CN1602544A - 通过离子注入制造高电压mos晶体管的方法 - Google Patents

通过离子注入制造高电压mos晶体管的方法 Download PDF

Info

Publication number
CN1602544A
CN1602544A CN02824555.5A CN02824555A CN1602544A CN 1602544 A CN1602544 A CN 1602544A CN 02824555 A CN02824555 A CN 02824555A CN 1602544 A CN1602544 A CN 1602544A
Authority
CN
China
Prior art keywords
basically
substrate
well region
formation
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02824555.5A
Other languages
English (en)
Other versions
CN100431115C (zh
Inventor
P·奥洛夫松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN1602544A publication Critical patent/CN1602544A/zh
Application granted granted Critical
Publication of CN100431115C publication Critical patent/CN100431115C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

一种用于制造高电压、高频MOS晶体管的方法,该方法结合深n阱和p阱工艺以及延伸的漏极区(45)和沟道区(31)的形成,该沟道具有短的长度并与栅极边缘很好地对准。深n阱(11)和p阱(19)都是通过离子注入形成的。该方法与标准CMOS工艺兼容,提供了低制造成本、提高了的击穿电压、更好的整体高频性能,并防止了由p阱的隔离产生的“体效应”。

Description

通过离子注入制造高电压MOS晶体管的方法
技术领域
本发明涉及一种以低电压CMOS工艺制造高电压、高过渡频率的MOS晶体管的方法。
发明背景
对于CMOS元件信息容量不断增加的需求需要电路中持续更高的封装密度和更高的速度,及由此产生的线宽、举例和层厚度的缩减。
缩减线宽同样要求更低的电源电压和信号电压。由于其节省电能,所以对于数字元件这是一个优点,然而噪声容限相对大。但是,在模拟高频电路中噪声容限是令人关心的问题。现代的低电压CMOS工艺不能经受住维护高性能的模拟电路中信噪比所需要的电压电平。
通过结合高击穿电压与良好的高频特性,横向DMOS结构以前被用于例如RF功率放大器。在这些结构中,沟道区已经从例如栅极结构的边缘扩散。这种构造需要额外的退火步骤,由于在许多工艺中热预算非常受限,所以其可能不与标准的CMOS工艺流程兼容。而且,由于最靠近源极区自动获得了最高的沟道掺杂,所以没有获得在沟道区中最佳的掺杂梯度。
借助所谓的延伸漏极技术可以提高MOS晶体管的击穿电压。对于NMOS晶体管,有源区被限定于p阱区中。在该区域中,当漏极电压增加时,形成n区以限定可以耗尽的延伸的漏极区。
通过使用掩埋的N型层可获得进一步的提高,该N型层具有将晶体管的有源p阱区与衬底隔离的作用。利用外延与延伸漏极技术的结合,这已较早地引入隔离RESURF LDMOS(减小的表面场横向双扩散MOS)晶体管中,用于所谓的“高侧驱动器”应用,如在U.S.专利No.5,286,995中公开的。
发明概述
本发明的一个目的是将有成本效益的、深隔离的n阱工艺与高性能的延伸漏极技术以及与栅极边缘高度对准的MOS沟道的形成进行结合。
这里优选的n或p阱形成的方法是离子注入。
制造的结构将显示出下面的优点:
-  与标准的CMOS制造工艺相兼容,仅需要三次额外的注入和相关的掩模。与利用外延的技术相比该制造工艺具有较低的成本。
-  它具有增大的击穿电压。在高漏极到源极电压处延伸的漏极区将被耗尽,且在栅极边缘处的最大电场将变的更低。
-  由于短沟道长度所以它具有改进的高频特性。由于自对准沟道精确度所以该结构可以支持非常短的沟道长度。
