EP0748416B1 - Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine - Google Patents

Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine Download PDF

Info

Publication number
EP0748416B1
EP0748416B1 EP95942673A EP95942673A EP0748416B1 EP 0748416 B1 EP0748416 B1 EP 0748416B1 EP 95942673 A EP95942673 A EP 95942673A EP 95942673 A EP95942673 A EP 95942673A EP 0748416 B1 EP0748416 B1 EP 0748416B1
Authority
EP
European Patent Office
Prior art keywords
spring element
gas exchange
anchor
electromagnets
exchange valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95942673A
Other languages
English (en)
French (fr)
Other versions
EP0748416A1 (de
Inventor
Thomas Esch
Martin Pischinger
Michael Schebitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEV Europe GmbH
Original Assignee
FEV Motorentechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEV Motorentechnik GmbH and Co KG filed Critical FEV Motorentechnik GmbH and Co KG
Priority to EP00123025A priority Critical patent/EP1069285B1/de
Publication of EP0748416A1 publication Critical patent/EP0748416A1/de
Application granted granted Critical
Publication of EP0748416B1 publication Critical patent/EP0748416B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • Electromagnetically actuated actuators of gas exchange valves on internal combustion engines are known for example from EP-A-0 043 426 and EP-A-0 197 357.
  • the known from these publications Designs however, have a high specific power-to-weight ratio and a large footprint so that when used as actuators for gas exchange valves Internal combustion engines of modern design, especially those with Multi-valve operation, cannot be used.
  • Comparable actuators are, for example known from US-A-4,841,923, US-A-4,777,915 and US-A-5,548,263. These systems have two with their pole faces facing each other facing, spaced electromagnets on between which an anchor against the force of resetting spring elements movable back and forth is.
  • the resetting spring elements are inside the Electromagnets arranged and the armature fixed to the shaft of the gas exchange valve to be actuated.
  • the restoring spring elements are enclosed by the electromagnets are, there is a large construction volume with the Disadvantages already mentioned above.
  • Another disadvantage consists of the anchor being firmly attached to the shaft of the Gas exchange valve is connected, so that such an actuator must be mounted on the internal combustion engine and cannot be easily replaced.
  • US-A-4,831,973 is also a Actuator with outside the electromagnet return springs known.
  • the invention has for its object the previously known electromagnetic actuators in their construction simplify and thus to a more compact space-saving Design to arrive.
  • Electromagnetic actuator with the specified in claim 1 Features.
  • a spring element acts directly on the armature and the counteracting other spring element acts according to Art a return spring on the actuator on the armature.
  • This design enables effective use of the pole faces, resulting in a more compact form of the actuator overall leads.
  • Another advantage of this design is that the Gas exchange valve as before, with one in the closing direction acting valve spring is provided at the same time serves as one of the spring elements of the actuator, the acts on the anchor of the actuator. Therefore there is an advantage of the invention in that the spring elements on the End faces of the electromagnet are arranged.
  • the connecting rod is divided is executed, with a part firmly connected to the anchor and the other, the gas exchange valve Part is connected to the associated spring element and through this frictionally connected to the anchor stands.
  • the anchor can with the firmly connected part of the push rod a purely axial Carry out movement.
  • the part connected to the spring element the push rod can be used when using a coil spring as a spring element, without influencing the armature in their Carry out spring rotation that occurs.
  • the magnetic coil with a laminated yoke body is connected, so that the emergence of Eddy currents is reduced.
  • one of the two electromagnets in the direction of movement of the anchor slidably mounted and with a Actuator is connected, which is an additional electromagnetic has and by which the distance of the facing each other Pole surfaces of the two electromagnets can be changed is, the displaceably mounted electromagnet in cooperation with the second spring element acting as a return spring are held in two different end positions can.
  • FIGS 2 and 3 do not represent Embodiment of the invention. They are for illustration only of technical characteristics of the Dependent claims.
  • the actuating device shown in Fig. 1 for actuation a gas exchange valve has two spaced apart Magnets 1 and 2, whose yoke body with magnetic coils 3 and 4 are provided.
  • the arrangement is here taken so that the respective pole faces 5 and 6 each other are opposite. Is between the two pole faces 5 and 6 an anchor 7 arranged with a two-part design Push rod 8 is connected, the one push rod part 8.1 is firmly connected to the anchor while the other Push rod part 8.2 sits on the anchor 7.
  • the push rod 8 is in a bore 9 of the electromagnet 1 and a bore 10 of the electromagnet 2 out.
  • the electromagnet 1 is at its end facing away from the armature 7 provided with a lid-shaped housing 11 which serves as an abutment serves for a spring element 12, which is with his the other end is supported on a plate 13 which is connected to the push rod 8.2 is firmly connected.
  • the end face 14 of the electromagnet facing away from the armature 7 2 is the gas exchange valve 15 to be actuated at one Internal combustion engine turned.
  • the valve stem 16 of the gas exchange valve 15 is in the usual way in the cylinder head 17 out.
  • the free end of the valve stem 16 is firmly connected with a plate-shaped extension 18, which serves as an abutment of a first spring element 19, the is supported with its other end on the cylinder head 17.
  • the spring element 19 is here as well as the Fe derelement 12 formed as a helical compression spring, so that both spring elements act against each other, the spring element 19 at the same time as the closing spring of the gas exchange valve serves.
  • the spring element 12 on one side and the spring element 19 on the other side of the armature 7 are now designed that the equilibrium position of the armature 7 approximately in the middle between the two opposite pole faces 5 and 6 of the electromagnets 1 and 2.
  • the spring element 12 be designed with a progressive characteristic so that the Equilibrium position from the center position towards moves on the electromagnet 1 and thus a simpler Starting is possible.
  • the power supply is now to Electromagnet 1 switched off and the power supply to the electromagnet 2 switched on after a certain time.
  • the armature 7 is no longer on the pole face of the Electromagnet 1 held so that the spring element 12 the Anchor 7 towards the middle position between the two Pole surfaces of magnets 1 and 2 can move. in this connection the spring element 19 is loaded.
  • FIG. 2 shows a special embodiment of the embodiment an electromagnetic actuator for actuation a gas exchange valve shown with is provided with a spring arrangement, as shown below of Fig. 3 is described.
  • the arrangement shown in Fig. 2 again has an upper electromagnet 1 and one lower electromagnet 2, which are at a distance from each other are arranged and between which an armature 7 is axially movable is guided, via its push rod 8 on the valve stem 16 of the gas exchange valve 15 can act.
  • Fig. 3 the gem in the embodiment.
  • Fig. 2 shown also slim design in details shown and described.
  • the magnet 2 is only indicated in the illustration.
  • the anchor 7 only indicated here is above the push rod 8 with a bell-shaped abutment element 13.1 provided.
  • the second spring element 12 is supported here with one end on the free edge 13.2 of the abutment 13.1 and with its other end on the end face 14 of the magnet 2.
  • the one connected to the valve stem 16 plate-shaped approach 18 is located within the bell-shaped abutment 13.1 and here is how 1, via the first spring element 19 supported on the surface of the cylinder head 17.
  • the two spring elements 12 and 19 can be nested the embodiment acc. Fig. 1 reduces the overall height be without the compact slim design of the electromagnet is abandoned.
  • the method of operation corresponds to that based on 1 described method of operation.
  • the two spring elements Despite their different geometrical shapes, 12 and 19 Dimensions the same spring stiffness. To make things easier the "start", the spring element 12, such described above, have a progressive characteristic.
  • Electromagnet 2 connected coupling element 24 is formed becomes.
  • the electromagnet 1 and the additional magnet 22 are here rigidly with a schematically indicated carrier 26 connected to the cylinder head 17.
  • the anchor plate 23 of the adjusting device is located at the position of the dashed line 28.
  • the second spring element 12 is also the return spring.
  • the "working direction" of the additional magnet should be made in this way be that the position of the slidable magnet currentless additional magnet corresponds to normal operating mode.
  • Represents the mode of operation with a long stroke represents "normal operation", the anchor plate 23 arranged on the other side of the additional magnet 22 his.
  • a magnetically actuated actuating device 21 can also be a mechanical, hydraulic or pneumatic adjustment of the stroke length of the armature 7 by moving of the magnet 2 may be provided.
  • coil springs can also use torsion springs or spiral springs, for example Leaf springs are used.
  • the magnets can have a circular cross section in horizontal section, but also a rectangular or square cross section exhibit. The latter is favorable for the laminated yoke body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Description

