EP0748416A1 - Elektromagnetisch betätigbare stellvorrichtung - Google Patents

Elektromagnetisch betätigbare stellvorrichtung

Info

Publication number
EP0748416A1
EP0748416A1 EP95942673A EP95942673A EP0748416A1 EP 0748416 A1 EP0748416 A1 EP 0748416A1 EP 95942673 A EP95942673 A EP 95942673A EP 95942673 A EP95942673 A EP 95942673A EP 0748416 A1 EP0748416 A1 EP 0748416A1
Authority
EP
European Patent Office
Prior art keywords
armature
actuator
spring element
spring
adjusting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95942673A
Other languages
English (en)
French (fr)
Other versions
EP0748416B1 (de
Inventor
Thomas Esch
Martin Pischinger
Michael Schebitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEV Europe GmbH
Original Assignee
FEV Motorentechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEV Motorentechnik GmbH and Co KG filed Critical FEV Motorentechnik GmbH and Co KG
Priority to EP00123025A priority Critical patent/EP1069285B1/de
Publication of EP0748416A1 publication Critical patent/EP0748416A1/de
Application granted granted Critical
Publication of EP0748416B1 publication Critical patent/EP0748416B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • Electromagnetically actuated actuating devices in particular actuating devices of this type for actuating gas exchange valves on internal combustion engines, are known, for example from EP-A-0 043 426 and EP-A-0 197 357.
  • the designs known from these publications have a specific power-to-weight ratio and require a large amount of space , so that they in the applicational as adjusting devices for 'gas-exchange valves of internal combustion engines of modern design, particularly those with multi-valve operation, can not be used.
  • the invention has for its object to simplify the structure of the known electromagnetic actuating devices and thus to achieve a more compact, space-saving design.
  • an electromagnetic actuating device which has at least one push rod, which acts on the actuating member to be actuated and which is connected to an armature which can be moved back and forth between the pole faces of two electromagnets arranged at an axial distance from one another is guided and which is held in an intermediate position between the pole faces by at least two spring elements acting against one another when the electromagnet is de-energized and the spring elements are arranged separately outside the electromagnets.
  • a spring element acts directly on the armature and the counteracting other spring element acts on the armature in the manner of a return spring via the actuator. This design enables effective use of the pole faces, which results in a more compact form of the overall facility leads.
  • the gas exchange valve forming the actuator as before can be provided with a valve spring acting in the closing direction, which at the same time acts as one of the spring elements serves the actuator, which acts on the armature of the actuator. It is therefore expedient in an embodiment of the invention if the spring elements are arranged on the end face of at least one of the electromagnets.
  • the push rod is of divided design, one part being fixedly connected to the armature and the other, the part facing away from the actuating element, being connected to the associated spring element and being connected to the armature in a force-fitting manner.
  • the subdivision of the push rod enables the armature ⁇ ⁇ it to carry out a purely axial movement of the firmly connected part of the push rod, while the part of the push rod connected to the spring element / for example when using a helical spring as spring element without influencing the armature during movement occurring spring rotation can perform.
  • the push rod can be firmly connected to the actuator.
  • the spring element facing the actuator is connected to an extension on the actuator which is held in a force-locking manner by the spring in connection with the push rod.
  • the two spring elements acting against each other are arranged on the side of the electromagnet facing the actuator, one spring element acting on the push rod and the other spring element acting on a shoulder on the actuator and that the push rod and the approach are positively connected.
  • This arrangement makes it possible to provide the two spring elements on only one side of the electromagnet arrangement, it still being possible to reduce the overall height if the one spring element extends around the other spring element in a telescopic manner.
  • the magnet coil in the electromagnets is connected to a laminated yoke body, so that the formation of eddy currents is reduced.
  • one of the two electromagnets is mounted displaceably in the direction of movement of the armature and is connected to an actuating device by means of which the distance between the facing pole faces of the two electromagnets can be changed.
  • the actuating device is formed by an additional electromagnet, by means of which the displaceably mounted electromagnet, in cooperation with a spring-acting spring element can be held in two different end positions.
  • FIG. 1 shows an actuating device for actuating a gas exchange valve on an internal combustion engine
  • Fig. 3 an actuator with adjustable
  • the actuating device shown in FIG. 1 for actuating a gas exchange valve has two actuating magnets 1 and 2 arranged at a distance from one another, the yoke bodies of which are provided with magnetic coils 3 and 4.
  • the arrangement is such that the respective pole faces 5 and 6 lie opposite one another.
  • An armature 7 is arranged between the two pole faces 5 and 6 and is connected to a two-part push rod 8, one push rod part 8.1 being firmly connected to the armature, while the other push rod part 8.2 is seated on the armature 7.
  • the push rod 8 is each guided in a bore 9 of the electromagnet 1 and a bore 10 of the electromagnetic 2.
