängungsmaschinen ist eine anpassungsfähige Steuerung zum Ein- und Ausströmen des Arbeitsmediums erforderlich, um den Arbeitsprozess nach den jeweilig erforderlichen Gesichtspunkten optimal beeinflussen zu können. Der Ablauf der Steuerung hat dabei grossen Einfluss auf verschiedene Parameter, beispielsweise die Zustände des Arbeitsmediums vor, im und nach dem Arbeitsraum, die Arbeitsfrequenz und die Vorgänge im Arbeitsraum. Die Notwendigkeit einer anpassungsfähigen Steuerung ist insbesondere bei Brennkraftmaschinen gegeben, da sie bei sehr unterschiedlichen Betriebszuständen instationär arbeiten und eine entsprechend variable Zwangssteuerung der Gaswechselventile vorteilhaft ist.
  • Insbesondere zur Steuerung der Gaswechselventile in Brennkraftsmaschinen wurden bisher im wesentlichen Nockenwellen verwendet. Diese lassen jedoch keine variable Steuerung zu. Daneben sind elektromagnetische Steuerungen von Gaswechselventilen an Brennkraftmaschinen bekanntgeworden, bei denen die Schliesskraft auf das Gaswechselventil von einer Feder aufgebracht wird, während die Öffnungskräfte von einem entsprechend angesteuerten Elektromagneten erzeugt werden. Diese Art der elektromagnetischen Steuerung hat den Nachteil, dass kurze Steuerungszeiten bei hohen Betätigungsfrequenzen und üblichen Hüben der Gaswechselventile nur mit umfangreichen Schaltanlagen und hohem Energieaufwand erreicht werden können (DE-A Nrn. 2815849,2063158).
  • Weiterhin ist eine elektromagnetisch arbeitende Steuerung für Gaswechselventile an Brennkraftmaschinen bekannt (DE-A Nr. 2335150), die aus zwei wassergekühlten Schaltspulen besteht, die jeweils mit einem Anker zusammenwirken. Die beiden Anker sind an einer gemeinsamen Spindel befestigt, die auf das Gaswechselventil einwirkt. Das Gaswechselventil weist wie bei der Nockensteuerung eine Druckfeder auf, welche das Ventil in seinem geschlossenen Zustand hält, wobei daneben eine weitere Feder gleicher Steifigkeit vorgesehen ist, die auf einen der Anker einwirkt und im geschlossenen Zustand des Ventils von dem Anker gespannt wird, so dass diese beiden Federn mit dem Gaswechselventil und den Übertragungselementen wie Spindel und Anker ein Feder-Masse-System bilden. Zum Schalten dieser Einrichtung wird jeweils ein Elektromagnet erregt und der andere abgeschaltet. Aufgrund der vorgespannten Federn des Feder-Masse-Systems wird die Spindel mit dem Anker beschleunigt bis auf halben Hubweg, bei dem beide Anker gleichen Abstand von den dazugehörigen Schaltspulen aufweisen. Die Schaltspulen sind hierbei derart ausgelegt, dass sie bei Erregung ihren Anker aus dieser Mittellage gegen die sich vergrössernde Kraft des Federsystems anziehen können. Im abgeschalteten Zustand dieser Anordnung stellen sich beideAnkerebenfalls in ihre Mittelstellung, so dass das Gaswechselventil bereits seinen halben Hubweg zurückgelegt hat und somit geöffnet ist.
  • Diese Anordnung hat den Nachteil, dass sie bei Brennkraftmaschinen praktisch nicht verwendet werden kann, da ein Abstellen der Brennkraftmaschine über einen längeren Zeitraum mit bei allen Zylindern geöffneten Gaswechselventilen zur Korrosionsbildung innerhalb der Zylinder führen kann. Ein weiterer Nachteil dieser Anordnung besteht darin, dass zum Anfahren einer derartig ausgerüsteten Brennkraftmaschine die Schaltspulen zum Anziehen eines Ankers über den halben Hubweg für grosse Kräfte bei grossen Wegen ausgelegt werden müssen, was einen für eine Brennkraftmaschine mit mehreren Zylindern sehr hohen Energiebedarf, insbesondere für den Startvorgang, bedeutet. Weiterhin ist es bei einer derartigen Anordnung nachteilig, dass aufgrund der hohen, zu beschleunigenden Massen aufgrund der beiden Tauchanker eine hohe Schaltfrequenz nur mit grossen Federkräften erreicht werden kann, wodurch die erforderlichen Magnetkräfte und damit der Energiebedarf stark ansteigen.
  • Aufgabe der vorliegenden Erfindung ist es deshalb, bei einer gattungsgemässen Vorrichtung der eingangs genannten Art eine variable Stelleinrichtung bereitzustellen, die einen kleinen Bauraum benötigt, einfach im Aufbau ist und mit einem geringen Steuerungs- und Leistungsaufwand zu betreiben ist.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass mit dem Feder-Masse-System eine Spanneinrichtung derart verbunden ist, dass die statische Ruhelage des Feder-Masse-Systems aus einer im wesentlichen mittigen Lage zwischen den Schaltpositionen der Schaltmagnete in einen anderen, vorzugsweise im Bereich einer der Schaltpositionen der Schaltmagnete gelegenen Ort verlegbar ist.
  • Die Erfindung beruht auf der Erkenntnis, dass nur dann eine geringe Leistungsaufnahme der Schaltmagnete erreicht wird, wenn die statische Ruhelage des Feder-Masse-Systems zum Anfahren der Stelleinrichtung verlegt werden kann. Hieraus resultiert, dass die Schaltmagnete das Steuerelement nicht aus einer mittigen Lage zwischen den Schaltpositionen beim Anfahren heraus anziehen müssen, was je nach Grösse des Schaltweges einen hohen Energiebedarf bedeutet. Da zum Schalten des Steuerelementes selbst keine hohe Leistung benötigt wird, ist die gesamte Leistungsaufnahme der erfindungsgemässen Anordnung sehr niedrig. Damit wird der weitere Vorteil erzielt, dass keine grosse Wärmeentwicklung in den Schaltmagneten stattfindet, so dass eine separate Kühlung für diese nicht vorgesehen werden muss. Aufgrund der geringen Leistungsaufnahme ist es darüber hinaus in vorteilhafter Weise möglich, die erfindungsgemäsdse Stelleinrichtung zur Steuerung von Gaswechselventilen in Brennkraftmaschinen anzuwenden. Erfindungsgemäss ist es gleichgültig, ob die statische Ruhelage des Feder-Masse-Systems im abgeschalteten Zustand oder erst zum Anfahren der Stelleinrichtung verlegt wird.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Spanneinrichtung zumindest zwei diskrete Stellungen aufweist, wobei die statische Ruhelage des Feder-Masse-Systems in der ersten Stellung der Spanneinrichtung in der im wesentlichen mittigen Lage zwischen den Schaltpositionen der Schaltmagnete und in der zweiten Stellung der Spanneinrichtung im Bereich einer der Schaltpositionen der Schaltmagnete liegt. Hierbei ist es sinnvoll, die Spanneinrichtung zumindest beim Anfahren der Stelleinrichtung in ihre zweite Position fahren zu lassen. Darüber hinaus ist es möglich, dass diese Position auch während des Nichtgebrauchs der Stelleinrichtung erreicht wird. Dies ist insbesondere dann sinnvoll, wenn als Steuerelement ein Gaswechselventil von Brennkraftmaschinen vorgesehen ist. Damit ist der für die Steuerung der Gaswechselventile von Brennkraftmaschinen entscheidende Vorteil verbunden, dass der Gaskanal bei abgeschalteter Brennkraftmaschine durch das Gaswechselventil geschlossen gehalten werden kann. Die erste Steltung der Spanneinrichtung wird dann nur im Betrieb der Stelleinrichtung erreicht.
