CN1568375A - 耐热铜合金 - Google Patents

耐热铜合金 Download PDF

Info

Publication number
CN1568375A
CN1568375A CNA038005328A CN03800532A CN1568375A CN 1568375 A CN1568375 A CN 1568375A CN A038005328 A CNA038005328 A CN A038005328A CN 03800532 A CN03800532 A CN 03800532A CN 1568375 A CN1568375 A CN 1568375A
Authority
CN
China
Prior art keywords
alloy material
content
mass
heat
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038005328A
Other languages
English (en)
Other versions
CN1296500C (zh
Inventor
大石惠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Sambo Copper Alloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sambo Copper Alloy Co Ltd filed Critical Sambo Copper Alloy Co Ltd
Publication of CN1568375A publication Critical patent/CN1568375A/zh
Application granted granted Critical
Publication of CN1296500C publication Critical patent/CN1296500C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Conductive Materials (AREA)
  • Heat Treatment Of Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种耐热铜合金材料,可以是管材、板材、棒材、线材或将上述材料加工成规定形状的加工材料,其形成以在Co含量[Co]mass%、P含量[P]mass%、Sn含量[Sn]mass%、Zn含量[Zn]mass%之间,具有2.4≤([Co]-0.02)/[P]≤5.2及0.20≤[Co]+0.5[P]+0.9[Sn]+0.1[Zn]≤0.54的关系地含有0.15~0.33mass%Co、0.041~0.089mass%P、0.02~0.25mass%Sn、0.01~0.40mass%Zn,且其余由Cu及不可避免的杂质构成的合金组成。

Description

耐热铜合金
技术领域
本发明涉及一种耐热铜合金,其特别适合用作构成热交换器(装备于瞬间沸水器、给热水器、温水器、空调机、制冷机、散热器等的热交换器或给热水系统、空调系统、制冷系统等中的热交换器等)所用的传热管及配管(供水管、供热水管、气体配管)以及构成其他各种装置(电、化学装置等)所用的配管或其附属部件(散热片等)、设备(冷暖切换用四通阀等)等的管材、板材、棒材、线材、加工材(利用钎焊等加工成规定形状)。
背景技术
一般,使用由耐热性优良的磷脱氧铜(JIS C1220)构成的管材(无缝铜合金管)或板材,制作瞬间沸水器、供热水器、空调机、制冷机等的热交换器中的传热管、散热片、翼缘或钢板等,在该制作时,进行作为钎焊材料使用磷铜钎料(JIS Z3264 BCuP-2)等的钎焊,但由于磷铜钎料的熔点为固相线温度:710℃,液相线温度:795℃,所以在进行传热管等的钎焊时,需要加热到大约800℃。