  • the electromagnet 1 is provided at its end facing away from the armature 7 with a cover-shaped housing 11 which serves as an abutment for a spring 12 which is supported at its other end on a plate 13 which is fixedly connected to the push rod 8.2.
  • the end face 14 of the electromagnet 2 facing away from the armature 7 faces an actuator 15 to be actuated, here a gas exchange valve on an internal combustion engine.
  • the valve stem 16 of the gas exchange valve 15 is guided in the cylinder head 17 in the usual way.
  • the free end of the valve stem 16 is in this case firmly connected to a plate-shaped extension 18, which serves as an abutment of a spring element 19 which is supported on the cylinder head 17 with its other end.
  • the spring element 19, like the spring element 12, is designed as a helical compression spring so that both spring elements act against one another, the spring element 19 also serving as a closing spring for the gas exchange valve.
  • the spring element 12 on one side and the Federele ⁇ element 19 on the other side of the armature 7 are now designed so that the equilibrium position of the armature 7 approximately in the middle between the two opposite pole faces 5 and 6 of the electromagnets 1 and 2 lies.
  • one of the two spring elements for example the spring element 12, can be designed with a progressive characteristic curve, so that the equilibrium position shifts from the central position in the direction of the electromagnet 1, thus making starting easier.
  • the armature 7 comes to rest on the pole face 5, the spring element 12 being compressed and the spring element 19 being substantially relieved.
  • the gas exchange valve is closed in this position.
  • the current supply to the electromagnet 1 is now switched off and the current supply to the electromagnet 2 is switched on after a certain point in time.
  • the armature 7 is no longer held on the pole face of the electromagnet 1, so that the spring 12 can move the armature in the direction of the central position between the two pole faces of the magnets 1 and 2.
  • the spring element 19 is loaded.
  • FIG. 2 shows an embodiment in which, starting from a magnet arrangement, as described with reference to FIG. 1, both spring elements 12 and 19 are arranged on the end face of the magnet 2 located below, which faces the actuator 15. In the Dar ⁇ position, the magnet 2 is only indicated.
  • the armature 7, which is only indicated here, is provided via its push rod 8 with a bell-shaped abutment element 13.1.
  • the spring element 12 is supported at one end on the free edge 13.2 of the abutment 13.1 and at the other end on the end face 14 of the magnet 2.
  • the plate-shaped extension 18 connected to the valve stem 16 is located inside the bell-shaped abutment 13.1 and is here, as described with reference to FIG. 1, supported on the surface of the cylinder head 17 via the spring element 19.
  • This nesting of the two spring elements 12 and 19 can, according to the embodiment. Fig. 1, the height can be reduced without giving up the compact design of the electromagnet.
  • the mode of operation corresponds to that described with reference to FIG. 1
  • the two spring elements 12 and 19 have the same spring stiffness despite the different geometric dimensions.
  • the spring element 12, as described above can have a progressive characteristic.
  • FIG. 3 shows an embodiment of an electromagnetic actuating device for actuating a gas exchange valve, which is provided with a spring arrangement, as was described with reference to FIG. 2.
  • the arrangement shown in FIG. 3 in turn has an upper electromagnet 1 and a lower electromagnet 2, which are arranged at a distance from one another and between which an armature 7 is axially movably guided, which can act on the valve stem 16 of the gas exchange valve 15 via its push rod 8.
  • the electromagnet 2 is now mounted in the direction of the double arrow 20 and with an adjusting device
  • the electromagnet 21 connected which in the exemplary embodiment shown here is essentially formed by an additional magnet 22 of an armature plate 23 and a coupling element 24 connected to the electromagnet 2 to be displaced.
  • the electromagnet 1 and the additional magnet 22 are rigidly connected to the cylinder head 17 via a schematically indicated carrier 26.
  • the displaceably mounted electromagnet 2 is pressed under the action of a corresponding return spring against a spacer 27 which specifies the clear distance between the two pole faces 5 and 6 and thus the possible stroke of the armature 7.
  • the anchor plate 23 of the adjusting device is located at the level of the position line 28 shown in broken lines.
  • the spring elements 12 and 19 also form the return spring.
  • the "working direction" of the additional magnet should be such that the position of the displaceable magnet corresponds to the normal operating mode when the additional magnet is de-energized. If the mode of operation with a short stroke of the armature 7 represents "normal operation”, then the armature plate 23 is in the dashed position according to FIG. Fig. 3. If the operation with a long stroke represents "normal operation", the armature plate 23 must be arranged on the other side of the additional magnet 22. There is an energy saving if the additional magnet is only energized during the respective "special operating phase". Instead of a magnetically actuatable actuating device 21, a mechanical, hydraulic or pneumatic adjustment of the stroke length of the armature 7 can also be provided by moving the magnet 2.
  • torsion springs or bending springs for example leaf springs, can also be used.
  • the magnets can have a circular cross section, but also a rectangular or square cross section. The latter is favorable for the sheet metal yoke body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Switches With Compound Operations (AREA)