-  具有更好的与衬底的噪声隔离。有源p阱区的隔离还防止产生“体效应”,即当对于N型器件时,对于给定的源电流,栅极偏置必须被设置为更大的正电压。
附图简述
给出附图1-14用于仅仅通过例子的方式说明本发明的实施例,并不应该认为成限定。所有的附图示出在制造工艺不同阶段的衬底放大的、示意性剖面图,并且特别是有些垂直尺寸相对过大。在附图中:
-  图1是具有蚀刻的STI沟槽的p衬底剖面图;
-  图2是进行CMP之后具有填充的沟槽的所产生结构的剖面图;
-  图3是说明深n阱注入的衬底剖面图;
-  图4是在注入额外的高电压p阱的步骤中的衬底剖面图;
-  图5是说明用作深n阱的接触区的n阱区注入的衬底剖面图;
-  图6是说明包括p阱和n阱区的所产生结构的衬底剖面图;
-  图7是说明形成沟道区步骤的衬底剖面图;
-  图8是说明栅极区形成的衬底剖面图;
-  图9是说明利用成角度注入的沟道形成的替换方式的衬底剖面图;
-  图10是形成注入的延伸漏极区后的结构剖面图;
-  图11是说明弱掺杂n区的注入步骤的衬底剖面图;
-  图12是说明用作接触背栅极区的p+区注入的衬底剖面图;
-  图13是说明源极、漏极和深n阱接触区注入的衬底剖面图,以及
-  图14是说明包括源极、漏极和栅极区并具有在接触区上形成的硅化物的所得结构的剖面图。
发明描述
以下将描述一个具体的例子,以便理解本发明相关技术。本领域技术人员公知的那些细节已被省略。显然,在该特别的描述中有许多可能脱离具体细节的本发明的其它实施例。一个这种例子是通过使所有的掺杂反型的p型器件的制造。
在图1中,说明了高电阻率的p型硅衬底1,其制备用于浅沟槽隔离(STI)工艺且包括蚀刻的沟槽2。沟槽围绕其内部将形成MOS晶体管的区域。在沟槽的外部,还制造了蚀刻的区域,留下同样延伸围绕其中将形成晶体管的区域的未蚀刻的带。STI衬垫氧化物3已生长于衬底的表面上,并且氮化硅掩模4已被施加到其顶部以便用于随后的通过氧化硅填充沟槽2,如图2中所示。完成该氧化物的填充后,分别制作STI氧化物的内部和外部区5′和5″,进行衬底表面的化学机械平面化(CMP)。在CMP步骤之后,薄氧化物6生长于暴露的硅区上,如图3中所示。
同样如图3中所示,接着施加另一个掩模7,具有在其中将形成MOS晶体管的区域中的窗口,并且如箭头9所指示的注入900keV的相对高能量、2×1013cm-2剂量的磷。以常规方式,在与衬底1表面的法线为例如7°的小倾角方向进行注入,以避免沟道效应。该注入在掩模的窗口中产生深n阱11。n阱峰值轮廓的深度是大约1μm,其由注入能量决定。然后移除掩模7。
如图4所示,然后施加掩模15,以在用于深n阱区11的前一个掩模7的开口内部定义一个开口,该开口例如具有位于内部STI氧化物区5′顶表面的接近中心线处的边缘。然后以1×1013cm-2的剂量、220keV的能量和7°的倾角按照箭头17指示注入硼。如此设置该注入步骤的参数以制造位于如图4所示的深n阱11之上的高电压p阱19。以此方式,p阱19获得与掺杂区之外的电子电流和电压的高度电隔离。此外,在下文中描述的延伸的漏极将保护晶体管的栅极和源极不受p阱的高电压影响而制造。p阱可以具有位于内部STI区5′的底部表面的接近中心线处的垂直侧。然后移除掩模层15。
作为下一个步骤,根据图5施加掩模21。该掩模只在位于深n阱区11端部正上方的那些区域中具有开口,包括位于内部5′和外部5″STI区之间的衬底表面的那些部分。按照箭头23所指示通过掩模的开口注入磷。该注入步骤被分成具有不同特征的三个子步骤。分别为,在第一子步骤中,注入具有掺杂剂量为2×1013cm-2、能量为490keV且倾角为0°的磷,因此它深深渗入衬底。在第二子步骤中,磷具有4×1012cm-2的剂量、140keV的能量和7°的倾角,在第三子步骤中为3.7×1012cm-2、50keV和7°。因此该注入产生位于内部和外部STI区5′、5″之间的p衬底表面区域中的相对高n掺杂区25,并向下延伸到深n阱11,作为用于深n阱的接触栓塞。移除掩模层21之后的结果示出于图6中。n+型接触区将被注入到这些栓塞区的顶部,用于将偏置电压连接到深n阱11,以下将对其描述。当将器件的制造合并到标准CMOS工艺流程内时,该n型掺杂步骤与n阱形成相同。