但是,对于用磷脱氧铜制的传热管等,在钎焊使局部或整体加热到800℃左右的高温时,由于磷脱氧铜的晶粒粗大化,随着降低磷脱氧铜的基体强度,显著降低加热后(钎焊后或焊接后)的机械强度(例如,抗拉强度、屈服强度、延伸率、疲劳强度、硬度等)。尽管由这种磷脱氧铜的晶粒粗大化造成的机械强度的降低因传热管等的坯料制作条件而异,但在600℃~700℃以上加热时一般还是比较明显。因此,对于使用磷脱氧铜制的传热管等的瞬间沸水器、供热水器等的热交换器,由于在制作阶段降低传热管等的机械强度,当然,耐久性也存在问题。例如,对于瞬间沸水器、热水器、空调机等的传热管,由于在其使用中传热管频繁地重复热膨胀和热收缩,如此重复负荷有局部疲劳破坏传热管等的危险,会缩短制品的使用寿命。此种耐久性的问题,特别是对于使用HCFC系氟利昂以外的热介质气体的热交换器的传热管更为明显,所以,磷脱氧铜制的传热管不能用于上述的热介质气体。即,最近,作为供热水器、空调机等的热交换器的热介质气体,为防止排放地球温暖化气体及破坏臭氧层,代替以往的HCFC系氟利昂,有使用CO2及HFC系氟利昂等的倾向,但是,在将这种CO2及HFC系氟利昂等作为热介质使用时的凝缩压力与使用HCFC系氟利昂时相比,需要增大压力。因此,对于使用HCFC系氟利昂以外的热介质气体的热交换器的传热管,由于周期性施加高凝缩压力,作为传热管,在使用磷脱氧铜制的传热管时,其耐压即传热管构成材料的屈服强度(0.2%屈服强度)或屈服强应力不足,长期使用传热管有产生裂纹及尺寸变化的危险。即使在使用板材的钢板等方面,也产生同样的问题。例如,对于用于供热水器、沸水器等的热交换器的钢板,施加由使用时的膨胀和不使用时的收缩产生的反复应力,结果,局部产生疲劳破损,有引起火灾事故的危险。此外,对于设在供热水器、空调机等的传热管上的散热片,由于其在制作阶段显著降低机械强度(特别是屈服强度),有施加轻微的外力(例如,在维修时及清扫时,手及清扫用具的轻微触碰)等就容易变形的危险,散热片的变形会严重损失热交换器的热效率。此外,在钎焊的磷脱氧铜制的构件及部件(给水管、供热水管、气体配管、电器设备配管、化学设备配管等)中,由于钎焊后显著降低强度,需要将厚度加厚到所需厚度以上,此外,在使用时及维修时,有因微小外力就造成变形,而招致各种故障(漏水、工作不良等)的危险。此外,由于晶粒粗大化,应力腐蚀裂纹敏感性、孔腐蚀敏感性及蚁巢状腐蚀敏感性增大,此外,由于一般的耐腐蚀性也下降,由此引起的使用中的故障也增多。
发明内容
本发明是针对上述问题而提出的,目的是提供一种耐热铜合金材料,其能够适合用作如利用钎焊等加热(或热处理)到高温的且使用HCFC系氟利昂以外的热介质气体的热交换器的传热管等这样的需要高屈服强度及高导热性的制品、部件的构成材料(管材、板材等)。
在本发明中,为达到上述目的,提出形成权利要求1记载的合金组成的耐热铜合金材料(以下称为“第1发明合金材料”)、形成权利要求2记载的合金组成的耐热铜合金材料(以下称为“第2发明合金材料”)、形成权利要求3记载的合金组成的耐热铜合金材料(以下称为“第3发明合金材料”)及形成权利要求4记载的合金组成的耐热铜合金材料(以下称为“第4发明合金材料”)。上述发明合金材料都以管材、板材、棒材、线材或将上述材料加工(钎焊、焊接、切削、挤压等)成规定形状的加工材的形式提供。此外,在以下的说明中,括号内的元素符号表示该元素的含量。
即,第1发明合金材料,形成以在Co含量[Co]mass%、P含量[P]mass%、Sn含量[Sn]mass%及Zn含量[Zn]mass%的之间,具有以下的(1)、(2)的关系地含有0.15~0.33mass%Co(优选0.16~0.30mass%,更优选0.17~0.28mass%)、0.041~0.089mass%P(优选0.043~0.080mass%,更优选0.045~0.074mass%)、0.02~0.25mass%Sn(优选0.03~0.19mass%,更优选0.04~0.15mass%)、0.01~0.40mass%Zn(优选0.02~0.25mass%,更优选0.02~0.15mass%),且其余由Cu及不可避免的杂质构成的合金组成。
