CN1622998B - 丝状真菌来源的赖氨酰氧化酶 - Google Patents

丝状真菌来源的赖氨酰氧化酶 Download PDF

Info

Publication number
CN1622998B
CN1622998B CN028283716A CN02828371A CN1622998B CN 1622998 B CN1622998 B CN 1622998B CN 028283716 A CN028283716 A CN 028283716A CN 02828371 A CN02828371 A CN 02828371A CN 1622998 B CN1622998 B CN 1622998B
Authority
CN
China
Prior art keywords
dna
sequence
gene
lysyl hydroxylase
telopeptide lysyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN028283716A
Other languages
English (en)
Other versions
CN1622998A (zh
Inventor
结城健介
东本笃树
町田雅之
阿部敬悦
五味胜也
浅井洁
佐野元昭
金大心
长崎英树
细山哲
秋田修
小笠原直毅
久原哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Independent Administrative Of National Research Institute Of Brewing
Amano Enzyme Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Independent Administrative Of National Research Institute Of Brewing
Amano Enzyme Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Independent Administrative Of National Research Institute Of Brewing, Amano Enzyme Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical Independent Administrative Of National Research Institute Of Brewing
Publication of CN1622998A publication Critical patent/CN1622998A/zh
Application granted granted Critical
Publication of CN1622998B publication Critical patent/CN1622998B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products

Abstract

本发明提供丝状真菌来源的赖氨酰氧化酶及编码它的DNA。由以下(a)或(b)的蛋白质组成的赖氨酰氧化酶:(a)具有序列号2中所示氨基酸序列的蛋白质;(b)具有序列号2中所示氨基酸序列经部分改变的氨基酸序列、能作为赖氨酰氧化酶发挥作用的蛋白质。