  • Als Spanneinrichtung im Sinne der Erfindung kann jede geeignete Spanneinrichtung in Abhängigkeit des verwendeten Steuerelements vorgesehen werden. Sie kann dabei mechanisch, hydraulisch, pneumatisch oder elektrisch arbeiten. Bevorzugt wird eine Ausbildung der Spanneinrichtung nach Anspruch 3. Werden als Steuerelemente Gaswechselventile einer Brennkraftmaschine vorgesehen, so ist es beispielsweise als Spanneinrichtung sinnvoll, für alle Gaswechselventile eine gemeinsame Welle, die entweder exzentrisch gelagert oder über entsprechende Hebel auf das Feder-Masse-System einwirkt, vorzusehen, die durch eine gemeinsame Schalteinrichtung, beispielsweise einen Elektromotor oder einen Hydraulikzylinder, in ihre beiden diskreten Stellungen verschoben wird.
  • Wird als Spanneinrichtung ein Elektromotor vorgesehen, so ist es sinnvoll, diesen in seiner ersten Stellung eingeschaltet und in seiner zweiten Stellung ausgeschaltet zu steuern. Dies hat den Vorteil, dass die ausgeschaltete Stellung der Spanneinrichtung mit der ausgeschalteten Stellung der Stelleinrichtung übereinstimmt, so dass im ausgeschalteten Zustand kein Energiebedarf gefordert wird. Ein weiterer Vorteil liegt darin, dass in der ersten Stellung kein Luftspalt zwischen Spule und Anker vorliegt-also keine Feldstärkenschwächung -, so dass der Energiebedarf des Magneten gering ist.
  • Die Weiterbildung der Erfindung nach Anspruch 5 beinhaltet den Vorteil, dass die Stelleinrichtung das Steuerelement mit einer hohen Frequenz bewegen kann, da die von den Schaltmagneten erzeugten elektromagnetischen Felder mit hoher Frequenz bei niedrigen Spannungsspitzen auf- und abgebaut werden können. Dies wird durch eine geringe Induktivität der Schaltmagnete erreicht. Der Elektromagnet der Spanneinrichtung kann wesentlich langsamersein, d.h. mit einer wesentlich höheren Induktivität ausgerüstet werden, da dessen Arbeitsfrequenz deutlich niedriger liegt, weil er während des Betriebes der Stelleinrichtung in einer seiner beiden diskreten Stellungen verharrt und nur zumindest zum Anfahren in die andere geschaltet werden muss.
  • Wird die Spanneinrichtung schon beim Abschalten der Stelleinrichtung in ihre zweite diskrete Stellung geschaltet, d.h. die statische Ruhelage des Feder-Masse-Systems liegt im Bereich einer der Schaltpositionen, so können alle Magnete einer Stelleinrichtung gemeinsam zur Inbetriebnahme der Stelleinrichtung eingeschaltet werden.
  • Durch die langsamere Erregbarkeit des Elektromagneten der Spanneinrichtung können die Schaltmagnete das Steuerelement in einer der Schaltpositionen festhalten, so dass dadurch verhindert wird, dass die Spanneinrichtung beim Anfahren die statische Ruhelage zwischen die beiden diskreten Schaltpositionen verlagert.
  • Durch den erfindungsgemässen Aufbau der Stelleinrichtung ist es möglich, die Kräfte der Schaltmagnete derart auszulegen, dass sie erst kurz vor Erreichen der Schaltpositionen des Steuerelements grösser als die entgegenwirkenden Kräfte des Federsystems sind. Damit können Schaltmagnete mit einer geringen Anziehungs- . kraft aber grossen Haltekräften bei praktisch nicht vorhandenem Luftspalt zwischen Magnet und Anker verwendet werden.
  • Um die zu beschleunigenden Massen und damit auch die von den Schaltmagneten aufzubringenden Haltekräfte gering zu halten, wird die Weiterbildung nach Anspruch 7 vorgeschlagen. Damit ist gleichzeitig eine Steigerung der Arbeitsfrequenz aufgrund der geringen, zu beschleunigenden Massen möglich.
  • Für die Funktion der erfindungsgemässen Stelleinrichtung ist es gleichgültig, wo das Federsystem an dem Steuerelement angreift, da lediglich gewährleistet sein muss, dass die resultierende Kraft des Federsystems kraftschlüssig auf das Steuerelement übertragen wird. Wird nur ein einziger Anker für beide Schaltmagnete vorgesehen, so ist es sinnvoll, dass Federsystem an diesen Anker angreifen zu lassen. Hierbei ist es unwesentlich, ob beispielsweise das Federsystem aus zwei entgegengesetzt wirkenden Federn oder aus einer Zug-Druck-Feder besteht.
  • Die Ausbildung der Erfindung nach Anspruch 9 beinhaltetden Vorteil, dass zum Wiederaufbau des Magnetfeldes der Schaltmagneten, an dem das Steuerelement nicht anliegt, die gesamte Schaltzeit zur Verfügung steht, d.h. die Zeit, die der Anker benötigt, um bis zum anderen Schaltmagneten zu gelangen und von dort wieder zurückzukehren. Gleichfalls verringert eine derartige Anordnung den Steuerungsaufwand für die erfindungsgemässe Stelleinrichtung, da nunmehr nur noch ein kurzzeitiges Ausschaltsignal zum Schalten der Stelleinrichtung benötigt wird.
  • Mit der Ausbildung der Erfindung nach Anspruch 10 wird der Vorteil erreicht, dass Abweichungen von den Sollmassen zwischen der Sitzfläche des Steuerelements und den Polflächen der Schaltmagnete, die durch Einbautoleranzen, Wärmedehnungen und Verschleiss auftreten und ein sicheres Erreichen der beiden diskreten Stellungen des Steuerelements beeinträchtigen können, verhindert werden. Hierbei ist es sinnvoll, die Federsteifigkeit dieser Federn wesentlich höher als die Federsteifigkeit des Federsystems auszulegen.
  • Durch die Weiterbildung nach Anspruch 11 wird erreicht, dass das Steuerelement bei Erreichen seiner diskreten Stellungen nicht hart aufschlägt, sondern diese gedämpft erreicht.
  • Im nachfolgenden wird die Erfindung anhand bevorzugter Ausführungsbeispiele näher erläutert. Es stellen dar:
    • Fig. 1 bis 4 Querschnitte durch die erfindungsgemässe Stelleinrichtung mit einem Gaswechselventil einer Hubkolbenbrennkraftmaschine als Steuerelement;
    • Fig. 5 die erfindungsgemässe Stelleinrichtung im Querschnitt mit einem Flachschieber als Steuerelement;
    • Fig. 6 eine Befestigungsmöglichkeit des Doppelankers an dem Schaft eines Steuerelements;
    • Fig. 7 und 8 Kraft-Weg-Diagramme der erfindungsgemässen Stelleinrichtung.
  • Die erfindungsgemässe Stelleinrichtung wird in den Beispielen nur an Steuerelementen beschrieben, die bei Brennkraftmaschinen Verwendung finden. Sie ist jedoch nicht darauf beschränkt, sondern es ist ganz allgemein möglich, alle oszillierend bewegbaren Steuerelemente, die nur zwei diskrete Stellungen aufweisen müssen, mit der erfindungsgemässen Stelleinrichtung auszurüsten.
  • Die in den Fig. 1 bis 4 schematisch dargestellte Brennkraftmaschine besteht aus einem Zylinderblock 1, einem Kolben 2 mit dessen Kolbenringen 3, einer Zylinderkopfdichtung 4, einem Zylinderkopf 5 sowie einem Tellerventil 6, das in einer Ventilführung-7 geführt ist und den Brennraum 8 gemeinsam mit seinem Ventilsitzring 9 gegen einen Gaskanal 10 abdichtet.