此外,第2发明合金材料,形成以在Co含量[Co]mass%、P含量[P]mass%、Sn含量[Sn]mass%、Zn含量[Zn]mass%、Ni含量[Ni]mass%及Fe含量[Fe]mass%的之间,具有以下的(1)~(6)的关系地含有0.11~0.31mass%Co(优选0.13~0.28mass%,更优选0.15~0.26mass%)、0.041~0.089mass%P(优选0.043~0.080mass%,更优选0.045~0.074mass%)、0.02~0.25mass%Sn(优选0.03~0.19mass%,更优选0.04~0.15mass%)、0.01~0.40mass%Zn(优选0.02~0.25mass%,更优选0.02~0.15mass%)、0.01~0.17mass%Ni(优选0.02~0.14mass%)及/或0.01~0.15mass%Fe(优选0.02~0.12mass%),且其余由Cu及不可避免的杂质构成的合金组成。
此外,第3发明合金材料在第1发明合金材料的合金组成中,另外第4发明合金材料在第2发明合金材料的合金组成中,分别进一步含有Mn、Mg、Zr、Y中的任何一种。
即,第3发明合金材料,形成以在Co含量[Co]mass%、P含量[P]mass%、Sn含量[Sn]mass%、Zn含量[Zn]mass%、Mn含量[Mn]mass%、Mg含量[Mg]mass%、Y含量[Y]mass%及Zr含量[Zr]mass%的之间,具有以下的(1)、(2)的关系地进一步含有0.15~0.33mass%Co(优选0.16~0.30mass%,更优选0.17~0.28mass%)、0.041~0.089mass%P(优选0.043~0.080mass%,更优选0.045~0.074mass%)、0.02~0.25mass%Sn(优选0.03~0.19mass%,更优选0.04~0.15mass%)、0.01~0.40mass%Zn(优选0.02~0.25mass%,更优选0.02~0.15mass%)、0.01~0.20mass%Mn(优选0.02~0.10mass%)或0.001~0.10mass%Mg、Zr或Y(优选0.001~0.04mass%),且其余由Cu及不可避免的杂质构成的合金组成。
此外,第4发明合金材料,形成以在Co含量[Co]mass%、P含量[P]mass%、Sn含量[Sn]mass%、Zn含量[Zn]mass%、Ni含量[Ni]mass%、Fe含量[Fe]mass%、Mn含量[Mn]mass%、Mg含量[Mg]mass%、Y含量[Y]mass%及Zr含量[Zr]mass%的之间,具有以下的(1)~(6)的关系地含有0.11~0.31mass%Co(优选0.13~0.28mass%,更优选0.15~0.26mass%)、0.041~0.089mass%P(优选0.043~0.080mass%,更优选0.045~0.074mass%)、0.02~0.25mass%Sn(优选0.03~0.19mass%,更优选0.04~0.15mass%)、0.01~0.40mass%Zn(优选0.02~0.25mass%,更优选0.02~0.15mass%)、0.01~0.17mass%Ni(优选0.02~0.14mass%)及/或0.01~0.15mass%Fe(优选0.02~0.12mass%)、0.01~0.20mass%Mn(优选0.02~0.10mass%)或0.001~0.10mass%Mg、Zr或Y(优选0.001~0.04mass%)的,且其余由Cu及不可避免的杂质构成的合金组成。
(1)为2.4≤A1≤5.2(优选2.7≤A1≤4.7,更优选3.0≤A1≤4.2)。此外,A1=([Co]+0.8[Ni]+0.8[Fe]-0.02)/[P]。但是,对于不含Ni、Fe的第1及第2发明合金材料,A1=([Co]-0.02)/[P]([Ni]=[Fe]=0)。
(2)为0.20≤A2≤0.54(优选0.23≤A2≤0.49,更优选0.25≤A2≤0.45)。此外,A2=[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+0.9[Ni]+1.5[Fe]+[Mn]+[Mg]+[Y]+3[Zr]。但是,对于不含Ni、Fe、Mn、Mg、Y、Zr的第1发明合金材料,A2=([Co]+0.5[P]+0.9[Sn]+0.1[Zn]([Ni]=[Fe]=[Mn]=[Mg]=[Y]=[Zr]=0)。此外,对于不含Mn、Mg、Y、Zr的第2发明合金材料,A2=[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+0.9[Ni]+1.5[Fe]([Mn]=[Mg]=[Y]=[Zr]=0)。此外,对于不含Ni、Fe的第3发明合金材料,A2=[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+[Mn]+[Mg]+[Y]+3[Zr]([Ni]=[Fe]=0)。
