DE10031236A1 - Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien - Google Patents

Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien

Info

Publication number
DE10031236A1
DE10031236A1 DE10031236A DE10031236A DE10031236A1 DE 10031236 A1 DE10031236 A1 DE 10031236A1 DE 10031236 A DE10031236 A DE 10031236A DE 10031236 A DE10031236 A DE 10031236A DE 10031236 A1 DE10031236 A1 DE 10031236A1
Authority
DE
Germany
Prior art keywords
acid
acids
rna
composition according
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10031236A
Other languages
English (en)
Inventor
Vera Hollaender
Ralph Wyrich
Uwe Oelmueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiagen GmbH
Original Assignee
Qiagen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiagen GmbH filed Critical Qiagen GmbH
Priority to DE10031236A priority Critical patent/DE10031236A1/de
Priority to AT01947306T priority patent/ATE374743T1/de
Priority to EP01947306A priority patent/EP1294676B1/de
Priority to US10/312,745 priority patent/US7270953B2/en
Priority to ES01947306T priority patent/ES2295177T3/es
Priority to AU6903101A priority patent/AU6903101A/xx
Priority to DE50113086T priority patent/DE50113086D1/de
Priority to CA2412534A priority patent/CA2412534C/en
Priority to ES07010591T priority patent/ES2373784T3/es
Priority to AT07010591T priority patent/ATE524431T1/de
Priority to DK01947306T priority patent/DK1294676T3/da
Priority to DK07010591.1T priority patent/DK1820793T3/da
Priority to AU2001269031A priority patent/AU2001269031B2/en
Priority to PCT/EP2001/005888 priority patent/WO2002000599A1/de
Priority to EP07010591A priority patent/EP1820793B1/de
Priority to JP2002505349A priority patent/JP5795455B2/ja
Priority to EP01953178A priority patent/EP1296932B1/de
Priority to AU75685/01A priority patent/AU783922B2/en
Priority to PL01360705A priority patent/PL360705A1/xx
Priority to CA2410388A priority patent/CA2410388C/en
Priority to CNB01811945XA priority patent/CN1250520C/zh
Priority to US10/312,432 priority patent/US6861213B2/en
Priority to MXPA02012261A priority patent/MXPA02012261A/es
Priority to DE50113941T priority patent/DE50113941D1/de
Priority to JP2002505350A priority patent/JP5657847B2/ja
Priority to CZ20024129A priority patent/CZ20024129A3/cs
Priority to AT01953178T priority patent/ATE394363T1/de
Priority to HU0301342A priority patent/HUP0301342A2/hu
Priority to SK1802-2002A priority patent/SK18022002A3/sk
Priority to PCT/EP2001/007281 priority patent/WO2002000600A1/de
Priority to BR0112002-6A priority patent/BR0112002A/pt
Publication of DE10031236A1 publication Critical patent/DE10031236A1/de
Priority to AU2007201583A priority patent/AU2007201583B2/en
Priority to US11/890,415 priority patent/US7682790B2/en
Priority to JP2012038487A priority patent/JP2012135317A/ja
Priority to JP2014203545A priority patent/JP2015027310A/ja
Priority to JP2015116549A priority patent/JP2015212273A/ja
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/64Quaternary ammonium compounds having quaternised nitrogen atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft neue Kompositionen zur Isolierung und/oder Stabilisierung von Nukleinsäuren in Materialien biologischer Herkunft. Die Kompositionen umfassen als einen wesentlichen Bestandteil eine kationische Verbindung der allgemeinen Formel DOLLAR A Y·+·R¶1¶R¶2¶R¶3¶R¶4¶X·-· DOLLAR A worin DOLLAR A Y Stickstoff oder Phosphor DOLLAR A R¶1¶, R¶2¶, R¶3¶ und R¶4¶ unabhängig voneinander einen unverzweigten oder verzweigten C¶1¶-C¶20¶-Alkylrest und/oder einen C¶6¶-C¶20¶-Arylrest sowie einen C¶6¶-C¶26¶-Aralkylrest und DOLLAR A X·-· ein Anion einer anorganischen oder organischen, ein- oder mehrbasischen Säure DOLLAR A bedeuten können.