  • Die erfindungsgemässe Stelleinrichtung für dieses Tellerventil 6 besteht aus einem Anker 11, der an dem Schaft des Ventils 6 befestigt ist, und aus zwei Schaltmagneten bzw.-Schaltspulen 12, 13, wovon die Schaltspule 12 als Schliessspule und die Schaltspule 13 als Öffnungsspule ausgebildet ist. An dem Anker 11 greift ein Federsystem an, welches aus einer Druckfeder 16 und einer Druckfeder 17 besteht, so dass das Federsystem 16, 17 mit dem Tellerventil 6 und dem an diesem befestigten Anker 11 ein Feder-Masse-System bildet. Die Druckfeder 17 ist die an sich bekannte Ventilfeder, die auf das Tellerventil 6 eine Kraft in Schliessrichtung ausübt. Die Feder 16 ist derart angeordnet, dass sie eine Kraft auf das Tellerventil 6 in Öffnungsrichtung ausübt. Die Druckfeder 16 wirkt mit einem Vorspannanker 15 zusammen, der zu einer Vorspannspule 14 gehört und eine Spanneinrichtung bildet. In dem Beispiel nach Fig. 1 liegt der Vorspannanker 15 an der Vorspannspule 14 an, so dass die Druckfeder 16 gespannt ist. Hierzu ist es erforderlich, dass die Vorspannspule 14 erregt ist. Damit das Tellerventil 6 in der gezeigten Stellung verharrt, ist es weiterhin erforderlich, dass die Schliessspule 12 erregt ist, so dass der Anker 11 an ihr gegen die Kraft der Druckfeder 16 gehalten wird. Die in Fig. 1 dargestellte Stellung der Stelleinrichtung entspricht einer Betriebsstellung und zwar der Betriebsstellung Tellerventil 6 geschlossen. In dieser Stellung weist die Ventilfeder 17 ihre grösste Länge auf und übt dementsprechend die geringste Kraft auf den Anker 11 aus.
  • Die Distanzhülse 18 und der Magnetdeckel 19 dienen zur Befestigung der Schaltspulen 12, 13 und der Vorspannspule 14 im Zylinderkopf 5, der von dem Deckel 20 nach oben verschlossen wird.
  • Anhand der Diagramme in den Fig. 7 und 8 soll die Arbeitsweise der erfindungsgemässen Vorrichtung näher erläutert werden. In Fig. 7 sind auf der Ordinate die Kräfte in Schliessrichtung mit + und in Öffnungsrichtung mit - bezeichnet. Auf der Abzisse ist der mögliche Hub des Tellerventils 6 eingetragen. Fig. 8 weist auf der Ordinate zusätzlich noch die Beschleunigung und die Geschwindigkeit beim Öffnen auf, welche ebenfalls in Schliessrichtung positiv eingetragen sind.
  • Ist die Stelleinrichtung gemäss Fig. 4 ausgeschaltet, d.h. sind die Schaltspulen 12,13 und die Vorspannspule 14 nicht erregt, so befindet sich der Vorspannanker 15 in Ruhe, d.h., dass er an dem Magnetdecke) 19antiegt. Dadurch ist die Druckfeder 16 entspannt, so dass durch die Ventilfeder 17 das Tellerventil 6 mit dem Anker gegen die als Schliessspule ausgebildete Schaltspule 12 gedrückt wird. Dadurch ist der Brennraum 8 verschlossen.
  • Zum Einschalten der erfindungsgemässen Stelleinrichtung werden - da die Vorspannspule 14 eine wesentlich höhere Induktivität als die beiden Schaltspulen 12, 23 aufweist - alle drei Spulen gleichzeitig erregt. Aufgrund der geringen I nduktivität der Schaltspule 12 baut diese ihr Magnetfeld schneller auf, als der Vorspannanker 15 von der Vorspannspule 14 angezogen werden kann. Damit verharrt der Anker 11 an der Schaltspule 12, so dass das Tellerventil 6 geschlossen bleibt. Dies bedeutet in Fig. 7, dass das Federsystem (Kurve 74) eine in Schliessrichtung negative Kraft auf den Anker 11 ausübt, die allerdings kleiner ist als die Halterkraft der Schaltspule 12 (Kurve 75). In der geschlossenen Stellung des Tellerventils 6 ist die von der Schaltspule 13 (Öffnungsspule) ausgeübte Kraft in Schliessrichtung praktisch Null (Kurve 76).
  • Zum Öffnen des Tellerventils 6 wird die Schaltspule 12 kurzzeitig ausgeschaltet. Damit wirkt in Öffnungsrichtung dievolle Kraft des Federsystems (Fig. 7), so dass der Anker 11 mit dem Tellerventil 6 in Richtung Öffnen beschleunigt wird. Wie Fig. 7 zeigt, kann die Schaltspule 12 unmittelbar danach wieder eingeschaltet werden, da schon nach einem kurzen Hubweg des Tellerventils 6 die Anziehungskraft der Schaltspule 12 geringer ist als die Öffnungskraft des Federsystems. Wie Fig. 7 weiterhin zeigt, wirkt auf halbem Hubweg praktisch keine Kraft mehr auf das sich bewegende Tellerventil 6. Es ist also die gesamte, in Schliessrichtung des Ventils vorhandene potentielle Energie in kinetische Energie umgewandelt worden. Dies bewirkt (Fig. 8), dass das Tellerventil 6 mit seinem Anker 11 über den halben Hubweg hinaus weiterbewegt wird (Kurve 79). Die Geschwindigkeit (Kurve 78) weist auf halbem Hubweg ihren grössten Wert auf.
  • Nach Überschreiten des halben Hubweges wirkt die Ventilfeder 17 verzögernd (gleichzeitig erhöht sich mit zunehmender Entfernung von dem halben Hubweg die Kraft der Schaltspule 13 auf den Anker 11). Dies bedeutet, dass die Beschleunigung des Tellerventils 6 sowie dessen Geschwindigkeit sich verringern. Wie die Kurve 79 für die Beschleunigung deutlich zeigt, kehrt diese sich kurz vor Erreichen der Öffnungsstellung um. Dies bedeutet, dass das Tellerventil 6 abgebremst in die Öffnungsstellung gelangt, was zur Folge hat, dass ein hartes Aufschlagen des Ankers 11 auf die Schaltspule 13 vermieden wird.
  • Fig. 2 unterscheidet sich von der Ausführung nach Fig. 1 dadurch, dass die Federn 16,17 innerhalb der Schaltspulen 12, 13 angeordnet sind, während diese in Fig. 1 innerhalb der mit den Schaltspulen zusammenwirkenden Blechpakete angeordnet sind.
  • In Fig. 3 umschliessen die beiden Federn 16,17 die Schaltspulen 12,13. Ein weiterer Unterschied besteht darin, dass der Vorspannanker 15.3 zur Aufnahme der Vorspannspule 14 und der Schaltspule 12 dient. Deshalb ist es erforderlich, dass der Anker 11 in seiner Ruhestellung von der Ventilfeder 17 gegen eine Buchse 21 gedrückt wird, welche durch den Magnetdeckel 19 in ihrer Stellung gehalten wird.
  • Fig. 4 zeigt eine weitere alternative Anordnung der Federn 16, 17. Diese sind hierbei ausserhalb der Schaltspulen 12, 13 angeordnet. Der Vorspannanker 15.4von der sich entspannenden Feder 16 ist gegen den Magnetdeckel 19 gedrückt. Dadurch wirkt auf den Anker 11 nahezu die volle Kraft der Ventilfeder 17, so dass der Anker 11 und damit das Tellerventil 6 in ihrer Schliessstellung verharren.
  • In Fig. 5 wird die erfindungsgemässe Stelleinrichtung anhand eines Flachschiebers dargestellt. Sie unterscheidet sich in Aufbau und Funktionsweise nicht von den bisher beschriebenen Anordnungen. Der Flachschieber ist in seinem Aufbau und seiner Funktionsweise aus der DE-A Nr. 2929195 bekannt und ist deshalb nicht näher beschrieben.
  • In Fig. 6 ist eine elastische Befestigungsmöglichkeit des Ankers 11 an dem Schaft des Steuerelements, hier des Tellerventils 6, aufgezeichnet. Der Anker 11 ist zwischen den Tellerfedern 22 und 23 eingespannt. Die Tellerfedern 22 und 23 sind vorgespannt und werden von den Einlegeringen 24 und 25, die durch Sicherungsringe 26 und 27 gegen Herausfallen gesichert sind, auf dem Schaft des Tellerventils fixiert. Die Tellerfedern 22 und 23 haben eine hohe Federsteifigkeit, so dass die Relativbewegungen zwischen dem Schaft des Tellerventils 6 und dem Anker 11 durch die Reibung der Tellerfedern 22 und 23 auf dem Anker 11 gedämpft werden.

