CN113948567A - 改善ldmos高压侧击穿电压的装置及其制备方法 - Google Patents

改善ldmos高压侧击穿电压的装置及其制备方法 Download PDF

Info

Publication number
CN113948567A
CN113948567A CN202010691317.XA CN202010691317A CN113948567A CN 113948567 A CN113948567 A CN 113948567A CN 202010691317 A CN202010691317 A CN 202010691317A CN 113948567 A CN113948567 A CN 113948567A
Authority
CN
China
Prior art keywords
region
type substrate
voltage
well
field oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010691317.XA
Other languages
English (en)
Inventor
屠孝瑜
李咏絮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warship Chip Manufacturing Suzhou Ltd By Share Ltd
Original Assignee
Warship Chip Manufacturing Suzhou Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Warship Chip Manufacturing Suzhou Ltd By Share Ltd filed Critical Warship Chip Manufacturing Suzhou Ltd By Share Ltd
Priority to CN202010691317.XA priority Critical patent/CN113948567A/zh
Publication of CN113948567A publication Critical patent/CN113948567A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及一种改善LDMOS高压侧击穿电压的装置,包括:P型衬底,该P型衬底的上端的两侧分别设置有带保护环的P+区和场氧化层,P+区与场氧化层连接,P型衬底的上端形成有分别对称分布的源级和栅极,源级与栅极连接,栅极处设置有连接的场氧化层,栅极之间形成漏级,漏级处形成有高压N型轻掺杂漏区;P阱,该P阱在P型衬底的两侧形成并且设置在P+区下方;以及高压深N阱,该高压深N阱形成在P型衬底中并且两侧与P阱接触,其中高压深N阱为高剂量的高压深N阱,P型衬底由高阻硅片制成。此外,本发明还涉及上述装置的制备方法。通过本发明的装置和制备方法,本发明可以降低RSDNW从而提升击穿,改善寄生BJT的耐压。