Description

Die vorliegende Erfindung betrifft neue Kompositionen zur Isolierung und/oder Stabilisierung von Nukleinsäuren in Materialien biologischer Herkunft. Die Komposition umfassen als einen wesentlichen Bestandteil eine kationische Verbindung der allgemeinen Formel
Y+R1R2R3R4X-
worin
Y Stickstoff oder Phosphor,
R1, R2, R3 und R4 unabhängig voneinander einen unverzweigten oder verzweigten C1-C20-Alkylrest und/oder einen C6-C20-Arylrest sowie einen C6-C26-Aralkylrest und
X- ein Anion einer anorganischen oder organischen, ein- oder mehrbasischen Säure
bedeuten können
und mindestens einen Protonendonor als Additiv.
Bevorzugt sind Kompositionen, in denen die kationische Verbindungen aus einem Ammoniumsalz besteht, in dem R1 einen höheren Alkylrest - vorzugsweise mit 12, 14 oder 16 Kohlenstoffatomen - und R2, R3 und R4 jeweils eine Methylgruppe bedeutet.
Bevorzugt sind weiterhin Kompositionen, in denen R1 eine Aralkylgruppe - vorzugsweise eine Benzylgruppe -, R2 einen höheren Alkylrest - vorzugsweise mit 12, 14 oder 16 Kohlenstoffatomen - und R3 und R4 eine Methylgruppe bedeutet.
Als Anionen werden Bromid, Chlorid, Phosphat, Sulfat, Formiat, Acetat, Propionat, Oxalat oder Succinat bevorzugt.
C1-C6-Alkyl steht im allgemeinen für einen verzweigten oder unverzweigten Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatom(en), der gegebenenfalls mit einem oder mehreren Halogenatom(en) - vorzugsweise Fluor - substituiert sein kann, die untereinander gleich oder verschieden sein können. Als Beispiele seien folgende Kohlenwasserstoffreste genannt:
Methyl, Ethyl, Propyl, 1-Methylethyl(iso-Propyl), Butyl, 1-Methylpropyl, 2- Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3- Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, 1- Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3- Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2methyl-propyl.
Höherer Alkylrest steht für einen verzweigten oder unverzweigten C7-C20- Alkyfrest der gegebenenfalls mit einem oder mehreren Halogenatom(en) - vorzugsweise Fluor - substituiert sein kann, die untereinander gleich oder verschieden sein können. Als Beispiele seien folgende Kohlenwasserstoffreste genannt: verzweigtes oder unverzweigtes Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tetradecyl, Hexadecyl, Dodecadecyl und Eicosyl.
C3-C6-Alkenyl steht im allgemeinen für einen verzweigten oder unverzweigten Kohlenwasserstoffrest mit 3 bis 6 Kohlenstoffatom(en), mit einer oder ggf. mehreren Doppelbindungen, der gegebenenfalls mit einem oder mehreren Halogenatom(en) - vorzugsweise Fluor - substituiert sein kann, die untereinander gleich oder verschieden sein können. Als Beispiele seien folgende Kohlenwasserstoffreste genannt:
2-Propenyl (Allyl), 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1- Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3- Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3- Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 3-Methyl-4- pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-2-butenyl, 1,1- Dimethyl-3-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-2- butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-2-Butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2- Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2- propenyl und 1-Ethyl-2-methyl-2-propenyl.
C3-C6-Alkinyl steht im allgemeinen für einen verzweigten oder unverzweigten Kohlenwasserstoffrest mit 3 bis 6 Kohlenstoffatom(en), mit einer oder ggf. mehreren Dreifachbindungen, der gegebenenfalls mit einem oder mehreren Halogenatom(en) - vorzugsweise Fluor - substituiert sein kann, die untereinander gleich oder verschieden sein können. Als Beispiele seien folgende Kohlenwasserstoffreste genannt:
2-Propinyl (Propargyl), 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Methyl-2-propinyl, 2-Pentinyl, 3-pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 2-Methyl-2-butinyl, 3-Methyl-2- butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-3-butinyl, 1,1-Dimethyl-2- propinyl, 1,2-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 2-Methyl-2-pentinyl, 3-Methyl-2-pentinyl, 4-Methyl-2- pentinyl, 1-Methyl-3-pentinyl, 2-Methyl-3-pentinyl, 3-Methyl-3-pentinyl, 4-Methyl-3- pentinyl, 1-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-4-pentinyl, 1,1-Dimethyl- 2-butinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-2-butinyl, 1,2-Dimethyl-3-butinyl, 1,3-Dimethyl-2-butinyl, 1,3-Dimethyl-3-butinyl, 2,2-Dimethyl- 3-butinyl, 2,3-Dimethyl-2-butinyl, 2,3-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3- butinyl, 2-Ethyl-1-butinyl, 2-Ethyl-2-butinyl, 2-Ethyl-3-butinyl, 1,1,2-Trimethyl-2- propinyl, 1-Ethyl-1-methyl-2-propinyl und 1-Ethyl-2-methyl-2-propinyl.
Aryl steht - steht sofern nicht anders definiert - für einen aromatischen ein- oder mehrkernigen Rest mit 4 bis 22 C-Atomen, der ggf. ein oder zweit Heteroatome enthalten kann. Als Beispiele seien genannt: Phenyl, Naphthyl, Anthracyl bzw. Pyrol, Furan, Thiophen, Pyridin, Pyridazin, Pyrimidin oder Pyrazin, und der ggf. durch Halogen (F, Cl, Br, J) - vorzugsweise Fluor - oder durch eine Alkylgruppe unabhängig voneinander ein- oder mehrfach substituiert sein kann.
Aralkyl bedeutet einen ein- oder mehrkernigen Arylrest im Sinne der vorstehenden Definition, der über eine C1-C6-Alkylen-, C3-C6-Alkenylen- oder eine C3-C6- Alkinylenbrücke, für welche die Definition der C1-C6-Alkyl-, C3-C6-Akenyl und C3-C6- Alkinylgruppen entsprechend gelten, an die kationische Partialstruktur gebunden ist. Im Sinne der vorliegenden Erfindung wird die Benzylgruppe bevorzugt.
Als Gegenionen X- eignen sich bevorzugt alle Anionen von Halogenwasserstoffsäuren oder Anionen ein- oder zweibasischer organischer Säuren wie Acetat oder Oxalat, Malonat, Succinat oder Citrat.
Als Protonendonoren im Sinne der vorliegenden Erfindung sind in erster Linie gesättigte aliphatische Monocarbonsäuren, ungesättigte Alkenyl-carbonsäuren, gesättigte und/oder ungesättigte aliphatische C2-C6-Dicarbonsäuren, aliphatische Ketocarbonsäuren oder Ketodicarbonsäuren sowie Aminosäuren neben Mineralsäuren oder deren Salze allein oder in Kombination geeignet. Dabei können alle genannten organischen Säuren in unsubstituierter Form oder als substituierte Derivate eingesetzt werden, worunter - sofern nicht anders angegeben - die unsubstituierten oder ein bzw. mehrfach durch Hydroxyl-Gruppen substituierten Derivate bevorzugt werden.
Als gesättigte aliphatische Monocarbonsäuren im Sinne der vorliegenden Erfindung werden neben Ameisensäure vorzugsweise C1-C6-Alkyl-carbonsäuren verstanden, worunter Essigsäure, Propionsäure, n-Buttersäure, n-Valeriansäure, Isovaleriansäure, Ethyl-methylessigsäure (2-Methyl-buttersäure), 2,2- Dimethylpropionsäure (Pivalinsäure), n-Hexansäure, n-Octansäure, n-Decansäure sowie n-Dodecansäure (Laurinsäure) bevorzugt werden. Daneben können auch die sich von den genannten Säuren sich ableitenden Ketocarbonsäuren Verwendung finden.
Als ungesättigte Alkenyl-carbonsäuren im Sinne der Erfindung seien beispielsweise Acrylsäure (Propensäure), Methacrylsäure, Crotonsäure, iso-Crotonsäure sowie Vinylessigsäure genannt.
Bevorzugt im Sinne der vorliegenden Erfindung sind gesättigte aliphatische C2-C6- Dicarbonsäuren, wie zum Beispiel Oxalsäure, Malonsäure, Bersteinsäure, Glutarsäure oder Adipinsäure, worunter Oxalsäure und Bersteinsäure ganz besonders bevorzugt werden.
Besonders bevorzugt werden zur Lösung der erfidungsgemäßen Aufgabe aliphatische Hydroxi-di- und -tricarbonsäuren eingesetzt, worunter Tartronsäure, D- (+)-, L-(-)- oder DL-Äpfelsäure, (2R,3R)-(+)-Weinsäure, (2S,3S)-(-)-Weinsäure, meso-Weinsäure und Citronensäure ganz besonders bevorzugt werden.
Zur Lösung der vorliegenden Erfindungen eigenen sich daneben auch ungesättigte Dicarbonsäuren wie Malein- oder Fumarsäure oder ungesättigte Tricarbonsäuren, wie zum Beispiel Aconitsäure.
Im Sinne der vorliegenden Erfindung können jedoch auch aliphatische Ketodicarbonsäuren als Additive eingesetzt werden, wie z. B. Mesoxalsäure und Oxalessigsäure, worunter Oxalessigsäure ganz besonders bevorzugt wird.
Des weiteren können im Sinne der vorliegenden Erfindung Aminosäuren eingesetzt werden, worunter α-Aminosäuren - wie z. B. Aminoessigsäure (Glycin), α- Aminopropionsäure (Alanin), α-Amino-iso-valeriansäure (Valin), α-Amino-iso- capronsäure (Leucin) und α-Amino-β-methylvaleriansäure (Isoleucin) bevorzugt werden. Besonders bevorzugt findet dabei Glycin Verwendung.
Die genannte Protonendonoren können als Einzelsubstanzen bzw. in Form der reinen Stereoisomeren als auch in Mischungen eingesetzt werden.
Als weitere Additive können im Sinne der vorliegenden Erfindung ebenfalls Mineralsäuren und deren Salze eingesetzt werden. Bevorzugt kommen dabei deren Salze von Mineralsäuren - wie Phosphorsäure oder Schwefelsäure - mit Alkalimetallen oder deren Ammoniumsalze zur Anwendung. Besonders bevorzugt finden dabei Phosphorsäure und Ammoniumsulfat Verwendung.
Als Nukleinsäuren werden im Sinn der vorliegenden Erfindung Nukleinsäuren im breiteren Sinne verstanden, so z. B. Ribonukleinsäuren (RNA) wie auch Desoxyribonukleinsäuren (DNA) in allen Längen und Konfigurationen, wie Doppelstrang, Einzelstrang, circulär und linear, verzweigt usw. umfassen und alle möglichen Unterarten, wie z. B. monomere Nukleotide, Oligomere, Plasmide, virale und bakterielle DNA und RNA, sowie genomische und nichtgenomische DNA und RNA aus Tier- und Pflanzenzellen oder anderen Eukaryonten, mRNA in prozessierter und unprozessierter Form, tRNA, hn-RNA, rRNA, cDNA sowie alle anderen denkbaren Nukleinsäuren einschließen.
Als biologische Probe mit Nukleinsäuren können zellfreies Probenmaterial, Plasma, Körperflüssigkeiten, wie beispielsweise Blut, Serum, Zellen, Leukozytenfraktionen, Crusta Phlogistica, Sputum, Urin, Sperma, Faeces, Abstriche, Punktate, Gewebeproben jeder Art - wie z. B. Biopsien -, Gewebeteile und Organe, Lebensmittelproben, die freie oder gebundene Nukleinsäuren oder Nukleinsäure­ haltige Zellen enthalten, Umweltproben, die freie oder gebundene Nukleinsäuren oder Nukleinsäure-haltige Zellen enthalten - wie z. B. Organismen (Ein- oder Mehrzeller; Insekten etc.), Pflanzen und Pflanzenteile, Bakterien, Viren, Hefen und andere Pilze, andere Eukaryonten und Prokaryonten etc., wie sie beispielsweise in der Europäischen Patentanmeldung Nr. 95909684.3 offenbart sind, auf die hiermit inhaltlich Bezug genommen wird, oder auch freie Nukleinsäuren verwendet werden.
Zum technologischen Hintergrund der Erfindung
Aus dem Stand der Technik ist hinlänglich bekannt, dass die genetische Herkunft und funktionelle Aktivität einer Zelle durch Studien ihrer Nukleinsäuren bestimmt und untersucht werden kann. Die Analysen der Nukleinsäuren und Proteine ermöglichen den direkten Zugriff auf die Ursache der Aktivitäten von Zellen. Sie sind somit indirekten, konventionellen Methoden, wie z. B. dem Nachweis von Stoffwechselprodukten, potentiell überlegen. So werden molekularbiologische Analysen bereits in vielen Bereichen eingesetzt, z. B. in der medizinischen und klinischen Diagnostik, in der Pharmazie bei der Entwicklung und Evaluierung von Arzneimitteln, in der Lebensmittelanalytik sowie bei der Überwachung der Lebensmittelherstellung, in der Agrarwirtschaft bei der Züchtung von Nutzpflanzen und Nutztieren sowie in der Umweltanalytik und in vielen Forschungsgebieten.
Durch die Analyse der RNA, speziell der mRNA in Zellen, lassen sich die Aktivitäten von Genen direkt bestimmen. Die quantitative Analyse von Transkriptmustern (mRNA-Mustern) in Zellen durch moderne molekularbiologische Methoden, wie z. B. Echtzeit-Reverse-Transcriptase-PCR ("Real time RT PCR") oder Genexpressions-Chip-Analysen, ermöglicht z. B. die Erkennung fehlerhaft exprimierter Gene, wodurch z. B. Stoffwechselkrankheiten, Infektionen oder die Entstehung von Krebs erkannt werden können. Die Analyse der DNA aus Zellen durch molekularbiologische Methoden, wie z. B. PCR, RFLP, AFLP, SNP oder Sequenzierung ermöglicht z. B. den Nachweis genetischer Defekte oder die Bestimmung des HLA-Typs sowie anderer genetischer Marker.
Die Analyse genomischer DNA und RNA wird auch zum direkten Nachweis von infektiösen Erregern, wie Viren, Bakterien usw. eingesetzt.
Unbedingte Voraussetzung für Nukleinsäureanalytik ist die sofortige Stabilisierung der Nukleinsäuren und Proteine nach Entnahme der biologischen Probe aus ihrer natürlichen Umgebung. Dies gilt für DNA und insbesondere RNA, die nach Entnahme der biologischen Probe sehr schnell abgebaut werden kann. Andererseits kann es nach der Entnahme der biologischen Probe durch Induktion z. B. von Streßgenen auch zur Synthese neuer mRNA-Moleküle kommen, wodurch das Transkriptmuster der Zellen verändert werden kann. Dadurch können nachfolgende Analysen verfälscht werden. Insbesondere im medizinischen Bereich ist die Stabilisierung von Nukleinsäuren notwendig, da hier häufig, z. B. in einer Praxis Nukleinsäure-haltige Proben genommen werden, die erst nach längerer Lagerung und einem Transport in ein Labor weiter untersucht werden können.
In der Zwischenzeit können sich die in den Proben enthaltenen Nukleinsäuren verändern oder sogar vollständig zersetzen. Dies beeinflußt natürlich das Ergebnis später durchgeführter Tests massiv oder macht diese gänzlich unmöglich. Für solche Tests werden molekularbiologische Techniken wie z. B. Northern- sowie Southern-Blot-Analyse, PCR, RT-PCR, SunRise, LCR, branched-DNA (bDNA), SDA, DNA- und RNA-Chips und Arrays zur Genexpressions- und Mutationsanalystik, RFLP, AFLP, SNP-Analysen, cDNA-Synthesen, subtraktive Hybridisierung oder die Taqman-Technologie und weitere Echtzeitquantifizierungsverfahren eingesetzt. Auf der anderen Seite verkörpert die Verwendung von hochreiner, intakter Nukleinsäure - DNA oder RNA - ein Kriterium von fundamentaler Relevanz für die Anwendung bzw. Durchführung der oben genannten Tests. Daneben stellt die Isolierung der Nukleinsäure-haltigen Proben wie auch der Assays jeweils einen zeitaufwendigen Arbeitsschritt dar. Des weiteren kann die Kontamination eines auf dem Gebiet der Molekularbiologie arbeitenden Untersuchungslabors - wie sie z. B. bei einer fehlerhaften Versuchsdurchführung auftreten kann - zu fehlerhaften Untersuchungsergebnissen führen.
Zum Stand der Technik
Eine große Anzahl von Publikationen schlägt die Verwendung von Mischungen auf der Basis von Ethanol und Aceton als Fixative für die nachfolgende Isolierung von Nukleinsäure aus einer entsprechenden Proben - wie z. B. Gewebe - vor. Nach dem Studium dieser Literatur wird allerdings deutlich, dass derartige Ethanol/Aceton-Mischungen längst nicht alle Anforderungen, die an eine sichere RNA-Gewinnung gestellt werden, erfüllen können. So sind derartige Mischungen nicht in der Lage, die RNA vor dem Abbau zu schützen. Daneben wird nicht der Schutz der RNA in festen, aus umfangreicheren Zellverbänden aufgebauten Proben sichergestellt. Daneben sind die vorgeschlagenen Gemische leicht entzündlich bzw. explosionsgefährlich, was mit einem nicht unerheblichen Gefahrenmoment bei der Arbeit im Laboratorium verbunden ist.
Daneben befaßt sich ein mehr peripher relevanter Stand der Technik mit der Gewinnung von RNA aus fixierten bzw. konservierten Gewebeproben. Diese Abhandlungen haben im wesentlich die Eignung von histologischen Präparaten zum Gegenstand, um die Signalstärke, die bei einer in situ Hybridisierung erreicht wird, zu maximieren. Mit anderen Worten: derartige Experimente dienen eher dazu, RNA nachzuweisen anstatt sie zu konservieren [US-Patente 5 196 182 und 5 260 048].
Andere Berichte haben die Gewinnung von fragmentierter RNA oder DNA aus einem fixierten Gewebe zum Gegenstand, um die so erhaltenen Fragmente in einer - eingeschränkten - molekularen Analyse mit Hilfe der PCR unterziehen zu können. Um eine derart fragmentierte DNA bzw. RNA erhalten zu können werden die entsprechenden Proben gewöhnlich mit Proteinase K behandelt, um die strukturgebenden Gewebekomponenten abbauen zu können; erst danach wird die RNA mit einer Guanidiniumsalz-haltigen Lösung extrahiert. Allerdings ist die auf diese Art und Weise aus fixiertem Gewebe erhaltene RNA von geringer Qualität und weist nur eine Größe von ca. 200 Basen auf. Dies ist gemäß dem Stand der Technik auf eine gewisse Anzahl von bestimmten Faktoren zurückzuführen, die u. a. den nachteiligen Einfluß von endogener sowie Vernetzungsreaktioen der DNA bzw. RNA innerhalb der intrazellulären Matrix währen der Fixierung umfassen. Basierend auf dem Umstand, dass die DNA bzw. RNA in der überwiegenden Mehrzahl der Fälle zumindest partiell abgebaut ist, kann eine so gewonnene DNA bzw. RNA nicht mehr erfolgreich in einer Northern-Analyse eingesetzt werden. Eine derartig isolierte RNA könnte höchstens noch mit gewissen Erfolgsaussichten in einer RT-PCR-Reaktion eingesetzt werden, dort aber nur zur Amplifikation relativ kleiner Fragmente.
Ferner ist dem Stand der Technik die Verwendung von Ammoniumsulfat zur Konservierung von RNA bei Temperaturen oberhalb des Gefrierpunkts zu entnehmen [WO 00/06780]. Eine derartige Komposition hat unter der Bezeichnung RNAlater Eingang in den Stand der Technik gefunden. Allerdings sind derartige wässerige Ammoniumsulfat-Lösungen nicht dazu geeignet RNA in Blut, Plasma oder Seren zu stabilisieren. Aufgrund des Umstandes, dass die genannten Proben eine hohe Proteinkonzentration aufweisen, wird beim Kontakt mit derartigen Ammoniumsalz-Lösungen sofort ein schwerlöslicher Niederschlag gebildet [RNAlater Produktinformation der Firma Ambion, Austin, Texas (USA)].
Des weiteren ist aus seit geraumer Zeit aus dem Stand der Technik bekannt, sog. kationische Verbindungen zur Isolierung von Nukleinsäuren aus biologischen Proben einzusetzen. Derartige Anwendungen werden u. a. in den US-Patenten 5,010,183 und US 5,300,635, sowie in der europäischen Patentschrift EP 0442026 beschrieben. In den genannten Dokumenten wird die biologische Probe jeweils nur im Rahmen der für eine Probenvorbereitung üblichen Inkubationszeiten, d. h. im Bereich von Minuten, mit der kationischen Verbindung inkubiert; anschließend wird die Nukleinsäure weiter aufgereinigt.
Eine Überprüfung der aus dem Stand der Technik bekannten Verbindungen hat ergeben, dass die in dem Stand der Technik genannten kationischen Verbindungen - insbesondere das in den US-Patenten offenbarte Tetradecyltrimethylammonium Oxalat - alleine keine ausreichende Stabilisierung zellulärer RNA - beispielsweise bei der längeren Lagerung von Blut - gewährleisten.
Zwar sind dem Stand der Technik Versuche bekannt beispielsweise Viren in Blut über einen Zeitraum von mehreren Tage zu stabilisieren, doch ist diesen Befunden keinerlei Hinweis über die Unversertheit der RNA zu entnehmen. So beschreiben Schmidt und MacFarlane [J. Medical Virology 47, (1995) 153] die Stabilisierung von Hepatitis C Viren in Blut mittels Catrimox-14™ für sieben Tage bei Raumtemperatur. Der Nachweis der Viren erfolgte dabei mittels RT-PCR Amplifikation eines 250 Bp langen Fragmentes des HCV-Genomes. Der dort offenbarte Nachweis liefert jedoch kein ausreichendes Kriterium für die Intaktheit der RNA, da nur ein kurzes Fragment amplifiziert wurde. Außerdem wurde der Versuch mit einer Probe unbestimmter Viruslast durchgeführt, so dass keine Aussagen über einen Abbau von Virus-RNA während der Lagerung gemacht werden konnten.
Daneben wird in der Internationalen Patentanmeldung WO 99/29904 die Stabilisierung von DNA in Körperflüssigkeiten unter Verwendung von EDTA, EGTA oder BAPTA in Kombination mit Guanidin Hydrochlorid, Guanidin-Thiocyanat, Lithiumchlorid, Manganchlorid, Sarkosyl, SDS, Natriumperchlorat, Natriumsalicylat und Natriumthiocyanat beschrieben. Außerdem ist dem Stand der Technik zu entnehmen, dass phenolhaltige Reagenzien wie z. B. Trizol™ zur Stabilisierung von RNA während der Lagerung verwendet werden können. - Alle diese Reagenzien sind jedoch sehr gesundheitsschädlich und damit nicht für Routineanwendungen geeignet.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Komposition zur Verfügung zu stellen, welche die Stabilisierung von RNA in Gegenwart von Gewebe bzw. Blut, Plasma oder Serum zur Verfügung zu stellen.