接着描述在形成栅极和相关的沟道中的两个可选方案。第一个可选方案开始于根据图7通过施加掩模27形成沟道。该掩模暴露了在内部STI氧化物区5′和接着将设置栅极的区域之间延伸的带状区,该区域也在内部STI氧化物区上延伸一段距离。按照箭头29所示,该注入被分成两个子步骤。在第一子步骤中只有硼用于注入,且在第二子步骤中使用二氟化硼BF2。这些注入的特征是:仅对于硼,掺杂剂量为6×1012cm-2、能量为60keV且倾角为7°,对应地,对于二氟化硼为5×1012cm-2、50keV和7°。该注入生成p掺杂的沟道区31,与内部STI场氧化区5′的内边缘自对准。然后移除掩模27。在该阶段中,形成了用于器件的所有所需要的阱区,并且从整个表面剥除薄氧化物6。完成以上描述的每一个注入步骤之前在暴露区中已更新了该氧化物层。
然后,如图8所示,薄栅氧化物33生长于衬底的整个表面上,并且用于栅极的高掺杂多晶硅层被沉积于其顶部上。掩模(未示出)用于定义栅极35。在图8的剖面图中,示出两个对称设置的栅极区,或是两个单独的MOS晶体管的部分,或是连接以形成单个、连接的区域且之后属于同一MOS晶体管。通过穿过掩模开口的蚀刻制造这些栅极,并接着移除掩模。保持位于栅极外部的薄栅氧化层,目的是保护防止在栅极和源极/漏极之间击穿。
在第二个可选方案中,如图9所示,在栅极形成后进行沟道注入。如图8所示例的,后一个步骤与以上描述的相同,但现在排除了p沟道区域。对于后续的沟道形成,延伸到栅极35的中心线的掩模37用于保护漏极区。硼的成角度注入36用于在将结的边缘置于栅极35下面。该方法的优点在于对由注入能量和角度确定的沟道长度的改进的控制。在相对于衬底表面法线的四个独立的方向中,这里倾角可以选择为基本上48°,即,以所谓的四方布置获得该倾角。另外在两个子步骤中进行注入,第一子步骤使用6×1012cm-2的剂量和60keV的能量,第二子步骤使用4×1012cm-2的剂量和10keV的能量。
进行沟道形成的这两个可选方案中的任何一个后,随即施加新的掩模39,具有基本上中心地置于p阱19的上方的窗口,其边缘位于栅极区35的顶部,如图10所示。接着,按照箭头41所指示的将磷注入到窗口中,以如上所限定的四方结构,以6×1012cm-2的掺杂剂量、50keV的粒子能量和10°的倾角进行注入。注入的结果是延伸的漏极区45,其是弱掺杂的n区,该弱掺杂的n区位于表面处、p阱中的中心且从栅极区35的一侧延伸,在示出的例子中是在栅极区35之间且部分位于栅极区35的下面,该掺杂区具有相对小的深度。
如图11中所示,移除掩模39之后,施加新的掩模47以制备n掺杂的轻掺杂的漏极和弱掺杂n区的袋状(pocket)注入,掩模的开口限定了要设置源极、漏极和下沉连接的位置。因此,以四方结构首先注入剂量为5×1012cm-2、能量为30keV和倾角为10°的磷,接着同样以四方结构注入剂量为2×1014cm-2、能量为20keV和倾角为7°的砷,按照箭头49指示进行注入。分别用于源极、漏极和下沉的所得的n区域51、53和55同样示出于图11中。然后移除掩模47。
关于源极、漏极和下沉区的注入,薄氧化物通常沉积于暴露的区域中。现在还沉积氮化硅,未示出所有的步骤。然后通过各向异性刻蚀移除大多数的氮化物,仅留下栅极区的侧壁上的间隔物56。如图12所示,然后进行利用掩模57的另一个选择步骤,接着在掩模的开口中进行硼的p+型注入,由箭头59所指示。注入的特征数据是剂量为2×1015cm-2、能量为5keV和四方倾角为7°。结果,获得了与沟道区61的接触。在标准CMOS工艺流程中,该注入与p+源极/漏极注入相同。然后移除掩模57。
之后,施加用于合并的n+注入和扩散的掩模63。现在如图13中由箭头65所指示的注入砷,产生源极51、漏极53和下沉55区域的最终的形状。在该情况下对应的注入特征是4×1015cm-2、60keV和7°的四方倾角。
移除掩模63后的最终结构示出于图14中。在注入的栅极、源极、漏极和下沉区的顶部上生成硅化物层、金属-硅化合物层是具有优势的。通过例如利用Salicide(自对准硅化)工艺,硅化物变得与较早形成的间隔物自对准,并且也缩减了到覆盖的区域的串联电阻。之后,施加到栅极、源极、漏极和下沉区的接触。如上所述,p衬底表面区域中的相对高的n掺杂区25用作深n阱的接触区。因此,通过为n区25顶部上的下沉接触提供正电压+Vcc,由p阱19、深n阱11和p衬底1限定的寄生pnp晶体管变为反向偏压,其提高了MOS结构的隔离特性。