Claims (11)

1. Elektromagnetisch arbeitende Stelleinrichtung für oszillierend bewegbare Steuerelemente (6) an Verdrängungsmaschinen, insbesondere für Flachschieber und Hubventile, bestehend aus einem Feder-Masse-System (6, 11, 16, 17),dasdasSteuerelement (6) und ein mit diesem in Wirkverbindung stehendes Federsystem (16, 17) aufweist, das vorzugsweise zwei gegeneinander arbeitende Federn enthält, und aus zwei elektrisch arbeitenden Schaltmagneten (12,13), über die das Steuerelement (6) in zwei diskrete, gegenüberliegende Schaltpositionen bewegbar und dort von je einem der Schaltmagnete (12 bzw. 13) haltbar ist, dadurch gekennzeichnet, dass mit dem Feder-Masse-System (6, 11, 16, 17) eine Spanneinrichtung derart verbunden ist, dass die statische Ruhelage des Feder-Masse-Systems (6, 11, 16, 17) aus einer im wesentlichen mittigen Lage zwischen den Schaltpositionen der Schaltmagnete (12, 13) in einen anderen, vorzugsweise im Bereich einer der Schaltpositionen der Schaltmagnete (12, 13) gelegenen Ort verlegbar ist.
2. Elektromagnetisch arbeitende Stelleinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Spanneinrichtung zumindest zwei diskrete Stellungen aufweist, wobei die statische Ruhelage des Feder-Masse-Systems (6, 11, 16, 17) in der ersten Stellung der Spanneinrichtung in der im wesentlichen mittigen Lage zwischen den Schaltpositionen der Schaltmagnete (12, 13) und in der zweiten Stellung der Spanneinrichtung im Bereich einer der Schaltpositionen der Schaltmagnete liegt.
3. Elektromagnetisch arbeitende Stelleinrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Spanneinrichtung als Elektromagnet (Vorspannspule 14, Anker 15) ausgebildet ist.
4. Elektromagnetisch arbeitende Stelleinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Elektromagnet (14, 15) der Spanneinrichtung in der ersten Stellung eingeschaltet und in der zweiten Stellung ausgeschaltet ist.
5. Elektromagnetisch arbeitende Stelleinrichtung nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass der Elektromagnet (1'4, 15) der Spanneinrichtung langsamer erregbar ist als die Schaltmagnete (12, 13).
6. Elektromagnetisch arbeitende Stelleinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Kräfte der Schaltmagnete (12,13) nur kurz vor Erreichen der Schaltpositionen grösser als die entgegenwirkenden Kräfte des Federsystems (Federn 16, 17) sind.
7. Elektromagnetisch arbeitende Stelleinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Schaltpositionen der Schaltmagnete (12, 13) ein einziger Anker (11) angeordnet ist, der mit dem Steuerelement (Tellerventil 6) verbunden ist.
8. Elektromagnetisch arbeitende Stelleinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Federn (16,17) an dem Anker (11) angreifen.
9. Elektromagnetisch arbeitende Stelleinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass im Betrieb der Stelleinrichtung beide Schaltmagnete (12,13) erregt sind und dass der Schaltmagnet (12 bzw. 13), an dem der Anker (11 ) anliegt, zum Bewegen des Steuerelements (Tellerventil 6) kurzzeitig ausschaltbar ist.
10. Elektromagnetisch arbeitende Stelleinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Anker (11) über federnde Bauteile (Tellerfedern 22, 23) mit hoher Federsteifigkeit an dem Steuerelement (Tellerventil 6) befestigbar ist.
11. Elektromagnetisch arbeitende Stelleinrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Anker (11) und dem Steuerelement (Tellerventil 6) Dämpfungselemente vorgesehen sind.
EP81103710A 1980-06-27 1981-05-14 Elektromagnetisch arbeitende Stelleinrichtung Expired EP0043426B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81103710T ATE8426T1 (de) 1980-06-27 1981-05-14 Elektromagnetisch arbeitende stelleinrichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803024109 DE3024109A1 (de) 1980-06-27 1980-06-27 Elektromagnetisch arbeitende stelleinrichtung
DE3024109 1980-06-27