Der vorliegenden Erfindung liegt daneben die Aufgabe zugrunde, eine Komposition in Form einer Stabilisierungslösung bereit zu stellen, deren Bestandteile nicht gesundheitsschädlich sind und damit z. B. auch für eine Stabilisierung von biologischem Probenmaterial während des Transportes vom Ort der Entnahme zu einem Labor ohne Gesundheitsgefahren für das mit der Probenbearbeitung befasste Personal eingesetzt werden kann.
Eine weitere Aufgabe der vorliegenden Erfindung besteht daneben darin, eine Komposition in Form einer Stabilsierungslösung zur Verfügung zu stellen, in der die Voraussetzung erfüllt wird, dass auch das Stabilisierungsreagenz selbst in Lösung stabil bleibt und keinerlei Vorbehandlung - wie z. B. das Auflösen schwerlöslicher Präzipitate - beim Anwender erforderlich macht. Derartige Vorbehandlungen sind stets mit der Gefahr der Variation in der Stabilisierungseffizienz verbunden.
Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, eine Komposition zur Verfügung zu stellen, die vielseitig einsetzbar ist, d. h., die bei einem großen Spektrum biologischer Proben angewendet werden kann.
Überraschenderweise wurde nun festgestellt, dass die Stabilisierung von Nukleinsäuren über einen längeren Zeitraum gelingt, wenn man die Nukleinsäuren einer biologischen Probe mit einer kationischen Verbindung, wie sie u. a. in den US- Patenten 5 010 183 und 5 300 645 offenbart sind, in Kontakt bringt und erfindungsgemäß mit einem oder mehreren der eingangs beschriebenen Additive versetzt. Additive, die sich bevorzugt für die Lösung der erfindungsgemäßen Aufgabe eignen, sind in Tab. 1 aufgeführt:
Tabelle 1
Das Additiv kann in unterschiedlichen Konzentrationen in dem Stabilisierungsreagenz vorliegen; beispielsweise kann es in Mischungen der Stabilisierungslösung mit Blut in einem Volumenverhältnis von 1 : 1 - bevorzugt 3 : 1 - in einer Konzentration von 50 mM bis zur Sättigung, bevorzugt 100 bis 1 M und besonders bevorzugt in einer Konzentration von 200-500 mM zugegen sein.
Dabei können in Abhängigkeit von der Natur des Additivs sich andere Konzentrationsbereiche als vorteilhaft erweisen. Daneben ist auch der Einsatz von Kombinationen verschiedener Additive möglich.
Die kationische Verbindung weist in der wässerigen Lösung der Komposition eine Konzentration in einem Bereich 0,01 Gew.-% und Sättigung, bevorzugt zwischen 0,1 Gew.-% und Sättigung und besonders bevorzugt zwischen 0,5 Gew.-% und 15 Gew.-% und ganz besonders bevorzugt zwischen 2 Gew.-% und 10 Gew.-% auf.
Naturgemäß werden bei der Zugabe einer Lösung von kationischer Verbindungen und Additiv die jeweiligen optimalen Konzentrationen durch das Volumen der biologischen Probe und das Volumenverhältnis von Stabilisierungslösung zur biologischen Probe bestimmt.
Der pH-Wert der Mischung aus kationischer Verbindung und Additiv kann in Abhängigkeit von der Probe im allgemeinen über einen weiten pH Bereich (pH 2 bis 12) variiert werden und liegt bevorzugt in einem Intervall von pH 2 bis pH 10 und besonders bevorzugt in einem Intervall von pH 3 bis 8. Dabei ist der bevorzugte pH- Bereich abhängig von der eingesetzten biologischen Probe. - Für Blut, Plasma und Serum ist ein pH-Wert in einem Bereich zwischen pH 2 und pH 6 und besonders zwischen pH 3 und pH 4 bevorzugt.
Für biologische Proben wie andere zelluläre Körperflüssigkeiten außer Blut, Plasma und Serum, oder z. B. Bakterien, Punktate, Zellen, Gewebe und weiterer biologischer Proben - wie oben beschrieben - liegt der pH-Wert in der Stabilisierungslösung bestehend aus kationischer Verbindung und Additiv bevorzugt in einem Bereich von pH 3 bis pH 10 und besonders bevorzugt in einem Intervall von pH 4 bis pH 8.
Zur Stabilisierung von Nukleinsäuren in biologischen Proben kann die Probe mit einer Lösung, welche die kationische(n) Verbindung(en) und Additive enthält, vermischt werden. Dabei ist ein Zugabevolumen von 0,1 bis 10.000 Volumen der biologischen Probe möglich; bevorzugt wird ein Zugabevolumen in einem Bereich von 1 bis 1000 und ganz besonders bevorzugt in einem Intervall von 1 bis 100 Volumen. In Abhängigkeit von der Art der Probe - wie beispielsweise Proben aus feinen Nadelbiopsien oder Niedrigzellkulturen - können jedoch u. U. auch wesentlich höhere Volumina in Frage kommen.
Ebenso können die oben genannten kationischen Verbindungen und Additive auch als Feststoff zugesetzt werden, wenn die biologische Probe selbst Flüssigkeit zur Lösung des Feststoffes enthält (wie z. B. zellhaltige Körperflüssigkeiten, Zellen in Medium, Urin) oder Flüssigkeit, z. B. Wasser, zur Lösung des Feststoffes hinzu gegeben wird. Die Zugabe als Feststoff bietet den Vorteil, dass Feststoffe meist chemisch stabiler sind und ihre Zugabe zur Probe oft einfacher durchführbar ist.
Darüber hinaus ist insbesondere bei sehr kompakten biologischen Proben, wie beispielsweise Geweben, eine Zerkleinerung bzw. Homogenisation der Probe in der Stabilisierungslösung bzw. vor Mischung mit der Stabilisierungslösung möglich, um durch z. B. mechanische, chemische, physikalische oder enzymatische Einwirkung auf die Probe die Freisetzung der Nukleinsäuren oder einzelner Zellen bzw. Zellverbände durch Zerstörung einer kompakten Probe zu unterstützen. Eine mechanische Einwirkung kann z. B. mit einem elektrischen Messer, einer Kugelmühle oder durch Pressen durch eine Spritze geschehen, während sich geeignete Enzyme zur Einwirkung auf die Probe beispielsweise Hydrolasen, Proteasen oder Lipasen anbieten.
Daneben kann die Probe auf rein physikalischem Wege - beispielsweise mittels Ultraschall - vorbehandelt werden.
Die Vorbehandlung kann des weiteren auf chemischen Wege - entweder allein oder in Kombination mit rein physikalischen Methoden - erfolgen. Als Mittel zur Unterstützung der Lyse können z. B. aliphatische Alkohole - insbesondere Isopropanol - oder Aldehyde bzw. Dialdehyde - wie z. B. Glyoxal - oder auch Phenole oder Phenolderivate - wie z. B. 2-Biphenylol oder ionische, zwitterionische und nicht-ionische Verbindungen - wie z. B. Sulfhydryl - oder reduzierende Reagenzien - wie z. B. Dithiothreitol und β-Mercaptoethanol - oder Phosphorsäurederivate - wie z. B. Tributylphosphat - oder aber chaotrope Reagenzien, wie z. B. Harnstoff, Guanidinium-thiocyariat oder Guanidinium- hydrochlorid - oder Salze einzeln oder in Kombination verwendet werden.
Weitere Möglichkeiten zur mechanischen, chemischen, physikalischen oder enzymatischen Einwirkung auf Proben sind dem Fachmann bekannt und sollen hier umfaßt sein.
Die Lagerung des Probenmaterials kann - den jeweiligen Bedürfnissen folgend - über längere Zeiträume, wie z. B. von 1 bis zu 14 Tage oder länger, bei Raumtemperatur aber auch bei erhöhten Temperaturen, wie z. B. 40°C oder mehr, und auch bei erniedrigten Temperaturen wie z. B. 4°C oder -20°C oder weniger erfolgen.
Im Anschluß an die Lagerung der biologischen Probe in der Lösung der o. g. Verbindungen können entweder direkt Nukleinsäure-Analysetechniken angeschlossen werden, oder es kann eine Aufreinigung der Nukleinsäuren aus der Probe stattfinden.
Eine direkte Detektion/Analytik von Nukleinsäuren ist beispielsweise in Blotting- Techniken, gelelektrophoretischen Methoden zur Auftrennung von Biomolekülen und durch chromatographische Methoden zu sehen.
Zur Aufreinigung der Nukleinsäuren aus der biologischen Probe werden die freien Nukleinsäuren oder Nukleinsäure-haltige Zellen oder Partikel z. B. durch Zentrifugation oder Filtration von der restlichen Lösung abgetrennt und einer weiteren Aufreinigung zugeführt, die vorteilhaft in einem geringen Volumen stattfinden kann, wie in den US-Patenten US 5.010.183, US 5.300.645 und in der Europäischen Patentanmeldung mit der Anmeldenummer 99103457.0 beschrieben.
Die direkte Abtrennung der Nukleinsäuren bzw. der Nukleinsäure-haltigen Zellen oder Partikel im Lagerungsgefäß ermöglicht dabei die Einsparung zusätzlicher Schritte zur Überführung der Probe in andere Gefäße zur Aufreinigung und vermindert somit sowohl Probenverluste als auch die Gefahr von Verwechslungen und von Kontamination durch Verschleppungen von Nukleinsäuren von Probe zu Probe. Die Anwendung dieser Stabilisierungsreagenzien ermöglicht somit ein 1- Schritt-Verfahren zur Stabilisierung und direkten Isolierung von Nukleinsäuren in biologischen Proben, wobei RNA und DNA alternativ aus der biologischen Probe oder parallel aus einer Probe isoliert werden kann.
Durch die Stabilisierung von Nukleinsäuren mit Hilfe der erfindungsgemäßen Komposition aus einer oder mehreren kationischen Verbindung(en) und einem oder mehreren Additiv(en) wird erreicht, dass die Nukleinsäuren in einer Probe auch bei längerer Lagerung oder während eines Transports sich nicht verändern. Somit wird die Genauigkeit später durchgeführter Tests deutlich erhöht. In bestimmten Fällen - wenn z. B. das Probenmaterial über weite Strecken transportiert oder länger gelagert werden muß - macht das erfindungsgemäße Verfahren diese Tests nach einem derartigen Zeitraum überhaupt erst möglich.
Die Vorteile dieser Erfindung liegen insbesondere sowohl im Bereich der Forschung, z. B. für die Analyse von Transkriptspiegeln, die direkt nach der Entnahme fixiert werden müssen, als auch im Bereich klinischer Analysen - wie z. B. molekulare Diagnostik -, wo Patientenproben nach der Entnahme während Lagerung und Transport bis zur Analyse ebenfalls stabilisiert werden müssen. Insbesondere findet die Isolierung und Stabilisierung von Nukleinsäuren Anwendung in der Tumordiagnostik, in der Diagnostik erblich bedingter Krankheiten sowie in der Virusdiagnostik und dem Virus-Monitoring und der Diagnose und dem Monitoring anderer infektiöser Erreger, sowie in der Analyse von Genexpressionsmustern.
Die Anwendungsbereiche der vorliegenden Erfindung erstrecken sich dabei nicht nur auf medizinische bzw. zoologische Anwendungsfelder, sondern umfassen auch die Analyse botanischer, pilzlicher und prokaryotischer Systeme. Die Stabilisierung und Isolierung von Nukleinsäuren aus Pflanzen und Pflanzenteilen, Algen, Pilzen sowie Bakterien aus Kulturen und natürlichen Habilitaten finden im Bereich der Forschung Anwendung, z. B. für die Analyse von Transkriptspiegeln und Genexpressionsmustern sowie zur Identifizierung und Quantifizierung von Spezies in komplexen Populationen, beispielsweise von Bakterien in einer Bodenprobe.
Darüber hinaus erstreckt sich das Anwendungspotential auch auf weitere Analytische Bereiche wie z. B. auf die Lebensmittelanalytik.
Die vorliegende Erfindung wird anhand folgender Beispiele sowie der Figuren erläutert. In der Beschreibung und in den Beispielen werden die folgenden Abkürzungen verwandt:
AFLP Längenpolymorphismus amplifizierter Fragmente
A. dest. Destilliertes Wasser
BAPTA 1,2-Bis(2-aminophenoxy)ethan-N,N,N',N'-tetraessigsäure
EcoRI Restriktionsenzym Escherichia coli Stamm R
E260/E280 Quotient der Extinktionen bei 260 und 280 nm
EDTA Ethylendiamin-N,N,N',N'-tetraessigsäure
EGTA [Ethylenbis(oxyethylennitrilo)]tetraessigsäure
GAPDH Glycerinaldehyd-3-phosphat-Dehydrogenase
Hind III Restriktionsenzym Haemophilus influenzae
hugI human homologue of giant larvae
IFN-γ Interferon-gamma
LM Längenmarker
MOPS 3-(N-Morpholino)-2-hydroxypropansulfonsäure
nb nicht bestimmt
Nonidet P40 Imbentin-N/52; Octylphenylpolyethylenglycol
OD optische Dichte
PBS phosphate buffered saline
PCR Polymerase Chain Reaction
RFLP Restriktionsfragment-Längen-Polymorphismus
rpm Umdrehungen pro Minute
mRNA messenger RNA
rRNA ribosomale RNA
RT Raumtemperatur
RT-PCR Reverse Transcriptase PCR
SDS Natriumdodecylsulfat
SNP Single Nucleotide Polmorphism
SSC Kochsalz/Natriumcitrat-Lösung
TBE Tris-Borat-EDTA-Puffer
Tris 2-Amino-2-(hydroxymethyl)-1,3-propandiol
U Einheiten
Nicht aufgeführte Abkürzungen - wie z. B. h für Stunde(n) - sind dem Fachmann in ihrer Bedeutung geläufig bzw. durch ihre Verwendung im Stand der Technik hinreichend bekannt.
Erläuterungen zu den Figuren und den ihnen zugrunde liegenden Experimenten
Fig. 1 zeigt die Stabilisierung der RNA in Blut mittels Tetradecyltrimethylammonium-Oxalat (TTAOx) in verschiedenen Carbonsäure- Puffern unterschiedlicher pH-Werte.
Fig. 2 zeigt die Stabilisierung der RNA in Vollblut mittels Tetradecyltrimethylammonium-Oxalat, gepuffert mit Weinsäure pH 3 in unterschiedlichen Konzentrationen.
Fig. 3 zeigt die Stabilisierung der RNA in Vollblut mittels Tetradecyltrimethylammonium-Oxalat gepuffert mit 250 mM Weinsäure pH 3.
Fig. 4 zeigt die Stabilisierung von RNA in Vollblut mittels Tetradecyltrimethylammonium-Oxalat, gepuffert mit Weinsäure pH 3,7 als Ergebnis einer Northern-Hybridisierung mit einer radioaktiv markierten Sonde für die mRNA des GAPDH-Gens (A) und des IFN-γ-Gens (B). Auch nach Lagerung über einen Zeitraum von 72 h ist in diesem Experiment die mRNA des GAPDH-Gens und des IFN-γ-Gens nachweisbar.
Fig. 5 zeigt die Stabilisierung der genomischen DNA in Blut mittels Tetradecyltrimethylammonium-Oxalat gepuffert mit Weinsäure bei pH 3,7.
Neben der zellulären RNA kann mit dem hier entwickelten Verfahren auch die genomische DNA aus den weißen Blutkörperchen stabilisiert und anschließend durch Bindung an eine Silica-Membran isoliert werden. Fig. 5 zeigt, dass auch nach Lagerung für 72 h hochmolekulare DNA (Länge < 20 kB) isoliert wird.
Fig. 6 zeigt die Resultate bei der Verwendung der genomischen DNA in enzymatischen Reaktionen. Die nach Lagerung für 24 bzw. 72 Stunden isolierte DNA (siehe Beispiel 5) wird in verschiedenen enzymatischen Reaktionen eingesetzt.
A. Je 2 µg der DNA werden mit 6 U der Restriktionsenzyme EcoRI (E) bzw. Hind III (H) für 3 h bei 37°C geschnitten und anschließend auf einem 0,8%-igen Agarose/TBE-Gel aufgetrennt. Zur Kontrolle ist jeweils die ungeschnittene DNA ausgetragen.
B. Jeweils 150 bzw. 300 ng der genomischen DNA werden in eine PCR Reaktion eingesetzt (Gesamtvolumen 50 µl), bei der ein 1,1 kB langes Fragment des hugI- Gens (human homologue of giant larvae) amplifiziert wird. Die PCR-Produkte werden auf einem 1,2%-igen Agarose/TBE-Gel aufgetrennt.
Fig. 7 zeigt die Stabilisierung von RNA in Plasma mittels Tetradecyltrimethylammonium-Oxalat gemischt mit verschiednen Additiven. Dabei werden alle Proben in Form von Doppelbestimmungen angesetzt: je 30 µl der Eluate werden in einem 1% Agarose-Formaldehyd-MOPS-Gel aufgetrennt. Die jeweiligen Proben sind in Tabelle 2 beschrieben.
Fig. 8 zeigt die RNA-Stabilisierung in Plasma mittels Tetradecyltrimethylammonium-Oxalat gemischt mit Wein- bzw. Tartronsäure über verschiedene Zeiträume.
Dabei werden alle Proben in Form von Doppelbestimmungen angesetzt. Je 30 µl der Eluate werden in einem 1% Agarose-Formaldehyd-MOPS-Gel aufgetrennt. - Die jeweiligen Proben sind in Tabelle 3 beschrieben.
Fig. 9 zeigt die RNA-Stabilisierung in 1 ml Plasma mittels Tetradecyltrimethyl­ ammonium-Oxalat gemischt mit verschiedenen Additiven.
Dabei werden alle Proben in Form von Doppelbestimmungen angesetzt; je 30 µl der Eluate werden in einem 1% Agarose-Formaldehyd-MOPS-Gel aufgetrennt.
Die jeweiligen Proben sind in Tabelle 4 beschrieben.
Fig. 10 zeigt die RNA-Stabilisierung in Hela-Zellen mittels Tetradecyltrimethyl­ ammonium-Oxalat gemischt mit verschiedenen Additiven.
Dabei werden die Proben in Form von Doppelbestimmungen angesetzt, die Proben 14, 40, 66 und 92 als Einfachbestimmung je 20 µl der Eluate werden in einem 1% Agarose-Formaldehyd-MOPS-Gel aufgetrennt. Die jeweiligen Proben sind in Tabelle 5 beschrieben.
Fig. 11 zeigt die RNA-Stabilisierung in unterschiedlichen Mengen von Hela-Zellen. Dabei werden alle Proben in Form von Doppelbestimmungen angesetzt; je 20 µl der Eluate werden in einem 1% Agarose-Formaldehyd-MOPS-Gel aufgetrennt. Die jeweiligen Proben sind in Tabelle 7 beschrieben.
Fig. 12 zeigt die RNA-Stabilisierung in Macrophagen. Dabei werden alle Proben in Form von Doppelbestimmungen angesetzt. Je 20 µl der Eluate werden in einem 1% Agarose-Formaldehyd-MOPS-Gel aufgetrennt. Die jeweiligen Proben sind in Tabelle 9 beschrieben.
Fig. 13 zeigt die RNA-Stabilisierung in adhärenten Hela-Zellen ohne Entfernung des Mediums. Dabei werden je 20 µl der Eluate in einem 1% Agarose- Formaldehyd-MOPS-Gel aufgetrennt. Die jeweiligen Proben sind in Beispiel 13 beschrieben.
Fig. 14 zeigt die RNA-Stabilisierung in Nierengewebe mittels Tetradecyltrimethyl- Ammonium-Oxalat gemischt mit verschiedenen Additiven. Dabei werden alle Proben in Form von Doppelbestimmungen angesetzt; je 20 µl der Eluate werden in einem 1% Agarose-Formaldehyd-MOPS-Gel aufgetrennt. Die jeweiligen Proben sind in Tabelle 12 beschrieben.
Fig. 15 zeigt die DNA-Stabilisierung und -Isolierung parallel zur RNA-Stabilisierung und -Isolierung. Dabei werden je 40 µl der Eluate in einem 0,8% Agarose-TBE-Gel aufgetrennt. Die jeweiligen Proben sind in Beispiel 15 beschrieben.
Beispiele Beispiel 1 Stabilisierung der RNA in Blut mittels Tetradecyltrimethylammonium-Oxalat (TTAOx) in verschiedenen Carbonsäure-Puffern mit unterschiedlichen pH-Werten
Als Additive werden Carbonsäuren verschiedener Kettenlänge ausgewählt. Außerdem werden Mono-, Di- und Tri-Carbonsäuren, hydroxylierte und nicht hydroxylierte Carbonsäuren getestet. Alle Substanzen werden zur Stabilisierung in Kombination mit der kationischen Verbindung Tetradecyltrimethyammonium-Oxalat eingesetzt. Dabei werden sowohl der pH-Wert als auch die Konzentration der Substanzen variiert.
Fig. 1 zeigt die Ergebnisse der Untersuchungen. In allen Fällen kann auch nach 24 bzw. 48 h intakte RNA isoliert werden. Die z. T. geringen RNA Mengen hängen mit dem geringen Blutvolumen zusammen, das aufgearbeitet wurde und mit dem unterschiedlichen RNA Gehalt in verschiedenen Blutproben. Bei diesem Experimenten wurde ein Anteil der genomischen DNA ebenfalls in den RNA- Fraktionen erhalten.
500 µl Blut werden mit 500 µl eines Puffers, bestehend aus 10% (w/v) Tetradecyltrimethylammonium-Oxalat, gepuffert mit unterschiedlichen Carbonsäuren jeweils in einer Konzentration von 200 mM, sowie den für die jeweilige Carbonsäure jeweils unterschiedlichen pH-Werten, für 24 und 48 Stunden bei RT gelagert. Zur Isolierung der RNA werden die Komplexe - bestehend aus kationischer Verbindung und Nukleinsäure - abzentrifugiert; das Pellet wird einmal mit Wasser gewaschen, erneut abzentrifugiert und in 300 µl eines handelsüblichen Lysepuffers - wie z. B. RLT Puffer der Firma QIAGEN - aufgenommen. Die Probe wird mit 360 µl Wasser verdünnt und für 10 Minuten bei 55°C mit 40 µl Proteinase K behandelt. Anschließend wird die Probe zentrifugiert, der Überstand mit Ethanol versetzt und auf eine Silica-Membran enthaltende Spin-Säule aufgetragen. Die Probe wird mittels Zentrifugation durch die Membran geführt. Die Spin-Säule wird einmal mit einem kommerziell erhältlichen Guanidinium-Isothiocyanat-haltigen Waschpuffer - beispielsweise mit dem Puffer RW1 der Firma QIAGEN - und zweimal mit einem handelsüblichen, alkoholhaltigen Waschpuffer - z. B. Puffer RPE der Firma QIAGEN - gewaschen, und die RNA anschließend in 60 µl RNase freiem Wasser, das ebenfalls mittels Zentrifugation durch die Membran geführt wird, eluiert. Jeweils 30 µl des Eluates werden auf einem 1,2%-igen Agarose/Formaldehyd Gel aufgetrennt.
Beispiel 2 Stabilisierung der RNA in Vollblut mittels Tetradecyltrimethylammonium-Oxalat und Weinsäure (gepuffert) bei pH 3 in unterschiedlichen Konzentrationen
500 µl Blut werden mit 500 µl eines Puffers, bestehend aus 10% (w/v) Tetradecyltrimethylammonium-Oxalat und 50-500 mM Weinsäure pH 3 für 2,5, 24 und 48 Stunden bei RT gelagert. Die Isolierung der RNA erfolgt wie in Fig. 1 beschrieben, mit dem Unterschied, dass zusätzlich die genomische DNA durch eine DNase Behandlung der Probe mit dem "RNase-Free-DNase Set" der Firma QIAGEN entfernt wird. Die RNA wird mit 80 µl RNase freiem Wasser eluiert. Jeweils 30 µl des Eluates werden auf einem 1,2%-igen Agarose/Formaldehyd Gel aufgetrennt.
Beispiel 3 Stabilisierung der RNA in Vollblut mittels Tetradecyltrimethylammonium-Oxalat, gepuffert mit 250 mM Weinsäure bei pH 3 Bestimmung der Integrität, Ausbeute und Reinheit der RNA