Description

丝状真菌来源的赖氨酰氧化酶
技术领域
本发明涉及丝状真菌来源的赖氨酰氧化酶及编码它的DNA,及其应用。
技术背景
丝状真菌中尤其是包含米曲霉(黄色曲霉属)等的曲霉在日本传统上用于酿造业,制备清酒、豆酱、酱油、米酒(mirin)等,是可直接食用的菌类,是美国FDA(食品及药物管理局)归属到GRAS(GenerallyRecognized as Safe)的安全的基因来源。
普通真菌来源的基因用到食品时所进行的必要的慢性毒性检查等安全审查时,普通真菌来源的基因大约花费10亿日元,与此相对,上述GRAS级别的基因具有这样的优点:其花费大约是普通真菌的1/3,并且审查花费的时间也短。
因此,从安全性和经济性观点来看,可以说丝状真菌尤其是曲霉是利用价值极高的基因宝库。与本发明相关的技术公开在下述文献中。专利第2796114号公报(专利文献1),专利第2977245号公报(专利文献2)。
发明公开
通过阐明这些真菌基因组DNA信息,阐明其编码的基因等的功能,可如利用生物技术的物质生产那样,在食品生产中提供安全基因资源的有效应用方法,在农药及医药领域提供对各种基因筛选有用的信息。
此外,还可提供分析黄曲霉(Aspergillus flavus)、烟曲霉(Aspergillus fumigatus)等近源谷物污染菌、人感染菌的基因组信息有用的工具。
为了上述课题本发明者们进行了研究,结果成功地分析了米曲霉(曲霉菌的一种)的基因组,确定出其碱基序列(及其编码的氨基酸序列)及其各种功能等。在所得结果基础上,本发明公开了原专利(专利2001-403261)中米曲霉来源的各种DNA,以及由这些DNA制备的核苷酸序列组成的扩增GRAS级别的丝状真菌基因用的引物及检测丝状真菌基因用的探针。
本发明者们以所得曲霉菌基因组信息为基础进行了进一步研究。即,本发明者们注意到赖氨酰氧化酶,从所得碱基序列中确定出编码赖氨酰氧化酶的序列,另外还尝试确定该序列编码的蛋白质的氨基酸序列。另外,赖氨酰氧化酶是胺氧化酶的一种,通过氧化蛋白质中的赖氨酸残基而使赖氨酸残基间形成交联。很久以来人们知道存在动物来源的赖氨酰氧化酶,赖氨酰氧化酶通过蛋白质间的交联作用而用于提高食感(例如参照上述专利文献1和2)。近年来人们对微生物来源的赖氨酰氧化酶有所研究,从巴斯德毕赤酵母(Pichia Pastoris)来源的赖氨酰氧化酶与哺乳动物来源的具有类似的底物特异性(FEBSLett.1988,238,74-76)。人们发现毕赤酵母来源赖氨酰氧化酶不仅与哺乳动物来源的性质相似,而且与细菌类,如大肠杆菌(Escherichiacoli)、球形节杆菌(Arthrobacter globiformis)等的胺氧化酶具有类似的结构(J Inorg Biochem.2001,83(2-3):193-204)。但是,到目前为止尚没有从与酵母同为高等微生物的丝状真菌成功分离赖氨酰氧化酶的报道。
本发明者们进行了认真研究,结果在曲霉菌的基因组中成功发现了与已报道的巴斯德毕赤酵母(Pichia Pastoris)来源的赖氨酰氧化酶基因同源性高的序列。当用丝状真菌为宿主表达该序列编码的蛋白质时显示赖氨酰氧化酶活性。由该结果可实验性确认该序列编码赖氨酰氧化酶。另一方面,成功确定了该序列中的编码区域,发现该下列编码的蛋白质具有新型的氨基酸序列。如此,本发明者们首次成功鉴定了丝状真菌来源的赖氨酰氧化酶基因及其氨基酸序列。
本发明是在以上结果的基础上完成的,本发明中具体的课题是提供丝状真菌来源的赖氨酰氧化酶及编码它的DNA,以及该丝状真菌来源的赖氨酰氧化酶的生产方法。为了解决上述课题,提供以下配置:
由以下(a)或(b)的蛋白质组成的赖氨酰氧化酶:
(a)具有序列号2中所示氨基酸序列的蛋白质;
(b)具有序列号2中所示氨基酸序列经部分改变的氨基酸序列、能作为赖氨酰氧化酶发挥作用的蛋白质。
以下(A)或(B)的DNA:
(A)编码[1]中记载的赖氨酰氧化酶的DNA;
(B)在严紧条件下与(A)中的DNA杂交,其编码的蛋白质能作为赖氨酰氧化酶发挥作用的DNA。
具有以下(i)-(iii)中任一序列的DNA:
(i)序列号3中所示碱基序列;
(ii)序列号4中所示碱基序列;
(iii)序列号5中所示碱基序列;
(iv)序列号6中所示碱基序列;
(v)序列号1中所示碱基序列;
(vi)序列号7中所示碱基序列。
携带[2]或[3]中DNA的载体。
外源导入了[2]或[3]中DNA的丝状真菌。
包括下面步骤(1)和(2)的赖氨酰氧化酶的生产方法:
(1)在可能产生前述DNA编码的蛋白质的条件下培养[5]中丝状真菌的步骤,及
(2)回收产生的蛋白质的步骤。
本发明中的“DNA”不限于双链,还包括构成它的单链DNA(正义链和反义链)。另外,本发明的DNA包含考虑到简并密码子的任意碱基序列。而且其形式也不限定,包括cDNA、基因组DNA和合成DNA。
本发明中“编码蛋白质的DNA”是指当表达该DNA时能获得该蛋白质的DNA,具有与该蛋白质的氨基酸序列相对应的碱基序列的DNA自不用说,它还包括向上述DNA中添加了不编码氨基酸序列的序列的DNA(例如,包含1个或多个内含子的DNA)。
本发明中“丝状真菌来源的赖氨酰氧化酶”是指以丝状真菌为原始材料制备的赖氨酰氧化酶,或者在获得的过程中利用丝状真菌保持赖氨酰氧化酶的信息(氨基酸序列和DNA序列而制备的赖氨酰氧化酶,它不仅包括用物理方法和化学方法等从丝状真菌制备出的赖氨酰氧化酶,而且包括利用基因工程学技术用本发明中公开的赖氨酰氧化酶的氨基酸序列或DNA序列而制备的赖氨酰氧化酶。
附图简述
图1是载体pBALO的构建程序模式图。
图2表示用载体pBALO转化的丝状真菌进行赖氨酰氧化酶活性测定的结果表(上部分)和图(下部分)。ABPU1表示对照(应用构巢曲霉ABPU1株的培养上清的样品)。
图3是以从携带赖氨酰氧化酶基因的转化体中提取的RNA为模板,用该基因特异的引物扩增的3’DNA片段的序列。下划线部分表示使用引物(LO-3’)的位置。
图4是载体pBALO-D的构建程序模式图。
图5表示用载体pBALO-D转化的丝状真菌进行赖氨酰氧化酶活性测定的结果表(上部分)和图(下部分)。ABPU1表示对照(应用构巢曲霉ABPU1株的培养上清的样品)。
实施发明的最佳状态
(蛋白质)
本发明的第1方面涉及丝状真菌来源的赖氨酰氧化酶。本发明提供的赖氨酰氧化酶由例如具有序列号2中氨基酸序列的蛋白质组成。如后述的实施例所示,应用丝状真菌的表达体系,可证实该蛋白质确实显示赖氨酰氧化酶活性。
这里,通常对某种蛋白质的氨基酸序列实施部分改变时,改变后的蛋白质与改变前的蛋白质具有同等的功能。即,氨基酸序列的改变基本上对蛋白质的功能无影响,改变前后能维持蛋白质的功能。考虑到这一点,部分改变上述具有赖氨酰氧化酶活性的蛋白质的氨基酸序列(序列号2),即便是拥有改变氨基酸序列的蛋白质(以下,叫做“改变蛋白质”)只要其具有赖氨酰氧化酶功能也可构成本发明的赖氨酰氧化酶(蛋白质)。换言之,只要是能维持赖氨酰氧化酶的功能允许部分氨基酸的改变。另外,优选改变前后赖氨酰氧化酶的活性未降低,但多少有些变动(上升或降低)也可以。
这里所讲的“氨基酸序列的一部分可以被改变”指氨基酸序列中1个或多个氨基酸被删除、替换、添加和/或插入。只要是能维持赖氨酰氧化酶的功能,氨基酸序列改变(突变)的位置无特殊限定,此外也可有多个位置发生改变。被改变的氨基酸数可以是,例如占总氨基酸数的10%以内,优选在总氨基酸数目的5%以内。此外,优选占总氨基酸数的1%以内。如上改变蛋白质可用基因工程学技术进行制备,例如制备给序列号2中氨基酸序列的碱基序列加入改变的核酸片段,在适当的表达体系中使之表达等。
本发明的蛋白质(包含改变蛋白质)中对于天然丝状真菌中存在的,可通过从丝状真菌中提取、纯化等进行制备。另外,可在本说明书中公开的赖氨酰氧化酶信息的基础上,利用基因工程学技术制备本发明的蛋白质(包含改变蛋白质)。例如,可用编码本发明蛋白质的DNA转化适当的宿主细胞,回收在转化体内表达的蛋白质。根据需要适当纯化回收的蛋白质。作为重组蛋白质进行制备时可进行各种修饰。例如,编码本发明蛋白质的DNA与其它的适当DNA插入到同一载体,当用该载体进行重组蛋白质的生产时,可得到本发明的蛋白质上连接了其他肽或蛋白质的重组蛋白质。通过这样的修饰可使重组蛋白质的提取、纯化简便化或付与生物学功能等。
(编码赖氨酰氧化酶的DNA)
本发明的第2方面是提供编码丝状真菌来源的赖氨酰氧化酶的DNA。作为这样的DNA的具体实例可例举具有序列号3中所示碱基序列的DNA,或具有序列号4中所示碱基序列的DNA。前者是来源于编码赖氨酰氧化酶的基因组DNA(赖氨酰氧化酶基因)的序列,后者是该基因组DNA除去内含子区域的序列。作为本发明DNA的其他具体实例可例举具有序列号5中所示碱基序列的DNA,或具有序列号6中所示碱基序列的DNA。前者包含序列号3中所示赖氨酰氧化酶基因和其推定的启动子序列。后者包含序列号4中所示DNA(赖氨酰氧化酶基因除去内含子区域的DNA)和其推定的启动子序列。由于这些DNA中启动子与结构基因的组合是理想的组合,所以当利用该DNA进行赖氨酰氧化酶的生产时期待有良好的基因表达。因此,可构建高效的赖氨酰氧化酶生产体系。
作为本发明DNA的其他具体实例可例举具有序列号1中所示碱基序列的DNA,或具有序列号7中所示碱基序列的DNA。前者包含序列号3中所示赖氨酰氧化酶基因和其推定的启动子序列及其终止区域。后者包含序列号4中所示DNA(赖氨酰氧化酶基因除去内含子区域的DNA)和其推定的启动子序列及其终止区域。利用这样的DNA可构建高效的赖氨酰氧化酶生产体系。
这里序列号1、5、6、或7的序列中推定的启动子区域大约1600bp,作为启动子区域太长,所以考虑与启动子活性直接相关的是其一部分区域。考虑到这一点,这些序列内推定的启动子区域(5’侧的1600bp)即便有一段连续的区域,只要能验证其具有与赖氨酰氧化酶基因相对应的启动子功能,也可作为本发明DNA中的启动子使用。因此,通过联合,例如这样的特定启动子区域与序列号3中所示序列的结构基因,可构建成本发明的DNA(编码赖氨酰氧化酶的DNA)。这里,考虑到通常启动子功能区多直接位于结构基因前面,碱基,例如序列号1的序列中569-1568位的碱基,优选769-1568位的碱基是功能区的有力候选。
以上本发明的DNA,可适当利用与本发明的编码赖氨酰氧化酶的基因(例如具有序列号3中所示氨基酸序列的DNA)特异性杂交的探针、引物等,从适当的本发明的丝状真菌基因组DNA文库或cDNA文库,或者从丝状真菌的菌体内提取液制备。另外,由于制备本发明DNA的丝状真菌基因组DNA文库或cDNA文库的制备方法可参照例如Molecular Cloning,Third Edition,Cold Spring HarborLaboratory Press,New York。
具体而言,本发明DNA的制备可,例如按以下程序进行。首先,在预定时间内培养预期保有目的DNA的丝状真菌,过滤收集菌株。洗涤后,将菌体冷冻干燥。接着,用乳钵等将菌体粉碎后,加入适当量的提取用缓冲液(例如含有SDS的Tris-HCl缓冲液)作为提取液。然后,通过酚抽提、乙醇沉淀等进行基因组DNA的提取、纯化。以所得基因组DNA为模板,应用目的DNA特异的引物通过PCR得到目的DNA的扩增产物。
当可获得适当的丝状真菌基因组DNA文库或cDNA文库时,可利用它们进行本发明DNA的制备。根据所使用文库的种类可利用斑点杂交法或集落杂交法(参照Molecular Cloning,Third Edition,ColdSpring Harbor Laboratory Press,New York等)。例如,以用质粒构建的文库时可利用集落杂交法。筛选保有目的DNA的克隆时,可应用有本发明DNA特异序列的探针。筛选出目的克隆后,可以该克隆保有的DNA为模板,应用目的DNA特异的引物,通过PCR法等得到本发明DNA的扩增产物。
可将所得克隆保有的DNA亚克隆到适当的载体中供以后使用。如此,例如可构建转化用的重组载体,或构建适于解读碱基序列用的质粒。
这里,通常对编码某种蛋白质的DNA实施部分改变时,改变后的DNA所编码的蛋白质与改变前的DNA所编码蛋白质具有同等的功能。即,DNA序列的改变基本上对其编码蛋白质的功能无影响,改变前后能维持其编码的蛋白质的功能。考虑到这一点,即便是拥有上述本发明DNA经部分改变的碱基序列的DNA(以下,叫做“改变的DNA”)只要其所编码的蛋白质具有赖氨酰氧化酶功能也可构成本发明的DNA。换言之,只要是编码的蛋白质能维持赖氨酰氧化酶的功能允许部分序列的改变。另外,优选改变前后编码的蛋白质赖氨酰氧化酶的活性未降低,但多少有些变动(上升或降低)也可以。
这里所讲的“部分改变”典型地指改变前的碱基序列中1个或多个碱基被替换、删除、添加或插入。这种改变可在多个位置发生。这里“多个”根据改变的位置和改变的种类而异,例如2-100个,优选2-50个,更优选2-10个。上述改变的DNA的获得可,例如通过限制性酶处理、核酸外切酶和DNA连接酶等处理、点定位突变导入法(Molecular Cloning,Third Edition,Chapter 13,Cold Spring HarborLaboratory Press,New York)和随机突变导入法(Molecular Cloning,Third Edition,Chapter 13,Cold Spring Harbor Laboratory Press,NewYork)导入突变等。另外,可用紫外线处理保有赖氨酰氧化酶基因的丝状杆菌,随后利用分离改变的基因等众所周知的突变处理方法而获得。
另外,上述碱基的替换、删除、插入、添加或逆位等突变中也包含基于携带赖氨酰氧化酶的微生物个体差异、种属差异而天然产生的突变。
作为改变的DNA的制备方法的实例包括,从保有改变的DNA的天然丝状真菌(例如米曲霉)提取基因组(染色体)DNA,用适当的限制性酶处理后,筛选、分离出用本发明的DNA(例如具有序列号3中所示序列的DNA)或其一部分作探针进行筛选的过程中,严谨条件下进行杂交的DNA的方法。当可利用含保有改变的DNA克隆的基因组(染色体)DNA文库时,可通过用本发明的DNA(例如具有序列号3中所示序列的DNA)或其一部分作探针,在严谨条件下筛选该文库而获得。
严谨条件下与上述本发明的DNA(例如具有序列号3中所示序列的DNA和加入上述改变而得的DNA)杂交,且其编码的蛋白质作为赖氨酰氧化酶发挥功能的DNA可作为本发明的DNA。这里所讲的“严谨条件下”是指所谓形成特异杂交而不形成非特异杂交的条件。严谨条件要根据序列的长度和构成碱基的种类而变动,例如用杂交液(50%甲醛,10 X SSC(0.15M NaCl,15mM柠檬酸钠,pH 7.0),5XDenhardt溶液,1%SDS,1%硫酸葡聚糖,10μg/ml变性鲑鱼精子DNA,50mM磷酸缓冲液(pH 7.5))42℃温育,其后用0.1 X SSC、0.1%SDS 68℃洗涤的条件。优选的严谨条件是用50%甲醛,5XSSC(0.15M NaCl,15mM柠檬酸钠,pH 7.0),1 X Denhardt溶液,1%SDS,10%硫酸葡聚糖,10μg/ml变性鲑鱼精子DNA,50mM磷酸缓冲液(pH 7.5)的杂交液。
(载体)
本发明的其它方面提供携带上述本发明DNA(包含改变的DNA)的载体。载体的制备可通过将本发明的改变的DNA整合到已经存在的载体内或对其实施改变了的载体内。原则上只要是携带本发明DNA的载体任何载体均可作为原始材料,但可根据使用目的(克隆、多肽的表达)或考虑宿主细胞的种类而适当选择。将本发明的DNA整合到载体时,可通过应用限制性酶及DNA连接酶的众所周知的方法(Molecular Cloning,Third Edition,1.84,Cold Spring Harbor LaboratoryPress,New York))进行。
另外,应用含启动子区域的DNA(例如具有序列号1,5,6,7任一序列的DNA)时,可通过将个别准备的启动子区域与结构基因(及其终止子)整合到载体而构建重组载体。该情况下,作为适宜发挥启动子功能的条件,可在载体内二者之间插入其它序列。另外,可首先构建携带启动子区域的载体,其后进行结构基因的连接。
转化用的载体,经典地,包含赖氨酰氧化酶基因(例如具有序列号3中所示序列的DNA)、启动子及终止子。为了达到启动子对结构基因的适当转录,启动子、赖氨酰氧化酶基因及终止子按上游到下游的方向顺序排列。载体内也可包含选择标志和具有增强子功能的序列,编码信号肽的序列等。
(转化体)
转化用载体可用于丝状真菌的转化。即,用上述转化用载体可构建丝状真菌转化体的制备方法。通过该制备方法可获得外源导入了本发明DNA的丝状真菌。所得丝状真菌转化体可用于赖氨酰氧化酶的生产。具体而言,将外源导入了本发明DNA的丝状真菌转化体,在该DNA编码的蛋白质(赖氨酰氧化酶)能表达的条件下进行培养,可生产出赖氨酰氧化酶。例如,可应用市售的各种培养基或向其中添加了精氨酸、尿苷等促进转化体生长、选择、蛋白质表达等必要成分的培养基。
从按预定时间培养后的培养液或菌体中可回收目的蛋白质(赖氨酰氧化酶)。当产生在菌体外时可从培养液回收,除此之外,从菌体内回收。从培养液回收时,可通过联合应用例如过滤培养上清、离心去除不溶物之后,硫酸铵沉淀等的盐析、透析、各种色谱等进行分离、纯化,得到目的蛋白质。另一方面,从菌体回收时,可通过例如通过加压处理、超声波处理等将菌体破碎后,与上面同样进行分离、纯化,得到目的蛋白质。另外,通过过滤、离心等处理预先从培养液回收菌体后,也可进行上述一系列步骤(菌体的破碎、分离、纯化)。由于本发明的赖氨酰氧化酶通常在菌体外产生,所以分离、纯化比较容易。
对供转化的宿主丝状真菌的种类无特殊限定,可应用曲霉属(米曲霉、黑曲霉、构巢曲霉、酱油曲霉、泡盛曲霉、川地曲霉、寄生曲霉、黄曲霉、nomius曲霉、烟曲霉等)、青霉属、木霉属、根霉菌属、毛霉菌属、镰刀菌属等的丝状真菌。优选应用曲霉属丝状真菌。从安全性考虑其中优选米曲霉或黑曲霉。
可用众所周知的方法将转化用载体导入宿主丝状真菌。例如,可应用原生质化菌体的Turner等方法(Gene,36,321-331(1985))。此外也可采用五味等的方法(Agric.Biol.Chem.,51,323-328(1987))等。
以下,通过实施例对本发明进一步进行具体说明,但本发明并不限定于此。需要指出的是实施例中的各种基因操作按照上述Currentprotocols in molecular biology(Frederick M.Ausubel等编著)中记载的方法。
<实施例1>
[整个基因组基因枪文库的制备方法]
1.插入侧的制备
(1)染色体DNA的获得
将丝状真菌米曲霉RIB-40株(ATCC 42149)的孢子接种到YPD培养基(0.5%酵母提取物,1%蛋白胨,2%葡萄糖),30℃振荡培养一晚上。其后,按照饭村(Agric.Biol.Chem.,51,323-328(1987))的方法进行基因组DNA的提取。按照Watson等的方法(Methods Enzymol.57-75118(1986))),通过氯化铯超速离心纯化混在基因组DNA中的线粒体DNA,仅获得染色体DNA。
(2)染色体DNA的片段化
将所得纯化染色体DNA上随机DNA片段化装置HydroShear(Tomy精工),将染色体DNA的片段化成1-2kb左右。
(3)片段化DNA的末端处理
用BAL31核酸酶(TAKARA公司)处理片段化的染色体DNA,其后进行Klenow片段(TAKARA公司)处理,是末端平化。
(4)将Adaptor加到末端
用T4DNA连接酶(TAKARA公司)将由(P)5’-CGAGAGCGGCCGCTAC-3’和(P)5’-GTAGCGGCCGCTC-3’构成的接头连接到末端平化的染色体DNA片段两端。
2.转化
用限制性酶SalI(TAKARA公司)酶切pUC19以后,用Taq DNA聚合酶(Roche Diagnostics K.K.)将dT插入到SalI切断部分。用碱性磷酸酶(TAKARA公司)处理如此制备的质粒作为去磷酸化质粒应用。用T4DNA连接酶连接质粒与上面制备的染色体DNA片段,通过电穿孔法转化大肠杆菌DH10B(Gibco)。
3.碱基序列的测定
用2X YP培养基37℃、10小时培养大肠杆菌转化体,收集菌落,在灭菌水中,99℃加热处理10分钟。其上清用作模板DNA水溶液,经过98℃20秒、68℃2分30个循环的PCR扩增包含测序用引物退火部位的插入片段全长。所得DNA片段用作Sangaer法的模板,应用M13通用引物或M13逆向引物与Perkin Elmer公司的PRISMDye-Terminator kit,按试剂盒中的说明书进行测序反应。用过滤等方法除去反应产物中的未反应Dye-Terminator,然后用Perkin Elmer公司的3700 DNA Sequencer解读DNA片段的碱基序列。用Phred(PhilGreen)再解析3700DNA Sequencer所出波形,除去载体和接头序列后,使用SPS Phrap(Southwest Parallel Software)进行装配,构建曲霉菌基因组DNA碱基序列的Contig。
<实施例2>
[基因的鉴定]
用以下技术从基因组DNA碱基序列鉴定基因。在基因的鉴定技术中,对于基因组DNA碱基序列的Contig而言,考虑与已经获得的EST序列信息、已知的蛋白质氨基酸序列数据库的同源性时,可联合应用以浅井洁等的运算法则(Pacific Symposium on Biocomputing98,228-239)为基础的基因区域预测系统GeneDecoder和以后藤修的运算法则(Bioinformatics 200016:190-202.)为基础的基因区域预测系统LAN进行。另外,tRNA基因的预测用tRNA-scan。
第1[选取BLAST同源基因候补区域]
从基因组DNA碱基序列的Contig中选出与已知的蛋白质氨基酸序列高度同源的区域。氨基酸序列的同源性根据Karlin and Altschul的运算法则BLAST(Proc.Natl.Acad.Sei.USA 87:2264-2268,1990;Proc.Natl.Acad.Sei.USA 90:5873-5877,1993)确定。在该运算法则的基础上,开发了叫做BLASTX的程序(Altschul et al.J.Mol.Biol.215:403-410,1990),可直接检索基因组DNA碱基序列翻译成氨基酸序列时同源性高的区域。这些解析方法的具体技术是众知的(http://www.ncbi.nlm.nih.gov.)。该技术中,基因组DNA碱基序列的毗连(contig)序列作为询问序列,以SWISSPROT version 39(Bairoch,A.&Apweiler,R.Nucleic Acids Res.28,45-48(2000).)和Nraa为数据库进行BLASTX检索,BLAST法则中同源性指标为E-value,选出E-value在10-30(E-value值越低表示同源性越高)以下的区域。从这些区域中给同源性高的部分以优先权,从而选出互不重叠的BLAST同源基因候补区域。
第2[ALN基因候补区域的选取]
BLAST同源基因候补区域中,以与成为同源对象的蛋白质氨基酸序列全长90%以上区域具有同源性的区域为核心,用适于毗连序列的基因区域预测系统ALN选出ALN基因候补区域。ALN是通过排列成为毗连序列同源对象的蛋白质氨基酸序列全长时确定剪切位点而预测基因区域。
第3[GD同源性基因候补区域的选取]
BLAST同源基因候补区域中,以与成为同源对象的蛋白质氨基酸序列残长的20%以上90%以下区域具有同源性的区域为核心,用适于毗连序列的基因区域预测系统GeneDecoder选出GD同源性基因候补区域。GeneDecoder预测基因区域是通过整合BLASTX的E-value与2系列密码子统计量(蛋白质编码区域方向性指标),还考虑剪切位点的位置依赖性首次Markov Model分数。
第4[EST-GD基因候补区域的选取]
对于通过与毗连序列对应的EST认证基因表达的区域,通过对其附近的毗连序列应用GeneDecoder,不仅可预测EST序列决定的基因区域,而且可预测基因区域全长,于是作为EST-GD基因候补区域。
第5[一般GD基因候补区域的选取]
对于不包含第1到第4的基因候补区域的毗连序列,通过应用GeneDecoder预测基因区域。
第6[tRNA基因候补区域的选取]
用适于整个毗连序列的tRNA-scan选出tRNA基因候补区域。
第7[基因候补区域的综合]
按以下顺序综合第2到第6的基因候补区域。首先,从第2到第6的基因候补区域中除去预测的与EST决定的剪切位点相矛盾的基因区域。除去相互重叠的区域后,综合剩余的基因候补区域。此时,按tRNA、ALN同源性基因候补区域、GD同源性基因候补区域、GD-EST基因候补区域、一般GD基因候补区域的顺序优先综合。将如此综合的基因候补区域作为一套预测基因。
通过上述程序,从同源性观点看,可以保证与已知蛋白质全长同源的基因、与已知蛋白质部分同源的基因、与已知蛋白质不同源的基因按该顺序进行可靠性鉴定。另外,从认证表达的观点看,用EST认证表达的基因、用EST认证不表达的基因按该顺序进行可靠性鉴定。另外,保证所有的候补基因不与EST决定的剪切位点相矛盾。
所用技术均采用不允许蛋白质编码区域中包含终止密码子这一法则,将伪基因预测为基因的可能性极小。
关于功能预测,对于预测的基因区域,用以Nraa为数据库的BLAST进行同源性检索,以足够的同源性(E-value:10-30)作阈值来决定功能。
<实施例3>
[检索编码赖氨酰氧化酶的序列]
从实施例2的结果曲霉基因组DNA中预测具有特定功能的序列(功能序列),并选出。这些功能序列中,以预想编码蛋白质的全部序列为对象,用NCBI提供的BLAST检索(Standard protein-proteinBLAST:blastp)检索与巴斯德毕赤酵母(Pichia Pastoris)来源的赖氨酰氧化酶基因同源性高的区域。结果,在序列号24中所示序列内(该序列包含前专利中序列号36845所示序列(序列号8)成功发现与巴斯德毕赤酵母(Pichia Pastoris)来源的赖氨酰氧化酶基因同源性高的区域。于是,为了分析该区域的功能以及为了确定该区域编码的蛋白质的氨基酸序列,进行了以下各种实验。
<实施例4>
[染色体基因的获得]
将米曲霉(Aspergillus oryzae)RIB-40株加入到100ml马铃薯葡萄糖培养基(Difco)中,用坂口培养瓶30℃培养一晚后,用巴克纳漏斗和Nutsche吸引瓶过滤培养液,得到菌体。用300ml水洗涤菌体,-80℃冷冻后,进行冷冻干燥。将所得重约0.3g的菌体与1杯药匙的海砂一起在乳钵内用乳棒研碎,悬浮到8mlTE(10mM Tris-HCl(pH8.0),1mM EDTA)溶液中。向其中加入4ml 10%SDS水溶液,激烈搅拌。然后,加入等量的酚∶氯仿∶异戊醇(25∶24∶1)溶液,搅拌后离心(1500g,5min,室温),得到上清。向该上清中加入含20mg/ml蛋白酶K(Roche)的TE溶液100μl,搅拌,37℃培养30分钟。其后,再加入等量的酚∶氯仿∶异戊醇溶液,搅拌后离心(1500g,5min,室温),向所得上清中逐渐加入等量的异丙醇。用巴氏吸管吸取这样处理后析出到界面的染色体DNA,用70%乙醇洗涤,风干。再将所得染色体DNA溶解到3mlTE溶液中,加入10mg/ml Rnase A(SIGMA)100μl后,37℃培养30分钟。接着,加入20mg/ml蛋白酶K溶液25μl,37℃培养30分钟,然后加入等量的酚∶氯仿∶异戊醇(25∶24∶1)溶液,搅拌后离心(1500g,5min,室温),得到上清。该洗涤操作重复2次后,向所得上清中加入等量的氯仿∶异戊醇(24∶1)溶液,搅拌后离心(1500g,5min,室温)。向所得上清中加入其1/10体积的3M NaOAc(pH 4.8)和2倍体积的乙醇,-80℃冷冻使染色体DNA析出。通过离心(1500g,5min,室温)回收析出的染色体DNA。用70%乙醇洗涤回收的染色体DNA,真空干燥,最后溶解到300μl TE溶液中,得到浓度约1mg/ml的染色体DNA溶液。
<实施例5>
[制备集落杂交的探针]
以实施例1所得曲霉基因组DNA毗连序列信息为基础,如下设计扩增存在于限制性酶BalI片段(序列号24)包含一部分目的基因(推定赖氨酰氧化酶基因)区域的基因组DNA片段的引物对。
LO-25’-TAGCACCATCTACTCTGAGTGGC-3’(序列号11)
LOR-25’-CCTGGTCATATAGTCGTAGTTGC-3’(序列号12)
应用该引物对进行PCR反应。反应液的组成如下:
灭菌水:36.75μl
Pyrobest DNA聚合酶用10X buffer:5μl
2.5mM dNTP溶液:4μl
10pmol/μl LO-2:1μl
10pmol/μl LOR-2:1μl
60ng/μl RIB40染色体DNA:2μl
5U/μl Pyrobest DNA聚合酶(宝酒造):0.25μl/50μl
将50μl石蜡油滴到上述反应液中,用PE BioSystem公司的GeneAmpTM PCR System PJ9600,在以下条件下进行PCR。
(1)94℃1分钟,(2)94℃30秒、50℃30秒及72℃2分钟的循环,30个循环,(3)4℃放置。
PCR反应结果是特异地扩增出约900bp的DNA片段,琼脂糖凝胶电泳后用GeneCleanIII(BIO 101)提取扩增的DNA片段。将提取的DNA片段亚克隆到pUC19中后,用DIG High Prime(Roche)对插入DNA片段进行DIG标记,作为推定的赖氨酰氧化酶基因的探针。
<实施例6>
[集落杂交]
用限制性酶BalI(宝酒造)50U 37℃完全消化实施例4中所得40μg染色体DNA后,通过琼脂糖凝胶电泳切出链长约9.1kbp的DNA片段,接着用GeneCleanIII(BIO 101)进行抽提,作为制备文库的插入片段。另一方面,用Smal(宝酒造)80U完全消化(30℃温育一晚)pUC19,用碱性磷酸酶(宝酒造)脱磷酸后,作为制备文库的载体。用Ligation kit ver.2(宝酒造)连接如上制备的插入DNA和载体DNA,用它转化大肠杆菌DH5株活性细胞(TOYOBO)。以每枚LA板(氨苄西林(SIGMA)100μg/ml)大约形成200个集落的标准接种氨苄西林耐性转化株,37℃培养一晚上,使集落生成。将生成的总共约4000个集落移到集落和噬菌斑杂交尼龙膜(Roche)上,使DNA固定到膜上。用实施例5中制备的探针进行集落杂交,用DIG核酸检测试剂盒(Roche)检测有强信号的集落。集落杂交的结果,将选择出的克隆保持的质粒命名为pULO,作为包含推定赖氨酰氧化酶基因的质粒。另外,以上各种操作按照使用的试剂或试剂盒附加的说明进行。
<实施例7>
[包含推定赖氨酰氧化酶基因的克隆的碱基序列分析]
如实施例1-3所阐明的,以包含设想编码赖氨酰氧化酶区域的序列(序列号24:BalI片段(该序列包含推定的启动子区域和推定的终止子区域))的信息为基础,制作以下10种合成引物,用它们测定克隆pULO插入片段的碱基序列。用BigDyeTM Terminator CycleSequencing FS Ready Kit VE R.2(Applied Biosystem)进行测序反应,用ABI PRISM 310测序仪(Applied Biosystem)进行解析。
L-1:5’-GCTAGCTTATACTAACCC-3’(序列号13)
L-2:5’-GACTATGTTCTCGTGCGC-3’(序列号14)
L-3:5’-TCTTTGCATTTGTCCAGG-3’(序列号15)
L-4:5’-TCTGCGTCGTTGGACAAC-3’(序列号16)
L-5:5’-GACTGACCCTCATTATGC-3’(序列号17)
L-6:5’-AACACCGAGGGACCATGG-3’(序列号18)
L-7:5’-TACCTCACCCTCCGATCC-3’(序列号19)
L-8:5’-GGGACAGCACACCTGACG-3’(序列号20)
L-9:5’-AACCCGAATGATCCGTAC-3’(序列号21)
L-10:5’-AGAGAATAATCGAAATGG-3’(序列号22)
确定的碱基序列的一部分与序列号8中所示序列(包含推定的赖氨酰氧化酶的结构基因及其启动子和终止子序列)完全一致。因此,可以判断质粒pULO保持完全覆盖序列号8中所示序列(包含赖氨酰氧化酶的推定启动子、推定结构基因、推定终止子的序列)的DNA片段。
<实施例8>
[表达载体pBALO的构建]
用限制性酶BgIII(宝酒造)消化3μg的pULO,得到约7.0kbp的DNA片段(序列号10。以下叫做“推定的赖氨酰氧化酶DNA片段”)。用T4DNA聚合酶(宝酒造)使所得DNA片段的末端平化,作为插入DNA。另一方面,用SmaI(宝酒造)80U完全消化(30℃培养一晚上)75μg表达载体pBAR,该载体在pBluescript II KS(+)的Sall-Xhol位点插入了构巢曲霉(Aspergillus nidulans)的ArgB基因。其后,用碱性磷酸酶(宝酒造)脱磷酸化,作为载体DNA。用Ligation Kitver.2(宝酒造)连接如上制备的插入DNA和载体DNA,用它转化大肠杆菌DH5株活性细胞(TOYOBO),得到氨苄西林耐性转化体。将所得克隆保持的质粒命名为pBALO,作为表达载体。
<实施例9>
[构巢曲霉(Aspergillus nidulans)的转化]
用以下培养基培养精氨酸要求株构巢曲霉(Aspergillusnidulans)ABPU1株(构巢曲霉的鸟氨酸氨基甲酰转移酶基因缺陷株),37℃培养一晚上。
<完全培养基>
麦芽提取物:20g
葡萄糖:20g
细菌蛋白胨:1g
尿嘧啶核苷:2g
对氨基安息香酸:2.5mg
核黄素:2.5mg
维生素B6:2.5mg
生物素:2.5mg
盐酸精氨酸:055g/L(pH 6.5)
用玻璃滤器(100过滤在上述条件下培养所得培养液200ml,收集菌体。将菌体悬浮到以下组成的原生质制备液中。
灭菌MillQ水 37ml
氯化钠 1.9g
0.4M磷酸钠水溶液(pH 5.8) 1ml
1M氯化钙水溶液 0.8ml
Novozyme 234(NOVO NORDISK) 150mg/40ml
(用硝酸纤维素滤器(0.45μm)过滤除菌)
用上述悬浮液30℃、78rpm条件下进行1小时原生质化处理。用尼龙滤器(230目)过滤所得原生质悬浮液,离心分离滤液(400g,5min,室温),得到原生质。用10ml 0.8M NaCl洗涤原生质,再离心分离(400g,5min,室温),接着用10ml 0.8M NaCl-50mM CaCl2洗涤,离心分离(400g,5min,室温),将所得原生质沉淀悬浮到200μl 0.8MNaCl-50mM CaCl2中作为原生质液。通过显微镜观察算出原生质的浓度。用大约稀释成2×108/ml的原生质悬浮液按以下步骤进行转化。向50μl原生质悬浮液中加入5μl pBALO溶液(3μg/μl),混悬后,加入12.5μl PEG溶液(25%PEG6000、50mM CaCl2、10mM Tris-HCl(pH 7.5))再度混悬,冰中放置20分钟。然后,加入500μl 25%PEG6000、50mM CaCl2、10mM Tris-HCl(pH 7.5)再度混悬,冰中放置5分钟。最后,加入1ml 0.8M NaCl-50mM CaCl2混悬,将0.5ml悬浮液放到平皿中后,倾入以下所示再生培养基,使之固化成板。37℃培养3-4天后,用以下所示最少培养基分离单菌,获得形成的转化体,得到导入了推定赖氨酰氧化酶DNA片段的转化株。
<再生培养基>
硝酸钠:6g
磷酸钾:1.52g
氯化钾:0.52g
山梨糖醇:218.6g
尿苷:2.0g
对氨基安息香酸:2.5mg
核黄素:2.5mg
维生素B6:2.5mg
生物素:2.5mg
琼脂:20g/L(pH 6.5)
(灭菌(121℃、20分钟)后添加以下成分)
50%葡萄糖 20ml
5.2%7水硫酸镁 10ml
<最少培养基>
硝酸钠:0.85g
磷酸钾:1.525g
氯化钾:0.525g
微量元素1.5ml
尿苷:2.0g
对氨基安息香酸:2.5mg
核黄素:2.5mg
维生素B6:2.5mg
生物素:2.5mg
琼脂:15g/L(pH 6.5)
(灭菌(121℃、20分钟)后添加以下成分)
50%葡萄糖20ml
5.2%7水硫酸镁10ml
<微量元素>
4硼酸钠-10水    40mg
硫酸铜-5水    0.4g
硫酸铁-7水    1.6g
硫酸镁-4水    0.8g
钼酸钠-2水    0.8g
硫酸锌-7水    8g/L
<实施例10>
[转化体的培养]
用以下所示培养基培养转化体,30℃振荡培养3天。
<SPY培养基+维生素类>
淀粉    30g
多聚蛋白胨    10g
酵母提取物    5g
氯化钾    2g
磷酸钾    1g
乙醇发酵残余物    0.1g
尿苷    2.0g
对氨基安息香酸    2.5mg
核黄素    2.5mg
维生素 B6 2.5mg
生物素 2.5mg
(灭菌(121℃、20分钟)后添加以下成分)
5.2%硫酸镁-7水10ml/L(pH 6.5)
将上述条件下培养的培养基10ml离心(2400g,10min,4℃),获得培养上清。
<实施例11>
[赖氨酰氧化酶的酶活性测定]
按以下程序,用所得各培养上清测定赖氨酰氧化酶的酶活性。向上述培养基中添加浓度0.55g/L的盐酸精氨酸,用该培养基同样培养未转化的构巢曲霉(Aspergillus nidulans)ABPU1株,用培养所得上清作对照。
赖氨酰氧化酶的酶活性通过底物赖氨酸被赖氨酰氧化酶氧化产生的蒜素与赖氨酸聚合形成二聚体的生成量求出。用LC-MS(Agilent)测定二聚体的量。
首先,用各培养上清(粗酶样品)准备以下反应液。
0.1M磷酸钾缓冲液(pH 7.0)235μl
1.0M赖氨酸盐酸水溶液 60μl
培养上清 6μl
合计 301μl
将各反应液37℃保温,1、2、4、8、24小时后各取样30μl。将取样的反应液100℃热处理15分钟停止反应,此后用LC移动相10倍稀释,作为测定用样品。使用预先经100℃热处理15分钟使酶失活的培养上清作同样处理,所得样品作为空白。
使用Agilent1100系列LC/MSD系统(Agilent)测定各测定用样品中赖氨酸二聚体的量。用supelco ABZ plus(Spelco)作为分离柱,从Positive mode中作为赖氨酸二聚体检测出的质荷比(m/Z)275的峰面积值减去空白样品的值,作为个样品的测定值。
测定的结果,用任何转化体的培养上清中可看到测定值与反应时间成比例升高。即,可看到赖氨酸二聚体量与反应时间成比例增大。用反应时间为24小时的样品测定的结果如图2的表及图所示。需要指出的是,只选出了赖氨酸二聚体量证实增大的结果显示。如该表及图所示,与对照(ABPU1株)相比,用转化体LO-3、10、17、26、48的培养上清的样品活性高6倍以上。由此验证,这些转化体含有赖氨酰氧化酶基因。
<实施例12>
[赖氨酰氧化酶基因转录终止点的确定]
与实施例10同样培养米曲霉(Aspergillus oryzae)RIB-40株及上述活性测定中显示最大赖氨酰氧化酶活性的转化体LO-3(Aspergillus nidulans ABPU1),制备菌体。用Trisol试剂(Gibco BRL)从所得各菌体提取总RNA,以此为模板用3’-Full RACE Core Set(宝酒造)扩增3’DNA片段。下面是该情况下根据赖氨酰氧化酶基因组信息设计的合成引物中的特异序列。
LO-3’:5’-TGGCTGAACCTGGGGATGCACCAC-3’(序列号23)
分析扩增的DNA片段碱基序列的结果:该DNA片段的碱基序列(序列号9)与实施例1-3最初的赖氨酰氧化酶基因的结构基因和预想区域(推定赖氨酰氧化酶基因结构基因)碱基序列的一部分一致,另外还有polyA序列。这些事实表明该DNA片段是推定的赖氨酰氧化酶结构基因3’末端的DNA片段。由此,澄清了该推定赖氨酰氧化酶结构基因的转录终点,位于当初预测的3’末端。即,从以上结果表明,所得结构基因的序列与当初确定的结构基因的序列在3’末端区域不同。需要指出的是,序列号3及序列号2中分别显示了在以上结果基础上新鉴定出的赖氨酰氧化酶的结构基因和氨基酸序列。
<实施例13>
[携带缺失3’区域的插入DNA的表达载体的构建]
由实施例12的结果表明,插入到表达载体pBALO的约7.0kbp的插入DNA中,其3’区域存在赖氨酰氧化酶活性不必要的区域。因此,为了缩小对赖氨酰氧化酶活性必要的区域,如下构建携带缺失上述插入DNA3’区域的插入DNA的(以下叫做“缺失插入DNA”)表达载体。用限制性酶AccIII、AfIII(宝酒造)消化3μg pBALO,分成认为表达不需要的约2.2kbp的3’区域和包含缺失插入DNA的约9.4kbp的载体片段。然后,仅提取载体片段,用T4DNA聚合酶(宝酒造)使其末端平化,然后用Ligation Kit ver.2(宝酒造)进行自身连接。用所得表达载体转化大肠杆菌DH5株(TOYOBO),选择氨苄西林耐性转化株。将选出的克隆保持的质粒命名为pBALO-D,作为新的表达载体用于以后的实验(图4)。
<实施例14>
[转化体的获得和赖氨酰氧化酶活性的测定]
按与实施例9-11同样的方法,测定导入了pBALO-D的转化体的赖氨酰氧化酶活性。用反应时间为8小时的测定样品测定的结果如图5所示。需要指出的是,只选出了赖氨酸二聚体量证实增大的结果进行显示。如这些表及图所示,与实施例11是结果同样,与对照(ABPU1株)相比,转化体LO-9、16显示高5倍以上的活性。由此验证,pBALO-D含有能够表达的赖氨酰氧化酶基因。因此,可以判断pBALO-D含有的缺失插入DNA(序列号1)有对赖氨酰氧化酶基因的表达必要的序列。如上,通过本实施例进一步确定了表达赖氨酰氧化酶基因所必要的最小区域。
本发明并不限定于任何上述发明的实施方案及实施例说明。业内人士容易想到的不脱离权利要求范围的各种变化方案均包含在本发明内。
产业上利用的可能性
本发明提供丝状真菌来源的赖氨酰氧化酶及编码它的DNA。利用本发明的DNA可构建安全性高的应用丝状真菌的赖氨酰氧化酶生产体系。
Figure IYZ000004142636800021
Figure IYZ000004142636800051
Figure IYZ000004142636800061
Figure IYZ000004142636800071
Figure IYZ000004142636800081
Figure IYZ000004142636800091
Figure IYZ000004142636800111
Figure IYZ000004142636800121
Figure IYZ000004142636800131
Figure IYZ000004142636800141
Figure IYZ000004142636800151
Figure IYZ000004142636800161
Figure IYZ000004142636800171
Figure IYZ000004142636800201
Figure IYZ000004142636800221
Figure IYZ000004142636800231
Figure IYZ000004142636800251
Figure IYZ000004142636800281
Figure IYZ000004142636800301
Figure IYZ000004142636800311
Figure IYZ000004142636800321
Figure IYZ000004142636800331
Figure IYZ000004142636800341
Figure IYZ000004142636800361
Figure IYZ000004142636800381
Figure IYZ000004142636800391
Figure IYZ000004142636800401
Figure IYZ000004142636800411
Figure IYZ000004142636800431
Figure IYZ000004142636800441
Figure IYZ000004142636800471
Figure IYZ000004142636800481

Claims (4)

1.具有以下(i)或(ii)中的DNA:
(i)序列号1中所示碱基序列;
(ii)序列号10中所示碱基序列。
2.一种载体,它含有权利要求1中的DNA。
3.外源导入了权利要求1中DNA的丝状真菌。
4.赖氨酰氧化酶的生产方法,其包括下面步骤(1)和(2):
(1)在可产生权利要求1中的DNA编码的蛋白质的条件下培养权利要求3中的丝状真菌的步骤,及
(2)回收所产生的权利要求1中的DNA编码的蛋白质的步骤。
CN028283716A 2001-12-27 2002-12-25 丝状真菌来源的赖氨酰氧化酶 Expired - Fee Related CN1622998B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001403261 2001-12-27
JP403261/2001 2001-12-27
PCT/JP2002/013559 WO2003056016A1 (fr) 2001-12-27 2002-12-25 Lysyle oxydases d'origine fongique

Publications (2)

Publication Number Publication Date
CN1622998A CN1622998A (zh) 2005-06-01
CN1622998B true CN1622998B (zh) 2012-08-29

Family

ID=19190421

Family Applications (2)

Application Number Title Priority Date Filing Date
CN028283716A Expired - Fee Related CN1622998B (zh) 2001-12-27 2002-12-25 丝状真菌来源的赖氨酰氧化酶
CNA028279190A Pending CN1617927A (zh) 2001-12-27 2002-12-26 焦谷氨酰肽酶及其基因

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA028279190A Pending CN1617927A (zh) 2001-12-27 2002-12-26 焦谷氨酰肽酶及其基因

Country Status (8)

Country Link
US (3) US7186540B2 (zh)
EP (2) EP1466979B1 (zh)
JP (2) JP4205589B2 (zh)
CN (2) CN1622998B (zh)
AU (2) AU2002367111A1 (zh)
DE (1) DE60217549T2 (zh)
DK (1) DK1466979T3 (zh)
WO (2) WO2003056016A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030114410A1 (en) * 2000-08-08 2003-06-19 Technion Research And Development Foundation Ltd. Pharmaceutical compositions and methods useful for modulating angiogenesis and inhibiting metastasis and tumor fibrosis
JP3904185B2 (ja) * 2001-06-21 2007-04-11 キッコーマン株式会社 グルタミナーゼ、グルタミナーゼ遺伝子、新規な組み換え体dna及びグルタミナーゼの製造法
US20100120119A1 (en) * 2005-07-22 2010-05-13 Asahi Breweries, Ltd. Method of producing liquid koji
JP4701440B2 (ja) * 2005-09-26 2011-06-15 財団法人野田産業科学研究所 麹菌蛋白質加水分解酵素の分泌を増大する組換えベクター
MY151122A (en) * 2005-10-05 2014-04-30 Asahi Breweries Ltd Method of producing filamentous fungus culture product
JP4096009B2 (ja) 2005-10-12 2008-06-04 アサヒビール株式会社 組換えタンパクの製造方法
CN101283103B (zh) * 2005-10-12 2012-03-28 朝日啤酒株式会社 生产重组蛋白的方法
ES2608033T3 (es) * 2007-03-22 2017-04-05 Dsm Ip Assets B.V. Nuevas lisil oxidasas
JP5659014B2 (ja) 2007-08-02 2015-01-28 ジリード バイオロジクス,インク. 線維症、腫瘍浸潤、血管新生及び転移の治療及び診断のための方法及び組成物
US8617865B2 (en) * 2008-10-24 2013-12-31 Amano Enzyme Inc. Tannase, gene encoding same, and process for producing same
US9107935B2 (en) 2009-01-06 2015-08-18 Gilead Biologics, Inc. Chemotherapeutic methods and compositions
DK2404996T3 (en) 2009-03-04 2016-09-19 Noda Inst For Scientific Res Transcription FACTORS TO mannases OR cellulases AND GENERATION OF transcription FACTORS
SG2014004816A (en) * 2009-08-21 2014-03-28 Gilead Biologics Inc Catalytic domains from lysyl oxidase and loxl2
WO2011022670A1 (en) * 2009-08-21 2011-02-24 Arresto Biosciences, Inc In vivo screening assays
MX2012002271A (es) * 2009-08-21 2012-07-20 Gilead Biologics Inc Metodos y composiciones terapeuticas.
KR20120054077A (ko) * 2009-08-21 2012-05-29 길리아드 바이오로직스, 인크. 폐 섬유증 장애의 치료를 위한 방법 및 조성물
JP2013502228A (ja) * 2009-08-21 2013-01-24 ギリアド バイオロジクス,インク. invitroスクリーニングアッセイ
US8680246B2 (en) 2010-02-04 2014-03-25 Gilead Biologics, Inc. Antibodies that bind to lysyl oxidase-like 2 (LOXL2)
CN103184211B (zh) * 2011-12-27 2014-09-24 东北农业大学 一种与耐氯嘧磺隆相关蛋白及其编码基因与应用
BR112014022467A2 (pt) 2012-03-12 2017-07-11 Dsm Ip Assets Bv transformantes de rasamsonia
DK2825650T3 (da) * 2012-03-12 2019-05-13 Dsm Ip Assets Bv Rekombinationssystem
WO2016137008A1 (ja) 2015-02-27 2016-09-01 学校法人名城大学 マンナナーゼ及びその利用
CN105112394A (zh) * 2015-09-11 2015-12-02 江南大学 一种能降解黄曲霉毒素b1的裂解酶的分离纯化方法
EP4324919A2 (en) 2015-10-14 2024-02-21 Novozymes A/S Polypeptide variants
WO2024032886A1 (en) * 2022-08-10 2024-02-15 Picea Biosolutions Gmbh Glutaminase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056762A2 (en) * 1999-03-22 2000-09-28 Novozymes Biotech, Inc. Methods for monitoring multiple gene expression

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2796114B2 (ja) 1989-03-20 1998-09-10 マルハ株式会社 食品の製造法及びその食品
JP2977245B2 (ja) 1990-08-10 1999-11-15 マルハ株式会社 ねり製品の製造法とその製品
JP3173619B2 (ja) * 1991-11-15 2001-06-04 東洋紡績株式会社 ピログルタミルアミノペプチダーゼの製造法
JP3463951B2 (ja) * 1994-05-10 2003-11-05 タカラバイオ株式会社 耐熱性ピログルタミルペプチダーゼ及びその遺伝子
JP2995154B2 (ja) 1995-10-09 1999-12-27 日本ユニカー株式会社 精製されたポリエーテル変性ポリシロキサン組成物を含有する皮膚化粧料
JP2999959B2 (ja) 1995-10-12 2000-01-17 日本ユニカー株式会社 精製されたポリエーテル変性ポリシロキサン組成物を含有する毛髪化粧料
DE69840230D1 (de) * 1997-05-16 2009-01-02 Novozymes Inc Polypeptide mit prolyldipeptidylaminopeptidase-aktivität und dafür kodierende nukleinsäuren
EP1077256B1 (en) 1998-05-15 2007-02-21 Ajinomoto Co., Inc. Novel glutaminase, gene thereof and process for producing the same
US6830905B2 (en) * 1998-05-15 2004-12-14 Ajinomoto Co., Inc. Glutaminase, its gene and a method of producing it
JP2000166547A (ja) 1998-12-07 2000-06-20 Aichi Prefecture 新規グルタミナーゼ及びその製造方法
US6162888A (en) 1999-05-17 2000-12-19 Dow Corning Corporation Method of making silicone polyether copolymers having reduced odor
US6541236B2 (en) * 2000-09-06 2003-04-01 Kikkoman Corporation Protein having glutaminase activity and gene encoding the same
JP4651203B2 (ja) 2001-01-26 2011-03-16 愛知県 新規グルタミナーゼ及びその製造方法
US6881565B2 (en) * 2001-04-20 2005-04-19 Kokkoman Corporation Protein having glutaminase activity and gene encoding the same
JP3904185B2 (ja) * 2001-06-21 2007-04-11 キッコーマン株式会社 グルタミナーゼ、グルタミナーゼ遺伝子、新規な組み換え体dna及びグルタミナーゼの製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056762A2 (en) * 1999-03-22 2000-09-28 Novozymes Biotech, Inc. Methods for monitoring multiple gene expression

Also Published As

Publication number Publication date
EP1466982A4 (en) 2005-07-20
US20060234320A1 (en) 2006-10-19
WO2003056018A1 (fr) 2003-07-10
US7186540B2 (en) 2007-03-06
JP4205589B2 (ja) 2009-01-07
JPWO2003056018A1 (ja) 2005-05-12
US20050142650A1 (en) 2005-06-30
CN1617927A (zh) 2005-05-18
AU2002367111A1 (en) 2003-07-15
JPWO2003056016A1 (ja) 2005-05-12
DE60217549T2 (de) 2007-10-18
DE60217549D1 (de) 2007-02-22
CN1622998A (zh) 2005-06-01
WO2003056016A1 (fr) 2003-07-10
AU2002361098A1 (en) 2003-07-15
EP1466979A1 (en) 2004-10-13
DK1466979T3 (da) 2007-05-14
US20040082053A1 (en) 2004-04-29
EP1466979A4 (en) 2005-04-06
EP1466982A1 (en) 2004-10-13
EP1466979B1 (en) 2007-01-10
US7348170B2 (en) 2008-03-25

Similar Documents

Publication Publication Date Title
CN1622998B (zh) 丝状真菌来源的赖氨酰氧化酶
CN102770536B (zh) 突变酶及其用途
CN107189991B (zh) 一种葡萄糖氧化酶突变体及其编码基因和应用
CN110218709B (zh) 一种耐热漆酶及其基因与应用
US20080248524A1 (en) AMP Deaminase Originating Streptomyces And Utilization Thereof
JPWO2002079476A1 (ja) 麹菌遺伝子発現の検出方法
CN1328375C (zh) 来自于曲霉菌的磷脂酶a2
JP2004261137A (ja) カタラーゼ遺伝子
CN114045293A (zh) 提高米曲霉曲酸产量的基因Aokap1、方法及应用
JPH08196281A (ja) 水生成型nadhオキシダーゼをコードするdna
KR101501361B1 (ko) 웨이셀라 비리데스켄스 동정용 마커 조성물
JP2015002686A (ja) 新規なグルコースオキシダーゼ及びそれをコードするポリペプチド配列
CN1978651B (zh) 编码产黄青霉苯乙酸羟化酶的基因及其应用
AU2020101891A4 (en) Sequencing vector carrying wheat cinnamate 4-hydroxylase (c4h) gene, and amplification primer combination and use of c4h gene
JP4942030B2 (ja) 麹菌分生子形成を増大させる遺伝子、タンパク質、組換えベクター
JP2923778B1 (ja) 白紋羽病菌の特異的検出法
KR102043363B1 (ko) 마크로포미나 파세올리나로부터의 펙틴 분해 효소 및 이의 용도
CN1978650B (zh) 新的产黄青霉苯乙酰辅酶a连接酶基因及提高青霉素产量的方法
JP4168130B2 (ja) リゾプス属糸状菌のポリガラクツロナーゼおよびポリガラクツロナーゼ遺伝子
Kumar et al. Use of gene specific universal primers for isolation of DNA sequences encoding laccase enzyme from a wild isolate of Schizophyllum commune
JP5813073B2 (ja) シクロピアゾン酸非生産形質転換体及びその作製方法
KR101038900B1 (ko) 크리포넥트리아 파라시티카 유래의 신규한 프로모터 및 이의 용도
JP2004321176A (ja) ポリケタイドシンターゼ遺伝子、および紅麹菌のシトリニン合成能破壊株の作成方法
JP5257972B2 (ja) アスペルギルス属菌の新規薬剤耐性組換え選択マーカー遺伝子
JPH07163378A (ja) 過酸化水素生成型nadhオキシダーゼをコードするdna

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20060120

Address after: Tokyo, Japan

Applicant after: Independent Administrative Corporation Industrial Comprehansive Technologles Institute

Co-applicant after: Amano Enzyme Inc.

Co-applicant after: Independent Administrative of National Research Institute of Brewing

Co-applicant after: Amano Enzyme Inc.

Address before: Tokyo, Japan

Applicant before: Independent Administrative Corporation Industrial Comprehansive Technologles Institute

Co-applicant before: Amano Enzyme Inc.

Co-applicant before: Independent Administrative of National Research Institute of Brewing

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1077840

Country of ref document: HK

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1077840

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120829

Termination date: 20121225