Publications (2)

Publication Number Publication Date
EP0043426A1 EP0043426A1 (de) 1982-01-13
EP0043426B1 true EP0043426B1 (de) 1984-07-11

Family

ID=6105607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81103710A Expired EP0043426B1 (de) 1980-06-27 1981-05-14 Elektromagnetisch arbeitende Stelleinrichtung

Country Status (6)

Country Link
US (1) US4455543A (de)
EP (1) EP0043426B1 (de)
JP (1) JPS5744716A (de)
AT (1) ATE8426T1 (de)
DE (1) DE3024109A1 (de)
SU (1) SU1055343A3 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2522737A1 (fr) * 1982-03-05 1983-09-09 Hoerbiger Ventilwerke Ag Soupape de reglage de l'aspiration pour compresseurs rotatifs
FR2542373A1 (fr) * 1983-03-01 1984-09-14 Fev Forsch Energietech Verbr Procede pour le demarrage de dispositifs de reglage pour machines volumetriques
EP0118591A1 (de) * 1983-03-04 1984-09-19 Klöckner, Wolfgang, Dr. Verfahren und Vorrichtung zum Aktivieren einer elektromagnetischen Stelleinrichtung
EP0191376A1 (de) * 1985-02-11 1986-08-20 INTERATOM Gesellschaft mit beschränkter Haftung Ventiltrieb mit hydraulischer Übersetzung
EP0281192A1 (de) * 1987-03-03 1988-09-07 Magnavox Government and Industrial Electronics Company Elektromagnetische Ventilsteuerung
EP0405189A1 (de) * 1989-06-27 1991-01-02 FEV Motorentechnik GmbH & Co. KG Elektromagnetisch arbeitende Stelleinrichtung
EP0406443A1 (de) * 1988-12-28 1991-01-09 Isuzu Ceramics Research Institute Co., Ltd. Elektromagnetischer ventilbetätiger
US5596956A (en) * 1994-12-16 1997-01-28 Honda Giken Kogyo Kabushiki Kaisha Electromagnetically driven valve control system for internal combustion engines
US5690064A (en) * 1994-09-22 1997-11-25 Toyota Jidosha Kabushiki Kaisha Electromagnetic valve driving apparatus for driving a valve of an internal combustion engine
GB2320617A (en) * 1996-12-17 1998-06-24 Caterpillar Inc Electromagnetically actuated valve with thermal compensation
WO1998042957A1 (de) 1997-03-24 1998-10-01 Lsp Innovative Automotive Systems Gmbh Elektromagnetischer antrieb