Die RNA wird in Blut für mindestens 72 Stunden ohne Degradation oder einen Ausbeuteverlust in einer Lösung aus Tetradecyltrimethylammonium-Oxalat, gepuffert mit einem Carbonsäurepuffer, z. B. 250 mM Weinsäure pH 3,0, stabilisiert (s. Fig. 3).
2 ml Blut werden mit 2 ml eines Puffers, bestehend aus 10% (w/v) Tetradecyltrimethylammonium-Oxalat und 250 mM Weinsäure pH 3,0 gemischt und für 24-72 Stunden bei RT gelagert. Die Isolierung der RNA erfolgt wie in Beispiel 2 beschrieben, mit dem Unterschied, daß die Probe vor der Zentrifugation der Komplexe - bestehend aus der kationischen Verbindung und der Nukleinsäure - mit einem handelsüblichen Erythrocyten-Lysepuffer - wie z. B. dem Puffer EL der Fa. Qiagen GmbH - versetzt und danach 10 Minuten auf Eis inkubiert wird. Die RNA wird mit 80 µl RNase freiem Wasser eluiert. Jeweils 30 µl des Eluates werden auf einem 1,2%-igen Agarose/Formaldehyd Gel aufgetrennt, bzw. in einem Spektralphotometer vermessen. Die Menge an isolierter Gesamt-RNA wird nach Verdünnung mit Wasser durch photometrische Messung der Lichtabsorption bei einer Wellenlänge von 260 nm ermittelt. Die Reinheit der so gewonnenen RNA wird durch die photometrische Bestimmung des Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm ermittelt.
Beispiel 4 Stabilisierung der RNA in Vollblut mittels Tetradecyltrimethylammonium-Oxalat unterschiedlicher Konzentrationen, gepuffert mit Weinsäure bei pH 4,0 Northern-Blot-Analyse
2,5 ml Blut werden mit 6,9 ml eines Puffers, bestehend aus 4% Tetradecyltrimethylammonium-Oxalat und 200 mM Weinsäure pH 3,7 gemischt und für 1 h, 24 h, 48 h und 72 h bei RT gelagert. Zur Isolierung der RNA werden die Komplexe aus kationischer Verbindung und Nukleinsäure abzentrifugiert. Das Pellet wird einmal mit Wasser gewaschen und dann in 300 µl Lysepuffer - beispielsweise Puffer RLT der Firma QIAGEN - aufgenommen. Die weitere Probenvorbereitung erfolgt wie in Fig. 2 beschrieben. Jeweils 2,5 µg total RNA werden anschließend auf einem 1,2%-igen denaturierenden Agarose/Formaldehyd Gel aufgetrennt. Anschließend wird die RNA auf eine Nylonmembran übertragen und über einen Zeitraum von ca. 12 h, in einem Natriumphosphat/SDS Puffer, bei 68°C, mit einer radioaktiv markierten anti-sense RNA Sonde für das GAPDH-Gen (Fig. 4A), bzw. das IFN-γ-Gen (Fig. 4B), hybridisiert. Die Membran wird mit Waschpuffern abnehmender Salzkonzentration von 2 × SSC/0,1% SDS bis 0,1 × SSC/0,1% SDS bei einer Temperatur von 68°C gewaschen. Die Nylonmembran wird anschließend auf einem Röntgenfilm exponiert. Sowohl das GAPDH- als auch das IFN-γ-mRNA-Signal bleibt über einen Lagerungszeitraum von über 72 h konstant. Dieses Ergebnis belegt, dass ein Abbau der m-RNA über den genannten Zeitraum nicht stattgefunden hat.
Beispiel 5 Stabilisierung der genomischen DNA in Blut mittels Tetradecyltrimethylammonium- Oxalat, gepuffert mit Weinsäure bei pH 3,7
Neben der zellulären RNA kann mit dem hier entwickelten Verfahren auch die genomische DNA aus Vollblut stabilisiert und anschließend durch Bindung an eine Silica-Membran isoliert werden. Fig. 5 zeigt, dass auch nach Lagerung für 72 h bei RT hochmolekulare DNA (Länge < 20 kB) isoliert wird.
2,5 ml Blut werden mit 6,9 ml einer Lösung bestehend aus 4% (w/v) Tetradecyltrimethylammonium-Oxalat und 200 mM Weinsäure bei pH 3,7 gemischt und für 24 bzw. 72 Stunden bei RT gelagert. Zur Isolierung der DNA werden die Komplexe aus kationischer Verbindung und DNA abzentrifugiert. Das Pellet wird in 300 µl eines Natriumchlorid- und EDTA-haltigen Puffers aufgenommen, dann werden 360 µl eines kommerziell erhältlichen Guanidinium Hydrochlorid Puffers - wie z. B. der Puffer AL der Firma QIAGEN - sowie 20 µl Proteinase K zugegeben. Die Proben werden für 10 min bei 65°C inkubiert, dann werden 420 µl Ethanol zugegeben und die Probe auf eine Silica-Membran enthaltende Spin-Säule aufgetragen. Die Probe wird mittels Zentrifugation durch die Membran geführt. Die Silica-Membran wird je einmal mit einem handelsüblichen ethanolhaltigen Guanidinium Hydrochlorid Puffer - wie z. B. der Puffer AW1 der Firma QIAGEN - und einmal mit einem Ethanol-haltigen Waschpuffer - wie z. B. der Puffer AW2 der Firma QIAGEN - gewaschen. Die DNA wird mit 300 µl eines Tris-Puffers (pH 8) eluiert. Je 5 µl des Eluates werden auf einem 0,8%-igen Agarose/TBE Gel aufgetrennt.
Beispiel 6 Verwendung der genomischen DNA in enzymatischen Reaktionen
Fig. 6 zeigt, dass die entsprechend Beispiel 5 isolierte DNA für verschiedene enzymatische Reaktionen (Restriktion und PCR-Amplifikation) einsetzbar ist.
Die nach Lagerung für 24 bzw. 72 Stunden isolierte DNA (siehe Beispiel 5) wird in verschiedenen enzymatischen Reaktionen eingesetzt. Dies ist ein Beweis für die hohe Reinheit gute Qualität der isolierten DNA.
  • A) Je 2 µg der DNA werden mit 6 U der Restriktionsenzyme EcoRI (E) bzw. Hind III (H) für 3 h bei 37°C geschnitten und anschließend auf einem 0,8%-igen Agarose/TBE-Gel aufgetrennt. Zur Kontrolle ist jeweils die ungeschnittene DNA ausgetragen.
  • B) Jeweils 150 bzw. 300 ng der genomischen DNA werden in eine PCR Reaktion eingesetzt (Gesamtvolumen 50 µl), bei der ein 1,1 kB langes Fragment des hugI- Gens amplifiziert wird. Die PCR-Produkte werden auf einem 1,2%-igen Agarose/TBE-Gel aufgetrennt.
Beispiel 7 RNA-Stabilisierung in Plasma mittels Tetradecyltrimethylammonium-Oxalat, gemischt mit verschiedenen Additiven
Diese Experimente demonstrieren, dass der Zusatz von Carbonsäuren und anderen Additiven zu Tetradecyltrimethylammonium-Oxalat die Stabilisierung von freier RNA in Plasma im Vergleich zu RNA-Stabilisierung nur mit Tetradecyltrimethylammonium-Oxalat deutlich verbessert.
Zur Herstellung der in diesem Experiment verwendeten Lösungen wird eine Stammlösung von 30% Tetradecyltrimethylammonium-Oxalat mit jeweils einer Stammlösung von 0,5 M von Weinsäure, Zitronensäure, Tartronsäure, Bernsteinsäure, Ammoniumsulfat oder Phosphorsäure zu einer Endkonzentration von 2% oder 4% Tetradecyltrimethylammonium-Oxalat und 200 mM des Additivs vermischt. Die Stammlösungen der Additve werden vor der Mischung mit Tetradecyltrimethylammonium-Oxalat mittels Natronlauge auf den angegebenen pH-Wert eingestellt. Als Kontrolle wird eine 5% Tetradecyltrimethylammonium- Oxalat-Lösung ohne Additiv-Zusatz verwendet.
Je 0,5 ml einer jeden so erzeugten Lösung wird in ein 2 ml Eppendorf-Gefäß vorgelegt. 15 µg Gesamt-RNA aus Hela-Zellen, die zuvor z. B. mittels eines kommerziell erhältlichen RNA-Isolierungskits (z. B. RNA-Isolierungskit RNeasy® Maxi-Kits der Firma QIAGEN) isoliert wird, wird in den Deckel des Eppendorf- Gefäßes pipettiert. 0,5 ml menschliches Blutplasma wird zur Lösung gegeben, der Deckel des Gefäßes geschlossen und das Gefäß zur Mischung der Flüssigkeiten fünf Mal rasch invertiert. Die Proben werden 1 Tag bei RT (ca. 20 bis 25°C) gelagert. Alle Experimente werden in Form von Doppelbestimmungen durchgeführt.
Zur Isolierung der RNA werden die Proben über einen Zeitraum von 3 min mit 25000 xg zentrifugiert. Der Überstand wird abgenommen und 0,5 ml eines auf 60°C temperierten Puffers, der Guanidinium-Hydrochlorid und Nonidet P40 pH 7,0 enthält, sowie Proteinase K werden auf das Pellet gegeben. Das Pellet wird durch Vortexen gelöst und 15 min lang bei 50°C inkubiert. Anschließend wird 0,5 ml einer Ethanol-Nonidet P40-Lösung zugegeben und die Probe durch Vortexen über einen Zeitraum von ca. 5 s gemischt. Die Probe wird anschließend in eine handelsübliche Silicamembran enthaltene Spin-Säule - wie z. B. QIAamp-Säulen der Firma QIAGEN - aufgetragen und durch Zentrifugation (1 min bei 10000 xg) durch die Membran hindurchgeführt. Die RNA bleibt an der Membran gebunden und wird anschließend zweimal mit einem alkoholhaltigen Waschpuffer, z. B. Puffer AW2 der Firma QIAGEN, gewaschen. Dabei werden die Waschpuffer jeweils durch Zentrifugation (1 min bei 10000 xg) durch die Membran geführt. Im Anschluß an die Waschung mit dem alkoholhaltigen Waschpuffer wird die Membran ohne Pufferzugabe durch eine Zentrifugation (3 min max. rpm, hier 25000 g) getrocknet. Zur Elution werden 30 µl RNase-freies Wasser auf die Membran pipettiert, um die gereinigte RNA von der Membran abzulösen. Das Eluat wird durch Zentrifugation (1 min bei 10000 xg) durch die Membran geführt und der Elutionsschritt wird zum Zwecke einer vollständigen Elution noch einmal wiederholt.
Die isolierte RNA wird auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert. Hierzu werden beispielsweise 1,0%-ige Formaldehyd-Agarose-MOPS- Gele angefertigt. Es werden jeweils 30 µl des Eluates eingesetzt. Das Ergebnis ist in Fig. 7 wiedergegeben. Die Beladung der Gelspuren ist in Tabelle 2 zusammengefaßt.
Tabelle 2
Zusammenfassung der in Fig. 7 dargestellten Proben
Spur 45 enthält zum Vergleich der RNA-Qualität der einzelnen Proben 3,75 µg der für diese Versuche eingesetzten Gesamt-RNA aus Hela-Zellen.
Die gelelektrophoretische Auftrennung der für dieses Experiment eingesetzen Hela- Gesamt-RNA zeigt nach Anfärbung mit Ethidiumbromid die intakte 28S und 18S rRNA. Die obere der sichtbaren rRNA-Banden (28S rRNA) ist dabei deutlich intensiver und dicker als die untere rRNA-Bande (18S rRNA), was ein typisches Merkmal intakter, nicht abgebauter RNA darstellt. Der Vergleich der eintägig in mit 5% Tetradecyltrimethylammonium-Oxalat ohne Additiv-Zusatz vermischtem Plasma gelagerten Hela-Gesamt-RNA mit der RNA, die nach eintägiger Lagerung aus in mit Tetradecyltrimethylammonium-Oxalat und verschiedenen Additiven vermischtem Plasma isoliert wird, zeigt deutlich, dass der Zusatz von Additiven die RNA-Stabilisierung verbessert. Wird RNA ohne Zusatz einer stabilisierenden Verbindung zu Plasma gegeben, führt dies bekannterweise zu einem vollständigen RNA-Abbau binnen weniger Minuten.
Beispiel 8 RNA-Stabilisierung in Plasma mittels Tetradecyltrimethylammonium-Oxalat, gemischt mit Wein- bzw. Tartronsäure über verschiedene Zeiträume
Diese Experimente zeigen, dass die RNA durch Tetradecyltrimethylammonium- Oxalat-Additiv-Mischungen in Plasma bis zu mindestens 14 Tagen stabilisiert wird.
Zur Herstellung der in diesem Experiment verwendeten Lösungen wird eine Stammlösung von 30% Tetradecyltrimethylammonium-Oxalat mit jeweils einer Stammlösung von 0,5 M von Weinsäure pH 3 oder Tartronsäure pH 3 zu einer Endkonzentration von 6% oder 8% Tetradecyltrimethylammonium-Oxalat und 200 mM des Additivs vermischt.
Je 0,5 ml einer jeden so erzeugten Lösung wird in ein 2 ml Eppendorf-Gefäß vorgelegt. 15 µg Gesamt-RNA aus Hela-Zellen, die zuvor mittels eines kommerziell erhältlichen RNA-Isolierungskits - wie z. B. RNeasy® Maxi-Kits der Firma QIAGEN - isoliert wird, wird in den Deckel des Eppendorf-Gefäßes pipettiert. 0,5 ml menschliches Blut-Plasma wird zur Lösung gegeben, der Deckel des Gefäßes geschlossen und das Gefäß zur Mischung der Flüssigkeiten fünf Mal rasch invertiert. Die Proben werden 3, 7, 10 und 14 Tage bei RT (ca. 20 bis 25°C) gelagert. Alle Experimente werden in Form von Doppelbestimmungen durchgeführt.
Die RNA-Isolierung erfolgt wie in Beispiel 7 beschrieben.
Die isolierte RNA wird auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert. Hierzu werden beispielsweise 1,0%-ige Formaldehyd-Agarose-MOPS- Gele angefertigt. Es werden jeweils 30 µl des Eluates eingesetzt. Das Ergebnis ist in Fig. 8 wiedergegeben. Die Beladung der Gelspuren ist in Tabelle 3 zusammengefaßt.
Tabelle 3
Zusammenfassung der in Fig. 8 dargestellten Proben
Spur "K" enthält zum Vergleich der RNA-Qualität der einzelnen Proben 3,75 µg der für diese Versuche eingesetzten Gesamt-RNA aus Hela-Zellen.
Die gelelektrophoretische Auftrennung zeigt nach Anfärbung mit Ethidiumbromid die intakte 28S und 18S rRNA-Banden, auch nach bis zu 14- tägiger Lagerung der Hela-Gesamt-RNA in Plasma, das mit Tetradecyltrimethylammonium-Oxalat und Weinsäure bzw. Tartronsäure pH 3 vermischt wurde.
Beispiel 9 RNA-Stabilisierung in 1 ml Plasma mittels Tetradecyltrimethylammonium-Oxalat, gemischt mit verschiedenen Additiven
Diese Experimente zeigen, dass die RNA durch Tetradecyltrimethylammonium- Oxalat-Additiv-Mischungen auch in einem größeren Plasmavolumen möglich ist.
Zur Herstellung der in diesem Experiment verwendeten Lösungen wird eine Stammlösung von 30% Tetradecyltrimethylammonium-Oxalat mit jeweils einer Stammlösung von 0,5 M von Weinsäure, bei pH 3 oder pH 4, Tartronsäure bei pH 3 oder pH 4 oder von Phosphorsäure bei pH 3 oder pH 4 zu einer Endkonzentration von 4% Tetradecyltrimethylammonium-Oxalat und 200 mM des Additivs vermischt.
Je 1 ml einer jeden so erzeugten Lösung wird in ein 2 ml Eppendorf-Gefäß vorgelegt. 15 µg Gesamt-RNA aus Hela-Zellen, die zuvor z. B. mittels des RNA- Isolierungskits RNeasy® Maxi-Kits der Firma QIAGEN isoliert wird, wird in den Deckel des Eppendorf-Gefäßes pipettiert. 1 ml menschliches Blut-Plasma wird zur Lösung gegeben, der Deckel des Gefäßes geschlossen und das Gefäß zur Mischung der Flüssigkeiten fünf Mal rasch invertiert. Die Proben werden 3 Tage bei RT (ca. 20 bis 25°C) gelagert. Alle Experimente werden in Form von Doppelbestimmungen durchgeführt.
Die RNA-Isolierung erfolgt wie in Beispiel 7 beschrieben.
Die isolierte RNA wird auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert. Hierzu werden beispielsweise 1,0%-ige Formaldehyd-Agarose-MOPS- Gele angefertigt. Es werden jeweils 30 µl des Eluates eingesetzt. Das Ergebnis ist in Fig. 9 wiedergegeben. Die Beladung der Gelspuren ist in Tabelle 4 zusammengefaßt.
Tabelle 4
Zusammenfassung der in Fig. 9 dargestellten Proben
Spur 13 enthält zum Vergleich der RNA-Qualität der einzelnen Proben 3,75 µg der für diese Versuche eingesetzten Gesamt-RNA aus Hela-Zellen.
Die gelelektrophoretische Auftrennung zeigt nach Anfärbung mit Ethidiumbromid die intakte 28S und 18S rRNA-Banden. Die RNA wird somit auch in einem größeren Plasmavolumen durch die Tetradecyltrimethylammonium-Oxalat- Additiv-Mischung stabilisiert.
Beispiel 10 RNA-Stabilisierung in Hela-Zellen mittels Tetradecyltrimethylammonium-Oxalat, gemischt mit verschiedenen Additiven
Diese Experimente demonstrieren, dass Mischungen aus Tetradecyltrimethylammonium-Oxalat mit verschiedenen Additiven die Stabilisierung von RNA in Hela-Zellen über eine Lagerungsdauer von bis zu 14 Tagen bei RT ermöglichen.
Zur Herstellung der in diesem Experiment verwendeten Lösungen wird eine Stammlösung von 20% oder 30% Tetradecyltrimethylammonium-Oxalat mit jeweils einer Stammlösung von 0,5 M von Weinsäure, Zitronensäure, Tartronsäure, Ammoniumsulfat oder Phosphorsäure zu einer Endkonzentration von 2% oder 4% Tetradecyltrimethylammonium-Oxalat und 200 mM des Additivs vermischt. Die Stammlösungen der Additve werden vor der Mischung mit Tetradecyltrimethylammonium-Oxalat mittels Natronlauge bzw. Schwefelsäure auf den angegebenen pH-Wert eingestellt.
Je 1 × 106 Hela-Zellen, die direkt zuvor aus der Zellkultur geerntet und mit PBS gewaschen werden, werden durch Zentrifugation (1 min bei 120 xg) pelletiert und der Überstand entfernt. Zu den Zellen werden jeweils 300 µl der in Tabelle 4 genannten Lösungen gegeben und die Proben durch Vortexen gemischt und dabei die Zellen re-suspendiert. Die Proben werden 3, 7, 10 und 14 Tage bei RT (ca. 20 bis 25°C) gelagert. Alle Experimente werden in Form von Doppelbestimmungen durchgeführt.
Zur RNA-Isolierung werden die Zellen durch dreiminütige Zentrifugation bei 1200 xg pelletiert und der Überstand abgenommen. Das Pellet wird in 600 µl eines handelsüblichen Guanidinium-Isothiocyanat-Puffers - wie z. B. RLT-Puffer der Firma QIAGEN - durch mehrmaliges Auf- und Abpipettieren oder durch Vortexen über einen Zeitraum von ca. 10 s oder länger re-suspendiert. Anschließend wird 1 Volumen (600 µl) 70%-iges Ethanol zugefügt und durch mehrmaliges Auf- und Abpipettieren oder durch Vortexen über einen Zeitraum von ca. 5 s gemischt. Das Lysat wird anschließend in eine handelsübliche Silicamembran enthaltene Spin- Säule - wie z. B. RNeasy-Säulen der Firma QIAGEN - aufgetragen und durch Zentrifugation (1 min bei 10000 xg) durch die Membran hindurchgeführt. Die RNA bleibt an der Membran gebunden und wird anschließend mit einem ersten handelsüblichen Guanidinium-Isothiocyanat-haltigen Waschpuffer - beispielsweise mit dem Puffer RW1 der Firma QIAGEN - und danach mit einem zweiten alkoholhaltigen Waschpuffer, z. B. Puffer RPE der Firma QIAGEN, gewaschen. Dabei werden die Waschpuffer jeweils durch Zentrifugation (1 min bei 10000 xg) durch die Membran geführt. Die Waschung mit dem zweiten alkoholhaltigen Waschpuffer wird mit einem geringeren Volumen wiederholt, wobei gleichzeitig die Membran durch die Zentrifugation (2 min max. rpm, hier 20000 xg) getrocknet wird. Zur Elution werden 40 µl RNase-freies Wasser auf die Membran pipettiert, um die gereinigte RNA von der Membran abzulösen. Durch Zentrifugation (1 min bei 10000 xg) wird das Eluat durch die Membran hindurchgeführt und der Elutionsschritt wird zum Zwecke einer vollständigen Elution noch einmal wiederholt.
Die isolierte RNA wird auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert. Hierzu werden beispielsweise 1,0%-ige Formaldehyd-Agarose-MOPS- Gele angefertigt. Es werden jeweils 20 µl des Eluates eingesetzt. Das Ergebnis ist in Fig. 10 wiedergegeben. Die Proben sind in Tabelle 5 zusammengefaßt, wobei alle Proben jeweils 2× durchgeführt und dargestellt worden sind mit Ausnahme der Proben 14, 40, 66 und 92, die 1× durchgeführt und dargestellt worden sind.
Tabelle 5
Zusammenfassung der in Fig. 10 dargestellten Proben
Die Proben "K" zeigen eine Gesamt-RNA, die ohne vorherige Lagerung mit Hilfe eines Isolierungs-Kits - wie z. B. dem RNeasy® Mini Kits der Firma QIAGEN - aus je 1 × 106 Hela-Zellen isoliert wird ( = Positiv-Kontrolle). Die Proben "a", "b", "c" und "d" zeigen eine Gesamt-RNA, die nach 3, 7, 10 bzw. 14 Tagen Lagerung von je 1 × 106 Hela-Zellen in PBS - ohne Zusätze - wie oben beschrieben isoliert wird.
Die Menge an isolierter Gesamt-RNA wird nach Verdünnung in Wasser durch photometrische Messung der Lichtabsorption bei einer Wellenlänge von 260 nm ermittelt. Die Reinheit der so gewonnenen RNA wird durch die photometrische Bestimmung des Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm bestimmt. Die Ergebnisse der Isolierungen sind in der nachfolgenden Tabelle 6 dargestellt. Es werden jeweils die Mittelwerte der Doppelbestimmung angegeben.
Tabelle 6
RNA-Ausbeute der nach Beispiel 10 aus in Tetradecyltrimethylammonium-Oxalat gemischt mit verschiedenen Additiven gelagerten Hela-Zellen isolierten Gesamt-RNA
Die gelelektrophoretische Auftrennung zeigt nach Anfärbung mit Ethidiumbromid die intakte 28S und 18S rRNA-Banden in den Positiv-Kontrollen. Die obere der rRNA-Banden (28S rRNA) ist dabei deutlich intensiver und dicker als die untere rRNA-Bande (18S rRNA), was ein typisches Merkmal intakter, nicht abgebauter RNA darstellt. Nach 3-tägiger Lagerung der Zellen in PBS ist die RNA z. T. abgebaut, da die beiden rRNA-Banden gleiche Intesität zeigen und deutlich weniger RNA sichtbar ist. Nach 7-tägiger oder längerer Lagerung ist keine RNA mehr sichtbar. Im Gegensatz dazu wird die RNA in Hela-Zellen durch Tetradecyltrimethylammonium-Oxalat gemischt mit verschiedenen Additiven bis zu 14 Tagen stabilisiert. Dies wird durch die OD-Messung bestimmte RNA-Ausbeute und -Reinheit bestätigt. Die Stabilisierung wird vom pH-Wert beeinflußt. Dabei sind finale pH-Werte in der Mischung, d. h. nach Mischung von Tetradecyltrimethylammonium-Oxalat und Additiv definierten pH-Wertes, von größer 4 bevorzugt.
Beispiel 11 RNA-Stabilisierung in unterschiedlichen Mengen von Hela-Zellen
Diese Experimente zeigen, dass die Stabilisierung von RNA in Hela-Zellen mittels Mischungen von Tetradecyltrimethylammonium-Oxalat mit Additiven unabhängig von der Anzahl der eingesetzten Zellen erfolgt.
Zur Herstellung der in diesem Experiment verwendeten Lösung wird eine Stammlösung von 20% Tetradecyltrimethylammonium-Oxalat mit einer Stammlösung von 0,5 M Weinsäure bei pH 6 zu einer Endkonzentration von 4% Tetradecyltrimethylammonium-Oxalat und 200 mM des Additivs vermischt. Die Stammlösung des Additvs wird vor der Mischung mit Tetradecyltrimethylammonium-Oxalat mittels Natronlauge auf den angegebenen pH-Wert eingestellt.