Description

改善LDMOS高压侧击穿电压的装置及其制备方法
技术领域
本发明涉及LDMOS高压侧的装置及其制备方法,并且更具体地,涉及一种改善LDMOS高压侧击穿电压的装置及其制备方法。
背景技术
目前,LDMOS的高压侧产品与低压侧产品使用同一套制备过程,硅片材料的管控也是同样一套方法,然而,实际上高压侧产品和低压侧产品在寄生双级结型晶体管(BJT)耐压或击穿电压是不同的。
在高压侧产品的使用过程中,往往存在耐压不够,批和批之间差异较大的问题,对此,通常认为是装置阱(Device Well)与P型衬底(P-SUB)之间的BJT耐压不稳定,这可能是深N阱(DNW)对P型衬底窗口(P-SUB window)不够导致耐压不稳。
然而,现有的LDMOS高压侧产品的DNW通常采用的是低剂量DNW,DNW太淡,不够隔绝P型主体(P-Body)和P型衬底(P-SUB)的扩散,导致耗尽区过大,同时P型衬底由一般硅片制成,会影响DNW电阻(RSDNW)的变化,从而影响到在DNW和P-SUB之间寄生双级结型晶体管(BJT)的耐压。
参照附图1,图1更详细地说明了现有技术的情况:图1示出了通过现有制程工艺制备的LDMOS的低压侧产品和高压侧产品的示意图,其中在现有技术中,无论是LDMOS低压侧产品还是高压侧产品,DNW都是低剂量DNW,太淡,同时P型衬底都采用的是一般电阻的硅片,往往采用这样制成的产品,特别是高压侧产品的耐压不够,例如,通常高压侧产品的击穿电压大约在25-30V,想要达到30V以上需求的击穿电压往往难以实现。
发明内容
针对现有技术的不足,本发明的目的在于提供一种改善LDMOS高压侧击穿电压的装置及其方法。通过该方法和装置,本发明可以降低RSDNW从而提升击穿,改善BJT的耐压。
为了解决上述技术问题,本发明采用以下技术方案:
根据本发明的一方面,提供一种改善LDMOS高压侧击穿电压的装置,该装置包括:
P型衬底,P型衬底的上端的两侧分别设置有带保护环的P+区和场氧化层,带保护环的P+区与场氧化层连接,P型衬底的上端形成有分别对称分布的源级和栅极,源级与所述栅极连接,栅极处设置有连接的场氧化层,栅极之间形成漏级,漏级处形成有高压N型轻掺杂漏区;
P阱,P阱在P型衬底的两侧形成并且设置在带保护环的P+区下方;以及
高压深N阱,高压深N阱形成在P型衬底中并且两侧与P阱接触,
其中高压深N阱采用高剂量的高压深N阱,P型衬底由高阻硅片制成。
在本发明的一个实施例中,源极包括P型基底、P+区和N+区,其中P+区和N+区设置在P型基底上,P+区两端连接有N+区。
在本发明的一个实施例中,栅极是多晶硅栅极。
在本发明的一个实施例中,场氧化层的厚度为
Figure BDA0002589490750000021
在本发明的一个实施例中,高压深N阱的高剂量为1.05~1.15E12ea/cm2
在本发明的一个实施例中,高阻硅片的电阻大于21欧姆。
在本发明的一个实施例中,源极的电压为5-30V。
在本发明的一个实施例中,栅极的电压为10-35V。
在本发明的一个实施例中,漏极的电压为40V。
在本发明的一个实施例中,改善后的高压侧击穿电压为30-40V。
根据本发明的另一方面,提供一种改善LDMOS高压侧击穿电压的装置的制备方法,包含以下步骤:
(1)提供由高阻硅片制成的P型衬底,在P型衬底的上端的两侧上形成带有保护坏的且连接场氧化层的P+区,并在P型衬底的上端上形成源极和栅极,在栅极处连接场氧化层并形成漏级,在漏级处形成高压N型轻掺杂漏区;
(2)在P型衬底的两侧并且在带有保护坏的且连接场氧化层的P+区下方设置P阱;以及
(3)在P形衬底中形成两侧与P阱接触的高剂量的高压深N阱。
在本发明的一个实施例中,源极包括P型基底、P+区和N+区,其中P+区和N+区设置在P型基底上,P+区两端连接有N+区。
在本发明的一个实施例中,栅极是多晶硅栅极。
在本发明的一个实施例中,高阻硅片的电阻大于21欧姆。
通过采用上述技术方案,本发明相比于现有技术具有如下优点:
本发明对现有LDMOS高压侧产品进行改进,本发明将原有的DNW低剂量更改为高剂量,从而抑制了P-Body&P-SUB耗尽区的扩散,提升了耐压,也就是降低了RSDNW从而提升击穿,并且将P型衬底采用由高阻硅片制成,从而降低了衬底对DNW的扩散影响,稳定了耐压。因此本发明采用高阻硅片的衬底搭配高剂量DNW,改善了寄生BJT的耐压,其中RSDNW可从8000降至7000,BJT击穿电压可达到30V-40V。
附图说明
本发明的上述和/或附加的方面和优点在与附图结合对实施例进行的描述中将更加明显并容易理解,其中:
图1示出了现有技术的LDMOS低压侧产品和高压侧产品的轮廓示意图;
图2是本发明改善LDMOS高压侧击穿电压的装置的轮廓示意图;
图3是本发明改善LDMOS高压侧击穿电压的装置的制备方法的示意图;
图4是利用本发明改善LDMOS高压侧击穿电压的装置测量的RS_HVDNW(高压深N阱的电阻)与BVD S_B(源级对衬底的击穿电压)的关系曲线图。
附图标记说明
High side 高压侧
Low side 低压侧
P-SUB P型衬底
Guard Ring P+ 带保护坏的P+区
FOX 场氧化层
Source 源极
POLY0-3K 多晶硅栅极
P-Base P型基底
Drain 漏级
HV_NLLD 高压N型轻掺杂漏区
P-WELL P阱
HV_DNW 高压深N阱
Device 装置
P-Body P型主体
New target 新目标
BVD Source to Sub(BVD S_B) 源级对衬底的击穿电压
RS_HVDNW 高压深N阱的电阻
Mapping data 映射数据
RS_DNW VS BVD 深N阱的电阻对击穿电压
具体实施方式
应当理解,在示例性实施例中所示的本发明的实施例仅是说明性的。虽然在本发明中仅对少数实施例进行了详细描述,但本领域技术人员很容易领会在未实质脱离本发明主题的教导情况下,多种修改是可行的。相应地,所有这样的修改都应当被包括在本发明的范围内。在不脱离本发明的主旨的情况下,可以对以下示例性实施例的设计、操作条件和参数等做出其他的替换、修改、变化和删减。
如图2所示,一种改善LDMOS高压侧击穿电压的装置,该装置包括:P型衬底P-SUB,P-SUB的上端的两侧分别设置有带保护环的P+区Guard Ring P+和场氧化层FOX,GuardRing P+与FOX连接,P-SUB的上端形成有分别对称分布的源级Source和多晶硅栅极POLY0-3K,Source包括P型基底P-Base、P+区和N+区,其中P+区和N+区设置在P-Base上,P+区两端连接有N+区,Source与POLY0-3K连接,POLY0-3K处设置有连接的FOX,POLY0-3K之间形成漏级Drain,Drain处形成有高压N型轻掺杂漏区HV_NLLD;P阱P-WELL,P-WELL在P-SUB的两侧形成并且设置在Guard Ring P+区下方;以及高压深N阱HV_DNW,HV_DNW形成在P-SUB中并且两侧与P-WELL接触,其中HV_DNW采用高剂量的HV_DNW,其颜色深,P-SUB由高阻硅片制成。
在上述装置中,FOX的厚度为
Figure BDA0002589490750000051
优选厚度为
Figure BDA0002589490750000052
在上述装置中,HV_DNW的高剂量为1.05~1.15E12 ea/cm2
在上述装置中,高阻硅片的电阻大于21欧姆。
在上述装置中,源极的电压为5-30V。
在上述装置中,栅极的电压为10-35V。
在上述装置中,漏极的电压为40V。
在上述装置中,改善后的高压侧击穿电压为30-40V。
此外,如图3所示,本发明还提供一种改善LDMOS高压侧击穿电压的装置的制备方法,包含步骤:提供由高阻硅片制成的P-SUB,在P-SUB的上端的两侧上形成Guard Ring P+和与其连接的FOX,并在P-SUB的上端上形成源极Source和多晶硅栅极POLY0-3K,Source包括P型基底P-Base、P+区和N+区,其中P+区和N+区设置在P-Base上,P+区两端连接有N+区,在POLY0-3K处连接FOX并形成漏级Drain,在Drain处形成HV_NLLD;在P-SUB的两侧并且在Guard Ring P+区下方设置P-WELL;以及在P-SUB中形成两侧与P-WELL接触的高剂量的HV_DNW。
在上述制备方法中,高阻硅片的电阻大于21欧姆,HV_DNW的高剂量为1.05~1.15E12 ea/cm2
通过本发明的装置和制备方法,本发明对现有LDMOS高压侧产品进行改进,本发明将原有的DNW低剂量更改为高剂量,从而抑制了P-Body&P-SUB耗尽区的扩散,提升了耐压,也就是降低了RSDNW从而提升击穿,并且将P-SUB采用由高阻硅片制成,从而降低了P-SUB对DNW的扩散影响,稳定了耐压。如图4所示,本发明更改DNW剂量和管控高阻硅片,可有效改善RSDNW以及寄生BJT的耐压,其中RSDNW可从8000降至7000,BJT击穿电压可达到30V-40V。很明显,相比于现有技术中BJT击穿电压只有25-30V而言,本申请的装置可以实现BJT击穿电压大于30V,满足客户的需求。
以上所述仅为本发明的较佳实施例,并非用来限定本发明的实施范围;如果不脱离本发明的精神和范围,对本发明进行修改或者等同替换,均应涵盖在本发明权利要求的保护范围当中。