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311250C2 (de) * 1983-03-28 1985-08-01 FEV Forschungsgesellschaft für Energietechnik und Verbrennungsmotoren mbH, 5100 Aachen Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils für Verdrängungsmaschinen
JPS6195912U (de) * 1984-11-29 1986-06-20
DE3513106A1 (de) * 1985-04-12 1986-10-16 Fleck, Andreas, 2000 Hamburg Elektromagnetisch arbeitende stelleinrichtung
DE3513105A1 (de) * 1985-04-12 1986-10-16 Fleck, Andreas, 2000 Hamburg Elektromagnetische stelleinrichtung fuer gaswechselventile
DE3513103A1 (de) * 1985-04-12 1986-10-16 Fleck, Andreas, 2000 Hamburg Elektromagnetisch arbeitende stellvorrichtung
DE3513107A1 (de) * 1985-04-12 1986-10-16 Fleck, Andreas, 2000 Hamburg Elektromagnetisch arbeitende stelleinrichtung
DE3513109A1 (de) * 1985-04-12 1986-10-16 Fleck, Andreas, 2000 Hamburg Elektromagnetisch arbeitende stellvorrichtung
DE3515039A1 (de) * 1985-04-25 1986-10-30 Klöckner, Wolfgang, Dr., 8033 Krailling Verfahren und schaltung zum betreiben eines gaswechselventils
ES8703214A1 (es) * 1985-04-25 1987-02-16 Kloeckner Wolfgang Dr Maquina motriz de combustion interna
ES8703213A1 (es) * 1985-04-25 1987-02-16 Kloeckner Wolfgang Dr Procedimiento para el accionamiento de una maquina motriz de combustion interna
DE3524025A1 (de) * 1985-07-05 1987-01-15 Fleck Andreas Verfahren zum betreiben einer brennkraftmaschine
DE3543017C1 (de) * 1985-12-05 1987-02-05 Meyer Hans Wilhelm Schaltungsanordnung zur periodischen Ansteuerung eines Elektromagneten
DE3614528A1 (de) * 1986-04-29 1987-11-05 Bosch Gmbh Robert Verfahren zum betreiben einer mehrfach-elektromagnetanordnung
US4777915A (en) * 1986-12-22 1988-10-18 General Motors Corporation Variable lift electromagnetic valve actuator system
DE3708373C1 (de) * 1987-03-14 1988-07-14 Fleck Andreas Verfahren zum Betreiben eines Einlassventiles einer Brennkraftmaschine
US4779582A (en) * 1987-08-12 1988-10-25 General Motors Corporation Bistable electromechanical valve actuator
US4829947A (en) * 1987-08-12 1989-05-16 General Motors Corporation Variable lift operation of bistable electromechanical poppet valve actuator
US4883025A (en) * 1988-02-08 1989-11-28 Magnavox Government And Industrial Electronics Company Potential-magnetic energy driven valve mechanism
DE3826974A1 (de) 1988-08-09 1990-02-15 Meyer Hans Wilhelm Stelleinrichtung fuer ein gaswechselventil
DE3826977A1 (de) 1988-08-09 1990-02-15 Meyer Hans Wilhelm Stelleinrichtung fuer ein gaswechselventil einer brennkraftmaschine
DE3826975A1 (de) * 1988-08-09 1990-02-15 Meyer Hans Wilhelm Stelleinrichtung fuer ein gaswechselventil
DE3826978A1 (de) * 1988-08-09 1990-02-15 Meyer Hans Wilhelm Elektromagnetisch betaetigbare stellvorrichtung
SE467267B (sv) * 1988-11-15 1992-06-22 Volvo Ab Ventil foer en foerbraenningsmotor
DE3911496C2 (de) * 1989-04-08 1998-01-29 Bayerische Motoren Werke Ag Betätigungsvorrichtung für ein Ladungswechsel-Ventil einer Brennkraftmaschine
JP2652805B2 (ja) * 1989-05-01 1997-09-10 株式会社いすゞセラミックス研究所 バルブの駆動装置
DE3920931A1 (de) * 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg Elektromagnetisch arbeitende stelleinrichtung
DE4111153A1 (de) * 1991-04-06 1992-10-08 Fev Motorentech Gmbh & Co Kg Einlasssteuerung fuer verbrennungskraftmaschinen
JPH05182826A (ja) * 1991-12-26 1993-07-23 Kazuo Bessho 磁束収束型高速度電磁石
US5548263A (en) * 1992-10-05 1996-08-20 Aura Systems, Inc. Electromagnetically actuated valve
US5647312A (en) * 1993-08-03 1997-07-15 Fev Motorentechnik Gmbh & Co. Kommanditgesellschaft Four-stroke Otto engine having hybrid control
US5636601A (en) * 1994-06-15 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Energization control method, and electromagnetic control system in electromagnetic driving device
GB2302762B (en) * 1994-09-22 1997-05-07 Toyota Motor Co Ltd Electromagnetic valve driving apparatus for driving a valve of an internal combustion engine
DE4434684A1 (de) * 1994-09-28 1996-04-04 Fev Motorentech Gmbh & Co Kg Verfahren zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung
DE9420463U1 (de) 1994-12-21 1996-04-25 Fev Motorentech Gmbh & Co Kg Elektromagnetisch betätigbare Stellvorrichtung
DE19502188C2 (de) * 1995-01-25 2003-11-20 Bosch Gmbh Robert Verfahren zur Leistungssteuerung einer Wärme- und Kältemaschine
DE19518056B4 (de) * 1995-05-17 2005-04-07 Fev Motorentechnik Gmbh Einrichtung zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung und Verfahren zur Ansteuerung
DE19526681B4 (de) * 1995-07-21 2006-06-22 Fev Motorentechnik Gmbh Verfahren zur zeitgenauen Steuerung der Ankerbewegung eines elektromagnetisch betätigbaren Stellmittels
DE19526683A1 (de) * 1995-07-21 1997-01-23 Fev Motorentech Gmbh & Co Kg Verfahren zur Erkennung des Ankerauftreffens an einem elektromagnetisch betätigbaren Stellmittel
DE19529152B4 (de) * 1995-08-08 2005-12-29 Fev Motorentechnik Gmbh Aus der Ruhelage selbstanziehender elektromagnetischer Aktuator
DE19631909A1 (de) * 1995-08-08 1997-02-13 Fev Motorentech Gmbh & Co Kg Verfahren zur Justierung der Ruhelage des Ankers an einem elektromganetischen Aktuator
DE19530274B4 (de) * 1995-08-17 2005-09-08 Fev Motorentechnik Gmbh Verfahren zur Steuerung einer Kolbenbrennkraftmaschine
DE19530394B4 (de) * 1995-08-18 2005-12-01 Fev Motorentechnik Gmbh Verfahren zur Funktionsüberwachung eines über einen elektromagnetischen Aktuator betätigten Gaswechselventils an einer Kolbenbrennkraftmaschine
DE19530798A1 (de) * 1995-08-22 1997-02-27 Fev Motorentech Gmbh & Co Kg Verfahren zur Erkennung des Auftreffens eines Ankers auf einen Elektromagneten an einer elektromagnetischen Schaltanordnung
DE19531435B4 (de) * 1995-08-26 2006-11-16 Fev Motorentechnik Gmbh Verfahren zur Anpassung der Steuerung eines elektromagnetischen Aktuators an betriebsbedingte Veränderungen
DE19534878B4 (de) * 1995-09-20 2007-05-03 Fev Motorentechnik Gmbh Verfahren zur automatischen Kalibrierung eines Winkelmarkengebers an der Kurbelwelle einer Kolbenbrennkraftmaschine
DE19534876B4 (de) * 1995-09-20 2006-11-09 Fev Motorentechnik Gmbh Verfahren zur Ermittlung der Ventilsteuerzeiten für eine maximale Zylinderfüllung an einer Kolbenbrennkraftmaschine
DE19544473C2 (de) * 1995-11-29 1999-04-01 Daimler Benz Ag Mechanisch-hydraulisch arbeitende Steuerung für ein Gaswechselventil einer Brennkraftmaschine
DE19640659B4 (de) * 1996-10-02 2005-02-24 Fev Motorentechnik Gmbh Verfahren zur Betätigung eines elektromagnetischen Aktuators mit Beeinflussung des Spulenstroms während der Ankerbewegung
DE19641244B4 (de) * 1996-10-07 2005-04-14 Fev Motorentechnik Gmbh Verfahren zur Justierung eines elektromagnetischen Aktuators
US5647311A (en) * 1996-11-12 1997-07-15 Ford Global Technologies, Inc. Electromechanically actuated valve with multiple lifts and soft landing
US5692463A (en) * 1996-11-12 1997-12-02 Ford Global Technologies, Inc. Electromechanically actuated valve with multiple lifts
US5765513A (en) * 1996-11-12 1998-06-16 Ford Global Technologies, Inc. Electromechanically actuated valve
US5730091A (en) * 1996-11-12 1998-03-24 Ford Global Technologies, Inc. Soft landing electromechanically actuated engine valve
US5645019A (en) * 1996-11-12 1997-07-08 Ford Global Technologies, Inc. Electromechanically actuated valve with soft landing and consistent seating force
DE19646937C2 (de) * 1996-11-13 2000-08-31 Bayerische Motoren Werke Ag Elektromagnetische Betätigungsvorrichtung für ein Brennkraftmaschinen-Hubventil
DE29620741U1 (de) * 1996-11-29 1998-03-26 Fev Motorentech Gmbh & Co Kg Schmalbauender elektromagnetischer Aktuator
DE19651846B4 (de) * 1996-12-13 2005-02-17 Fev Motorentechnik Gmbh Verfahren zur elektromagnetischen Betätigung eines Gaswechselventils ohne Polflächenberührung
JPH10205314A (ja) * 1996-12-13 1998-08-04 Fev Motorentechnik Gmbh & Co Kg ガス交換弁の電磁弁駆動部を制御する方法
US5878704A (en) * 1997-01-04 1999-03-09 Fev Motorentechnik Gmbh & Co. Kg Electromagnetic actuator, including sound muffling means, for operating a cylinder valve
DE19718038C1 (de) * 1997-04-29 1998-05-07 Daimler Benz Ag Elektromagnetischer Aktuator für Gaswechselventile einer Brennkraftmaschine
DE19719299C1 (de) * 1997-05-07 1998-08-20 Daimler Benz Ag Betätigungseinrichtung für Gaswechselventile einer Brennkraftmaschine mit elektromagnetischen Aktuatoren
DE19728348C2 (de) * 1997-07-03 2001-03-22 Daimler Chrysler Ag Vorrichtung für eine elektromagnetische Ventilsteuerung
DE29713167U1 (de) 1997-07-24 1998-11-19 Fev Motorentech Gmbh & Co Kg Elektromagnetischer Aktuator mit elastisch verformbarem Anker
DE19733140A1 (de) * 1997-07-31 1999-02-04 Fev Motorentech Gmbh & Co Kg Verfahren zur Beeinflussung der Gemischbildung in Zylindern von Kolbenbrennkraftmaschinen durch Veränderung des Ventilhubs
DE19733186A1 (de) * 1997-07-31 1999-02-04 Fev Motorentech Gmbh & Co Kg Elektromagnetisch betätigbares Gaswechselventil für eine Kolbenbrennkraftmaschine
DE19733138A1 (de) * 1997-07-31 1999-02-04 Fev Motorentech Gmbh & Co Kg Verfahren zur Erkennung der Ankeranlage an einem elektromagnetischen Aktuator
DE19737967A1 (de) 1997-08-30 1999-03-04 Telefunken Microelectron Vorrichtung zum Betätigen eines Gaswechselventils mit einem elektromagnetischen Aktuator
DE19744714C1 (de) * 1997-10-10 1999-03-11 Daimler Benz Ag Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils
JPH11117777A (ja) * 1997-10-17 1999-04-27 Hitachi Ltd 内燃機関の制御方法
DE19746832C1 (de) * 1997-10-23 1999-02-18 Isad Electronic Sys Gmbh & Co Elektromagnetische Stelleinrichtung
DE19756096A1 (de) 1997-12-17 1999-06-24 Daimler Chrysler Ag Aktor zur elektromagnetischen Ventilsteuerung
DE19808703C1 (de) * 1998-03-02 1999-09-23 Isad Electronic Sys Gmbh & Co Verbrennungsmotor sowie Verfahren zum Beheizen von Teilen eines Verbrennungsmotors
DE19814402C2 (de) 1998-03-31 2000-03-23 Isad Electronic Sys Gmbh & Co Antriebssystem für ein Kraftfahrzeug sowie Verfahren zum Betreiben desselben
US6091314A (en) * 1998-06-05 2000-07-18 Siemens Automotive Corporation Piezoelectric booster for an electromagnetic actuator
DE19835402C1 (de) * 1998-08-05 2000-02-10 Meta Motoren Energietech Elektromagnetisch arbeitende Vorrichtung zum Betätigen eines Ventils
DE19835403C2 (de) * 1998-08-05 2003-12-04 Meta Motoren Energietech Verfahren und Vorrichtung zum Unterstützen der Öffnungsbewegung eines gegen Überdruck arbeitenden Ventils
US6009841A (en) * 1998-08-10 2000-01-04 Ford Global Technologies, Inc. Internal combustion engine having hybrid cylinder valve actuation system
US6164322A (en) * 1999-01-15 2000-12-26 Saturn Electronic & Engineering, Inc. Pressure relief latching solenoid valve
DE19906657A1 (de) 1999-02-18 2000-08-24 Isad Electronic Sys Gmbh & Co Gaswechselventil mit elektromagnetischer Stelleinrichtung
US6340008B1 (en) * 1999-05-27 2002-01-22 Fev Motorentechnik Gmbh Method for controlling an electromagnetic actuator for activating a gas exchange valve on a reciprocating internal combustion engine
EP1124040A1 (de) 2000-02-11 2001-08-16 TRW Deutschland GmbH, Motorkomponenten Elektromagnetischer Ventiltrieb für ein Gaswechselventil
AT3976U1 (de) * 2000-03-30 2000-11-27 Avl List Gmbh Ventilbetätigungseinrichtung für ein hubventil
DE10038575B4 (de) * 2000-08-03 2010-09-09 Hörmansdörfer, Gerd Elektromagnetische Stelleinrichtung
DE10140461A1 (de) * 2001-08-17 2003-02-27 Bayerische Motoren Werke Ag Drehaktor-Vorrichtung zur Hubsteuerung eines Gaswechselventils im Zylinderkopf einer Brennkraftmaschine
US6725815B2 (en) 2002-05-06 2004-04-27 Attegro Inc. Cam-drive engine and cylinder assembly for use therein
US6729278B2 (en) 2002-09-27 2004-05-04 Ford Global Technologies, Llc Dual coil, dual lift electromechanical valve actuator
DE10248330A1 (de) * 2002-10-17 2004-04-29 Bayerische Motoren Werke Ag Elektromagnetische Ventiltriebvorrichtung mit einstellbarer Neutralstellung
DE10303985A1 (de) * 2003-02-01 2004-08-05 Daimlerchrysler Ag Vorrichtung zur Steuerung der Fluidströmung in einem Kanal
AT412987B (de) * 2003-04-09 2005-09-26 Hoerbiger Valvetec Gmbh Schalteinheit im einlasssystem einer hubkolben-brennkraftmaschine
US7225770B2 (en) * 2003-12-10 2007-06-05 Borgwarner Inc. Electromagnetic actuator having inherently decelerating actuation between limits
US20050229878A1 (en) * 2004-03-08 2005-10-20 Taylor G B Electronic valve actuator
US7165529B2 (en) 2004-12-02 2007-01-23 Ford Global Technologies, Llc Method to control electromechanical valves in a DISI engine
AU2006292105B2 (en) * 2005-09-23 2011-03-17 Jp Scope, Inc. Valve apparatus for an internal combustion engine
US8528511B2 (en) 2005-09-23 2013-09-10 Jp Scope, Inc. Variable travel valve apparatus for an internal combustion engine
DE102008030258A1 (de) 2007-09-11 2009-03-12 Steinbeis GmbH & Co. für Technologietransfer Transferzentrum Mechatronik Ilmenau Resonantes magnetisches Aktorsystem zur Verwendung in der Industriepneumatik
TWI354079B (en) * 2008-10-03 2011-12-11 Univ Nat Taipei Technology Bi-directional electromechanical valve
TWI361856B (en) * 2008-11-04 2012-04-11 Ind Tech Res Inst Multi-cam electric valve mechanism for engine
RU2554256C1 (ru) * 2013-12-17 2015-06-27 Общество с ограниченной ответственностью "БИНОТЕК" Электромагнитная система управления клапанами механизма газораспределения двигателя внутреннего сгорания (варианты)
CA3036283A1 (en) 2016-09-09 2018-03-15 Charles Price Variable travel valve apparatus for an internal combustion engine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1453471A (en) * 1921-12-28 1923-05-01 Tarte George Michiel Le Spring retainer
CH259944A (fr) * 1945-12-31 1949-02-15 Forman Jan Dispositif électromécanique destiné à travailler à vitesse élevée.
US2769943A (en) * 1953-04-20 1956-11-06 Milwaukee Gas Specialty Co Electromagnetic control device
US2797061A (en) * 1953-09-22 1957-06-25 J D Buchanan Solenoid operated shut-off valve
DE1122769B (de) * 1954-05-11 1962-01-25 Nylands Verksted Einrichtung zur selbsttaetigen Regelung des Brennstoffeinspritzzeitpunktes bei Brennkraftmaschinen
US3190608A (en) * 1962-02-07 1965-06-22 Kromschroeder Ag G Electromagnetically controlled valve
DE1564819B2 (de) * 1966-10-20 1971-02-25 Standard Elektrik Lorenz Ag, 7000 Stuttgart Elektromagnetisches antriebssystem
US3422803A (en) * 1967-06-07 1969-01-21 Gen Motors Corp Internal combustion engine construction and method for operation with lean air-fuel mixtures
US3513420A (en) * 1967-12-20 1970-05-19 Allis Chalmers Mfg Co Magnetodynamic actuator
DE1921806A1 (de) * 1969-04-29 1970-11-12 Daimler Benz Ag Federteller einer mit einem Daempfungselement versehenen Ventilfeder einer Kolbenbrennkraftmaschine
DE2063158A1 (de) * 1970-12-22 1972-06-29 Dittrich, Josef, 7501 Hohenwettersbach Nockenwellenloser Viertaktmotor
GB1391955A (en) * 1972-07-12 1975-04-23 British Leyland Austin Morris Actuating internal combustion engine poppet valves
DE2458635A1 (de) * 1974-12-11 1976-06-16 Wolf Klemm Vorrichtung zur steuerung von ventilen
DE2630512A1 (de) * 1976-07-07 1978-01-12 Daimler Benz Ag Ventilsteuerung, insbesondere fuer brennkraftmaschinen
GB1591421A (en) * 1977-01-12 1981-06-24 Lucas Industries Ltd Valve operating mechanism
JPS53114626U (de) * 1977-02-20 1978-09-12
DE2815849C2 (de) * 1978-04-12 1984-08-23 Linde Ag, 6200 Wiesbaden Elektromagnetisch betätigte Gaswechselventile für Kolbenmaschinen
DE2929195A1 (de) * 1979-07-19 1981-02-05 Franz Prof Dipl Ing Pischinger Fuellungsregelung mittels flachschieber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2522737A1 (fr) * 1982-03-05 1983-09-09 Hoerbiger Ventilwerke Ag Soupape de reglage de l'aspiration pour compresseurs rotatifs
FR2542373A1 (fr) * 1983-03-01 1984-09-14 Fev Forsch Energietech Verbr Procede pour le demarrage de dispositifs de reglage pour machines volumetriques
EP0118591A1 (de) * 1983-03-04 1984-09-19 Klöckner, Wolfgang, Dr. Verfahren und Vorrichtung zum Aktivieren einer elektromagnetischen Stelleinrichtung
EP0191376A1 (de) * 1985-02-11 1986-08-20 INTERATOM Gesellschaft mit beschränkter Haftung Ventiltrieb mit hydraulischer Übersetzung
EP0244878A3 (en) * 1985-02-11 1987-12-23 Interatom Gesellschaft Mit Beschrankter Haftung Electromagnetic-hydraulic valve drive for an internal-combustion engine
EP0281192A1 (de) * 1987-03-03 1988-09-07 Magnavox Government and Industrial Electronics Company Elektromagnetische Ventilsteuerung
US5076221A (en) * 1988-12-28 1991-12-31 Isuzu Ceramics Research Institute Co., Ltd. Electromagnetic valve actuating system
EP0406443A1 (de) * 1988-12-28 1991-01-09 Isuzu Ceramics Research Institute Co., Ltd. Elektromagnetischer ventilbetätiger
EP0406443A4 (en) * 1988-12-28 1991-06-05 Isuzu Ceramics Research Institute Co., Ltd. Electromagnetic valve actuator
EP0405189A1 (de) * 1989-06-27 1991-01-02 FEV Motorentechnik GmbH & Co. KG Elektromagnetisch arbeitende Stelleinrichtung
US5690064A (en) * 1994-09-22 1997-11-25 Toyota Jidosha Kabushiki Kaisha Electromagnetic valve driving apparatus for driving a valve of an internal combustion engine
US5596956A (en) * 1994-12-16 1997-01-28 Honda Giken Kogyo Kabushiki Kaisha Electromagnetically driven valve control system for internal combustion engines
GB2320617A (en) * 1996-12-17 1998-06-24 Caterpillar Inc Electromagnetically actuated valve with thermal compensation
WO1998042957A1 (de) 1997-03-24 1998-10-01 Lsp Innovative Automotive Systems Gmbh Elektromagnetischer antrieb