Je 1 × 105, 5 × 105, 1 × 106 und 5 × 106 Hela-Zellen, die direkt zuvor aus der Zellkultur geerntet und mit PBS gewaschen werden, werden durch Zentrifugation (1 min bei 120 xg) pelletiert und der Überstand entfernt. Zu den Zellen wird jeweils 300 µl Lösung mit 4% Tetradecyltrimethylammonium-Oxalat und 200 mM Weinsäure gegeben und die Proben durch Vortexen gemischt und dabei die Zellen resuspendiert. Die Proben werden 15 min bzw. 1 Tag bei RT (ca. 20 bis 25°C) gelagert. Alle Experimente werden in Form von Doppelbestimmungen durchgeführt.
Die RNA-Isolierung erfolgt wie in Beispiel 10 beschrieben.
Als Kontrollen werden je 1 × 105, 5 × 105, 1 × 106 und 5 × 106 Hela-Zellen ohne vorherige Behandlung mit 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Weinsäure und ohne Lagerung zur RNA-Isolierung wie oben beschrieben eingesetzt.
Die isolierte RNA wird auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert. Hierzu werden beispielsweise 1,0%-ige Formaldehyd-Agarose-MOPS- Gele angefertigt. Es werden jeweils 20 µl des Eluates eingesetzt. Das Ergebnis ist in Fig. 11 wiedergegeben. Die Proben sind in Tabelle 7 zusammengefaßt, wobei alle Proben jeweils 2× durchgeführt und dargestellt worden sind.
Tabelle 7
Zusammenfassung der in Fig. 11 dargestellten Proben
Die Menge an isolierter Gesamt-RNA wird nach Verdünnung in Wasser durch photometrische Messung der Lichtabsorption bei einer Wellenlänge von 260 nm ermittelt. Die Reinheit der so gewonnenen RNA wird durch die photometrische Bestimmung des Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm bestimmt. Die Ergebnisse der Isolierungen sind in der nachfolgenden Tabelle 8 dargestellt. Es werden jeweils die Mittelwerte der Doppelbestimmung angegeben.
Tabelle 8
RNA-Ausbeute der nach Beispiel 11 aus in 4% Tetradecyl­ trimethylammonium-Oxalat, 200 mM Weinsäure gelagerten Hela-Zellen isolierten Gesamt-RNA
Die gelelektrophoretische Auftrennung zeigt nach Anfärbung mit Ethidiumbromid die intakte 28S und 18S rRNA-Banden in den gelagerten ebenso wie in den nicht gelagerten Kontrollproben. Dabei ist kein Unterschied zwischen den nicht gelagerten Kontrollen und den gelagerten Proben zu erkennen. Ebenso bestätigt die durch OD-Messung bestimmte RNA-Ausbeute und -Reinheit, dass die RNA- Stabilisierung in verschiedenen Zeilmengen gleichermaßen erfolgt, ohne Verringerung der RNA-Ausbeuten oder RNA-Reinheit. Die mit zunehmender Zellzahl abnehmenden E260/E280-Quotienten sind darauf zurückzuführen, dass diese Messungen in Wasser und nicht in einem gepufferten System durchgeführt wurden.
Beispiel 12 RNA-Stabilisierung in Macrophagen
Diese Experimente demonstrieren, dass RNA in verschiedenen Zelltypen eingesetzt werden kann. Die in diesem Experiment eingesetzten Macrophagen enthalten mehr RNasen als die zuvor verwendeten Hela-Zellen, wodurch der Abbau von RNA in den Zellen forciert wird.
Zur Herstellung der in diesem Experiment verwendeten Lösungen wird eine Stammlösung von 20% Tetradecyltrimethylammonium-Oxalat mit einer Stammlösung von 0,5 M Weinsäure pH 5, 0,5 M Tartronsäure pH 5 oder 0,5 M Phosphorsäure pH 5 zu einer Endkonzentration von 4% Tetradecyltrimethylammonium-Oxalat und 200 mM des Additivs vermischt. Die Stammlösung des Additvs wird vor der Mischung mit Tetradecyltrimethylammonium-Oxalat mittels Natronlauge auf den angegebenen pH-Wert eingestellt.
Je 1 × 106 Hela-Zellen, die direkt zuvor aus der Zellkultur geerntet und mit PBS gewaschen werden, werden durch Zentrifugation (1 min bei 120 xg) pelletiert und der Überstand entfernt. Zu den Zellen wird jeweils 300 µl Lösung mit 4% Tetradecyltrimethylammonium-Oxalat und 200 mM Additiv gegeben und die Proben durch Vortexen gemischt und dabei die Zellen resuspendiert. Die Proben werden 2 Tage, 6 Tage, 9 Tage bzw. 14 Tage bei RT (ca. 20 bis 25°C) gelagert. Alle Experimente werden in Form von Doppelbestimmungen durchgeführt.
Die RNA-Isolierung erfolgt wie in Beispiel 10 beschrieben.
Die isolierte RNA wird auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert. Hierzu werden beispielsweise 1,0%-ige Formaldehyd-Agarose-MOPS- Gele angefertigt. Es werden jeweils 20 µl des Eluates eingesetzt. Das Ergebnis ist in Fig. 12 wiedergegeben. Die Proben sind in Tabelle 9 zusammengefaßt, wobei alle Proben jeweils 2× durchgeführt und dargestellt worden sind.
Tabelle 9
Zusammenfassung der in Fig. 12 dargestellten Proben
Die Spuren 25 und 26 zeigen eine Gesamt-RNA, die ohne vorherige Lagerung der Macrophagen mit Hilfe eines kommerziell erhältlichen Isolierungskits - wie z. B. RNeasy® Mini Kits der Firma QIAGEN - aus je 1 × 106 Macrophagen isoliert wird (= Positiv-Kontrolle).
Die Menge an isolierter Gesamt-RNA wird nach Verdünnung in Wasser durch photometrische Messung der Lichtabsorption bei einer Wellenlänge von 260 nm ermittelt. Die Reinheit der so gewonnenen RNA wird durch die photometrische Bestimmung des Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm bestimmt. Die Ergebnisse der Isolierungen sind in der nachfolgenden Tabelle 10 dargestellt. Es werden jeweils die Mittelwerte der Doppelbestimmung angegeben.
Tabelle 10
Nukleinsäure-Ausbeute aus den nach Beispiel 12 in 4% Tetradecyltrimethylanimonium-Oxalat, 200 mM Additiv gelagerten Macrophagen
Die gelelektrophoretische Auftrennung zeigt nach Anfärbung mit Ethidiumbromid die intakte 28S und 18S rRNA-Banden in den gelagerten ebenso wie in den nicht gelagerten Proben, wobei auch noch 14-tägier Lagerung kein RNA-Abbau zu erkennen ist. Ebenso bleiben die mittels photometrischer Messung bestimmten RNA-Ausbeuten und RNA-Reinheiten während der Lagerung unverändert.
Beispiel 13 RNA-Stabilisierung in adhärenten Hela-Zellen ohne Entfernung des Mediums
Diese Experimente zeigen, dass mittels Tetradecyltrimethylammonium-Oxalat- Additiv-Mischungen RNA auch in adhärenten Zellen stabilisiert werden kann. Die Stabilisierung erfolgt dabei auch, wenn das Medium in dem sich die Zellen befinden, nicht entfernt, sondern die Tetradecyltrimethylammonium-Oxalat/Additiv- Mischung zum Medium hinzugegeben wird. Zellen in Medium können dabei als Modell für Zellen in Körperflüssigkeiten angesehen werden.
Zur Herstellung der in diesem Experiment verwendeten Lösungen werden Tetradecyltrimethylammonium-Oxalat und das jeweilige Additiv Weinsäure bzw. Ammoniumsulfat für eine Endkonzentration von 4% Tetradecyltrimethylammonium- Oxalat und 200 mM Additiv eingewogen und in Wasser gelöst. Der pH-Wert der Lösung wird im Falle von 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Weinsäure mit Natronlauge und im Falle von 4% Tetradecyltrimethylammonium- Oxalat, 200 mM Ammoniumsulfat mit Schwefelsäure auf pH 5 eingestellt.
Hela-Zellen werden in 6-well plates in je 2 ml Medium angezogen. Die Zellen wachsen adhärent, d. h. haften auf dem Boden des wells. Zur RNA-Stabilisierung in den Zellen werden zu je einem well jeweils 10 ml 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Weinsäure pH 5 bzw. 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Ammoniumsulfat pH 5 zugegeben und die Platten für 4 Tage bei RT gelagert. Als Negativ-Kontrolle wird ein well mit Medium aber ohne Zugabe einer 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Additiv-Mischung für 4 Tage bei RT gelagert.
Als Positiv-Kontrolle wird von einem well die RNA der Hela-Zellen ohne vorherige Lagerung mit Hilfe eines handelsüblichen Isolierungskits - wie z. B. RNeasy® Mini Kits der Firma QIAGEN - isoliert. Hierfür wird das Medium vollständig von den Zellen abgenommen und mit 350 µl des Lysepuffers RLT (Bestandteil des RNeasy- Kits) versetzt. Die Zellen werden mit einem Schaber vom Boden des wells abgeschabt und das Lysat in einen sog. Shredder - wie z. B. der QIAshredder der Firma QIAGEN - überführt. Durch Zentrifugation für 2 min bei 14000 rpm wird das Lysat durch den Shredder geführt und so die Probe homogenisiert. Der Durchfluß wird mit 70% Ethanol vermischt und wie in Beispiel 10 beschrieben, wird die RNA isoliert.
Nach 4 Tagen Lagerung der Zellen in einem Medium gemischt mit 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Additiv werden die nun abgelösten Zellen vollständig zusammen mit dem Überstand aufgenommen und 5 min bei 3000 xg zentrifugiert. Die Überstände werden abgenommen und das Zellpellet zur RNA-Isolierung, wie in Beispiel 10 beschrieben, verwendet.
Nach 4 Tagen Lagerung der Zellen in einem Medium ohne 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Additiv (= Negativ-Kontrolle) wird die RNA wie oben für die Positiv-Kontrolle beschrieben isoliert.
Die isolierte RNA wird auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert. Hierzu werden beispielsweise 1,0%-ige Formaldehyd-Agarose-MOPS- Gele angefertigt. Es werden jeweils 20 µl des Eluates eingesetzt. Das Ergebnis ist in Fig. 13 wiedergegeben. Spur 1 enthält Gesamt-RNA, die nach Lagerung der Zellen in Medium gemischt mit 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Weinsäure, pH 5 isoliert wird. Spur 2 zeigt Gesamt-RNA, die nach Lagerung der Zellen in Medium gemischt mit 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Ammoniumphosphat, bei pH 5 isoliert wird. Die Spur 3 zeigt eine Gesamt-RNA, die nach Lagerung der Zellen nur in Medium isoliert wird und die Spur 4 zeigt eine Gesamt-RNA, die als Positiv-Kontrolle ohne vorherige Lagerung isoliert wird.
Die Menge an isolierter Gesamt-RNA wird nach Verdünnung in Wasser durch photometrische Messung der Lichtabsorption bei einer Wellenlänge von 260 nm ermittelt. Die Reinheit der so gewonnenen RNA wird durch die photometrische Bestimmung des Verhältnisses der Lichtabsorption bei 260 nm zu derjenigen bei 280 nm bestimmt. Die Ergebnisse der Isolierungen sind in der nachfolgenden Tabelle 11 dargestellt.
Tabelle 11
RNA-Ausbeute der nach Beispiel 13 aus adhärenten Hela-Zellen isolierten Gesamt-RNA
Die gelelektrophoretische Auftrennung zeigt nach Anfärbung mit Ethidiumbromid die intakte 28S und 18S rRNA-Banden in der nicht gelagerten Probe ebenso wie in den mit Tetradecyltrimethylammonium-Oxalat-Additiv-Mischungen gelagerten Proben. Dagegen ist die RNA in den Zellen, die in Medium ohne Tetradecyltrimethylammonium-Oxalat-Additiv-Zugabe gelagert werden, nahezu vollständig abgebaut. Ebenso besteht kein Unterschied zwischen nicht gelagerten und stabilisierten Proben bezüglich der mittels OD-Messung bestimmten RNA- Ausbeute und -Reinheit, während die Ausbeute und Reinheit der RNA in den in Medium ohne Tetradecyltrimethylammonium-Oxalat-Additiv-Zugabe gelagerten Proben deutlich reduziert ist.
Beispiel 14 RNA-Stabilisierung in Gewebe mittels Tetradecyltrimethylammonium-Oxalat, gemischt mit verschiedenen Additiven
Diese Experimente zeigen, dass Tetradecyltrimethylammonium-Oxalat gemischt mit verschiedenen Additiven auch geeignet ist RNA aus Gewebe zu stabilisieren.
Zur Herstellung der in diesem Experiment verwendeten Lösungen wird eine Stammlösung von 20% Tetradecyltrimethylammonium-Oxalat mit jeweils einer Stammlösung von 0,5 M von Weinsäure, Zitronensäure, Tartronsäure, Ammoniumsulfat, Kaliumphosphat, Oxalsäure oder Phosphorsäure zu einer Endkonzentration von 4% Tetradecyltrimethylammonium-Oxalat und 200 mM des Additivs vermischt. Die Stammlösungen der Additve werden vor der Mischung mit Tetradecyltrimethylammonium-Oxalat mittels Natronlauge oder Schwefelsäure (oder Ammoniumsulfat) oder Kalilauge bzw. Phosphorsäure (oder Kaliumphosphat) auf den jeweils angegebenen pH-Wert eingestellt.
Nierengewebe der Maus, welches nach Entnahme unverzüglich in flüssigem Stickstoff eingefroren und anschließend bei -70°C gelagert wurde, wird für diese Experimente verwendet. Je ca. 70 bis 90 mg des Gewebes werden gefroren mit 500 µl je 10 mg Gewebe der in Tabelle 12 genannten Puffer versetzt und sofort mittels eines Rotor-Stator-Homogenisators - wie z. B. des Polytrons der Firma Kinematica - für 30 bis 60 s homogenisiert. Von diesen Homogenisaten werden Aliquots von je 500 µl Lösung abgenommen, die somit 10 mg Gewebe entsprechen. Die Proben werden für einen Tag bei RT gelagert.
Im Anschluß an die Lagerung werden die Proben für 3 min bei 10000 xg zentrifugiert und der Überstand abgenommen. Das Pellet wird in 600 µl eines handelsüblichen Guanidinium-Isothiocyanat-Puffers - wie z. B. RLT-Puffer der Firma QIAGEN - durch Vortexen vollständig gelöst. Anschließend wird 1 Volumen (600 µl) 70%-iges Ethanol zugefügt und durch mehrmaliges Auf- und Abpipettieren oder durch Vortexen über einen Zeitraum von ca. 5 s gemischt. Das Lysat wird anschließend in eine handelsübliche Silicamembran enthaltene spin-Säule - wie z. B. RNeasy-Säulen der Firma QIAGEN - aufgetragen und durch Zentrifugation (1 min bei 10000 xg) durch die Membran hindurchgeführt. Die RNA bleibt an der Membran gebunden und wird anschließend mit einem ersten handelsüblichen Guanidinium-Isothiocyanat-haltigen Waschpuffer - beispielsweise mit dem Puffer RW1 der Firma QIAGEN - und danach mit einem zweiten alkoholhaltigen Waschpuffer - z. B. dem Puffer RPE der Firma QIAGEN - gewaschen. Dabei werden die Waschpuffer jeweils durch Zentrifugation (1 min bei 10000 xg) durch die Membran hindurchgeführt. Die Waschung mit dem zweiten alkoholhaltigen Waschpuffer wird mit einem geringeren Volumen wiederholt, wobei gleichzeitig die Membran durch die Zentrifugation (2 min max. rpm, hier 20000 xg) getrocknet wird. Zur Elution werden 40 µl RNase-freies Wasser auf die Membran pipettiert, um die gereinigte RNA von der Membran abzulösen. Durch Zentrifugation (1 min bei 10000 xg) wird das Eluat durch die Membran hindurchgeführt und der Elutionsschritt wird zum Zwecke einer vollständigen Elution noch einmal wiederholt.
Die isolierte RNA wird auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert. Hierzu werden beispielsweise 1,0%-ige Formaldehyd-Agarose-MOPS- Gele angefertigt. Es werden jeweils 20 µl des Eluates eingesetzt. Das Ergebnis ist in Fig. 14 wiedergegeben. Die Proben sind in Tabelle 12 zusammengefaßt, wobei alle Proben jeweils 2× durchgeführt und dargestellt worden sind.
Tabelle 12
Zusammenfassung der in Fig. 14 dargestellten Proben
Die Proben "K" zeigen eine Gesamt-RNA, die ohne vorherige Lagerung mit Hilfe eines Isolierungskits (RNeasy der Fa. Qiagen GmbH) aus 10 mg gefrorenem Nierengewebe isoliert wird (= Positiv-Kontrolle). Die Spuren "N" zeigen eine Gesamt-RNA, die nach eintägiger Lagerung von 10 mg Nierengewebe trocken, d. h. ohne Lösungszugabe mit Hilfe des RNeasy® Mini Kits der Firma QIAGEN isoliert wird (= Negativ-Kontrolle.)
Die gelelektrophoretische Auftrennung zeigt nach Anfärbung mit Ethidiumbromid die intakte 28S und 18S rRNA-Banden in der Positiv-Kontrolle. Die Negativ-Kontrolle, ohne Stabilisierungslösung gelagertes Nierengewebe, zeigt vollständig abgebaute RNA. Im Gegensatz dazu sind nach Lagerung der Proben in Tetradecyltrimethylammonium-Oxalat gemischt mit verschiedenen Additiven wie in der Positiv-Kontrolle die intakten mRNA-Banden sichtbar. Die Stabilisierung wird dabei vom pH-Wert beeinflußt. Bei der RNA-Stabilisierung in Gewebe werden finale pH-Werte der Stabilisierungslösung nach Mischung von Tetradecyltrimethylammonium-Oxalat und Additiv definierten pH-Wertes von größer 4 bevorzugt.
Beispiel 15 DNA-Stabilisierung und -Isolierung parallel zur RNA-Stabilisierung und -Isolierung
Diese Experimente zeigen, dass mittels Tetradecyltrimethylammonium-Oxalat gemischt mit verschiedenen Additiven neben RNA auch DNA in Gewebe stabilisiert wird. Aus einer Probe kann dabei neben der RNA auch die DNA parallel isoliert werden.
Zur Herstellung der in diesem Experiment verwendeten Lösungen wird eine Stammlösung von 20% Tetradecyltrimethylammonium-Oxalat mit einer Stammlösung von 0,5 M von Zitronensäure pH 5, eingestellt mit Natronlauge, zu einer Endkonzentration von 4% Tetradecyltrimethylammonium-Oxalat und 200 mM des Additivs vermischt.
Nierengewebe der Maus, welches nach Entnahme unverzüglich in flüssigem Stickstoff eingefroren und anschließend bei -70°C gelagert wurde, wird für diese Experimente verwendet. Ca. 80 mg des Gewebes werden gefroren mit 4,2 ml 4% Tetradecyltrimethylammonium-Oxalat, 200 mM Zitronensäure pH 5 versetzt und sofort mittels eines Rotor-Stator-Homogenisators wie z. B. des Polytrons der Firma Kinematica für 30 bis 60 sek. homogenisiert. Von diesem Homogenisat werden Aliquots von je 500 µl Lösung abgenommen, die somit 10 mg Gewebe entsprechen. Die Proben werden für einen Tag bei RT gelagert.
Im Anschluß an die Lagerung werden die Proben für 3 min bei 10000 xg zentrifugiert und der Überstand abgenommen. Das Pellet wird in 600 µl eines handelsüblichen Guanidinium-Isothiocyanat-Puffers - wie z. B. RLT-Puffer der Firma QIAGEN - durch Vortexen vollständig gelöst. Anschließend wird 1 Volumen (600 µl) 70%-iges Ethanol zugefügt und durch mehrmaliges Auf- und Abpipettieren oder durch Vortexen über einen Zeitraum von ca. 5 s gemischt. Das Lysat wird anschließend in eine handelsübliche Silicamembran enthaltene spin-Säule - wie z. B. RNeasy-Säulen der Firma QIAGEN - aufgetragen und durch Zentrifugation (1 min bei 10000 xg) durch die Membran hindurchgeführt. Die RNA bleibt an der Membran gebunden und kann anschließend wie in Beispiel 14 beschrieben isoliert werden. Der Durchfluß (ca. 1200 µl) wird aufgefangen und mit 200 µl 100% Ethanol versetzt und durch Vortexen gemischt. Diese Proben werden erneut in eine handelsübliche Silicamembran enthaltene spin-Säule - wie z. B. QIAamp-Säulen der Firma QIAGEN - aufgetragen und durch Zentrifugation (1 min bei 10000 xg) durch die Membran hindurchgeführt. Die DNA bleibt an der Membran gebunden und wird anschließend mit einem ersten handelsüblichen Guanidinium- Isothiocyanat-haltigen Waschpuffer - beispielsweise mit dem Puffer RW1 der Firma QIAGEN - und danach mit einem zweiten alkoholhaltigen Waschpuffer - z. B. Puffer RPE der Firma QIAGEN - gewaschen. Dabei werden die Waschpuffer jeweils durch Zentrifugation (1 min bei 10000 xg) durch die Membran geführt. Die Waschung mit dem zweiten alkoholhaltigen Waschpuffer wird mit einem geringeren Volumen wiederholt, wobei gleichzeitig die Membran durch die Zentrifugation (2 min max. rpm, hier 20000 xg) getrocknet wird. Zur Elution werden 200 µl Wasser auf die Membran pipettiert und 1 min bei RT inkubiert, um die gereinigte DNA von der Membran abzulösen. Durch Zentrifugation (1 min bei 10000 xg) wird das Eluat durch die Membran hindurchgeführt und der Elutionsschritt wird zum Zwecke einer vollständigen Elution noch einmal wiederholt.
Die isolierte DNA wird auf Agarosegelen, die mit Ethidiumbromid angefärbt sind, analysiert. Hierzu werden beispielsweise 0,8%-ige Agarose-TBE-Gele angefertigt. Es werden jeweils 40 µl der Proben 1 bis 4 und 20 µl der Proben 5 bis 9 eingesetzt. Das Ergebnis ist in Fig. 15 wiedergegeben.
Die Spuren 1 und 2 zeigen die entsprechend Beispiel 15 isolierte Gesamt-DNA. Die Spuren 3 und 4 zeigen 0,1 µg bzw. 0,5 µg einer Gesamt-DNA als Referenz, zur Demonstration des Laufverhaltens einer intakten genomischen DNA im verwendeten Agarosegel. Die Spur 5 zeigt eine Gesamt-DNA, die ohne vorherige Lagerung mit Hilfe eines kommerziell erhältlichen Isolierungskits (QIAamp® Mini Kits der Firma QIAGEN GmbH) aus 10 mg gefrorenem Nierengewebe der Ratte isoliert wird (= Positiv-Kontrolle). Als Negativ-Kontrolle diente Gesamt-DNA, die nach eintägiger Lagerung von 10 mg Nierengewebe trocken, d. h. ohne Lösungszugabe, oder in A. dest., mit Hilfe des QIAamp® Mini Kits der Firma QIAGEN isoliert wird. Diese DNA ist in den Spuren 6 und 7 (Lagerung trocken) und in den Spuren 8 und 9 (Lagerung in A. dest.) gezeigt.
Die gelelektrophoretische Auftrennung zeigt hochmolekulare, nicht degradierte DNA sowohl in den Spuren, welche die Referenz-DNA zeigen, als auch in den Spuren, die die DNA der nicht-gelagerten Positiv-Kontrolle enthalten. Die Lagerung des Gewebes trocken oder in Wasser führt zu einem vollständigen Abbau der DNA. Dagegen bleibt aus den entsprechend Beispiel 15 behandelten Proben intakt und wird während der Lagerung nicht gegradiert. Mischungen aus Tetradecyltrimethylammonium-Oxalat mit Additiven sind somit geeignet auch DNA in biologischen Proben zu stabilisieren und erlauben zudem eine parallele Isolierung von RNA und DNA aus einer Probe.

Claims (30)

1. Komposition umfassend als Bestandteile eine kationische Verbindung der allgemeinen Formel
Y+R1R2R3R4X-
worin
Y Stickstoff oder Phosphor,
R1, R2, R3 und R4 unabhängig voneinander einen unverzweigten oder verzweigten C1-C20-Alkylrest und/oder einen C6-C20-Arylrest sowie einen C6-C26-Aralkylrest und
X- ein Anion einer anorganischen oder organischen, ein- oder mehrbasischen Säure
bedeuten können
und mindestens einen Protonendonor.
2. Komposition nach Anspruch 1, dadurch gekennzeichnet, dass Y Stickstoff bedeutet.
3. Komposition nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass R1 einen höheren Alkylrest mit vorzugsweise 12, 14 oder 16 Kohlenstoffatomen und R2, R3 und R4 jeweils eine Methylgruppe bedeutet.
4. Komposition nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Anion X- aus der Gruppe der Anionen von Halogenwasserstoffsäuren oder Anionen ein- oder zweibasischer organischer Säuren ausgewählt wird.
5. Komposition nach Anspruch 4, dadurch gekennzeichnet, dass das Anion X- Anionen aus der Gruppe Bromid, Chlorid, Phosphat, Sulfat, Formiat, Acetat, Propionat, Oxalat, Malonat, Succinat oder Citrat ausgewählt wird.
6. Komposition nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Protonendonor aus der Gruppe der gesättigten aliphatischen Monocarbonsäuren, der ungesättigten Alkenyl-carbonsäuren, der gesättigten und/oder ungesättigten aliphatischen C2-C6-Dicarbonsäuren, der aliphatischen Ketodicarbonsäuren, der Aminosäuren oder aus der Gruppe der Mineralsäuren oder deren Salze allein oder in Kombination ausgewählt wird.
7. Komposition nach Anspruch 6, dadurch gekennzeichnet, dass als aliphatische Monocarbonsäure eine C1-C6-Alkyl-carbonsäure, vorzugsweise Essigsäure, Propionsäure, n-Buttersäure, n-Valeriansäure, Isovaleriansäure, Ethyl-methyl­ essigsäure (2-Methyl-buttersäure), 2,2-Dimethylpropionsäure (Pivalinsäure), n- Hexansäure, n-Octansäure, n-Decansäure bzw. n-Dodecansäure (Laurinsäure) oder Mischungen der genannten Säuren eingesetzt werden.
8. Komposition nach Anspruch 6, dadurch gekennzeichnet, dass als aliphatische Alkenyl-carbonsäure Acrylsäure (Propensäure), Methacrylsäure, Crotonsäure, iso- Crotonsäure oder Vinylessigsäure oder Mischungen der genannten Säuren eingesetzt werden.
9. Komposition nach Anspruch 6, dadurch gekennzeichnet, dass als gesättigte aliphatische C2-C6-Dicarbonsäure eine Dicarbonsäure aus der Gruppe Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure bzw. Adipinsäure oder Mischungen der genannten Säuren eingesetzt werden.
10. Komposition nach Anspruch 9, dadurch gekennzeichnet, dass als Protonenedonoren aliphatische Dicarbonsäuren, vorzugsweise Oxalsäure oder Bernsteinsäure oder Mischungen der genannten Säuren eingesetzt werden.
11. Komposition nach Anspruch 6, dadurch gekennzeichnet, dass als Protonendonoren aliphatische Hydroxi-di- und -tricarbonsäuren, vorzugsweise Tartronsäure, D-(+)-, L-(-)- oder DL-Äpfelsäure, (2R,3R)-(+)-Weinsäure, (2S,3S)-(-)- Weinsäure, meso-Weinsäure und Citronensäure oder Mischungen der genannten Säuren eingesetzt werden.
12. Komposition nach Anspruch 6, dadurch gekennzeichnet, dass als Protonendonoren ungesättigte Dicarbonsäuren, vorzugsweise Malein- und/oder Fumarsäure oder Mischungen der genannten Säuren eingesetzt werden.
13. Komposition nach Anspruch 6, dadurch gekennzeichnet, dass als Protonendonoren ungesättigte Tricarbonsäuren, vorzugsweise Aconitsäure, oder Mischungen dieser Säuren eingesetzt werden.
14. Komposition nach Anspruch 6, dadurch gekennzeichnet, dass als Protonendonoren aliphatische Ketodicarbonsäuren, vorzugsweise Mesoxalsäure oder Oxalessigsäure, oder Mischungen der genannten Säuren eingesetzt werden.
15. Komposition nach Anspruch 6, dadurch gekennzeichnet, dass als Protonendonoren Aminosäuren, vorzugsweise Aminoessigsäure (Glycin), α- Aminopropionsäure (Alanin), α-Amino-iso-valeriansäure (Valin), α-Amino-iso- capronsäure (Leucin) und α-Amino-β-methylvaleriansäure (Isoleucin), oder Mischungen der genannten Säuren eingesetzt werden.
16. Komposition nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass sie in wässeriger Lösung vorliegt.
17. Komposition nach Anspruch 16, dadurch gekennzeichnet, dass die kationische Verbindung in einer Konzentration in einem Intervall von 0.01 Gew.-% bis zur Sättigung, bevorzugt zwischen 0.1 Gew.-% und der Sättigung, besonders bevorzugt zwischen 0.5 und 15 Gew.-% und ganz besonders bevorzugt zwischen 2 und 10 Gew.-% liegt.
18. Verfahren zur Herstellung einer der Kompositionen nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass man die einzelnen Bestandteile gegebenenfalls in wässeriger Lösung zusammenfügt und vermischt.
19. Verwendung einer Komposition gemäß einem der Ansprüche 1 bis 17 zur Isolierung und/oder Stabilisierung von Nukleinsäuren.
20. Verwendung gemäß Anspruch 19, dadurch gekennzeichnet, dass als Nukleinsäuren Ribonukleinsäuren (RNA), Desoxyribonukleinsäuren (DNA) stabilisiert werden.
21. Verwendung gemäß Anspruch 20, dadurch gekennzeichnet, dass Nukleinsäuren Ribonukleinsäuren (RNA) oder Desoxyribonukleinsäuren (DNA) in Form von monomeren Nukleotiden, Oligomeren, Plasmide, in Form viraler und/oder bakterieller DNA und RNA, sowie genomische und nichtgenomische DNA und RNA aus Tier- und Pflanzenzellen oder anderen Eukaryonten stabilisiert werden.
22. Verwendung gemäß Anspruch 21, dadurch gekennzeichnet, dass als Nukleinsäuren mRNA in prozessierter und unprozessierter Form, tRNA, mRNA, rRNA, cDNA stabilisiert werden.
23. Diagnostische Zusammensetzung, enthaltend eine Komposition gemäß einem der Ansprüche 1 bis 17.
24. Kit zur Stabilisierung von Nukleinsäuren enthaltend eine Komposition gemäß einem der Ansprüche 1 bis 17.
25. Mischung enthaltend eine Nukleinsäure-haltige biologische Probe und eine Komposition nach einem der Ansprüche 1 bis 17 gegebenenfalls neben weiteren Hilfsstoffen.
26. Mischung nach Anspruch 25, dadurch gekennzeichnet, dass der pH-Wert der Mischung in einem Bereich von 2 bis 12, bevorzugt 2 bis 10 und besonders bevorzugt in einem Intervall von 3 bis 8 liegt.
27. Mischung nach Anspruch 25, dadurch gekennzeichnet, daß die biologische Probe, die ggf. Viren oder Bakterien enthalten kann, Blut, Plasma oder Serum ist.
28. Mischung nach Anspruch 27, dadurch gekennzeichnet, daß der pH-Wert der Mischung in einem Bereich von 2 bis 6, bevorzugt 3 bis 4 liegt.
29. Mischung nach Anspruch 25, dadurch gekennzeichnet, daß die biologische Probe, die ggf. Viren oder Bakterien enthalten kann, durch ein Punktat, Zellen, Gewebe oder Bakterien verkörpert wird.
30. Mischung nach Anspruch 29, dadurch gekennzeichnet, daß der pH-Wert der Mischung in einem Bereich von 3 bis 10, bevorzugt 4 bis 8 liegt.
DE10031236A 2000-06-27 2000-06-27 Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien Ceased DE10031236A1 (de)

Priority Applications (36)

Application Number Priority Date Filing Date Title
DE10031236A DE10031236A1 (de) 2000-06-27 2000-06-27 Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien
AT01947306T ATE374743T1 (de) 2000-06-27 2001-05-22 Neue kompositionen für die stabilisierung von nukleinsäuren in biologischen materialien
EP01947306A EP1294676B1 (de) 2000-06-27 2001-05-22 Neue kompositionen für die stabilisierung von nukleinsäuren in biologischen materialien
US10/312,745 US7270953B2 (en) 2000-06-27 2001-05-22 Compositions for isolating and/or stabilising nucleic acids in biological material
ES01947306T ES2295177T3 (es) 2000-06-27 2001-05-22 Nuevas composiciones para la estabilizacion de acidos nucleicos en materiales biologicos.
AU6903101A AU6903101A (en) 2000-06-27 2001-05-22 Novel compositions for isolating and/or stabilising nucleic acids in biological material
DE50113086T DE50113086D1 (de) 2000-06-27 2001-05-22 Neue kompositionen für die stabilisierung von nukleinsäuren in biologischen materialien
CA2412534A CA2412534C (en) 2000-06-27 2001-05-22 New compositions for the isolation and/or stabilisation of nucleic acids in biological materials
ES07010591T ES2373784T3 (es) 2000-06-27 2001-05-22 Procedimiento para la estabilización de ácidos nucleicos en materiales biológicos.
AT07010591T ATE524431T1 (de) 2000-06-27 2001-05-22 Verfahren zur stabilisierung von nukeinsäuren in biologischen materialien
DK01947306T DK1294676T3 (da) 2000-06-27 2001-05-22 Nye sammensætninger til stabilisering af nukleinsyrer i biologiske materialer
DK07010591.1T DK1820793T3 (da) 2000-06-27 2001-05-22 Fremgangsmåde til stabilisering af nukleinsyrer i biologisk materiale
AU2001269031A AU2001269031B2 (en) 2000-06-27 2001-05-22 Novel compositions for isolating and/or stabilising nucleic acids in biological material
PCT/EP2001/005888 WO2002000599A1 (de) 2000-06-27 2001-05-22 Neue kompositionen für die isolierung und/oder stabilisierung von nukleinsäuren in biologischen materialien
EP07010591A EP1820793B1 (de) 2000-06-27 2001-05-22 Verfahren zur Stabilisierung von Nukeinsäuren in biologischen Materialien
JP2002505349A JP5795455B2 (ja) 2000-06-27 2001-05-22 生物材料中の核酸を安定化および/または単離するための新規な組成物
HU0301342A HUP0301342A2 (hu) 2000-06-27 2001-06-26 Kationos vegyületeket és protondonort tartalmazó készítmények alkalmazása nukleinsavak stabilizálására és/vagy izolálására mikroorganizmusokból, például prokariotákból, gombákból, protozoonokból vagy algákból
EP01953178A EP1296932B1 (de) 2000-06-27 2001-06-26 Verwendung von kompositionen aus kationischen verbindungen und protonendonoren zur stabilisierung und/oder isolierung von nukleinsäuren in bzw. aus mikroorganismen - wie prokaryonten, pilzen, protozoen oder algen
PL01360705A PL360705A1 (en) 2000-06-27 2001-06-26 Use of compositions consisting of cationic compounds and proton donors for stabilising and/or isolating nucleic acids in or from micro-organisms such as prokaryots, fungi, protozoa or algae
CA2410388A CA2410388C (en) 2000-06-27 2001-06-26 Use of compositions consisting of cationic compounds and proton donors for stabilising and/or isolating nucleic acids in or from microorganisms such as prokaryotes, fungi, protozoa or algae
CNB01811945XA CN1250520C (zh) 2000-06-27 2001-06-26 由阳离子化合物和质子供体组成的组合物的应用
US10/312,432 US6861213B2 (en) 2000-06-27 2001-06-26 Use of compositions consisting of cationic compounds and proton donors for stabilizing and/or isolating nucleic acids in or from micro-organisms such as prokaryots, fungi, protozoa or algae
MXPA02012261A MXPA02012261A (es) 2000-06-27 2001-06-26 Composiciones que contienen compuestos cationicos y donadores de protones para estabilizar y/o aislar acidos nucleicos en o a partir de microorganismos.
DE50113941T DE50113941D1 (de) 2000-06-27 2001-06-26 Verwendung von kompositionen aus kationischen verbindungen und protonendonoren zur stabilisierung und/oder isolierung von nukleinsäuren in bzw. aus mikroorganismen - wie prokaryonten, pilzen, protozoen oder algen
JP2002505350A JP5657847B2 (ja) 2000-06-27 2001-06-26 原核生物、菌類、原生動物もしくは藻類などの微生物中で、または微生物から核酸を安定化および/または単離するための、カチオン化合物およびプロトン供与体からなる組成物の使用
CZ20024129A CZ20024129A3 (cs) 2000-06-27 2001-06-26 Použití směsi z kationtových sloučenin a donorů protonů pro stabilizaci a/nebo isolaci nukleových kyselin v mikroorganismech nebo z mikroorganismů, jako jsou prokaryonta, houby, prvoci nebo řasy
AT01953178T ATE394363T1 (de) 2000-06-27 2001-06-26 Verwendung von kompositionen aus kationischen verbindungen und protonendonoren zur stabilisierung und/oder isolierung von nukleinsäuren in bzw. aus mikroorganismen - wie prokaryonten, pilzen, protozoen oder algen
AU75685/01A AU783922B2 (en) 2000-06-27 2001-06-26 Use of compositions consisting of cationic compounds and proton donors for stabilising and/or isolating nucleic acids in or from micro-organisms such as prokaryots, fungi, protozoa or algae
SK1802-2002A SK18022002A3 (sk) 2000-06-27 2001-06-26 Použitie zmesí z katiónových zlúčenín a donorov protónov na stabilizáciu alebo izoláciu nukleových kyselín v mikroorganizmoch alebo z mikroorganizmov, ako sú prokaryonty, huby, prvoky alebo riasy
PCT/EP2001/007281 WO2002000600A1 (de) 2000-06-27 2001-06-26 Verwendung von kompositionen aus kationischen verbindungen und protonendonoren zur stabilisierung und/oder isolierung von nukleinsäuren in bzw. aus mikroorganismen - wie prokaryonten, pilzen, protozoen oder algen
BR0112002-6A BR0112002A (pt) 2000-06-27 2001-06-26 Uso de uma composição, processo para preparar uma das composições, composição diagnóstica, kit para estabilizar ácidos nucléicos, e, mistura
AU2007201583A AU2007201583B2 (en) 2000-06-27 2007-04-11 Novel compositions for isolating and/or stabilising nucleic acids in biological material
US11/890,415 US7682790B2 (en) 2000-06-27 2007-08-06 Compositions for the isolation and/or stabilization of nucleic acids in biological materials
JP2012038487A JP2012135317A (ja) 2000-06-27 2012-02-24 生物材料中の核酸を安定化および/または単離するための新規な組成物
JP2014203545A JP2015027310A (ja) 2000-06-27 2014-10-02 原核生物、菌類、原生動物もしくは藻類などの微生物中で、または微生物から核酸を安定化および/または単離するための、カチオン化合物およびプロトン供与体からなる組成物の使用
JP2015116549A JP2015212273A (ja) 2000-06-27 2015-06-09 生物材料中の核酸を安定化および/または単離するための新規な組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10031236A DE10031236A1 (de) 2000-06-27 2000-06-27 Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien

Publications (1)

Publication Number Publication Date
DE10031236A1 true DE10031236A1 (de) 2002-01-10

Family

ID=7646943

Family Applications (3)

Application Number Title Priority Date Filing Date
DE10031236A Ceased DE10031236A1 (de) 2000-06-27 2000-06-27 Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien
DE50113086T Expired - Lifetime DE50113086D1 (de) 2000-06-27 2001-05-22 Neue kompositionen für die stabilisierung von nukleinsäuren in biologischen materialien
DE50113941T Expired - Lifetime DE50113941D1 (de) 2000-06-27 2001-06-26 Verwendung von kompositionen aus kationischen verbindungen und protonendonoren zur stabilisierung und/oder isolierung von nukleinsäuren in bzw. aus mikroorganismen - wie prokaryonten, pilzen, protozoen oder algen

Family Applications After (2)

Application Number Title Priority Date Filing Date
DE50113086T Expired - Lifetime DE50113086D1 (de) 2000-06-27 2001-05-22 Neue kompositionen für die stabilisierung von nukleinsäuren in biologischen materialien
DE50113941T Expired - Lifetime DE50113941D1 (de) 2000-06-27 2001-06-26 Verwendung von kompositionen aus kationischen verbindungen und protonendonoren zur stabilisierung und/oder isolierung von nukleinsäuren in bzw. aus mikroorganismen - wie prokaryonten, pilzen, protozoen oder algen

Country Status (17)

Country Link
US (3) US7270953B2 (de)
EP (3) EP1294676B1 (de)
JP (5) JP5795455B2 (de)
CN (1) CN1250520C (de)
AT (3) ATE524431T1 (de)
AU (4) AU2001269031B2 (de)
BR (1) BR0112002A (de)
CA (2) CA2412534C (de)
CZ (1) CZ20024129A3 (de)
DE (3) DE10031236A1 (de)
DK (2) DK1820793T3 (de)
ES (2) ES2373784T3 (de)
HU (1) HUP0301342A2 (de)
MX (1) MXPA02012261A (de)
PL (1) PL360705A1 (de)
SK (1) SK18022002A3 (de)
WO (2) WO2002000599A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602718B1 (en) 2000-11-08 2003-08-05 Becton, Dickinson And Company Method and device for collecting and stabilizing a biological sample
WO2002056030A3 (en) * 2000-11-08 2003-08-28 Becton Dickinson And Company Method and device for collecting and stabilizing a biological sample
US7569342B2 (en) 1997-12-10 2009-08-04 Sierra Molecular Corp. Removal of molecular assay interferences