Claims (10)

1.一种改善LDMOS高压侧击穿电压的装置,其特征在于,该装置包括:
P型衬底,所述P型衬底的上端的两侧分别设置有带保护环的P+区和场氧化层,所述带保护环的P+区与场氧化层连接,所述P型衬底的上端形成有分别对称分布的源级和栅极,所述源级与所述栅极连接,所述栅极处设置有连接的场氧化层,所述栅极之间形成漏级,所述漏级处形成有高压N型轻掺杂漏区;
P阱,所述P阱在所述P型衬底的两侧形成并且设置在所述带保护环的P+区下方;以及
高压深N阱,所述高压深N阱形成在所述P型衬底中并且两侧与所述P阱接触,
其中所述高压深N阱采用高剂量的高压深N阱,所述P型衬底由高阻硅片制成。
2.根据权利要求1所述的改善LDMOS高压侧击穿电压的装置,其特征在于,所述源极包括P型基底、P+区和N+区,其中所述P+区和所述N+区设置在所述P型基底上,所述P+区两端连接有所述N+区。
3.根据权利要求1所述的改善LDMOS高压侧击穿电压的装置,其特征在于,所述栅极是多晶硅栅极。
4.根据权利要求1所述的改善LDMOS高压侧击穿电压的装置,其特征在于,所述场氧化层的厚度为
Figure FDA0002589490740000011
5.根据权利要求1所述的改善LDMOS高压侧击穿电压的装置,其特征在于,所述高压深N阱的高剂量为1.05~1.15E12ea/cm2
6.根据权利要求1所述的改善LDMOS高压侧击穿电压的装置,其特征在于,所述高阻硅片的电阻大于21欧姆。
7.一种改善LDMOS高压侧击穿电压的装置的制备方法,其特征在于,包含以下步骤:
(1)提供由高阻硅片制成的P型衬底,在P型衬底的上端的两侧上形成带有保护坏的且连接场氧化层的P+区,并在所述P型衬底的上端上形成源极和栅极,在栅极处连接场氧化层并形成漏级,在漏级处形成高压N型轻掺杂漏区;
(2)在所述P型衬底的两侧并且在所述带有保护坏的且连接场氧化层的P+区下方设置P阱;以及
(3)在所述P型衬底中形成两侧与所述P阱接触的高剂量的高压深N阱。
8.根据权利要求7所述的制备方法,其特征在于,所述源极包括P型基底、P+区和N+区,其中所述P+区和所述N+区设置在所述P型基底上,所述P+区两端连接有所述N+区。
9.根据权利要求7所述的制备方法,其特征在于,所述栅极是多晶硅栅极。
10.根据权利要求7所述的制备方法,其特征在于,所述高阻硅片的电阻大于21欧姆。
CN202010691317.XA 2020-07-17 2020-07-17 改善ldmos高压侧击穿电压的装置及其制备方法 Pending CN113948567A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010691317.XA CN113948567A (zh) 2020-07-17 2020-07-17 改善ldmos高压侧击穿电压的装置及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010691317.XA CN113948567A (zh) 2020-07-17 2020-07-17 改善ldmos高压侧击穿电压的装置及其制备方法