(3)为0.15≤A3≤0.35(优选0.16≤A3≤0.32,更优选0.17≤A3≤0.30)。此外,A3=[Co]+0.8[Ni]+0.8[Fe]。
(4)1.2[Ni]<[Co]
(5)1.5[Fe]<[Co]
(6)[Ni]+[Fe]<[Co]
Co,是抑制在传热管等的制作时或使用时的高温加热条件下(例如,在钎焊时的大约800℃的加热条件下)的晶粒粗大化所必需的元素。即,通过添加Co,能够良好地抑制高温(600℃~700℃以上)加热时的晶粒长大,使金属组成保持微细化,而且还能够提高高温加热后的合金的耐疲劳性。然而,在其添加量不满0.15mass%时,不能充分发挥上述Co的添加效果。但是,如第2或第4发明合金材料中,在同时添加Ni、Fe的一种或两种时,如后述,由于Ni、Fe除发挥上述效果外,还具有代替Co元素的功能,即使Co的添加量不满0.15mass%,但只要在0.11mass%以上,也能够充分发挥上述效果。通过将Co的添加量设定在0.16mass%以上(在Ni、Fe共添时为0.13mass%以上),能显著发挥此种添加Co的效果,如将Co的添加量设定在0.17mass%以上(在Ni、Fe共添时为0.15mass%以上),更能显著发挥此种添加Co的效果。另外,Co的添加效果也有限度,高于所需量的添加也无意义,也不能得到与添加量相符的效果,反而有损伤铜合金本身的特性(导热性等)的危险。即,即使添加Co超过0.33mass%(在Ni、Fe共添时为0.31mass%以上),不仅得不到与之相符的效果,还增加热变形阻力,降低冷加工性能,反而降低铜合金本身的特性(导热性等)。当然,由于Co是价格很高的金属,高于所需量的添加,也存在经济上的问题。为不产生上述问题地有效发挥上述添加Co的效果,Co添加量优选设定在0.30mass%以下(在Ni、Fe共添时为0.28mass%以下),最优选设定在0.28mass%以下(在Ni、Fe共添时为0.26mass%以下)。
P,与Co同样,也是具有抑制高温加热时晶粒粗大化的元素,但如与Co共添其功能可飞跃地提高。因此,除Co外,通过添加P,能够极有效地抑制高温加热时的晶粒长大,在加热后也能确实保持微细的结晶状态。然而,如果其添加量不满0.041mass%,不能有效发挥上述P的添加效果,也不能期待那样的功能。为了发挥如此的效果,P的添加量必需设定在0.041mass%以上,如要充分发挥其作用,P的添加量优选设定在0.043mass%以上,最优选设定在0.045mass%以上。但是,即使添加超过0.089mass%,不仅得不到与其添加量相符的效果,反而降低铜合金本身的特性(导热性等),而且还降低热加工及冷加工的加工性能。为充分保证上述特性,P的添加量必需设定在0.089mass%以下,优选设定在0.080mass%以下,最优选设定在0.074mass%以下。
Sn,通过在基体中的固溶强化,可谋求强化基体的耐热性,在提高上述Co及P的晶粒的长大抑制作用及微细化作用的同时,能够提高Co、P的析出速度,从而能够提高高温加热后的机械强度。此外,也是为提高耐蚀性所添加的元素,通过添加Sn,能够尽可能地防止以应力腐蚀裂纹、孔腐蚀、蚁巢状腐蚀为代表的腐蚀。为了充分发挥此种添加Sn的效果,Sn的添加量必需设定在0.02mass%以上,优选设定在0.03mass%以上,最优选设定在0.04mass%以上。另外,如果Sn的添加量超过0.25mass%,虽与其添加量相应地在某种程度上提高机械强度,但降低导热性,此外也增大热变形阻力,降低冷加工性能。为了不降低导热性地发挥Sn的添加效果,Sn的添加量有必要设定在0.25mass%以下,优选设定在0.19mass%以下,最优选设定在0.15mass%以下。
Zn,为谋求通过强化基体提高机械强度而添加的元素。即,无论晶粒多么微细,由于在基体自身的强度低时,当然,作为合金整体的机械强度也低,所以为谋求强化这样的基体而添加Zn。此点也与Sn同样,但添加Zn还具有提高钎焊性的效果。即,通过添加Zn,能够提高与磷铜钎料(JIS Z3264)等钎焊材料的润湿性。此外,Zn与Sn同样,具有能够提高针对以应力腐蚀裂纹、孔腐蚀、蚁巢状腐蚀为代表的腐蚀的耐蚀性。而且,为了发挥此种添加Zn的效果,Zn的添加量有必需设定在0.01mass%以上,优选设定在0.02mass%以上。另外,如果Zn的添加量超过0.40mass%,降低导热性,同时提高对于应力腐蚀破裂的敏感性。为了不产生这类问题,Zn的添加量有必要设定在0.40mass%以下,优选设定在0.25mass%以下,最优选设定在0.15mass%以下。
Fe、Ni,与Co同样,是具有抑制晶粒长大效果的元素,其效果虽比Co稍差,但具有代替Co元素的功能。因此,通过与Co共添,能够尽可能减少高价Co的添加量,充分发挥上述效果。即,Ni、Fe减少Co在基体中的固溶限度,用小的Co添加量,起到有效发挥上述Co功能的作用,发挥降低Co的必需添加量带来的经济效果。此外,通过减少Co的固溶量,还具有提高热传导性、热加工性的效果。而且,如果Ni或Fe的添加量在0.01mass%以上,能发挥此种添加Ni、Fe的效果,如果采用0.02mass%以上的添加量,能够显著发挥其效果。但是,对于Ni即使添加量超过0.17mass%,此外,对于Fe即使添加量超过0.15mass%,不但未发现与该添加量相符的效果,反而产生降低导热性等问题。为不产生此类问题,对于Ni,其添加量有必要在0.17mass%以下,优选0.14mass%以下。此外,对于Fe,其添加量有必要在0.15mass%以下,优选0.12mass%以下。
可是,作为本发明合金材料的制造原料的一部分,多采用其废料(废弃的传热管等),但由于在此种的废料中多含S成分(硫成分),存在对热加工性有不良影响的问题。但是,如果添加Mn、Mg、Y、Zr中的任何一种,在使用含S成分的原料时,由于形成与S成分结合的析出物(MgS、ZrS等),也能够防止发生上述问题。在第3或第4发明合金材料中,就基于上述理由确定含有Mn、Mg、Y、Zr中的任何一种。通过添加0.01mass%以上的Mn,0.001mass%以上的Mg、Y、Zr,能够发挥通过添加Mn、Mg、Y、Zr形成上述析出物的效果(排除S成分对热加工性能的不良影响的效果)。但是,高于所需量地添加Mn、Mg、Y、Zr,由于不仅得不到与添加量相符的效果,反而产生降低导热性等弊端,所以,关于添加量的上限,Mn设定为0.20mass%(优选0.10mass%),Mn、Mg、Y、Zr设定为0.10mass%(优选0.04mass%)。
关于基本元素铜以外的添加元素,按上述范围确定上述元素的含量,但在确定含量时,需要考虑添加元素相互间的关系,为实现本发明的目的,在添加元素的含量相互间需要成立上述(1)~(6)的关系。即,需要以与其他添加元素之间具有(1)~(6)的关系作为条件,在上述的范围内确定各添加元素的含量。
第一,添加Co及添加P的功能具有在如前所述的相互间紧密关系,需要设定共添Co、P时的效果的平衡,因此,在上述范围内,单个独立确定上述元素的含量还不充分,需要两种含量的比率达到一定范围地确定。此外,即使对于Ni、Fe,由于其是发挥与Co同样功能的元素,具有代替Co元素的功能,所以,与Co同样,在确定其含量时,需要考虑到与P的关系。即,在Co含量或Co、Ni、Fe含量及P含量之间,需要成立(1)的关系地确定它们的含量,在A1<2.4时,Co、Ni、Fe和P的组合添加效果不明显,并且损害铜合金本来的特性即导热性,也恶化冷加工性。为了充分发挥此种效果(Co、Ni、Fe和P的共添效果),有必要A1≥2.4,优选A1≥2.7,最优选A1≥3.0。相反,如果A1>5.2,不仅该组合添加效果饱和,反而还对铜合金本来特性(导热性等)产生不良影响。因此,有必要A1≤5.2,如再考虑到铜本来的特性,优选A1≤4.7,最优选A1≤4.2。
第二,Ni、Fe是具有代替Co元素的功能的元素,但由于其功能仅代替所需Co含量的一部分,只不过是降低所需Co含量,所以,在确定Ni、Fe含量时应考虑到与Co的含量的关系。因此,应在考虑到功能贡献程度的总量A3及相互关系满足(3)~(6)的条件下确定Ni、Fe、Co含量。即,如果A3<0.15,不能充分发挥Co、Ni、Fe的添加效果(高温加热时的晶粒长大抑制效果等),如果A3>0.35,不仅得不到与添加量相符的效果,还有降低铜合金本来特性的危险。此外,在降低热挤压性的同时,还降低以弯曲等为代表的冷加工性能。因此,为了不产生上述问题地充分发挥添加效果,有必要0.15≤A3≤0.35,优选0.16≤A3≤0.32,最优选0.17≤A3≤0.30。此外,由于Ni、Fe的添加功能不超过Co的添加功能,如果比Co添加量多一定量以上地添加Ni、Fe,反而降低Ni、Fe的共添效果。所以,考虑到添加效果对Co的贡献程度,在添加Ni、Fe的任何一方时,需要满足(4)或(5)的条件,在Ni及Fe共添时,需要满足(4)~(6)的条件。
第三,对于基本元素Cu以外的添加元素,由于考虑到这些元素的添加效果的贡献度的总量A2影响到导热性、热挤压性、弯曲加工性、成型性、钎焊性、钎焊后的强度,考虑到此种问题,需要满足(2)的条件地确定它们的添加量。即,如果A2>0.54,降低导热性、热挤压性、弯曲加工性及成型性。所以,为了确保导热性、热挤压性、弯曲加工性及成型性,有必要A2≤0.54,为了确实防止降低导热性、热挤压性、弯曲加工性及成型性,优选A2≤0.49,最优选A2≤0.45。另外,如果A2<0.20,不能得到足够的钎焊后的强度。所以,为了充分确保钎焊后的强度,有必要A2≥0.20,优选A2≥0.23,最优选A2≥0.26。
可是,作为不可避免的杂质所含的氧,如果其含量在一定量以上,由于成为氢脆化的原因,有必要将氧含量控制在0.007mass%以下,优选控制在0.004mass%以下。此种氧含量的降低,当然可利用制造条件来降低,但也能通过P的添加效果来降低。因此,在第1~第4发明合金材料中,都优选以氧含量为0.007mass%以下(优选0.004mass%以下)的条件确定P添加量。
此外,对于第1~第4发明合金材料,在作为要求屈服强度的钎焊制品、部件(例如,使用HCFC系氟利昂以外的热介质气体(CO2、HFC系氟利昂)的热交换器的传热管、或使用时及维修时因微小的外力就容易变形的散热片材、给水管等)的构成材料使用时,在确定上述合金组成的时候,优选将钎焊处理或与之同等条件的加热处理(例如,在800℃加热处理10分钟)后的0.2%屈服强度(永久变形为0.2%时的强度)确定在55N/mm2以上(优选75N/mm2以上,更优选90N/mm2以上)。此外,对于铜合金材料的钎焊,由于一般进行硬钎焊,如按JIS Z3264的规定,使用磷铜钎料、银钎料,在800℃左右的钎焊温度(钎焊时间一般大约10分钟)下进行钎焊。在钎焊时,被钎焊材也被加热到熔化钎焊料的温度,钎焊的铜合金材料(被钎焊材)被加热到与钎焊温度同等的程度。因此,在本发明中,不区分铜合金的钎焊处理和在与之同等条件(800℃左右)直接加热铜合金材料的一般加热处理,将两者作为同一热处理来处理。
可是,对于第1~第4发明合金材料,通过形成上述合金组成,发挥良好的导热性,与作为要求高导热性的制品、部件的构成材多采用的紫铜(JIS C1220)及纯铝相比,是强度优良的材料,作为如此的制品、部件的构成材,为形成优于紫铜及纯铝的优良材料,有必要能够确保至少比纯铝(导热率:0.57cal/cm·sec·℃)高的导热率,优选能够确保纯铝及紫铜(导热率:0.78cal/cm·sec·℃)的中间值(0.675cal/cm·sec·℃)以上的导热率,更优选确实能够得到0.70cal/cm·sec·℃以上的导热率。但是,如只在合金组成上钻研,导热率的提高也是有限度的。为此,本发明人经过多次实验、研究,结果发现,通过钻研进行钎焊处理或与之同等条件的加热处理的条件,及随后进行的冷却处理等处理(以下称为“后处理”)的条件,能够显著提高导热率。
基于取得的相关的研究结果,在本发明中,通过实施下面的加热处理(钎焊处理等)及后处理,提出显著提高导热性的第1~第4发明合金材料。