Elektromagnetisch betätigbare Stellvorrichtungen zur Betätigung von Gaswechselventilen an Brennkraftmaschinen sind bekannt, so beispielsweise aus EP-A-0 043 426 und EP-A-0 197 357. Die aus diesen Druckschriften bekannten Bauformen weisen jedoch ein hohes spezifisches Leistungsgewicht und einen hohen Raumbedarf auf, so daß sie bei der Anwendung als Stellvorrichtungen für Gaswechselventile an Brennkraftmaschinen moderner Bauart, insbesondere solchen mit Mehrventilbetrieb, nicht einsetzbar sind.
Vergleichbare Betätigungsvorrichtungen sind beispielsweise aus US-A-4,841,923, US-A-4,777,915 und US-A-5,548,263 bekannt. Diese Systeme weisen zwei mit ihren Polflächen einander zugekehrte, mit Abstand zueinander angeordnete Elektromagneten auf, zwischen denen ein Anker gegen die Kraft von rückstellenden Federelementen hin und her bewegbar geführt ist. Die rückstellenden Federelemente sind innerhalb der Elektromagneten angeordnet und der Anker fest mit dem Schaft des zu betätigenden Gaswechselventils verbunden. Dadurch, daß die rückstellenden Federelemente von den Elektromagneten umschlossen sind, ergibt sich ein großes Bauvolumen mit den vorstehend bereits erwähnten Nachteilen. Ein weiterer Nachteil besteht darin, daß der Anker fest mit dem Schaft des Gaswechselventils verbunden ist, so daß eine derartige Stellvorrichtung an der Brennkraftmaschine montiert werden muß und nicht in einfacher Weise ausgetauscht werden kann.
Aus der US-A-4 831 973 ist außerdem eine Betätigungsvorrichtung mit außerhalb der Elektromagnete befindlichen Rückstellfedern bekannt.
Aus US-A-3,882,833 ist eine elektromagnetisch betätigbare Stellvorrichtung für ein Gaswechselventil bekannt, die wassergekühlt ist und bei dem die Polflächen der beiden Elektromagneten jeweils nach außen weisen und dementsprechend zwei über eine Koppelstange fest miteinander verbundene Anker vorgesehen sind. Das als Schließfeder wirkende Federelement ist mit dem Schaft des Gaswechselventils verbunden, während das als Öffnungsfeder wirkende Federelement auf der dem Gaswechselventil abgekehrten Stirnseite der Stellvorrichtung angeordnet ist. Die feste Verbindung zwischen den beiden Ankers führt trotz der Kühlung zu nicht zu vermeidenden Längenänderungen der Koppelstange, die zu Änderungen im Abstand zwischen Polfläche und Anker jeweils führen und die Funktion beeinträchtigen können.
Der Erfindung liegt die Aufgabe zugrunde, die vorbekannten elektromagnetischen Stellvorrichtungen in ihrem Aufbau zu vereinfachen und so zu einer kompakteren raumsparenden Bauform zu gelangen.
Diese Aufgabe wird gemäß der Erfindung gelöst durch eine elektromagnetische Stellvorrichtung mit den im Anspruch 1 angegebenen Merkmalen.
Hierbei wirkt ein Federelement unmittelbar auf den Anker ein und das entgegenwirkende andere Federelement wirkt nach Art einer Rückstellfeder über das Stellorgan auf den Anker ein. Diese Bauform ermöglicht eine effektive Ausnutzung der Polflächen, was zu einer kompakteren Form der Stelleinrichtung insgesamt führt. Ein weiterer Vorteil dieser Ausgestaltung besteht darin, daß das Gaswechselventil wie bisher, mit einer in Schließrichtung wirkenden Ventilfeder versehen ist, die gleichzeitig als eines der Federelemente der Stellvorrichtung dient, das auf den Anker der Stellvorrichtung einwirkt. Daher besteht ein Vorteil der Erfindung darin, daß die Federelemente an der Stirnseiten der Elektromagneten angeordnet sind.
Hierbei ist besonders vorteilhaft, daß die Schubstange geteilt ausgeführt ist, wobei ein Teil mit dem Anker fest verbunden ist und der andere, dem Gaswechselventil abgekehrte Teil mit dem zugeordneten Federelement verbunden ist und durch dieses kraftschlüssig mit dem Anker in Verbindung steht. Durch die Unterteilung der Schubstange kann der Anker mit dem festverbundenen Teil der Schubstange eine rein axiale Bewegung ausführen. Der mit dem Federelement verbundene Teil der Schubstange kann bei der Verwendung einer Schraubenfeder als Federelement, ohne Beeinflussung des Ankers die bei ihrer Verformung auftretende Federrotation ausführen.
In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß bei den Elektromagneten jeweils die Magnetspule mit einem geblechten Jochkörper verbunden ist, so daß das Entstehen von Wirbelströmen vermindert wird.
In einer besonders vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß einer der beiden Elektromagneten in Bewegungsrichtung des Ankers verschiebbar gelagert und mit einer Stelleinrichtung verbunden ist, die einen Zusatz-Elektromagenten aufweist und durch die der Abstand der einander zugekehrten Polflächen der beiden Elektromagneten veränderbar ist, wobei der verschiebbar gelagerte Elektromagnet im Zusammenwirken mit dem als Rückstellfeder wirkenden zweiten Federelement in zwei verschiedenen Endlagen gehalten werden kann. Hierdurch ist es möglich, den Abstand der Polflächen der beiden einander zugeordneten Elektromagneten und damit auch den Hub des Ankers und dementsprechend auch den Hub des Gaswechselventils zu verändern.
Die Erfindung wird anhand schematischer Ausführungsbeispiele näher erläutert. Es zeigen:
Fig. 1
eine erfindungsgemäße Stelleinrichtung eines Gaswechselventils an einem Verbrennungsmotor,
Fig. 2
eine Stelleinrichtung mit verstellbarem Hub,
Fig. 3
in vergrößerter Darstellung eine spezielle Federschaltung.
Die Figuren 2 und 3 stellen keine Ausführungsform der Erfindung dar. Sie dienen lediglich der Darstellung von technischen Merkmalen der Unteransprüche.
Die in Fig. 1 dargestellte Stelleinrichtung zur Betätigung eines Gaswechselventils weist zwei mit Abstand zueinander angeordnete Stellmagnete 1 und 2 auf, deren Jochkörper mit Magnetspulen 3 und 4 versehen sind. Die Anordnung ist hierbei so getroffen, daß die jeweiligen Polflächen 5 und 6 einander gegenüberliegen. Zwischen den beiden Polflächen 5 und 6 ist ein Anker 7 angeordnet, der mit einer zweiteilig ausgebildeten Schubstange 8 verbunden ist, wobei der eine Schubstangenteil 8.1 fest mit dem Anker verbunden ist, während der andere Schubstangenteil 8.2 auf dem Anker 7 aufsitzt.
Die Schubstange 8 ist jeweils in einer Bohrung 9 des Elektromagneten 1 und einer Bohrung 10 des Elektromagneten 2 geführt.
Der Elektromagnet 1 ist an seinem dem Anker 7 abgekehrten Ende mit einem deckelförmigen Gehäuse 11 versehen, das als Widerlager für ein Federelement 12 dient, das sich mit seinem anderen Ende an einer Platte 13 abstützt, die mit der Schubstange 8.2 fest verbunden ist.
Die dem Anker 7 abgekehrte Stirnfläche 14 des Elektromagneten 2 ist dem zu betätigenden Gaswechselventil 15 an einer Brennkraftmaschine zugekehrt. Der Ventilschaft 16 des Gaswechselventils 15 ist hierbei in üblicher Weise im Zylinderkopf 17 geführt. Das freie Ende des Ventilschaftes 16 ist hierbei mit einem tellerförmigen Ansatz 18 fest verbunden, der als Widerlager eines ersten Federelementes 19 dient, das sich mit seinem anderen Ende auf dem Zylinderkopf 17 abstützt. Das Federelement 19 ist hierbei ebenso wie das Fe derelement 12 als Schraubendruckfeder ausgebildet, so daß beide Federelemente gegeneinander wirken, wobei das Federelement 19 zugleich als Schließfeder des Gaswechselventils dient.
Das Federelement 12 auf der einen Seite und das Federelement 19 auf der anderen Seite des Ankers 7 sind nun so ausgelegt, daß die Gleichgewichtslage des Ankers 7 etwa in der Mitte zwischen den beiden einander gegenüberliegenden Polflächen 5 und 6 der Elektromagnete 1 und 2 liegt. Hierbei kann eines der beiden Federelemente, beispielsweise das Federelement 12 mit progressiver Kennlinie ausgestaltet sein, so daß die Gleichgewichtslage sich aus der Mittenstellung in Richtung auf den Elektromagneten 1 verschiebt und somit ein einfacheres Starten möglich ist.
Wird zum Elektromagneten 1 die Stromzufuhr eingeschaltet, dann kommt der Anker 7 zur Anlage an der Polfläche 5, wobei das Federelement 12 zusammengedrückt und das Federelement 19 im wesentlichen entlastet wird. Das Gaswechselventil ist in dieser Position geschlossen.
Zum Öffnen des Gaswechselventils wird nun die Stromzufuhr zum Elektromagneten 1 abgeschaltet und die Stromzufuhr zum Elektromagneten 2 nach einem bestimmten Zeitpunkt zugeschaltet. Dadurch wird der Anker 7 nicht länger an der Polfläche des Elektromagneten 1 gehalten, so daß das Federelement 12 den Anker 7 in Richtung auf die Mittelstellung zwischen den beiden Polflächen der Magnete 1 und 2 verschieben kann. Hierbei wird das Federelement 19 belastet.
Das System schwingt im Betrieb über die Gleichgewichtslage hinaus auf die andere Seite. Da zwischenzeitlich die Stromzufuhr zum Elektromagneten 2 eingeschaltet worden ist, wird der Anker 7 eingefangen und kommt an der Polfläche 6 zur Anlage. Das Federelement 12 ist nunmehr teilweise entspannt, wohingegen das Federelement 19 zusammengedrückt ist. Da der Ventilschaft 16 über das Federelement 19 kraftschlüssig in jeder Stellung mit der Schubstange 8 in Verbindung steht, wird der Ventilschaft 16 um diesen Betrag verschoben und das Gaswechselventil entsprechend geöffnet. Zum Schließen des Gaswechselventils wird wieder umgeschaltet, so daß der vorstehend beschriebene Vorgang in umgekehrter Reihenfolge abläuft.
Da nun die Federelemente 12 und 19 jeweils axial und stirnseitig zu den Elektromagneten 1, 2 angeordnet sind, ergibt sich eine sehr schlanke Bauart. Gegenüber den vorbekannten Magnetsystemen, bei denen die Federelemente in die Magnetkörper integriert sind, ergibt sich ferner eine effektivere Ausnutzung der Polflächen. Die Unterteilung der Schubstange 8 in den mit dem Federelement 12 verbundenen Schubstangenteil 8.2 und den mit dem Anker fest verbundenen Schubstangenteil 8.1 einerseits und die Abkoppelung des Schubstangenteils 8.1 von dem zu betätigenden Stellorgane, hier dem Ventilschaft 16, der seinerseits mit dem tellerförmigen Ansatz 18 verbunden ist, ergibt sich der Vorteil, daß die beim Zusammendrücken und Entlasten der vorzugsweise als Schraubenfedern ausgebildeten Federelemente 12 und 19 auftretende Rotation jeweils auf das mit dem Federelement verbundene Bauteil beschränkt bleibt.
In Fig. 2 ist eine besondere Ausgestaltung der Ausführungsform einer elektromagnetischen Stelleinrichtung zur Betätigung eines Gaswechselventils dargestellt, die mit einer Federanordnung versehen ist, wie sie nachstehend anhand von Fig. 3 beschrieben wird. Die in Fig. 2 dargestellte Anordnung weist wiederum einen oberen Elektromagneten 1 und einen unteren Elektromagneten 2 auf, die mit Abstand zueinander angeordnet sind und zwischen denen ein Anker 7 axial bewegbar geführt ist, der über seine Schubstange 8 auf den Ventilschaft 16 des Gaswechselventils 15 einwirken kann.
In Fig. 3 ist die beim Ausführungsbeispiel gem. Fig. 2 dargestellte, ebenfalls schlankbauende Ausführung in Einzelheiten dargestellt und beschrieben. Ausgehend von einer Magnetanordnung, wie sie anhand von Fig. 1 beschrieben ist, sind hier beide Federelemente 12 und 19 auf der dem Stellorgan 15 zugekehrten Stirnseite des untenliegenden Magneten 2 angeordnet sind. In der Darstellung ist der Magnet 2 lediglich angedeutet. Der hier nur angedeutete Anker 7 ist über sehe Schubstange 8 mit einem glockenförmig ausgebildeten Widerlagerelement 13.1 versehen. Das zweite Federelement 12 stützt sich hierbei mit einem Ende auf dem freien Rand 13.2 des Widerlagers 13.1 ab und mit seinem anderen Ende auf der Stirnfläche 14 des Magneten 2. Der mit dem Ventilschaft 16 verbundene tellerförmige Ansatz 18 befindet sich hierbei innerhalb des glockenförmigen Widerlagers 13.1 und ist hierbei, wie anhand von Fig. 1 beschrieben, über das erste Federelement 19 auf der Oberfläche des Zylinderkopfs 17 abgestützt. Durch diese Verschachtelung der beiden Federelemente 12 und 19 kann gegenüber der Ausführungsform gem. Fig. 1 die Bauhöhe reduziert werden, ohne daß die kompakte schlanke Bauform der Elektromagnete aufgegeben wird. Die Arbeitsweise entspricht der anhand von Fig. 1 beschriebenen Arbeitsweise. Die beiden Federelemente 12 und 19 besitzen trotz der unterschiedlichen geometrischen Abmessungen die gleiche Federsteifigkeit. Zur Erleichterung des "Anfahrens" kann das Federelement 12, wie vorstehend beschrieben, eine progressive Kennlinie aufweisen.
Bei der Ausführungsform gem. Fig. 2 ist der Elektromagnet 2 in Richtung des Doppelpfeiles 20 verschiebbar gelagert und mit einer Verstelleinrichtung 21 verbunden, die bei dem hier dargestellten Ausführungsbeispiel im wesentlichen durch einen Zusatzmagneten 22 einer Ankerplatte 23 und einem mit dem zu verschiebenden Elektromagneten 2 verbundenen Koppelelement 24 gebildet wird. Der Elektromagnet 1 und der Zusatzmagnet 22 sind hierbei über einen schematisch angedeuteten Träger 26 starr mit dem Zylinderkopf 17 verbunden.
Ist der Zusatzmagnet 22 stromlos gesetzt, wird unter der Wirkung einer entsprechenden Rückstellfeder der verschiebbar gelagerte Elektromagnet 2 gegen einen Distanzhalter 27 gedrückt, der den lichten Abstand zwischen den beiden Polflächen 5 und 6 und damit den möglichen Hub des Ankers 7 vorgibt. Hierbei befindet sich die Ankerplatte 23 der Verstelleinrichtung in Höhe der gestrichelt dargestellten Positionslinie 28. Bei dem dargestellten Ausführungsbeispiel bildet das zweite Federelement 12 zugleich die Rückstellfeder.
Wird nun der Elektromagnet 22 erregt, wird die Ankerplatte 23 angezogen und der verschiebbar gelagerte Magnet 2 gegen das Stellorgan vorgeschoben, so daß der lichte Abstand zwischen den beiden Polflächen 5 und 6 um den vorgegebenen Hub vergrößert ist und dementsprechend auch der Arbeitshub des Ankers 7 um dieses Maß erhöht ist. Bei der Anwendung auf ein Gaswechselventil als Stellorgan ergibt sich somit die Möglichkeit, während der Einschaltzeit des Zusatzmagneten 22 einen höheren Ventilhub zu bewirken, so daß ein derart angesteuertes Gaswechselventil mit zwei unterschiedlichen Hubweiten und damit mit zwei unterschiedlichen Öffnungsquerschnitten betrieben werden kann.
Die "Arbeitsrichtung" des Zusatzmagneten sollte so getroffen werden, daß die Position des verschiebbaren Magneten bei stromlosem Zusatzmagneten der Normalbetriebsweise entspricht. Stellt die Betriebsweise mit kurzem Hub des Ankers 7 den "Normalbetrieb" dar, dann befindet sich die Ankerplatte 23 in der gestrichelten Position gem. Fig. 2. Stellt die Betriebsweise mit langem Hub den "Normalbetrieb" dar, muß die Ankerplatte 23 auf der anderen Seite des Zusatzmagneten 22 angeordnet sein. Es ergibt sich eine Energieersparnis, wenn der Zusatzmagnet nur während der jeweiligen "Sonderbetriebsphase" erregt wird. Anstelle einer magnetisch betätigbaren Stelleinrichtung 21 kann auch eine mechanische, hydraulische oder pneumatische Verstellung der Hubweite des Ankers 7 durch Verschieben des Magneten 2 vorgesehen sein.
Anstelle oder in Kombination mit den beschriebenen Schraubenfedern können auch Torsionsfedern oder Biegefedern, beispielsweise Blattfedern verwendet werden.
Die Magnete können im Horizontalschnitt einen Kreisquerschnitt, aber auch einem Rechteck- oder Quadratquerschnitt aufweisen. Letzteres ist günstig für den geblechten Jochkörper.

Claims (3)

  1. Elektromagnetische Stelleinrichtung eines Gaswechselventils (15) an einer Brennkraftmaschine, wobei das Gaswechselventil mit einem Ansatz (18) versehen ist und durch ein erstes Federelement (19) in Schließrichtung des Gaswechselventils beaufschlagt wird, wobei die Stelleinrichtung wenigstens eine Schubstange (8) aufweist, die auf das zu betätigende Gaswechselventil (15) einwirkt und die mit einem Anker (7) in Verbindung steht, der zwischen den Polflächen (5, 6) von zwei in axialem Abstand zueinander angeordneten Elektromagneten (1, 2) hin und her bewegbar geführt ist und der bei stromlos gesetzten Elektromagneten (1, 2) durch ein gegen das erste Federelement (19) wirkendes zweites Federelement (12) in einer Zwischenstellung zwischen den Polflächen (5, 6) gehalten wird, dadurch gekennzeichnet, daß die Federelemente (12, 19) außerhalb der Elektromagnete (1, 2) jeweils an deren Stirnseiten angeordnet sind, und daß die Schubstange (8) geteilt ausgeführt ist, wobei ein Teil (8.1) mit dem Anker (7) fest verbunden ist und der andere, dem Gaswechselventil (15) abgekehrte Teil (8.2) mit dem zugeordneten zweiten Federelement (12) verbunden ist und durch dieses kraftschlüssig mit dem Anker (7) in Verbindung steht.
  2. Stelleinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß bei den Elektromagneten (1, 2) die Magnetspulen (3, 4) in einem geblechten Jochkörper angeordnet sind.
  3. Stelleinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß einer der beiden Elektromagnete (2) in Bewegungsrichtung (20) des Ankers (7) verschiebbar gelagert und mit einer Stelleinrichtung (21) verbunden ist, die einen Zusatzelektromagneten (22) aufweist und durch die der Abstand der einander zugekehrten Polflächen (5, 6) der beiden Elektromagnete (1, 2) veränderbar ist, wobei der verschiebbar gelagerte Elektromagnet (2) im Zusammenwirken mit dem als Rückstellfeder wirkenden zweiten Federelement in zwei verschiedenen Endlagen positionierbar ist.
EP95942673A 1994-12-21 1995-12-15 Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine Expired - Lifetime EP0748416B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00123025A EP1069285B1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE9420463U 1994-12-21
DE9420463U DE9420463U1 (de) 1994-12-21 1994-12-21 Elektromagnetisch betätigbare Stellvorrichtung
PCT/EP1995/004970 WO1996019643A1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare stellvorrichtung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP00123025A Division EP1069285B1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung

Publications (2)

Publication Number Publication Date
EP0748416A1 EP0748416A1 (de) 1996-12-18
EP0748416B1 true EP0748416B1 (de) 2002-04-17

Family

ID=6917724

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00123025A Expired - Lifetime EP1069285B1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung
EP95942673A Expired - Lifetime EP0748416B1 (de) 1994-12-21 1995-12-15 Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00123025A Expired - Lifetime EP1069285B1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung

Country Status (4)

Country Link
US (1) US5813653A (de)
EP (2) EP1069285B1 (de)
DE (4) DE9420463U1 (de)
WO (1) WO1996019643A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19518056B4 (de) * 1995-05-17 2005-04-07 Fev Motorentechnik Gmbh Einrichtung zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung und Verfahren zur Ansteuerung
DE19747009C2 (de) * 1997-10-24 2000-11-16 Daimler Chrysler Ag Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils
DE19822907B4 (de) * 1998-05-22 2006-07-27 Fev Motorentechnik Gmbh Elektromagnetischer Aktuator mit gelenkig abgestützter Rückstellfeder
US6091314A (en) * 1998-06-05 2000-07-18 Siemens Automotive Corporation Piezoelectric booster for an electromagnetic actuator
FR2783033B1 (fr) 1998-09-04 2006-06-02 Renault Agencement pour la commande electromagnetique d'une soupape
FR2790137B1 (fr) * 1999-02-19 2001-07-27 Sagem Module de rappel elastique et procede de fabrication d'un tel module
DE19919734A1 (de) * 1999-04-30 2000-11-02 Mahle Ventiltrieb Gmbh Verfahren und Vorrichtung zum Öffnen und Schließen eines Ventils eines Verbrennungsmotors
FR2817292B1 (fr) 2000-11-24 2003-01-24 Renault Procede de commande d'un moteur a combustion en vue d'optimiser le demarrage
JP2002188417A (ja) * 2000-12-21 2002-07-05 Honda Motor Co Ltd 内燃機関の電磁式動弁装置
FR2838864B1 (fr) 2002-04-18 2004-06-11 Renault Sa Actionneur lineaire electromagnetique de soupape comportant un dispositif de rappel a raideur variable
US20040079306A1 (en) * 2002-10-23 2004-04-29 Norton John D. Variable lift electromechanical valve actuator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1471861A (en) * 1921-09-07 1923-10-23 Perrault Oscar Louis Valve-actuating mechanism for internal-combustion engines
GB1391955A (en) * 1972-07-12 1975-04-23 British Leyland Austin Morris Actuating internal combustion engine poppet valves
DE2630512A1 (de) * 1976-07-07 1978-01-12 Daimler Benz Ag Ventilsteuerung, insbesondere fuer brennkraftmaschinen
DE3024109A1 (de) 1980-06-27 1982-01-21 Pischinger, Franz, Prof. Dipl.-Ing. Dr.Techn., 5100 Aachen Elektromagnetisch arbeitende stelleinrichtung
DE3025537A1 (de) * 1980-07-05 1982-06-03 Arthur Böhm Kunststoffverarbeitung, 8676 Schwarzenbach, Saale Einrichtung, insbesondere zur halterung von rohren von rohrpostsystemen in schutzrohren
US4649803A (en) * 1984-08-15 1987-03-17 The Garrett Corporation Servo system method and apparatus, servo valve apparatus therefor and method of making same
DE3513107A1 (de) 1985-04-12 1986-10-16 Fleck, Andreas, 2000 Hamburg Elektromagnetisch arbeitende stelleinrichtung
DE3708373C1 (de) * 1987-03-14 1988-07-14 Fleck Andreas Verfahren zum Betreiben eines Einlassventiles einer Brennkraftmaschine
US4831973A (en) 1988-02-08 1989-05-23 Magnavox Government And Industrial Electronics Company Repulsion actuated potential energy driven valve mechanism
DE3920976A1 (de) * 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg Elektromagnetisch arbeitende stelleinrichtung
DE4004876A1 (de) * 1990-02-16 1991-09-26 Ulrich Karrer Elektrisch betaetigte ventilsteuerung fuer periodisch betriebene ventile fuer kraftmaschinen
US5548263A (en) * 1992-10-05 1996-08-20 Aura Systems, Inc. Electromagnetically actuated valve

Also Published As

Publication number Publication date
DE59510173D1 (de) 2002-05-23
DE19581518D2 (de) 1997-02-27
EP1069285B1 (de) 2003-02-19
EP0748416A1 (de) 1996-12-18
EP1069285A3 (de) 2001-05-02
DE59510563D1 (de) 2003-03-27
DE9420463U1 (de) 1996-04-25
WO1996019643A1 (de) 1996-06-27
US5813653A (en) 1998-09-29
EP1069285A2 (de) 2001-01-17

Similar Documents

Publication Publication Date Title
DE3814765C2 (de)
EP0405189B1 (de) Elektromagnetisch arbeitende Stelleinrichtung
DE3334160C2 (de) Magnetventil
DE3024109C2 (de)
DE69908057T2 (de) Elektromagnetischer Ventil-Aktuator
EP0197356B1 (de) Elektromagnetisch arbeitende Stellvorrichtung
DE19733186A1 (de) Elektromagnetisch betätigbares Gaswechselventil für eine Kolbenbrennkraftmaschine
EP0748416B1 (de) Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
DE19751609B4 (de) Schmalbauender elektromagnetischer Aktuator
EP0867898B1 (de) Elektromagnetisch arbeitende Stelleinrichtung
DE10034033A1 (de) Magnetventil
EP1288481B1 (de) Elektromagnetischer Stellantrieb
DE1550632A1 (de) Elektrohydraulisches Ventil
EP0935054A2 (de) Elektromagnetischer Aktuator
DE10014113C2 (de) Solenoid-Ventilantriebsvorrichtung
DE19750228C1 (de) Vorrichtung zum Betätigen eines Gaswechselventils mit einem elektromagnetischen Aktuator
DE19608061C2 (de) Elektromagnetische Ventilbetätigung
EP1181443A2 (de) Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge
EP0251075B1 (de) Magnetventil für flüssige und gasförmige Medien
DE3519348C2 (de) Eine lineare Vorschubbewegung erzeugende Einrichtung
DE2361591A1 (de) Schieberventil zur steuerung des arbeitsdrucks eines arbeitsmediums
DE19852287C2 (de) Elektromagnetischer Aktuator und Verwendung des Aktuators
DE3018972C2 (de) Magnetventil
DE10010048C1 (de) Vorrichtung zum Betätigen eines Gaswechselventils mit einem elektromagnetischen Aktuator
WO2001061714A1 (de) Elektromagnet zur betätigung des stellglieds eines ventils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FEV MOTORENTECHNIK GMBH

17Q First examination report despatched

Effective date: 20000324

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: ELECTROMAGNETICALLY ACTUATED VALVE IN AN INTERNAL COMBUSTION ENGINE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020417

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020417

REF Corresponds to:

Ref document number: 59510173

Country of ref document: DE

Date of ref document: 20020523

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071221

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701