Claims (10)

1、一种制造高电压、高速度MOS晶体管的方法,包括如下步骤:
-在第一导电类型的半导体衬底(1)中形成第二导电类型的掩埋的第一阱区(11),
-在衬底表面与第一阱区(11)之间形成第一导电类型的第二阱区(19),
-在第二阱区(19)内形成第一导电类型的沟道区(31),
-在衬底(1)的表面上形成栅极区(35),
-在第二阱区(19)内形成弱掺杂的延伸漏极区(45),以及
-形成具有第二导电类型重掺杂的源极、漏极和下沉区(51、53、55),该源极区形成于沟道区(31)之内,
其特征在于:
-通过高能量注入形成第一阱区(11),以使第一阱区(11)位于衬底(1)的深处,
-通过高能量注入形成第二阱区(19),以使第二阱区(19)位于衬底(1)的表面与第一阱区(11)之间,
-通过离子注入形成从衬底(1)表面延伸到第一阱区(11)的第二导电类型的接触栓塞(25),
-通过离子注入形成沟道区(31),并且
-通过离子注入形成延伸的漏极区(45)。
2、根据权利要求1的方法,其特征在于通过磷的离子注入形成第一阱区(11)。
3、根据权利要求1或2的方法,其特征在于通过硼的离子注入形成第二阱区(19)。
4、根据权利要求3的方法,其特征在于以基本上1013cm-2的剂量、基本上220keV的能量和以注入方向相对于垂至于衬底(1)表面的方向成基本上7°的角度进行硼的离子注入。
5、根据权利要求1-4任何一项的方法,其特征在于在三个连续的步骤中通过磷的离子注入形成接触栓塞(25)。
6、根据权利要求5的方法,其特征在于第一步骤包括以基本上2×1013cm-2的剂量、基本上490keV的能量以及衬底(1)相对于注入方向倾斜基本上0°的角度进行磷的注入,第二步骤包括以基本上4×1013cm-2的剂量、基本上140keV的能量以及衬底(1)相对于注入方向倾斜基本上7°的角度进行磷的注入,第三步骤包括以基本上3.7×1013cm-2的剂量、基本上50keV的能量以及衬底(1)相对于注入方向倾斜基本上7°的角度进行磷的注入。
7、根据权利要求1-6任何一项的方法,其特征在于在连续的步骤中通过硼和二氟化硼的离子注入形成沟道区(31)。
8、根据权利要求7的方法,其特征在于第一步骤包括以基本上6×1012cm-2的剂量、基本上60keV的能量以及衬底(1)相对于注入方向倾斜基本上7°的角度注入硼,第二步骤包括以基本上5×1012cm-2的剂量、基本上50keV的能量以及衬底(1)相对于注入方向倾斜基本上7°的角度注入二氟化硼。
9、根据权利要求1-8任何一项的方法,其特征在于通过磷的离子注入形成延伸的漏极区(45)。
10、根据权利要求9方法,其特征在于以基本上6×1012cm-2的剂量、基本上50keV的能量以及衬底(1)相对于注入方向倾斜基本上10°的角度,并且以四方结构旋转至四个对称的方向来进行磷的注入。
CNB028245555A 2001-12-11 2002-12-05 通过离子注入制造高电压mos晶体管的方法 Expired - Fee Related CN100431115C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE01041649 2001-12-11
SE0104164A SE0104164L (sv) 2001-12-11 2001-12-11 Högspännings-mos-transistor
SE0104164-9 2001-12-11

Publications (2)

Publication Number Publication Date
CN1602544A true CN1602544A (zh) 2005-03-30
CN100431115C CN100431115C (zh) 2008-11-05

Family

ID=20286278

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028245555A Expired - Fee Related CN100431115C (zh) 2001-12-11 2002-12-05 通过离子注入制造高电压mos晶体管的方法

Country Status (7)

Country Link
US (1) US7022560B2 (zh)
CN (1) CN100431115C (zh)
AU (1) AU2002356486A1 (zh)
DE (1) DE10297535B4 (zh)
SE (1) SE0104164L (zh)
TW (1) TW540139B (zh)
WO (1) WO2003054950A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286518B (zh) * 2007-04-12 2011-03-16 上海宏力半导体制造有限公司 光电二极管装置
US7960788B2 (en) 2007-01-25 2011-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Replacing symmetric transistors with asymmetric transistors
CN102194884A (zh) * 2011-04-26 2011-09-21 北京大学 一种混合导通机制的场效应晶体管
CN102201370A (zh) * 2010-03-23 2011-09-28 富士通半导体股份有限公司 半导体器件及其制造方法
CN102054845B (zh) * 2009-10-28 2012-11-21 中国科学院微电子研究所 基于soi的射频ldmos器件及对其进行注入的方法
CN101752254B (zh) * 2008-12-22 2012-12-19 中芯国际集成电路制造(上海)有限公司 形成离子注入区的方法、mos晶体管及其制造方法
CN104900591A (zh) * 2014-03-06 2015-09-09 美格纳半导体有限公司 低成本半导体器件制造方法
CN105745748A (zh) * 2013-11-21 2016-07-06 美高森美SoC公司 使用低压工艺制造的高压器件
CN109712890A (zh) * 2017-10-26 2019-05-03 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法及半导体器件

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900091B2 (en) 2002-08-14 2005-05-31 Advanced Analogic Technologies, Inc. Isolated complementary MOS devices in epi-less substrate
KR100485910B1 (ko) * 2003-06-20 2005-04-29 삼성전자주식회사 고내압 모스 트랜지스터 및 그 제조 방법
US7189662B2 (en) * 2004-08-24 2007-03-13 Micron Technology, Inc. Methods of forming semiconductor constructions
US7180132B2 (en) * 2004-09-16 2007-02-20 Fairchild Semiconductor Corporation Enhanced RESURF HVPMOS device with stacked hetero-doping RIM and gradual drift region
US7199431B2 (en) * 2004-10-25 2007-04-03 Taiwan Semiconductor Manufacturing Company Semiconductor devices with reduced impact from alien particles
US7306999B2 (en) * 2005-01-25 2007-12-11 Semiconductor Components Industries, L.L.C. High voltage sensor device and method therefor
US7868394B2 (en) * 2005-08-09 2011-01-11 United Microelectronics Corp. Metal-oxide-semiconductor transistor and method of manufacturing the same
JP4907920B2 (ja) * 2005-08-18 2012-04-04 株式会社東芝 半導体装置及びその製造方法
US20070194403A1 (en) * 2006-02-23 2007-08-23 International Business Machines Corporation Methods for fabricating semiconductor device structures with reduced susceptibility to latch-up and semiconductor device structures formed by the methods
KR100808950B1 (ko) * 2007-01-30 2008-03-04 삼성전자주식회사 씨모스 이미지 센서 및 그 제조 방법
US8114684B2 (en) * 2009-03-02 2012-02-14 Robert Bosch Gmbh Vertical hall effect sensor with current focus
JP5734725B2 (ja) * 2011-04-27 2015-06-17 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US9093517B2 (en) * 2012-05-25 2015-07-28 Microsemi SoC Corporation TID hardened and single event transient single event latchup resistant MOS transistors and fabrication process
WO2013176950A1 (en) * 2012-05-25 2013-11-28 Microsemi Soc Corp. Tid hardened mos transistors and fabrication process
TWI484631B (zh) * 2012-08-13 2015-05-11 Richtek Technology Corp 雙擴散金屬氧化物半導體元件及其製造方法
US9306061B2 (en) 2013-03-13 2016-04-05 Cree, Inc. Field effect transistor devices with protective regions
US9240476B2 (en) * 2013-03-13 2016-01-19 Cree, Inc. Field effect transistor devices with buried well regions and epitaxial layers
US9012984B2 (en) 2013-03-13 2015-04-21 Cree, Inc. Field effect transistor devices with regrown p-layers
US9142668B2 (en) 2013-03-13 2015-09-22 Cree, Inc. Field effect transistor devices with buried well protection regions
ES2813877T3 (es) 2013-08-28 2021-03-25 Crown Bioscience Inc Taicang Distintivos de expresión génica predictivos de la respuesta de un sujeto a un inhibidor multicinasa y métodos de uso de los mismos
US9502251B1 (en) 2015-09-29 2016-11-22 Monolithic Power Systems, Inc. Method for fabricating low-cost isolated resurf LDMOS and associated BCD manufacturing process
CN108847423B (zh) * 2018-05-30 2022-10-21 矽力杰半导体技术(杭州)有限公司 半导体器件及其制造方法
DE102019100312A1 (de) 2019-01-08 2020-07-09 Parcan NanoTech Co. Ltd. Substrat für eine kontrollierte lonenimplantation und Verfahren zur Herstellung eines Substrats für eine kontrollierte lonenimplantation
CN113948567A (zh) * 2020-07-17 2022-01-18 和舰芯片制造(苏州)股份有限公司 改善ldmos高压侧击穿电压的装置及其制备方法
US11380777B2 (en) 2020-11-23 2022-07-05 United Microelectronics Corp. Method for forming a high-voltage metal-oxide-semiconductor transistor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146298A (en) * 1991-08-16 1992-09-08 Eklund Klas H Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US5286995A (en) * 1992-07-14 1994-02-15 Texas Instruments Incorporated Isolated resurf LDMOS devices for multiple outputs on one die
US5854099A (en) * 1997-06-06 1998-12-29 National Semiconductor Corporation DMOS process module applicable to an E2 CMOS core process
US5985705A (en) * 1998-06-30 1999-11-16 Lsi Logic Corporation Low threshold voltage MOS transistor and method of manufacture
US6069034A (en) * 1998-09-03 2000-05-30 National Semiconductor Corporation DMOS architecture using low N-source dose co-driven with P-body implant compatible with E2 PROM core process
US6225181B1 (en) * 1999-04-19 2001-05-01 National Semiconductor Corp. Trench isolated bipolar transistor structure integrated with CMOS technology