Publications (1)

Publication Number Publication Date
CN113948567A true CN113948567A (zh) 2022-01-18

Family

ID=79327085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010691317.XA Pending CN113948567A (zh) 2020-07-17 2020-07-17 改善ldmos高压侧击穿电压的装置及其制备方法

Country Status (1)

Country Link
CN (1) CN113948567A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799256A (zh) * 2020-07-17 2020-10-20 上海华力微电子有限公司 提升高压集成电路防负电流闩锁能力的保护环及实现方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937477A (en) * 1988-01-19 1990-06-26 Supertex, Inc. Integrated mos high-voltage level-translation circuit, structure and method
US20040241950A1 (en) * 2001-12-11 2004-12-02 Peter Olofsson To Infineon Technologies Ag Method to manufacture high voltage MOS transistor by ion implantation
CN102983161A (zh) * 2011-09-02 2013-03-20 上海华虹Nec电子有限公司 非埋层的双深n型阱高压隔离n型ldmos及制造方法
CN104465774A (zh) * 2014-11-17 2015-03-25 上海华虹宏力半导体制造有限公司 隔离型ldmos器件及其制造方法
US20150255595A1 (en) * 2014-03-06 2015-09-10 Magnachip Semiconductor, Ltd. Low-cost semiconductor device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937477A (en) * 1988-01-19 1990-06-26 Supertex, Inc. Integrated mos high-voltage level-translation circuit, structure and method
US20040241950A1 (en) * 2001-12-11 2004-12-02 Peter Olofsson To Infineon Technologies Ag Method to manufacture high voltage MOS transistor by ion implantation
CN102983161A (zh) * 2011-09-02 2013-03-20 上海华虹Nec电子有限公司 非埋层的双深n型阱高压隔离n型ldmos及制造方法
US20150255595A1 (en) * 2014-03-06 2015-09-10 Magnachip Semiconductor, Ltd. Low-cost semiconductor device manufacturing method
CN104465774A (zh) * 2014-11-17 2015-03-25 上海华虹宏力半导体制造有限公司 隔离型ldmos器件及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799256A (zh) * 2020-07-17 2020-10-20 上海华力微电子有限公司 提升高压集成电路防负电流闩锁能力的保护环及实现方法

Similar Documents

Publication Publication Date Title
US8138570B2 (en) Isolated junction field-effect transistor
US8659086B2 (en) ESD protection for bipolar-CMOS-DMOS integrated circuit devices
US7737526B2 (en) Isolated trench MOSFET in epi-less semiconductor sustrate
US8652930B2 (en) Semiconductor device with self-biased isolation
JP5321840B2 (ja) 高圧バイポーラcmos−dmos集積回路装置およびこれを形成するためのモジュール式方法
US7238987B2 (en) Lateral semiconductor device and method for producing the same
US9093300B2 (en) Transistor structure having a trench drain
KR20010112439A (ko) 온-저항이 감소된 초자기정렬 트렌치-게이트 dmos
KR101530582B1 (ko) 반도체 소자 및 이의 제조 방법
EP3611765B1 (en) Method of fabricating a semiconductor device with latchup immunity
US9029947B2 (en) Field device and method of operating high voltage semiconductor device applied with the same
US20100123194A1 (en) Semiconductor device and method for fabricating the same
EP3591698A1 (en) Unidirectional esd protection with buried breakdown thyristor device
CN107275401B (zh) 半导体装置和半导体装置的制造方法
TWI536562B (zh) 高壓半導體元件及其製造方法
CN113948567A (zh) 改善ldmos高压侧击穿电压的装置及其制备方法
CN111584481A (zh) 用于静电防护的晶体管结构及其制造方法
CN105097796B (zh) 高压半导体元件及其制造方法
KR101842318B1 (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination