DE1250789B - Verfahren zum Züchten eines epitaktisch gewachsenen Einkristalles mit Hilfe einer Transportreaktion - Google Patents

Verfahren zum Züchten eines epitaktisch gewachsenen Einkristalles mit Hilfe einer Transportreaktion

Info

Publication number
DE1250789B
DE1250789B DENDAT1250789D DE1250789DA DE1250789B DE 1250789 B DE1250789 B DE 1250789B DE NDAT1250789 D DENDAT1250789 D DE NDAT1250789D DE 1250789D A DE1250789D A DE 1250789DA DE 1250789 B DE1250789 B DE 1250789B
Authority
DE
Germany
Prior art keywords
gallium
gap
layer
gaas
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DENDAT1250789D
Other languages
English (en)
Inventor
Summit NJ. Carl John Frosch (V. St. A.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Western Electric Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication date
Publication of DE1250789B publication Critical patent/DE1250789B/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/072Heterojunctions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Description

BUNDESREPUBLIK DEUTSCHLAND
DEUTSCHES
PATENTAMT
AUSLEGESCHRIFT
Int. Cl.:
C 3 0 B 2 5 / 0 2 T
BOIj
Deutsche Kl.: 12 g-17/32
Nummer: 1250789
Aktenzeichen: W 34363IV c/12 g
Anmeldetag: 25. April 1963
Auslegetag: 28. September 1967
Die Erfindung bezieht sich auf ein Verfahren zum Züchten eines epitaktisch gewachsenen Einkristalls aus GaP, GaAs oder Mischungen hiervon auf einer Halbleiterunterlage mit Hilfe einer Ga2O-Transportreaktion.
Der hierbei stattfindende Transportmechanismus besteht in der Erzeugung des relativ flüchtigen Galliumsuboxyds, Ga2O, durch erstens teilweise Oxydation von Gallium, zweitens teilweise Reduktion des GalHumoxyds, Ga2O3, oder drittens die direkte Reaktion von Gallium mit Galliumoxyd, gefolgt von einer an der Abscheidungsfläche stattfindenden Umsetzung des Galliumsuboxyds mit dem gleichfalls in der Gasphase vorhandenen V-Element zur ΠΙ-V-Verbindung. Bei einem bekannten, für Laboratoriumszwecke entwickelten Verfahren wurde die an dritter Stelle genannte Darstellungsmöglichkeit von Ga2O in einem geschlossenen System zur Züchtung von GaI-liumphosphidkiistallen benutzt; denn man war dabei der Ansicht, daß die beiden ersten Darstellungsmöglichkeiten nachteilig sind, weil sie die Kontrolle einer zusätzlichen Dampf komponente erfordern, die zugleich auch mit dem V-Element unerwünscht reagieren kann. Bei dem bekannten Verfahren wurde deshalb eine 4:1 molare Mischung von Gallium und Gaüiumoxyd als die Galliumsuboxydquelle und roter Phosphor als V-Element-Vorrat auf gegenüberhegenden Enden eines abgeschmolzenen, evakuierten Quarzrohres benutzt. Längs des Quarzrohres wurde ein monoton ansteigender Temperaturverlauf aufrechterhalten. Die Phosphorquelle lag dabei am kühleren Rohrende. Die Minimaltemperatur war vom Dampfdruck des Phosphors und die Maximaltemperatur von der Flüchtigkeit des Galliumsuboxyds bestimmt Dieses Verfahren hat aber den entscheidenden Nachteil, daß übergegangener Phosphordampf auch mit der Galliumsuboxydquelle unter Bildung einer Galliumphospbidschicht auf der Gallium-Galliumoxyd-Mischung reagiert und damit dieselbe vom Reaktionsraum absperrt und die weitere Ga2O-Lieferung bereits nach wenigen Minuten unterbindet. Während dieser Zeitspanne konnten sich lediglich relativ kleine Kristalle, überwiegend sogenannte »Whisker«, in einer benachbart zur Ga2O-Quelle gelegenen Rohrzone bilden. Die gegen diesen Blockierungseffekt getroffenen Schutzmaßnahmen (kapillare Drosselstrecken u. dgl.) führten aber zu keinem befriedigenden Ergebnis. Dieses bekannte Verfahren ist daher keinesfalls im Rahmen einer großtechnischen Halbleiterbauelementfertigung verwendbar.
Aufgabe der Erfindung ist es daher, ein Züchtungsverfahren zu schaffen, das sich leicht steuern läßt und Verfahren zum Züchten eines epitaktisch
gewachsenen Einkristalls mit Hilfe einer