第一,除进行钎焊处理或与之同等条件的加热处理(例如,800℃加热10分钟)外,通过作为后处理对该加热处理材实施以下的特殊炉内冷却处理,提出提高了导热率的第1~第4发明合金材料。即,在此种后处理(以下称为“第1后处理”)时,根据炉内冷却温度变化炉内冷却速度,如此将从670℃到480℃的冷却速度减速到1.5~12℃/分钟(优选2.5~10℃/分钟)。炉内冷却处理中的冷却速度通常为15~30℃/分钟(一般为20℃/分钟左右),但在第1后处理中,在炉内冷却工序中的从670℃到480℃的温度范围内,比此种一般炉内冷却处理降低冷却速度,通过在580℃左右保温,能够谋求提高导热性。
第二,除进行钎焊处理或与之同等条件的加热处理(例如,800℃加热10分钟)外,通过对该加热处理材实施以下的作为后处理的一般炉冷却处理和特殊再加热处理,提出提高了导热率的第1~第4发明合金材料。即,在此种后处理(以下称为“第2后处理”)时,利用一般的条件炉内冷却加热处理材,但在该炉内冷却工序结束之前或之后,以480℃~670℃、3~100分钟(优选520~640℃、10~40分钟)的条件进行再加热。通过此种炉内冷却处理前后的580℃左右的再加热,也能够谋求将导热率提高到与实施上述第1后处理时同等或比其高的程度。
第三,除进行钎焊处理或与之同等条件的加热处理(例如,800℃加热10分钟)外,通过对该加热处理材实施以下的作为后处理的急冷处理和再加热处理,提出提高了导热率和强度的第1~第4发明合金材料。即,在此种后处理(以下称为“第3后处理”)时,利用水冷、空气冷(包括强制空气冷却)急速冷却加热处理材,然后,进行与第2后处理中同样的再加热(按480℃~670℃、3~100分钟(优选520~640℃、10~40分钟)的条件进行再加热)。本发明人通过实验确认,在以规定的条件对加热处理材进行再加热时,加热处理材的冷却条件(主要是冷却速度)对提高导热率无大的影响(导热性的提高主要依赖于再加热条件),和采用在急速冷却后进行再加热与在炉内冷后进行再加热时相比能够提高强度。可是,在现场进行钎焊等时,因钎焊条件,由于空间上的限制等,有时不能进行满意的炉内冷却,但在此时及要求钎焊后的强度时,上述的第3后处理极为有利。
此外,上述的第1~第4发明合金材料最适合用作构成热交换器的传热管(特别是使用HCFC系氟利昂以外的热介质气体的热交换器的传热管)的管材即无缝铜合金管或焊接铜合金管,此外,也适合作为板材用作热交换器中的板状部件(散热片、侧板、翼板等)或与之连结传热管或其他板状部件(散热片等)的连接板的构成材。
实施例
作为实施例,将形成表1~表3所示合金组成的圆柱状铸坯(直径220mm、长275mm)加热到900℃,热挤压成管状,接着将该挤压管浸渍在60℃温水槽中,然后,反复冷拉伸,通过在630℃、1小时的条件下热处理(退火)所得的拉伸管,制作外径10mm、壁厚1mm的管材(可用作热交换器传热管的构成材)即第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.30 1~No.304及第4发明合金材料No.401~No.412。
在此种管材的制作中,在通过热挤压得到外径65mm、壁厚5.5mm的挤压管(以下称为“小径挤压管”)后,通过对其反复实施冷拉伸,得到外径10mm、壁厚1mm的拉伸管。但是,对于部分第1及第2发明合金材料No.103、No.114、No.204、No.211、No.215,由于不能得到适当的小径挤压管,或即使能够得到,小径挤压管的弯曲也超过标准值(每m为10cm),可在热挤压得到外径85mm、壁厚7.0mm的挤压管(以下称为“大径挤压管”)后,通过对其反复实施冷拉伸,得到与上述同一形状(外径10mm、壁厚1mm)的拉伸管。此外,在大径挤压管的情况下,利用实施于小径挤压管的拉伸工序难于得到外径10mm、壁厚1mm的拉伸管,但是通过比小径挤压管的拉伸工序道次(从小径挤压管得到外径10mm、壁厚1mm的拉伸管所需的工序道次)增加1~3个工序道次,也能够得到与拉伸小径挤压管时同一形状、同一品质的拉伸管。
此外,将上述的圆柱状铸坯(直径220mm、长275mm)切成方柱状铸坯(厚35mm、宽90mm、长250mm),将该方柱状铸坯加热到850℃,热轧到厚5mm的板状后,酸洗其表面,然后以达到0.41mm厚地冷轧该热轧板,再在630℃、1小时的条件下热处理(退火)后,通过以达到0.40mm厚地冷轧该冷轧板,制作表1~表3所示合金组成的板材,即第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412。此外,上述管材及板材中的作为不可避免的杂质的氧含量都在0.0002~0.004mass%。