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960788B2 (en) 2007-01-25 2011-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Replacing symmetric transistors with asymmetric transistors
US8236657B2 (en) 2007-01-25 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Replacing symmetric transistors with asymmetric transistors
CN101232018B (zh) * 2007-01-25 2012-08-29 台湾积体电路制造股份有限公司 半导体结构及半导体芯片
CN101286518B (zh) * 2007-04-12 2011-03-16 上海宏力半导体制造有限公司 光电二极管装置
CN101752254B (zh) * 2008-12-22 2012-12-19 中芯国际集成电路制造(上海)有限公司 形成离子注入区的方法、mos晶体管及其制造方法
CN102054845B (zh) * 2009-10-28 2012-11-21 中国科学院微电子研究所 基于soi的射频ldmos器件及对其进行注入的方法
CN102201370A (zh) * 2010-03-23 2011-09-28 富士通半导体股份有限公司 半导体器件及其制造方法
CN102201370B (zh) * 2010-03-23 2013-11-13 富士通半导体股份有限公司 半导体器件及其制造方法
CN102194884A (zh) * 2011-04-26 2011-09-21 北京大学 一种混合导通机制的场效应晶体管
CN102194884B (zh) * 2011-04-26 2013-08-14 北京大学 一种混合导通机制的场效应晶体管
CN105745748A (zh) * 2013-11-21 2016-07-06 美高森美SoC公司 使用低压工艺制造的高压器件
CN105745748B (zh) * 2013-11-21 2018-04-10 美高森美SoC公司 使用低压工艺制造的高压器件
CN104900591A (zh) * 2014-03-06 2015-09-09 美格纳半导体有限公司 低成本半导体器件制造方法
CN104900591B (zh) * 2014-03-06 2020-06-05 美格纳半导体有限公司 低成本半导体器件制造方法
CN109712890A (zh) * 2017-10-26 2019-05-03 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法及半导体器件

Also Published As

Publication number Publication date
DE10297535T5 (de) 2004-11-18
CN100431115C (zh) 2008-11-05
US7022560B2 (en) 2006-04-04
TW540139B (en) 2003-07-01
AU2002356486A1 (en) 2003-07-09
SE0104164L (sv) 2003-06-12
US20040241950A1 (en) 2004-12-02
SE0104164D0 (sv) 2001-12-11
DE10297535B4 (de) 2007-08-02
WO2003054950A1 (en) 2003-07-03

Similar Documents

Publication Publication Date Title
CN100431115C (zh) 通过离子注入制造高电压mos晶体管的方法
US7649225B2 (en) Asymmetric hetero-doped high-voltage MOSFET (AH2MOS)
US6110799A (en) Trench contact process
EP0809865B1 (en) SEMICONDUCTOR FIELD EFFECT DEVICE COMPRISING A SiGe LAYER
US6512273B1 (en) Method and structure for improving hot carrier immunity for devices with very shallow junctions
US6426260B1 (en) Switching speed improvement in DMO by implanting lightly doped region under gate
JP3413250B2 (ja) 半導体装置及びその製造方法
EP0514060B1 (en) DMOS transistor structure & method
JP3954493B2 (ja) パワーmosfet及び自己整合本体注入工程を用いたパワーmosfetの製造方法。
US7238987B2 (en) Lateral semiconductor device and method for producing the same
KR100373580B1 (ko) 자기정렬된펀치스루방지포켓을갖는반도체소자역주입부제조방법
CN100424888C (zh) 半导体器件及其制造方法
US7898030B2 (en) High-voltage NMOS-transistor and associated production method
JPS61259576A (ja) 電界効果トランジスタ
JP2000252445A (ja) 集積回路素子製造方法
CN101783346A (zh) 带有屏蔽栅极沟道的电荷平衡器件
JP2005229066A (ja) 半導体装置及びその製造方法
JP4134545B2 (ja) 半導体装置
JPS61259575A (ja) 電界効果トランジスタとその製造方法
WO2012120899A1 (ja) 半導体装置及び半導体装置の製造方法
JP2933796B2 (ja) 半導体装置の製造方法
JP2005116651A (ja) 半導体装置及びその製造方法
CN114864666B (zh) Nldmos器件、nldmos器件的制备方法及芯片
US20230411446A1 (en) Gate trench power semiconductor devices having trench shielding patterns formed during the well implant and related methods
CN100392816C (zh) 在半导体衬底中制造半导体元件的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081105

Termination date: 20211205

CF01 Termination of patent right due to non-payment of annual fee