Abstract

Die Erfindung betrifft eine elektromagnetische Stelleinrichtung zur Betätigung eines Stellorgans (15), insbesondere eines Gaswechselventils an einer Brennkraftmaschine, die wenigstens eine Schubstange (8) aufweist, die auf das zu betätigende Stellorgan (15) einwirkt und die mit einem Anker (7) in Verbindung steht, der zwischen den Polflächen (5, 6) von zwei in axialem Abstand zueinander angeordneten Elektromagneten (1, 2) hin- und herbewegbar geführt ist und der bei stromlos gesetzten Elektromagneten (1, 2) durch wenigstens zwei gegeneinander wirkende Federelemente (12, 19) in einer Zwischenstellung zwischen den Polflächen (5, 6) gehalten wird, und wobei die Federelemente (12, 19) gesondert außerhalb der Elektromagnete (1, 2) angeordnet sind.

Description

Bezeichnung: Elektromagnetisch betätigbare Stellvor¬ richtung
Beschreibung:
Elektromagnetisch betätigbare Stellvorrichtungen, insbesondere derartige Stellvorrichtungen zur Betätigung von Gaswechselventilen an Brennkraftmaschinen sind bekannt, so beispielsweise aus EP-A-0 043 426 und EP-A-0 197 357. Die aus diesen Druckschriften bekannten Bauformen weisen jedoch ein spezifisches Leistungsgewicht und einen hohen Raumbedarf auf, so daß sie bei der Anwen¬ dung als Stellvorrichtungen für' Gaswechselventile an Brennkraftmaschinen moderner Bauart, insbesondere solchen mit Mehrventilbetrieb, nicht einsetzbar sind.
Der Erfindung liegt die Aufgabe zugrunde, die vorbekannten elektromagnetischen Stellvorrichtungen in ihrem Aufbau zu vereinfachen und so zu einer kompakteren raumsparenden Bauform zu gelangen.
Diese Aufgabe wird gemäß der Erfindung gelöst durch eine elektromagnetische Stellvorrichtung, die wenigstens eine Schubstange aufweist, die auf das zu betätigende Stellorgan einwirkt und die mit einem Anker in Verbindung steht, der zwischen den Polflächen von zwei in axialem Abstand zueinander angeordneten Elektromagneten hin- und herbewegbar geführt ist und der bei stromlos geschal¬ teten Elektromagneten durch wenigstens zwei gegeneinander wirkende Federelemente in einer Zwischenstellung zwischen den Polflächen gehalten wird und wobei die Federelemente gesondert außerhalb der Elektromagnete angeordnet sind. Hierbei ist es zweckmäßig, wenn ein Federelement unmittel¬ bar auf den Anker einwirkt und das entgegenwirkende andere Federelement nach Art einer Rückstellfeder über das Stellorgan auf den Anker einwirkt. Diese Bauform ermöglicht eine effektive Ausnutzung der Polflächen, was zu einer kompakteren Form der Stell- einrichtung insgesamt führt. Ein weiterer Vorteil dieser Ausgestaltung besteht darin, daß beispielsweise bei der Verwendung als Stellvorrichtung für ein Gaswechsel¬ ventil an einer Brennkraftmaschine, das das Stellorgan bildende Gaswechselventil wie bisher, mit einer in Schlie߬ richtung wirkenden Ventilfeder versehen werden kann, die gleichzeitig als eines der Federelemente der Stell¬ vorrichtung dient, das auf den Anker der Stellvorrichtung einwirkt. Daher ist es in Ausgestaltung der Erfindung zweckmäßig, wenn die Federelemente an der Stirnseite wenigstens eines der Elektromagneten angeordnet sind.
In besonders vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß die Schubstange geteilt ausgeführt ist, wobei ein Teil mit dem Anker fest verbunden ist und der andere,- dem Stellorgan abgekehrte Teil mit dem zugeordneten Federelement verbunden ist und durch dieseskraftschlüssig mit dem Anker in Verbindung steht. Durch die Unterteilung der Schubstange kann der Anker π\it dem festverbundenen Teil der Schubstange eine rein axiale Bewegung ausführen, während der mit dem Federele¬ ment verbundene Teil der Schubstange/ beispielsweise bei der Verwendung einer Schraubenfeder als Federelement ohne Beeinflussung des Ankers die bei der Bewegung auftre- tende Federrotation ausführen kann. Die Schubstange kann hierbei fest mit dem Stellorgan verbunden sein.
In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß das dem Stellorgan zugekehrte Federelement mit einem Ansatz am Stellorgan verbunden ist, der durch die Feder kraftschlüssig mit der Schubstange in Verbindung gehalten wird. Hierdurch wird bei der Verwendung einer Schrauben¬ feder als zweites Federelement wiederum eine Abkoppelung des Ankers mit seiner Schubstange vom Ansatz des Stell- organs bewirkt, so daß das Stellorgan die im Betrieb auftretende Federrotation ohne Beeinflussung des Ankers ausführen kann. Der weitere Vorteil besteht darin, daß dieses zweite Federelement über den Ansatz am Stellorgan zugleich als Rückstellfeder auf das Stellorgan wirken kann.
In besonders vorteilhafter Ausgestaltung ist hierbei vorgesehen, daß die beiden gegeneinander wirkenden Feder¬ elemente auf der dem Stellorgan zugekehrten Seite des Elektromagneten angeordnet sind, wobei ein Federelement auf die Schubstange und das andere Federelement auf einen Ansatz am Stellorgan einwirkt und daß die Schub¬ stange und der Ansatz kraftschlüssig miteinander verbunden sind. Diese Anordnung erlaubt es, die beiden Federelemente auf nur einer Seite der Elektromagnetanordnung vorzusehen, wobei noch die Bauhδhe dadurch reduziert werden kann, wenn das eine Federelement das andere Federelement teleskop¬ artig umgreift.
In weiterer vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, daß bei den Elektromagneten jeweils die Magnetspule mit einem geblechten Jochkörper verbunden ist, so daß das Entstehen von Wirbelströmen vermindert wird.
In einer besonders vorteilhaften Ausgestaltung der Erfin- d ng ist vorgesehen, daß einer der beiden Elektromagneten in Bewegungsrichtung des Ankers verschiebbar gelagert und mit einer Stelleinrichtung verbunden ist, durch die der Abstand der einander zugekehrten Polflächen der beiden Elektromagneten veränderbar ist. Hierdurch ist es möglich, den Abstand der Polflächen der beiden einander zugeordneten Elektromagneten und damit auch den Hub des Ankers und dementsprechend auch den Hub des zu betätigenden Stellorgans zu verändern. In zweck¬ mäßiger Ausgestaltung der Erfindung ist hierbei vorgesehen, daß die Stelleinrichtung durch einen Zusatz-Elektromagen- ten gebildet wird, durch den der verschiebbar gelagerte Elektromagnet im Zusammenwirken mit einem als Rückstell- feder wirkenden Federelement in zwei verschiedenen End¬ lagen gehalten werden kann. Als Rückstellfeder kann bei entsprechender Anordnung auch eines der Federele¬ mente verwendet werden, das an der Stelleinrichtung ohnehin vorhanden ist.
Die Erfindung wird anhand schematischer Ausführungsbei¬ spiele näher erläutert. Es zeigen:
Fig. 1 eine Stelleinrichtung zur Betätigung eines Gaswechselventils an einem Verbren¬ nungsmotor,
Fig. 2 in vergrößerter Darstellung eine spezielle Federschaltung,
Fig. 3 eine Stelleinrichtung mit verstellbarem
Hub.
Die in Fig. 1 dargestellte Stelleinrichtung zur Betäti¬ gung eines Gaswechselventiles weist zwei mit Abstand zueinander angeordnete Stellmagnete 1 und 2 auf, deren Jochkörper mit Magnetspulen 3 und 4 versehen sind. Die Anordnung ist hierbei so getroffen, daß die jeweiligen Polflächen 5 und 6 einander gegenüberliegen. Zwischen den beiden Polflächen 5 und 6 ist ein Anker 7 angeordnet, der mit einer zweiteilig ausgebildeten Schubstange 8 verbunden ist, wobei der eine Schubstangenteil 8.1 fest mit dem Anker verbunden ist, während der andere Schub- stangenteil 8.2 auf dem Anker 7 aufsitzt.
Die Schubstange 8 ist jeweils in einer Bohrung 9 des Elektromagneten 1 und einer Bohrung 10 des Elektromagne¬ ten 2 geführt.
Der Elektromagnet 1 ist an seinem dem Anker 7 abgekehrten Ende mit einem deckeiförmigen Gehäuse 11 versehen, das als Widerlager für eine Feder 12 dient, die sich mit ihrem anderen Ende an einer Platte 13 abstützt, die mit der Schubstange 8.2 fest verbunden ist.
Die dem Anker 7 abgekehrte Stirnfläche 14 des Elektromag¬ neten 2 ist einem zu betätigenden Stellorgan 15, hier einem Gaswechselventil an einer Brennkraftmaschine zugekehrt. Der Ventilschaft 16 des Gaswechselventils 15 ist hierbei in üblicher Weise im Zylinderkopf 17 geführt. Das freie Ende des Ventilschaftes 16 ist hierbei mit einem tellerförmigen Ansatz 18 fest verbunden, dpr als Widerlager eines Federelementes 19 dient, das sich mit seinem anderen Ende auf dem Zylinderkopf 17 abstützt. Das Federelement 19 ist hierbei ebenso wie das Federele- ment 12 als Schraubdruckfeder ausgebildet, so daß beide Federelemente gegeneinander wirken, wobei das Federele¬ ment 19 zugleich als Schließfeder für das Gaswechselventil dient.
Das Federelement 12 auf der einen Seite und das Federele¬ ment 19 auf der anderen Seite des Ankers 7 sind nun so ausgelegt, daß die Gleichgewichtslage des Ankers 7 etwa in der Mitte zwischen den beiden einander gegenüber¬ liegenden Polflächen 5 und 6 der Elektromagnete 1 und 2 liegt. Hierbei kann eines der beiden Federelemente, beispielsweise das Federelement 12 mit progressiver Kennlinie ausgestaltet sein, so daß die Gleichgewichtslage sich aus der Mittenstellung in Richtung auf den Elektro¬ magneten 1 verschiebt und somit ein einfacheres Starten möglich ist.
Wird zum Elektromagneten 1 die Stromzufuhr eingeschaltet, dann kommt der Anker 7 zur Anlage an der Polfläche 5, wobei das Federelement 12 zusammengedrückt und das Feder- element 19 im wesentlichen entlastet wird. Das Gaswechsel¬ ventil ist in dieser Position geschlossen. Zum öffnen des Gaswechselventils wird nun die Stromzufuhr zum Elektromagneten 1 abgeschaltet und die Stromzufuhr zum Elektromagneten 2 nach einem bestimmten Zeitpunkt zugeschaltet. Dadurch wird der Anker 7 nicht länger an der Polfläche des Elektromagneten 1 gehalten, so daß die Feder 12 den Anker in Richtung auf die Mittel¬ stellung zwischen den beiden Polflächen der Magnete 1 und 2 verschieben kann. Hierbei wird das Federelement 19 belastet. 0
Das System schwingt über die Gleichgewichtslage hinaus auf die andere Seite. Da zwischenzeitlich die Stromzufuhr zum Elektromagneten 2 eingeschaltet worden ist, wird der Anker 7 eingefangen und kommt an der Polfläche 6 5 zur Anlage. Das Federelement 12 ist nunmehr teilweise entspannt, wohingegen das Federelement 19 zusammengedrückt ist. Da der Ventilschaft 16 über das Federelement 19 kraftschlüssig in jeder Stellung mit der Schubstange 8 in Verbindung steht, wird der Ventilschaft 16 um diesen o Betrag verschoben und das Gaswechselventil entsprechend geöffnet. Zum Schließen des Gaswechselventils wird wieder umgeschaltet, so daß der vorstehend beschriebene Vorgang in umgekehrter Reihenfolge abläuft.
5 Da nun die Federelemente 12 und 19 jeweils axial und stirnseitig zu den Elektromagneten 1, 2 angeordnet sind, ergibt sich eine sehr schlanke Bauart. Gegenüber den vorbekannten Magnetsystemen, bei denen die Federelemente in die Magnetkörper integriert sind, ergibt sich ferner
3Q eine effektivere Ausnutzung der Polflächen. Die Untertei¬ lung der Schubstange 8 in den mit dem Federelement 12 verbundenen Schubstangenteil 8.2 und den mit dem Anker fest verbundenen Schubstangenteil 8.1 einerseits und die Abkoppelung des Schubstangenteils 8.1 von dem zu g^ betätigenden Stellorgane, hier dem Ventilschaft 16, der seinerseits mit dem tellerförmigen Ansatz 18 verbun¬ den ist, ergibt sich der Vorteil, daß die beim Zusammen¬ drücken und Entlasten der vorzugsweise als Schraubenfedern ausgebildeten Federelemente 12 und 19 auftretende Rotation jeweils auf das mit dem Federelement verbundene Bauteil beschränkt bleibt.
In Fig. 2 ist eine Ausführungsform dargestellt, bei der ausgehend von einer Magnetanordnung, wie sie anhand von Fig. 1 beschrieben ist, beide Federelemente 12 und 19 auf der dem Stellorgan 15 zugekehrten Stirnseite des untenliegenden Magneten 2 angeordnet sind. In der Dar¬ Stellung ist der Magnet 2 lediglich angedeutet. Der hier nur angedeutete Anker 7 ist über seine Schubstange 8 mit einem glockenförmig ausgebildeten Widerlagerelement 13.1 versehen. Das Federelement 12 stützt sich hierbei mit einem Ende auf dem freien Rand 13.2 des Widerlagers 13.1 ab und mit seinem anderen Ende auf der Stirnfläche 14 des Magneten 2. Der mit dem Ventilschaft 16 verbundene tellerförmige Ansatz 18 befindet sich hierbei innerhalb des glockenförmigen Widerlagers 13.1 und ist hierbei, wie anhand von Fig. 1 beschrieben, über das Federelement 19 auf der Oberfläche des Zylinderkopfs 17 abgestützt. Durch diese Verschachtelung der beiden Federelemente 12 und 19 kann gegenüber der Ausführungsform gem. Fig. 1 die Bauhöhe reduziert werden, ohne daß die kompakte Bauform der Elektromagnete aufgegeben wird. Die Arbeits- weise entspricht der anhand von Fig. 1 beschriebenen
Arbeitsweise. Die beiden Federelemente 12 und 19 besitzen trotz der unterschiedlichen geometrischen Abmessungen die gleiche Federsteifigkeit. Zur Erleichterung des "Anfahrens" kann das Federelement 12, wie vorstehend beschrieben, eine progressive Kennlinie aufweisen.
In Fig. 3 ist eine Ausführungsform einer elektromagneti¬ schen Stelleinrichtung zur Betätigung eines Gaswechsel¬ ventils dargestellt, die mit einer Federanordnung versehen ist, wie sie anhand von Fig. 2 beschrieben wurde. Die in Fig. 3 dargestellte Anordnung weist wiederum einen oberen Elektromagneten 1 und einen unteren Elektromagne¬ ten 2 auf, die mit Abstand zueinander angeordnet sind und zwischen denen ein Anker 7 axial bewegbar geführt ist, der über seine Schubstange 8 auf den Ventilschaft 16 des Gaswechselventils 15 einwirken kann.
Im Gegensatz zu der Ausführungsform gem. Fig. 1 ist nun der Elektromagnet 2 in Richtung des Doppelpfeiles 20 verschiebbar gelagert und mit einer VerStelleinrichtung
21 verbunden, die bei dem hier dargestellten Ausfüh¬ rungsbeispiel im wesentlichen durch einen Zusatzmagneten 22 einer Ankerplatte 23 und einem mit dem zu verschieben¬ den Elektromagneten 2 verbundenen Koppelelement 24 gebil¬ det wird. Der Elektromagnet 1 und der Zusatzmagnet 22 sind hierbei über einen schematisch angedeuteten Träger 26 starr mit dem Zylinderkopf 17 verbunden.
Ist der Zusatzmagnet 22 stromlos gesetzt, wird unter der Wirkung einer entsprechenden Rückstellfeder der verschiebbar gelagerte Elektromagnet 2 gegen einen Distanz¬ halter 27 gedrückt, der den lichten Abstand zwischen den beiden Polflächen 5 und 6 und damit den möglichen Hub des Ankers 7 vorgibt. Hierbei befindet sich die Ankerplatte 23 der VerStelleinrichtung in Höhe der gestrichelt darge¬ stellten Positionslinie 28. Bei dem dargestellten Ausfüh¬ rungsbeispiel bilden die Federelemente 12 und 19 zugleich die Rückstellfeder.
Wird nun der Elektromagnet 22 erregt, wird die Ankerplatte 23 angezogen und der verschiebbar gelagerte Magnet 2 gegen das Stellorgan vorgeschoben, so daß der lichte Abstand zwischen den beiden Polflächen 5 und 6 um den vorgegebenen Hub vergrößert ist und dementsprechend auch der Arbeitshub des Ankers 7 um dieses Maß erhöht ist. Bei der Anwendung auf ein Gaswechselventil als Stellorgan ergibt sich somit die Möglichkeit, während der Einschaltzeit des Zusatzmagneten 22 einen höheren Ventilhub zu bewirken, so daß ein derart angesteuertes Gaswechselventil mit zwei unterschiedlichen Hubweiten und damit mit zwei unterschiedlichen Öffnungsquerschnit¬ ten betrieben werden kann.
Die "Arbeitsrichtung" des Zusatzmagneten sollte so ge- troffen werden, daß die Position des verschiebbaren Magneten bei stromlosem Zusatzmagneten der Normalbe¬ triebsweise entspricht. Stellt die Betriebsweise mit kurzem Hub des Ankers 7 den "Normalbetrieb" dar, dann befindet sich die Ankerplatte 23 in der gestrichelten Position gem. Fig. 3. Stellt die Betriebsweise mit langem Hub den "Normalbetrieb" dar, muß die Ankerplatte 23 auf der anderen Seite des Zusatzmagneten 22 angeordnet sein. Es ergibt sich eine Energieersparnis, wenn der Zusatzmagnet nur während der jeweiligen "Sonderbetriebs- phase" erregt wird. Anstelle einer magnetisch betätigba¬ ren Stelleinrichtung 21 kann auch eine mechanische, hydraulische oder pneumatische Verstellung der Hubweite des Ankers 7 durch Verschieben des Magneten 2 vorgesehen sein.
Anstelle oder in Kombination mit den beschriebenen Schraubenfedern können auch Torsionsfedern oder Biege¬ federn, beispielsweise Blattfedern verwendet werden.
Die Magnete können im Horizontalschnitt einen Kreisquer¬ schnitt, aber auch einem Rechteck- oder Quadratquer¬ schnitt aufweisen. Letzteres ist günstig für den ge¬ blechten Jochkörper.

Claims

Schutzansprüche:
1.Elektromagnetische Stelleinrichtung zur Betätigung eines Stellorgans (15) , insbesondere eines Gaswechsel- ventils an einer Brennkraftmaschine, die wenigstens eine Schubstange (8) aufweist, die auf das zu betätigende Stellorgan (15) einwirkt und die mit einem Anker (7) in Verbindung steht, der zwischen den Polflächen (5, 6) von zwei in axialem Abstand zueinander angeordneten Elektromagneten (1, 2) hin- und herbewegbar geführt ist und der bei stromlos gesetzten Elektromagneten (1, 2) durch wenigstens zwei gegeneinander wirkende Federele¬ mente (12, 19) in einer Zwischenstellung zwischen den Polflächen (5, 6) gehalten wird, und wobei die Feder- elemente (12, 19) gesondert außerhalb der Elektromagnete (1, 2) angeordnet sind.
2. Stellvorrichtung nach Anspruch 1, dadurch gekennzeich¬ net, daß die Federelemente (12, 19) an der Stirnseite (14) wenigstens eines Elektromagneten (2) angeordnet sind.
3. Stellvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schubstange (8) geteilt ausge- führt ist, wobei ein Teil (8.1) mit dem Anker (7) fest verbunden ist und der andere, dem Stellorgan (15) abge¬ kehrte Teil (8.2) mit dem zugeordneten Federelement (12) verbunden ist und durch dieses kraftschlüssig mit dem Anker (7) in Verbindung steht.
4. Stellvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das dem Stellorgan (15) zugekehrte Federelement (19) mit einem Ansatz (18) am Stellorgan (15) verbunden ist, der durch das Federele- ment (19) kraftschlüssig mit dem Schubstangenteil (8.2) in Verbindung gehalten wird.
5. Stellvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die beiden gegeneinander wirkenden Federelemente (12, 19) auf der dem Stellorgan (15) zugekehrten Seite des Elektromagneten (2) angeord- net sind, wobei ein Federelement (12) auf die Schub¬ stange (8) und das andere Federelement (19) auf einen Ansatz (18) am Stellorgan (15) einwirkt, und daß die Schubstange (8) und der Ansatz (18) kraftschlüssig mit¬ einander verbunden sind.
6. Stellvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß bei den Elektromagneten (1, 2) die Magnetspulen (3, 4) in einem geblechten Joch¬ körper angeordnet sind.
7. Stellvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß einer der beiden Elektro¬ magnete (2) in Bewegungsrichtung (20) des Ankers (7) verschiebbar gelagert und mit einer Stelleinrichtung (21) verbunden ist, durch die der Abstand der einander zugekehrten Polflächen (5, 6) der beiden Elektromagnete (1, 2) veränderbar ist.
8. Stellvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Stelleinrichtung (21) einen Zusatzelektromagneten (22) aufweist, durch den der verschiebbar gelagerte Elektromagnet (2) im Zusammen¬ wirken mit einem als Rückstellfeder wirkenden Federele¬ ment in zwei verschiedenen Endlagen positionierbar ist.
EP95942673A 1994-12-21 1995-12-15 Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine Expired - Lifetime EP0748416B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00123025A EP1069285B1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE9420463U 1994-12-21
DE9420463U DE9420463U1 (de) 1994-12-21 1994-12-21 Elektromagnetisch betätigbare Stellvorrichtung
PCT/EP1995/004970 WO1996019643A1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare stellvorrichtung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP00123025A Division EP1069285B1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung

Publications (2)

Publication Number Publication Date
EP0748416A1 true EP0748416A1 (de) 1996-12-18
EP0748416B1 EP0748416B1 (de) 2002-04-17

Family

ID=6917724

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00123025A Expired - Lifetime EP1069285B1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung
EP95942673A Expired - Lifetime EP0748416B1 (de) 1994-12-21 1995-12-15 Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00123025A Expired - Lifetime EP1069285B1 (de) 1994-12-21 1995-12-15 Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung

Country Status (4)

Country Link
US (1) US5813653A (de)
EP (2) EP1069285B1 (de)
DE (4) DE9420463U1 (de)
WO (1) WO1996019643A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19518056B4 (de) * 1995-05-17 2005-04-07 Fev Motorentechnik Gmbh Einrichtung zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung und Verfahren zur Ansteuerung
DE19747009C2 (de) * 1997-10-24 2000-11-16 Daimler Chrysler Ag Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils
DE19822907B4 (de) * 1998-05-22 2006-07-27 Fev Motorentechnik Gmbh Elektromagnetischer Aktuator mit gelenkig abgestützter Rückstellfeder
US6091314A (en) * 1998-06-05 2000-07-18 Siemens Automotive Corporation Piezoelectric booster for an electromagnetic actuator
FR2783033B1 (fr) 1998-09-04 2006-06-02 Renault Agencement pour la commande electromagnetique d'une soupape
FR2790137B1 (fr) * 1999-02-19 2001-07-27 Sagem Module de rappel elastique et procede de fabrication d'un tel module
DE19919734A1 (de) * 1999-04-30 2000-11-02 Mahle Ventiltrieb Gmbh Verfahren und Vorrichtung zum Öffnen und Schließen eines Ventils eines Verbrennungsmotors
FR2817292B1 (fr) 2000-11-24 2003-01-24 Renault Procede de commande d'un moteur a combustion en vue d'optimiser le demarrage
JP2002188417A (ja) * 2000-12-21 2002-07-05 Honda Motor Co Ltd 内燃機関の電磁式動弁装置
FR2838864B1 (fr) 2002-04-18 2004-06-11 Renault Sa Actionneur lineaire electromagnetique de soupape comportant un dispositif de rappel a raideur variable
US20040079306A1 (en) * 2002-10-23 2004-04-29 Norton John D. Variable lift electromechanical valve actuator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1471861A (en) * 1921-09-07 1923-10-23 Perrault Oscar Louis Valve-actuating mechanism for internal-combustion engines
GB1391955A (en) * 1972-07-12 1975-04-23 British Leyland Austin Morris Actuating internal combustion engine poppet valves
DE2630512A1 (de) * 1976-07-07 1978-01-12 Daimler Benz Ag Ventilsteuerung, insbesondere fuer brennkraftmaschinen
DE3024109A1 (de) 1980-06-27 1982-01-21 Pischinger, Franz, Prof. Dipl.-Ing. Dr.Techn., 5100 Aachen Elektromagnetisch arbeitende stelleinrichtung
DE3025537A1 (de) * 1980-07-05 1982-06-03 Arthur Böhm Kunststoffverarbeitung, 8676 Schwarzenbach, Saale Einrichtung, insbesondere zur halterung von rohren von rohrpostsystemen in schutzrohren
US4649803A (en) * 1984-08-15 1987-03-17 The Garrett Corporation Servo system method and apparatus, servo valve apparatus therefor and method of making same
DE3513107A1 (de) * 1985-04-12 1986-10-16 Fleck, Andreas, 2000 Hamburg Elektromagnetisch arbeitende stelleinrichtung
DE3708373C1 (de) * 1987-03-14 1988-07-14 Fleck Andreas Verfahren zum Betreiben eines Einlassventiles einer Brennkraftmaschine
US4831973A (en) * 1988-02-08 1989-05-23 Magnavox Government And Industrial Electronics Company Repulsion actuated potential energy driven valve mechanism
DE3920976A1 (de) * 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg Elektromagnetisch arbeitende stelleinrichtung
DE4004876A1 (de) * 1990-02-16 1991-09-26 Ulrich Karrer Elektrisch betaetigte ventilsteuerung fuer periodisch betriebene ventile fuer kraftmaschinen
US5548263A (en) * 1992-10-05 1996-08-20 Aura Systems, Inc. Electromagnetically actuated valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9619643A1 *