Also Published As

Publication number Publication date
EP0043426A1 (de) 1982-01-13
SU1055343A3 (ru) 1983-11-15
ATE8426T1 (de) 1984-07-15
JPH0246763B2 (de) 1990-10-17
US4455543A (en) 1984-06-19
JPS5744716A (en) 1982-03-13
DE3024109A1 (de) 1982-01-21
DE3024109C2 (de) 1989-09-28

Similar Documents

Publication Publication Date Title
EP0043426B1 (de) Elektromagnetisch arbeitende Stelleinrichtung
EP0405189B1 (de) Elektromagnetisch arbeitende Stelleinrichtung
EP0405187B1 (de) Elektromagnetisch arbeitende Stelleinrichtung
DE3311250C2 (de) Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils für Verdrängungsmaschinen
DE3500530C2 (de)
DE19610468B4 (de) Verfahren zur lastabhängigen Steuerung der Gaswechselventile an einer Kolbenbrennkraftmaschine
DE102014200162B4 (de) Maschine, insbesondere Verbrennungskraftmaschine, mit einem bewegbaren Bauteil, das mit einem schaltbaren Ventil ausgerüstet ist
DE3307070A1 (de) Verfahren zum starten von stelleinrichtungen fuer verdraengermaschinen
EP0995015A1 (de) Vorrichtung zur betätigung eines gaswechselventils mit einem elektromagnetischen aktuator
DE10310448A1 (de) Elektromagnetische Stellvorrichtung
EP0748416B1 (de) Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
EP1187972B1 (de) Elektromagnetischer aktuator und verfahren zur justierung des elektromagnetischen aktuators
DE19750228C1 (de) Vorrichtung zum Betätigen eines Gaswechselventils mit einem elektromagnetischen Aktuator
DE19841124A1 (de) Elektromagnetisch betätigbares Gaswechselventil für eine Kolbenbrennkraftmaschine mit pneumatischen Rückstellfedern
DE102015213628A1 (de) Elektromagnetisch betätigbares Gaswechselventil und Verfahren zu dessen Steuerung
DE10038575B4 (de) Elektromagnetische Stelleinrichtung
DE19723782C2 (de) Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils
DE4107599A1 (de) Stossdaempfer
DE19852287C2 (de) Elektromagnetischer Aktuator und Verwendung des Aktuators
DE19737789C1 (de) Vorrichtung zur Betätigung eines Gaswechselventils mit einem elektromagnetischen Aktuator
WO2000011326A1 (de) Vorrichtung zum betätigen eines gaswechselventils
DE19900953C2 (de) Vorrichtung zum Betätigen eines Gaswechselventils
EP1175553B1 (de) Verfahren und vorrichtung zum öffnen und schliessen eines ventils eines verbrennungsmotors
DE10137640A1 (de) Elektromagnetische Stelleinrichtung
DE19838118A1 (de) Elektromagnetischer Aktuator für ein Brennkraftmaschinen-Hubventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811029

AK Designated contracting states

Designated state(s): AT CH FR GB IT SE

R17P Request for examination filed (corrected)

Effective date: 19820209

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH FR GB IT LI SE

REF Corresponds to:

Ref document number: 8426

Country of ref document: AT

Date of ref document: 19840715

Kind code of ref document: T

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81103710.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000517

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000523

Year of fee payment: 20

Ref country code: CH

Payment date: 20000523

Year of fee payment: 20

Ref country code: AT

Payment date: 20000523

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010513

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010513

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010530

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20010513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 81103710.0