Transportreaktion
Anmelder:
Western Electric Company Incorporated,
New York, N. Y. (V. St. A.)
Vertreter:
Dipl.-Ing. H. Fecht, Patentanwalt,
Wiesbaden, Hohenlohestr. 21
Als Erfinder benannt:
Carl John Frosch, Summit, N. J. (V. St. A.)
Beanspruchte Priorität:
V. St. v. Amerika vom 9. JuU 1962 (208 365)
sich daher insbesondere auch für die Halbleiterbauelementfertigung eignet und die obigen Nachteile nicht besitzt.
Zur Lösung dieser Aufgabe "wird bei einem Verfahren zum Züchten eines epitaktisch auf einer Halbleiterunterlage gewachsenen Einkristalls aus Galliumphosphid, Galliumarsenid oder Mischungen hiervon mit Hilfe einer GaaO-Transportreaktion, bei der aus einem gaUiumhaltigen Material gasförmiges Ga2O gebildet, mit einer Phosphor bzw. Arsen enthaltenden gasförmigen Verbindung umgesetzt und Galliumphosphid bzw. Galliumarsenid auf der auf niedrigerer Temperatur als die beiden Materialien gehaltenen Unterlage aus der Gasphase abgeschieden wird, erfindungsgemäß das Ga2O und die Phosphor bzw. Arsen enthaltende Verbindung durch Einwirkenlassen einer wasserstoffhaltigen Gasmischung, die 7,6 · 10~3 bis 760 Torr Wasserdampf enthält, auf das galliumhaltige Material und auf ein Phosphor bzw. Arsen lieferndes Material erzeugt, wobei beide Materialien auf einer Temperatur gehalten werden, die in der Gasmischung zu einem Ga2O-Partialdruck und einem Phosphor- bzw. Arsenpartialdruck führt, der zumindest gleich dem Sättigungsdruck bei 7000C des Ga8O bzw. des Phosphor bzw. Arsens ist.
709 649/399
Wird beispielsweise elementares Gallium als der Minimaltemperatur in der Umgebung des Ofens 11 galliumhaltige Vorrat verwendet, so spielt sich etwa mit einem wachsenden Gradienten zur Maximalfolgender Reaktionsmechanismus ab: temperatur im Mittelpunkt des heißen Ofens 12. Im
Am Galliumvorrat heißesten Teil oder dessen Nähe ist ein Quarzschiffchen
2 Ga -f H2O — Ga8O + H2 (1) 5 13 angeordnet von 5,08 · 1,27 · 1,27 cm, welches das
.,„j „„ α tr„iuiÄ.v»-,™+» i„ galliumhaltige Vorrats-Material enthält. Der. Gasstrom
und an der Halbleiterunterlage £ ^^ g^ ^ ^ ^^ u zum Audaß ^
Ga2O + P2 (oder As2) + H2 wie durch Pfeile angedeutet ist. Ein Substrat 16 ist vom
"-*■ ιγ,ρ (nA ο (- δ \ _l u η /οι Vorrat gesehen stromabwärts angeordnet und be-
«_, 2 uar (.oder 2 UaAs) + H2U (2) M ^^ ^ auf emer Temperatlu.( die tiefer ^8 die des
Bei einem Arbeiten im abgeschlossenen System tritt Vorrats ist.
der nach der Reaktion (1) entstehende Wasserstoff Ein weiteres Quarzschiffchen 17 befindet sich in dem in die an der Halbleiterunterlage nach rechts ver- Ofenteil mit niedrigerer Temperatur und enthält als laufende Reaktion (2) wieder ein, während das nach Vorratsmaterial Phosphor oder Arsen und/oder eine der Reaktion (2) entstehende Wasser in die am 15 Verunreinigung zur Dotierung des gezüchteten Kri-Galliumvorrat ablaufende Reaktion (1) wieder eintritt. stalls. In einigen Fällen ist es notwendig, Phosphor Das erforderliche Wasser erschöpft sich daher nicht. bzw. Arsen und das Dotierungsmittel in verschiedene
Gegebenenfalls mit dem Galliumvorrat direkt Behälter einzusetzen, falls diese. Komponenten auf reagierende Phosphor bzw. Arsen würde zwar am verschiedenen Temperaturen gehalten werden sollen. Vorrat zur momentanen Bildung der IH-V-Verbindung 2° Dies erlaubt eine unabhängige Kontrolle des Schichtführen, letztere wird aber — wiederum wegen des Widerstands. Das Quarzrohr ist geteilt, um die Entvorhandenen Wassers — sofort zu Ga2O umgesetzt. nähme von Substrat, Vorratsmaterial und Verunreini-Diese Reaktion verläuft dabei wie nach Gleichung (2), gung zu gestatten, ohne, das ganze Rohr zu zerstören, aber dieses Mal in umgekehrter Richtung, also nach Ein Rauchabzug 18 ist am Auslaßende angeordnet,
links, und zwar wegen der am Galliumvorrat herr- 25 . Die nachstehenden Beispiele werden als bevorzugte sehenden höheren Temperatur. Ein Blockierungs- Ausführungsformen des erfindungsgemäßen Verfaheffekt der Ga2O-Quelle tritt daher im Gegensatz zu rens gegeben,