Also Published As

Publication number Publication date
EP1069285A3 (de) 2001-05-02
US5813653A (en) 1998-09-29
DE59510173D1 (de) 2002-05-23
WO1996019643A1 (de) 1996-06-27
DE19581518D2 (de) 1997-02-27
EP0748416B1 (de) 2002-04-17
DE59510563D1 (de) 2003-03-27
EP1069285A2 (de) 2001-01-17
EP1069285B1 (de) 2003-02-19
DE9420463U1 (de) 1996-04-25

Similar Documents

Publication Publication Date Title
DE3814765C2 (de)
EP2016319B1 (de) Ventil mit einem elektromagnetischen antrieb
DE2757803A1 (de) Magnetventil
DE19733186A1 (de) Elektromagnetisch betätigbares Gaswechselventil für eine Kolbenbrennkraftmaschine
DE202008008650U1 (de) Magnetkern, Magnetbaugruppe sowie Kraftstoff-Injektor-Magnetventil
DE19751609B4 (de) Schmalbauender elektromagnetischer Aktuator
EP0748416A1 (de) Elektromagnetisch betätigbare stellvorrichtung
DE3817368C2 (de)
EP0867898B1 (de) Elektromagnetisch arbeitende Stelleinrichtung
DE1550632A1 (de) Elektrohydraulisches Ventil
DE3146590A1 (de) Gasarmatur mit einem mit einem elektromagneten und einem reglerantrieb in wirkverbindung stehenden ventilkoerper
DE3927150A1 (de) Magnetventil mit kurzhubigem magnetanker
EP1288481A2 (de) Elektromagnetischer Stellantrieb
DE10014113C5 (de) Solenoid-Ventilantriebsvorrichtung
DE19750228C1 (de) Vorrichtung zum Betätigen eines Gaswechselventils mit einem elektromagnetischen Aktuator
DE19506566A1 (de) Elektromagnetische Hubventil-Betätigungsvorrichtung
WO2001057389A2 (de) Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge
DE19608061C2 (de) Elektromagnetische Ventilbetätigung
DE3928066A1 (de) Vorrichtung zur elektromagnetischen steuerung eines gaswechsel-ventils einer hubkolben-brennkraftmaschine
DE19618272A1 (de) Magnetventil
DE10317644A1 (de) Elektromagnetischer Aktuator mit unsymmetrischer Magnetkreisauslegung zur Betätigung eines Gaswechselventils
DE10010048C1 (de) Vorrichtung zum Betätigen eines Gaswechselventils mit einem elektromagnetischen Aktuator
EP1295302A1 (de) Anker für einen elektromagnetischen aktuator mit gesinterter ankerplatte
DE19913788C1 (de) Vorrichtung zum Betätigen eines Gaswechselventils einer Brennkraftmaschine
DE29521959U1 (de) Ventil mit einem Elektromagnetantrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FEV MOTORENTECHNIK GMBH

17Q First examination report despatched

Effective date: 20000324

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: ELECTROMAGNETICALLY ACTUATED VALVE IN AN INTERNAL COMBUSTION ENGINE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020417

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020417

REF Corresponds to:

Ref document number: 59510173

Country of ref document: DE

Date of ref document: 20020523

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071221

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701