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080064108A1 (en) * 1997-12-10 2008-03-13 Tony Baker Urine Preservation System
DE10031236A1 (de) * 2000-06-27 2002-01-10 Qiagen Gmbh Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien
DE10147439B4 (de) * 2001-09-26 2014-01-30 Qiagen Gmbh Verfahren zur Isolierung von DNA aus biologischen Proben
EP1329506A1 (de) 2002-01-18 2003-07-23 Cypro S.A. Verfahren zur Quantifizierung vom RNA Niveau in vivo
DE10208005A1 (de) * 2002-02-26 2003-09-04 Qiagen Gmbh Verfahren zur Änderung der Transkriptkonzentration in ribonukleinsäurehaltigen biologischen Proben
US7482116B2 (en) 2002-06-07 2009-01-27 Dna Genotek Inc. Compositions and methods for obtaining nucleic acids from sputum
WO2004020626A1 (de) * 2002-08-09 2004-03-11 Alexander Cherkasky Verwendung von zellorganellen zur stabilisierung von biomolekülen und zellen
DE10336177B4 (de) * 2002-08-09 2010-02-11 Alexander Cherkasky Verwendung von Zellorganellen zur Stabilisierung von Nukleinsäuren und Zellen
JP2006502857A (ja) * 2002-10-18 2006-01-26 プロメガ コーポレイション 分子を分離するための方法
WO2005010209A2 (de) * 2003-07-24 2005-02-03 Qiagen Gmbh Verfahren zur reversen transkription und/oder amplifikation von nukleinsäuren
US20050059024A1 (en) * 2003-07-25 2005-03-17 Ambion, Inc. Methods and compositions for isolating small RNA molecules
GB0327319D0 (en) * 2003-11-24 2003-12-24 Pfizer Ltd Novel pharmaceuticals
WO2005090563A1 (ja) * 2004-03-23 2005-09-29 Nisshinbo Industries, Inc. 核酸溶解用溶媒、核酸含有溶液および核酸保存方法
US20080176209A1 (en) * 2004-04-08 2008-07-24 Biomatrica, Inc. Integration of sample storage and sample management for life science
EP3167961A1 (de) 2004-04-08 2017-05-17 Biomatrica, Inc. Integration von probenlagerung und probenverwaltung für biowissenschaften
US20060099567A1 (en) * 2004-04-08 2006-05-11 Biomatrica, Inc. Integration of sample storage and sample management for life science
DE102004023417A1 (de) * 2004-05-12 2005-12-08 Clariant Gmbh Verfahren zur Herstellung von langkettigen quaternären Ammonium-oxalaten und -hydrogenoxalaten
JP4810164B2 (ja) * 2004-09-03 2011-11-09 富士フイルム株式会社 核酸分離精製方法
US20060094023A1 (en) * 2004-11-02 2006-05-04 Industrial Technology Research Institute Method for isolating nucleic acid by using amino surfactants
TWI294460B (en) * 2004-12-23 2008-03-11 Ind Tech Res Inst Method for stabilizing nucleic acids
DE102005015005A1 (de) * 2005-04-01 2006-10-05 Qiagen Gmbh Verfahren zur Behandlung einer Biomoleküle enthaltenden Probe
US20060234251A1 (en) * 2005-04-19 2006-10-19 Lumigen, Inc. Methods of enhancing isolation of RNA from biological samples
US20070015165A1 (en) * 2005-07-13 2007-01-18 Sigma-Aldrich Co. Method for the isolation of RNA from biological sources
US20070190526A1 (en) * 2006-02-16 2007-08-16 Nexgen Diagnostics Llc Methods of extracting nucleic acids
WO2007132873A1 (ja) * 2006-05-17 2007-11-22 Yoshiyuki Koyama 核酸、オリゴ核酸、又はその誘導体導入用の凍結乾燥体
DE102007016707A1 (de) * 2007-04-04 2008-10-09 Qiagen Gmbh Verfahren zur Aufreinigung von Biomolekülen
DE102007025277A1 (de) 2007-05-31 2008-12-04 Qiagen Gmbh Verfahren zur Stabilisierung einer biologischen Probe
DE102007025275A1 (de) 2007-05-31 2008-12-04 Qiagen Gmbh Butendisäure oder deren Derivate zur Behandlung einer biologischen Probe
DE102007025276A1 (de) 2007-05-31 2008-12-04 Qiagen Gmbh Aromatische Alkohole zur Behandlung einer biologischen Probe
US20090053704A1 (en) * 2007-08-24 2009-02-26 Natalia Novoradovskaya Stabilization of nucleic acids on solid supports
US7687027B2 (en) * 2008-02-27 2010-03-30 Becton, Dickinson And Company Cleaning compositions, methods and materials for reducing nucleic acid contamination
NZ594695A (en) 2009-03-27 2013-07-26 Univ Bruxelles NEW MARKER FOR DIAGNOSIS OF ACTIVE MULTIPLE SCLEROSIS by IL-23p19 and IL-1 beta
WO2011051402A1 (en) 2009-11-02 2011-05-05 Universite Libre De Bruxelles New biomarkers for determining allergy status
EP2345719A1 (de) 2010-01-18 2011-07-20 Qiagen GmbH Verfahren zur Isolierung kleiner RNA
US8932809B2 (en) * 2010-01-19 2015-01-13 Opgen, Inc. Methods and kits for isolating nucleic acid from an organism
EP2580348B1 (de) 2010-06-14 2018-04-25 Qiagen GmbH Verfahren zur bestimmung von zielzellen oder -gewebe zur extraktion von biomolekülen aus nicht-formalin-fixierten biologischen proben
EP2407540A1 (de) 2010-07-15 2012-01-18 Qiagen GmbH Verfahren zur Reinigung von Nukleinsäure
CA2806670A1 (en) 2010-07-26 2012-02-09 Biomatrica, Inc. Compositions for stabilizing dna, rna and proteins in blood and other biological samples during shipping and storage at ambient temperatures
WO2012018639A2 (en) 2010-07-26 2012-02-09 Biomatrica, Inc. Compositions for stabilizing dna, rna and proteins in saliva and other biological samples during shipping and storage at ambient temperatures
CN102146422B (zh) * 2011-01-24 2013-08-07 南京工业大学 一种丁二酸的发酵生产工艺
CN110016499B (zh) 2011-04-15 2023-11-14 约翰·霍普金斯大学 安全测序系统
EP2721140B1 (de) 2011-06-19 2016-11-23 Abogen, Inc. Vorrichtungen, lösungen und verfahren zur probenentnahme
JP6096774B2 (ja) 2011-08-12 2017-03-15 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング 核酸を単離するための方法
CA2849354C (en) 2011-09-26 2021-11-09 Preanalytix Gmbh Stabilisation and isolation of extracellular nucleic acids
US11021733B2 (en) 2011-09-26 2021-06-01 Qiagen Gmbh Stabilization and isolation of extracellular nucleic acids
ES2687126T3 (es) 2011-09-26 2018-10-23 Qiagen Gmbh Estabilización y aislamiento de ácidos nucleicos extracelulares
CN108103147B (zh) * 2012-02-09 2021-06-01 生命技术公司 缀合的聚合物颗粒及其制备方法
EP2647709B1 (de) 2012-04-05 2016-02-24 F. Hoffmann-La Roche AG Aminverbindungen für die selektive Herstellung von biologischen Proben
WO2014029791A1 (en) 2012-08-21 2014-02-27 Qiagen Gmbh Method for isolating nucleic acids from a formaldehyde releaser stabilized sample
EP2888354B1 (de) 2012-08-21 2020-04-01 Qiagen GmbH Stabilisierung von viruspartikeln und viralen nukleinsäuren in einer biologischen probe
AU2013310861B2 (en) * 2012-09-03 2019-02-14 Qiagen Gmbh Method for isolating RNA including small RNA with high yield
AU2013322643C1 (en) 2012-09-25 2018-11-08 Qiagen Gmbh Stabilisation of biological samples
PL2912468T3 (pl) 2012-10-29 2019-04-30 Univ Johns Hopkins Test papanicolaou pod kątem raka jajnika i endometrium
HK1217117A1 (zh) 2012-12-20 2016-12-23 生物马特里卡公司 用於使pcr试剂稳定化的制剂和方法
ES3031233T3 (en) 2012-12-28 2025-07-07 Qiagen Sciences Llc A cell mediated immune response assay
GB201303666D0 (en) 2013-03-01 2013-04-17 Goldsborough Andrew S Sample fixation and stabilisation
EP2976424B1 (de) 2013-03-18 2018-10-03 Qiagen GmbH Stabilisierung von biologischen proben
WO2014146782A1 (en) 2013-03-18 2014-09-25 Qiagen Gmbh Stabilization and isolation of extracellular nucleic acids
GB201305414D0 (en) 2013-03-25 2013-05-08 Arcis Biotechnology Holdings Ltd Method and composition
SG11201607364RA (en) 2014-03-07 2016-10-28 Dna Genotek Inc Composition and method for stabilizing nucleic acids in biological samples
EP3119197A1 (de) 2014-03-18 2017-01-25 Qiagen GmbH Stabilisierung und isolierung extrazellulärer nukleinsäuren
EP3942931A1 (de) 2014-06-10 2022-01-26 Biomatrica, INC. Stabilisierung von thrombozyten bei umgebungstemperatur
WO2016044510A1 (en) * 2014-09-17 2016-03-24 Hologic, Inc. Method of partial lysis and assay
CA2980120C (en) 2015-05-27 2025-04-29 Qiagen Gmbh Composition and method for disrupting tissue material
WO2017004559A1 (en) 2015-07-02 2017-01-05 Life Technologies Corporation Conjugation of carboxyl functional hydrophilic beads
WO2017007774A1 (en) 2015-07-06 2017-01-12 Life Technologies Corporation Substrates and methods useful in sequencing
WO2017027653A1 (en) 2015-08-11 2017-02-16 The Johns Hopkins University Assaying ovarian cyst fluid
EP3377645B1 (de) 2015-11-20 2023-10-04 Qiagen GmbH Verfahren zur herstellung sterilisierter zusammensetzungen zur stabilisierung von extrazellulären nukleinsäuren
EP4242628B1 (de) 2015-12-08 2025-07-02 Biomatrica, Inc. Verringerung der erythrozytensedimentationsrate
CA3042298A1 (en) * 2016-11-08 2018-05-17 Qvella Corporation Methods of performing nucleic acid stabilization and separation
PL3568475T3 (pl) 2017-01-16 2023-06-19 Spectrum Solutions L.L.C. Roztwór do konserwacji kwasu nukleinowego i sposoby zastosowania
BR112020002555A2 (pt) 2017-08-07 2020-08-11 The Johns Hopkins University métodos e materiais para avaliar e tratar câncer
CN110012899A (zh) * 2019-04-12 2019-07-16 南京科佰生物科技有限公司 细胞用rna稳定剂及其使用方法
CA3170345A1 (en) 2020-02-14 2021-08-19 The Johns Hopkins University Methods and materials for assessing nucleic acids
AU2021278969A1 (en) * 2020-05-29 2023-01-05 The Rockefeller University Method and system for RNA isolation from self-collected and small volume samples
CN118369435A (zh) 2021-12-10 2024-07-19 日东纺绩株式会社 核酸的融解温度(Tm值)升高化剂
KR102728359B1 (ko) * 2021-12-10 2024-11-11 니토 보세키 가부시기가이샤 2 본쇄 핵산의 융해 온도 상승화제 및 그 용도
KR102786563B1 (ko) 2023-04-27 2025-03-26 전남대학교산학협력단 수송배지로서 혈액 내의 핵산 보존용 조성물 및 이를 이용한 핵산의 보존방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2130679A1 (de) 1970-06-22 1971-12-23 Shell Int Research Verfahren zur Herstellung von Phenyl-ss-hydroxyalkylaethern
US4900677A (en) * 1986-09-26 1990-02-13 E. I. Du Pont De Nemours And Company Process for rapid isolation of high molecular weight DNA
US5010183A (en) 1989-07-07 1991-04-23 Macfarlane Donald E Process for purifying DNA and RNA using cationic detergents
IT1240870B (it) 1990-02-14 1993-12-17 Talent Procedimento per l'estrazione e la purificazione di dna genomico umano
US5260048A (en) 1991-05-08 1993-11-09 Streck Laboratories, Inc. Tissue fixative solution and method
US5196182A (en) 1991-05-08 1993-03-23 Streck Laboratories, Inc. Tissue fixative
US5275708A (en) * 1992-03-20 1994-01-04 Thomas Jefferson University Cetyltrimethylammonium bromide gel electrophoresis
CA2107939C (en) * 1993-01-13 2001-01-30 Stephen B. Kong Acidic aqueous cleaning compositions
US5300635A (en) * 1993-02-01 1994-04-05 University Of Iowa Research Foundation Quaternary amine surfactants and methods of using same in isolation of nucleic acids
JP3615545B2 (ja) * 1993-02-01 2005-02-02 キアゲン・エヌ・ブイ 第四級アンモニウム塩界面活性剤及びそのrnaの単離剤
US5300645A (en) 1993-04-14 1994-04-05 Eli Lilly And Company Tetrahydro-pyrido-indole
US5641726A (en) * 1993-06-09 1997-06-24 Lonza, Inc. Quaternary ammonium carboxylate and borate compositions and preparation thereof
ZA943999B (en) * 1993-06-09 1995-02-03 Lonza Ag Quaternary ammonium and waterproofing/preservative compositions
DK1146049T3 (da) 1994-02-11 2005-12-12 Qiagen Gmbh Fremgangsmåde til separering af dobbeltstrengede/enkeltstrengede nucleinsyrestrukturer
CA2313654A1 (en) 1997-12-10 1999-06-17 Sierra Diagnostics, Inc. Methods and reagents for preservation of dna in bodily fluids
US6238888B1 (en) * 1997-12-22 2001-05-29 Human Genone Sciences, Inc. Keratinocyte growth factor-2 formulations
US6204375B1 (en) 1998-07-31 2001-03-20 Ambion, Inc. Methods and reagents for preserving RNA in cell and tissue samples
US7683035B1 (en) * 1999-02-23 2010-03-23 Qiagen, Gmbh Method of stabilizing and/or isolating nucleic acids
DE10031236A1 (de) * 2000-06-27 2002-01-10 Qiagen Gmbh Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569342B2 (en) 1997-12-10 2009-08-04 Sierra Molecular Corp. Removal of molecular assay interferences
US6602718B1 (en) 2000-11-08 2003-08-05 Becton, Dickinson And Company Method and device for collecting and stabilizing a biological sample
WO2002056030A3 (en) * 2000-11-08 2003-08-28 Becton Dickinson And Company Method and device for collecting and stabilizing a biological sample

Also Published As

Publication number Publication date
JP5657847B2 (ja) 2015-01-21
EP1296932B1 (de) 2008-05-07
US20080071072A1 (en) 2008-03-20
AU783922B2 (en) 2005-12-22
EP1296932A1 (de) 2003-04-02
CN1250520C (zh) 2006-04-12
JP2015027310A (ja) 2015-02-12
DE50113941D1 (de) 2008-06-19
WO2002000599A1 (de) 2002-01-03
JP5795455B2 (ja) 2015-10-14
HUP0301342A2 (hu) 2003-08-28
EP1294676B1 (de) 2007-10-03
ATE524431T1 (de) 2011-09-15
AU2007201583A1 (en) 2007-05-03
JP2012135317A (ja) 2012-07-19
WO2002000600A1 (de) 2002-01-03
EP1820793A1 (de) 2007-08-22
CA2412534C (en) 2011-08-09
US7682790B2 (en) 2010-03-23
ES2295177T3 (es) 2008-04-16
AU2001269031B2 (en) 2007-01-11
SK18022002A3 (sk) 2003-07-01
ATE394363T1 (de) 2008-05-15
ES2373784T3 (es) 2012-02-08
JP2004501622A (ja) 2004-01-22
DK1294676T3 (da) 2008-02-04
US6861213B2 (en) 2005-03-01
JP2004501621A (ja) 2004-01-22
MXPA02012261A (es) 2004-09-06
CA2412534A1 (en) 2002-12-17
ATE374743T1 (de) 2007-10-15
CA2410388C (en) 2014-12-09
US7270953B2 (en) 2007-09-18
US20040014703A1 (en) 2004-01-22
DE50113086D1 (de) 2007-11-15
AU2007201583B2 (en) 2010-06-03
EP1820793B1 (de) 2011-09-14
JP2015212273A (ja) 2015-11-26
BR0112002A (pt) 2003-05-13
US20030165943A1 (en) 2003-09-04
CZ20024129A3 (cs) 2003-06-18
PL360705A1 (en) 2004-09-20
AU6903101A (en) 2002-01-08
AU7568501A (en) 2002-01-08
DK1820793T3 (da) 2012-01-02
CN1438988A (zh) 2003-08-27
CA2410388A1 (en) 2002-11-28
EP1294676A1 (de) 2003-03-26

Similar Documents

Publication Publication Date Title
EP1294676B1 (de) Neue kompositionen für die stabilisierung von nukleinsäuren in biologischen materialien
EP1031626B1 (de) Verfahren zur Stabilisierung und/oder Isolierung von Nukleinsäuren
EP2164963B1 (de) Verfahren zur stabilisierung einer biologischen probe
DE69305662T2 (de) Brett-stabiles Produkt und Verfahren zur Isolierung der RNA, DNA und Proteine
EP1969341B1 (de) Ein verfahren zur behandlung einer biologischen probe
EP1869179B1 (de) Verfahren zur behandlung einer biomoleküle enthaltenden probe
DE202013012535U1 (de) Blutsammelvorrichtung für verbesserte Nukleinsäureregulierung
EP2465934A1 (de) Extraktion von Nukleinsäuren
DE60108102T2 (de) E. coli extrakt zur synthese von proteinen
EP1771562B1 (de) Verfahren zur reinigung und isolierung von nukleinsäuren unter verwendung kationischer detergentien
DE102007035250A1 (de) Verfahren zum Abtrennen von nicht-proteinhaltigen Biomolekülen, insbesondere Nukleinsäuren aus proteinhaltigen Proben
DE4447015C2 (de) Verfahren zur schnellen Isolierung und ggf. Lagerung von Ribonukleinsäuren
EP1430301B1 (de) Verfahren zur herstellung einer normalisierten genbank aus nukleinsäure-exktrakten von bodenproben und deren verwendung
EP4414458A1 (de) Collect &amp; extract - lösung für die sammlung und lagerung biologischer probentypen zur extraktion von biomolekülen
DE102005031910B4 (de) Verfahren zum Stabilisieren von Nukleinsäuren
DE102007025276A1 (de) Aromatische Alkohole zur Behandlung einer biologischen Probe

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8131 Rejection