dem vorstehend beschriebenen bekannten Verfahren R.icni.i T
nicht auf.
Wird beispielsweise Ga2O8 als galliumhaltiger Vor- 3° Gereinigtes Wasserstoffgas mit Wasserdampf von
rat verwendet, so bildet sich aus diesem Gas Ga2O 0,3 mm Hg Partialdruck wurde in das Reaktionsrohr
nachfolgender Reaktion: mit einer Geschwindigkeit von lOOccm/min einge-
na η λ. ο w _. γ« η χ ι η λ η\ lassen. Das Quarzschiffchen 13 enthielt als Vorrats-
. material 10 g undotiertes GaP. Der Vorrat wurde auf
An der Halbleiterunterlage findet wiederum die 35 einer Temperatur von 95O0C gehalten. Bei dieser vorstehend angegebene Reaktion (2) nach rechts statt. Strömungsgeschwindigkeit und Temperatur war das Man sieht daher, daß sich bei Verwendung von Ga2O3 Trägergas praktisch mit Dampf der Verbindung Ga2O als galliumhaltiger Vorrat der Wasserstoff mit der Zeit gesättigt, und die tatsächliche Sättigungstemperatur erschöpft. Es empfiehlt sich daher, in diesem Fall in betrug 9250C. Ein Schiffchen 17 im kühlen Ende des einem strömenden System zu arbeiten. 40 Ofens enthielt einen Vorrat von Schwefel als Verun-
Wird beispielsweise GaP oder GaAs als gemeinsame reinigung bei einer Temperatur von 65° C. Als Substrat Vorratsquelle für die Lieferung von sowohl des Ga2O in diesem Beispiel diente ein Plättchen aus GaP vom als auch des Phosphors bzw. Arsens verwendet, so p-Typ mit etwa 7 mm Durchmesser und 0,6 mm Dicke spielt sich an diesem Vorrat dieselbe Reaktion wie mit einem Widerstand von 0,2 Ohm/cm. Die Obernach Gleichung (2), aber nach links ab. Die an der 45 fläche des Substrats wurde poliert und in der Kristall-Halbleiterunterlage ablaufende Reaktion ist dann die ebene (Tl 1) geätzt. Das Substrat wurde auf einer Reaktion (2) nach rechts. Hieraus ist ersichtlich, daß Temperatur von 87O0C gehalten. Nach löstündiger sich weder der Wasserstoff noch das Wasser erschöpft, Abscheidung war eine epitaktische Schicht auf der da bei dieser Verfahrensart die Reaktion (2) an den Unterlage gebildet. Die Schicht war 0,025 mm dick, verschiedenen Stellen in unterschiedlicher Richtung 50 vom η-Typ und hatte einen Widerstand von etwa verläuft; diese Verfahrensart kann daher auch in einem 0,1 Ohm/cm. Die Röntgenstrahlenuntersuchung zeigte, geschlossenen System durchgeführt werden. Die Ver- daß die Schicht ein hochwertiger Einkristall mit der wendung von GaP oder GaAs als gemeinsame Vor- Orientierung (Ϊ11) war. Dioden, die in üblicher Technik ratsquelle ist vorteilhaft, weil eine gesonderte P- bzw- aus diesem epitaktisch gebildeten n-p-Übergang her-As-Elementquelle entfallen kann. 55 gestellt wurden, zeigten gute Gleichrichtereigen-
Es sei bemerkt, daß bei Verwendung einer Gallium- schäften mit Sperrspannungen in Höhe von 35 V.
Galliumoxyd-Mischung wie bei dem bekannten Ver- Diese Grundvorschrift wurde in allen nachstehenden fahren die Reaktionen (1) und (3) gleichzeitig neben Beispielen mit Ausnahme der beschriebenen Abändeder direkten Reaktion von Ga mit Ga2O3 ablaufen rungen befolgt,
würden. 60 .
Die Erfindung wird an Hand der Zeichnung, deren B e 1 s ρ 1 e 1 11
einzige Figur eine schematische Dai stellung einer Eine einkristalline Schicht aus Galliumarsenid
Apparatur zur Durchführung des erfindungsgemäßen wurde auf einer GaUiumphosphidunterlage gezüchtet. Verfahrens zeigt, näher erläutert. Das Vorratsmaterial war reines GaAs bei 9500C, und
Die Apparatur besteht aus einem Quarzrohr 10 von 65 als Substrat diente mit Magnesium dotiertes GaP in 2,54 mm innerem Durchmesser, welches durch zwei der Kristallorientierung (TlI) bei 9000C. Die Eintemperaturgeregelte öfen 11 und 12 läuft. Der Tempe- kristallschicht war nach 4V2stündiger Wachstumszeit raturverlauf innerhalb des Quarzrohres 10 zeigt eine 20 μ dick.

Claims (3)

  1. Beispiel III ^^ ^ert zusätzlich Zink als Akzeptorverunreinigung zwecks Erhalt einer Schicht vom p-Typ. Die
    Auf einer Galflumarsenidunterlage wurde eine Ein- Schicht war nach löstündigem Wachstum 0,0508 mm
    kristallschicht aus Galliumphosphid gezüchtet. Das dick. Der entstandene pn-übergang zeigte gute Gleich-
    Trägergas war Wasserstoff mit 4,57 mm Hg Wasser- 5 richtereigenschaften.
    dampfdruck, und die Strömungsgeschwindigkeit be- .
    trug lOOcem/min. Das Vorratsmaterial war reines Beispiel VIII
    GaP bei 9500C. Die Unterlage war undotiertes GaAs In diesem Beispiel war das Trägergas Wasserstoff
    in der Orientierung (100) bei 9000C. Die Einkristall- mit einem Wasserdampfteildruck von 2,3 mm Hg.
    schicht wuchs um 1,016 mm in 164 Stunden. io Der Vorrat war reines GaP bei 1050° C, und die Unter-
    R . . , lage war undotiertes GaAs in der Orientierung (100)
    Beispiel iv bei 940°c. Eine einkristalline GaP-Schicht von
    Eine Galh'umarsemdschicht wurde auf einer Gallium- 0,254 mm Dicke wurde nach 20stündigem Wachstum
    arsenidunterlage nach dem gleichen Vorgang wie bei erhalten.
    BeispielIII gezüchtet mit der Ausnahme, daß der 15 Beispiel DC
    Wasserdampfgehalt auf 2,30 mm Hg herabgesetzt
    wurde. Es wurde eine Einkristallschicht mit einer Dies Beispiel erläutert die Züchtung einer ein-Dicke von 0,254 mm nach einer Wachstumsperiode kristallinen Mischung von GaAs und GaP. Es wurde von 22 Stunden erhalten. das gleiche Grundverfahren wie in den vorangegan-. . t ao genen Beispielen benutzt und zwei Vorratsschiffchen α e 1 s ρ 1 e 1 ν mit je 10 g GaAs und GaP verwendet. Beide Vorräte In diesem Beispiel war das Trägergas Wasserstoff wurden auf 9500C gehalten. Das Trägergas war mit 1,1 Teilen CO2 auf 100 Teile H2 bei einer Strö- Wasserstoff mit einer Strömungsgeschwindigkeit von mungsgeschwindigkeit von 270 ccm/min. Das Ver- 100 ccm/min. Nach 16 Stunden war eine gleichmäßige fahren war im übrigen das gleiche wie bei Beispiel III. 25 Schicht von 0,0254 mm Dicke gebildet. Die Röntgen-Es wurden große Einkristallfasern auf der Unterlage in untersuchung zeigte, daß die Schicht ein Einkristall einer Wachstumsperiode von 20 Stunden erhalten. mit der Zusammensetzung GaP0>5 GaAs0^5 war. Die . . Mischzusammensetzung wurde auch durch eine transit e 1 s ρ 1 e 1 VI parente tiefrote Farbe angezeigt, die einen Wechsel in Dies Beispiel wurde mit reinem Wasserstoff als 30 der Energielücke der Schicht auf einen Wert wieder-Trägergas und einer Strömungsgeschwindigkeit von gibt, der zwischen GaAs und GaP liegt. Bei geeigneter 100 ccm/min durchgeführt. Das Vorratsmaterial war Wahl der relativen Vorratstemperaturen des GaAs P2O5 bei einer Temperatur von 200° C und reines und GaP kann jede gewünschte Mischzusammen-Gallium bei einer Temperatur von 950° C. Diese Vor- setzung erhalten werden,
    ratsstoffe waren in getrennten Behältern, wobei das 35 .
    P2O? am kälteren Ende des Stroms stand, wie sehe- Beispiel λ
    matisch bei Ziffer 17 in der Figur gezeigt, und das In diesem Beispiel wurde die Strömungsgeschwindig-Gallium in der heißeren Stellung, wie Schiffchen 13 in keit auf 400 ccm/min erhöht und die Temperatur des der Figur. Als Substrat bei diesem Versuchslauf diente GaP-Vorrats auf 11000C gesteigert. Die Unterlage undotiertes GaAs (100) bei 9000C. Eine einkristalline 40 war GaAs in der Orientierung (TlI) bei 10500C. Die GaP-Schicht von 0,0508 mm Dicke wurde nach Wachstumsgeschwindigkeit bei diesem Versuchslauf 16stündigem Wachstum erhalten. Der Vorteil bei der war annähernd 0,0762 mm/Std., womit das ausVerwendung getrennter Vorräte von Gallium und nehmend schnelle Wachstum beleuchtet wird, das mit Phosphor wie bei diesem Beispiel ist der, daß die dem erfindungsgemäßen Verfahren erreichbar ist. Die relativen, durch das Trägergas verflüchtigten Anteile 45 erhaltene Kristallschicht von 0,7620 mm Dicke war leicht geregelt werden können, indem man die Vor- von außergewöhnlich guter Qualität und Gleichratstemperaturen unabhängig voneinander ändert. förmigkeit.
    Man erkennt, daß trotz der Verwendung von anfänglich
    reinem Wasserstoff als Trägergas Wasserdampf zur Patentansprüche:
    Oxydation des Vorrats aus elementarem Gallium zu so 1. Verfahren zum Züchten eines epitaktisch auf Ga2O von der nachstehenden Reaktion geliefert wird: einer Halbleiterunterlage gewachsenen Einkristalls rn 1 pO SHO-I-P aus Galliumphosphid, Galliumarsenid oder ^1+ 2 5 2 "·" 2 Mischungen hiervon mit Hilfe einer Ga2O-Trans-Der zur Kombination mit Ga2O zwecks Bildung portreaktion, bei der aus einem galhumhaltigen von GaP notwendige Phosphor ist also vorhanden. 55 Material gasförmiges Ga2O gebildet wird, mit R . ^ einer Phosphor bzw. Arsen enthaltenden gasförig ei spiel VJl migen Verbindung umgesetzt und Galliumphosphid Bei diesem Beispiel war das ursprüngliche Trägergas bzw. Galliumarsenid auf der auf niedrigerer wiederum reiner Wasserstoff mit 100 ccm/min. Das Temperatur als die beiden Materialien gehaltenen Vorratsmaterial war GaP bei 950° C und ZnO strom- 60 Unterlage aus der Gasphase abgeschieden wird, aufwärts bei 65O0C. Das Substrat war GaAs vom da d urchgekennzeichnet,daßdasGa2O η-Typ in der Kristallrichtung (100) bei 9000C. Das und die Phosphor bzw. Arsen enthaltende Ver-Zinkoxyd diente dem doppelten Zweck der Lieferung bindung durch Einwirkenlassen einer wasserstoffvon Sauerstoff im Trägergas zur Umwandlung des haltigen Gasmischung, die 7,6 · 10~2 bis 760 Torr GaP in Ga2O nach der Reaktion 65 Wasserdampf enthält, auf das galliumhaltige Material und auf ein Phosphor bzw. Arsen lieferndes
    ZnO + H2* Zn + H2O Material erzeugt wird, wobei beide Materialien auf
    2 GaP + H2O —* Ga2O + 2 Zn + H2O einer Temperatur gehalten werden, die in der Gas-
    • mischung zu einem Ga2O-Partialdruck und einem • Phosphor- bzw. Arsenpartialdruck führt, der zu-, mindest gleich dem Sättigungsdruck bei 7000C des Ga2O bzw. des Phosphors bzw. des Arsens ist.
  2. 2. Verfahren nach Anspruch 1, dadurch gekenn-« zeichnet, daß Galliumphosphid oder Galliumarsenid für sowohl das galliumhaltige als auch für das Phosphor bzw. Arsen liefernde Material verwendet wird.
  3. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in einem strömenden System die Wasserstoff und "Wasserdampf enthaltende Gasmischung über die Materialien geleitet wird.
    In Betracht gezogene Druckschriften:
    Deutsche Patentschrift Ni. 865 160;
    Journal of electrochem. Soc, 108 (1961), S. 548.
    Hierzu 1 Blatt Zeichnungen
DENDAT1250789D 1962-07-09 Verfahren zum Züchten eines epitaktisch gewachsenen Einkristalles mit Hilfe einer Transportreaktion Pending DE1250789B (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US208365A US3197411A (en) 1962-07-09 1962-07-09 Process for growing gallium phosphide and gallium arsenide crystals from a ga o and hydrogen vapor mixture

Publications (1)

Publication Number Publication Date
DE1250789B true DE1250789B (de) 1967-09-28

Family

ID=22774325

Family Applications (1)

Application Number Title Priority Date Filing Date
DENDAT1250789D Pending DE1250789B (de) 1962-07-09 Verfahren zum Züchten eines epitaktisch gewachsenen Einkristalles mit Hilfe einer Transportreaktion

Country Status (7)

Country Link
US (1) US3197411A (de)
CH (1) CH443232A (de)
DE (1) DE1250789B (de)
ES (1) ES287732A1 (de)
GB (1) GB1042933A (de)
NL (1) NL292373A (de)
SE (1) SE309632B (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1242580B (de) * 1963-10-28 1967-06-22 Philips Nv Verfahren zum Herstellen oder Umkristallisieren von Borphosphid
DE1544259A1 (de) * 1965-02-05 1970-07-09 Siemens Ag Verfahren zum Herstellen von gleichmaessigen epitaktischen Aufwachsschichten
US3523045A (en) * 1965-03-01 1970-08-04 North American Rockwell Coherent radiation device
US3397094A (en) * 1965-03-25 1968-08-13 James E. Webb Method of changing the conductivity of vapor deposited gallium arsenide by the introduction of water into the vapor deposition atmosphere
DE1289830B (de) * 1965-08-05 1969-02-27 Siemens Ag Verfahren zum Herstellen epitaktischer Aufwachsschichten aus halbleitenden A B-Verbindungen
US3476593A (en) * 1967-01-24 1969-11-04 Fairchild Camera Instr Co Method of forming gallium arsenide films by vacuum deposition techniques
DE1901319A1 (de) * 1969-01-11 1970-08-06 Siemens Ag Verfahren zur Herstellung von hochreinem Galliumarsenid
GB2205328B (en) * 1987-05-25 1991-08-21 Nippon Sheet Glass Co Ltd Method of manufacturing phosphorus compound film
US5348911A (en) * 1987-06-30 1994-09-20 Aixtron Gmbh Material-saving process for fabricating mixed crystals
DE3721638A1 (de) * 1987-06-30 1989-01-12 Aixtron Gmbh Materialsparendes verfahren zur herstellung von mischkristallen
JP5575482B2 (ja) 2006-11-22 2014-08-20 ソイテック 単結晶iii−v族半導体材料のエピタキシャル堆積法、及び堆積システム
US9580836B2 (en) * 2006-11-22 2017-02-28 Soitec Equipment for high volume manufacture of group III-V semiconductor materials
EP2094406B1 (de) 2006-11-22 2015-10-14 Soitec Verfahren, vorrichtung und absperrventil für die herstellung von einkristallinen gruppe iii-v halbleiter material

Also Published As

Publication number Publication date
CH443232A (de) 1967-09-15
ES287732A1 (es) 1963-12-16
SE309632B (de) 1969-03-31
GB1042933A (en) 1966-09-21
US3197411A (en) 1965-07-27
NL292373A (de)

Similar Documents

Publication Publication Date Title
DE1444511A1 (de) Verfahren zur Herstellung von epitaxialen Filmen
DE2609907C2 (de) Verfahren zum epitaktischen Abscheiden von einkristallinem Galliumnitrid auf einem Substrat
DE1250789B (de) Verfahren zum Züchten eines epitaktisch gewachsenen Einkristalles mit Hilfe einer Transportreaktion
DE2738329A1 (de) Elektrolumineszierende galliumnitridhalbleiteranordnung und verfahren zu deren herstellung
DE3417395A1 (de) Verfahren zur bildung einer dotierten schicht und unter verwendung dieses verfahrens hergestelltes halbleiterbauelement
DE3123233C2 (de) Verfahren zur Herstellung von CdS-,CdSe-,ZnS-oder ZnSe-Halbleiterkristallen
DE2100692A1 (de) Verfahren zum Herstellen einer epitaxisch gewachsenen Schicht eines GaAs tief 1 χ P tief χ Halbleitermaterial
DE1934369A1 (de) Verfahren zum Herstellen von Einkristallen aus III-V-Verbindungen
DE2544286C3 (de) Verfahren zum epitaktischen Abscheiden einer III-V-Halbleiterkristallschicht auf einem Substrat
DE69207503T2 (de) Einkristall einer Halbleiterverbindung
DE3689387T2 (de) Verfahren zur Herstellung einer Dünnschicht aus GaAs.
DE2148851A1 (de) Verfahren zur Kristallzuechtung
DE1265716B (de) Verfahren zum Herstellen von AB-Verbindungen in kristalline Form
DE1161036B (de) Verfahren zur Herstellung von hochdotierten AB-Halbleiterverbindungen
DE1519812B1 (de) Verfahren und vorrichtung zum herstellen epitaktisch auf einer einkristallinen unterlage aufgewachsener schichten aus germanium
DE112020004152T5 (de) Verfahren zum Bilden einer Schicht und zum Herstellen einer Halbleitervorrichtung
AT241537B (de) Verfahren zum Züchten eines Einkristalls aus Galliumphosphid, Galliumarsenid oder deren Mischungen
DE1233833B (de) Verfahren zur Herstellung eines Einkristalls, insbesondere Halbleitereinkristalls
DE1592117A1 (de) Verfahren zur Herstellung von haarfeinen alpha-Aluminiumoxydkristallteilchen und Geraet zur Durchfuehrung dieser Verfahren
DE2034384C3 (de) Schichtkörper und Verfahren zu dessen Herstellung
DE1519812C (de) Verfahren und Vorrichtung zum Herstellen epitaktisch auf einer einkristallinen Unterlage aufgewachsener Schichten aus Germanium
DE1240826B (de) Verfahren zur Herstellung dotierter einkristalliner Halbleiterkoerper durch epitaktisches Aufwachsen aus der Dampfphase
DE1544241C (de) Verfahren zum Abscheiden einer Schicht aus Galliumarsenid auf einer Unterlage
DE1289830B (de) Verfahren zum Herstellen epitaktischer Aufwachsschichten aus halbleitenden A B-Verbindungen
AT232477B (de) Verfahren zum Herstellen von hochreinem, insbesondere einkristallinem Silizium