此外,作为比较例,采用形成表4所示合金组成的铜合金材料,通过与实施例相同的制造工序,得到形成同一形状的管材及板材的比较例合金材料No.501~No.515。此外,管材No.501~No.503及No.510~No.513是通过拉伸、热处理小径挤压管得到的。管材No.515是通过拉伸、热处理大径挤压管得到的。对于上述以外的管材(No.504~No.509、No.514),由于热挤压性颇为恶化,不能得到小径挤压管及大径挤压管,所以也不能制得最终的管材。
此外,通过弯曲管材制造工序中的作为半成品的挤压管,评价了第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412以及比较例合金材料No.501~No.515的挤压性。其评价结果如表5~表8所示。即,在表5~表8中,以“○”表示挤压性能优良的合金材料,其能够得到热挤压后的弯曲在标准值(每m为10cm)以下的小径挤压管(外径65mm、壁厚5.5mm);以“△”表示挤压性能良好的合金材料(实用上无大的问题),但不能得到上述小径挤压管,但能够得到热挤压后的弯曲在标准值以上的大径挤压管(外径85mm、壁厚7.0mm);以“×”表示挤压性能差的合金材料(不能实用),不用说小径挤压管,就连弯曲在标准值以下的大径挤压管也不能得到。
此外,为确认钎焊后的强度,对于作为管材得到的第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412以及比较例合金材料No.501~No.515(不能得到管材的比较例合金材料No.504~No.509、No.514除外),进行了如下的屈服强度测定试验。即,通过按与实施在制作热交换器(钎焊传热管、散热片、钢板、翼缘等热交换器部件)时采用的炉内钎焊法时相同的条件,使管材(用630℃、1小时的条件退火的外径10mm、壁厚1mm的拉伸管)通过连续热处理炉内,进行管材的热处理。具体是,在800℃将管材加热10分钟后,按20℃/分钟炉内冷却。然后,对此种经过热处理的管材,用阿姆斯拉型万能试验机进行拉伸试验,测定0.2%屈服强度(永久变形为0.2%时的强度)。其结果如表5~表8所示。此外,也对作为板材(在630℃、1小时的条件下退火后,以达到0.40mm厚地冷轧的板材)得到的第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412以及比较例合金材料No.501~No.515(No.504~No.509、No.514除外),进行了与上述相同的屈服强度测定试验,但由于其结果与表5~表8所示的值(0.2%屈服强度)大致一致,此处省略。
此外,对作为管材得到的第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412以及比较例合金材料No.501~No.515(不能得到管材的比较例合金材料No.504~No.509、No.514除外),确认了弯曲加工性。即,利用压力加工,将管材(用630℃、1小时的条件退火的外径10mm、壁厚1mm的拉伸管)弯曲成U字型,通过在该折弯部产生大的皱褶时的折弯度R/D(R:折弯部的内周侧的曲率半径(mm),D:管材的外径(mm))评价弯曲加工性。其结果如表5~表8所示。即,在表5~表8中,在R/D=1时,不产生大的皱褶,折弯部的截面形状能形成圆形或略圆形,是弯曲加工性优良的管材,以“○”表示;在1<R/D≤1.5时,不产生大的皱褶,折弯部的截面形状能形成圆形或略圆形,是弯曲加工性良好的管材(实用上无大的问题),以“△”表示;在R/D>1.5时,折弯部的截面形状不形成圆形,变成椭圆形,是弯曲加工性差的管材(实用困难),以“×”表示。
此外,对于作为板材得到的第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412以及比较例合金材料No.501~No.515(No.504~No.509、No.514除外),为了确认成型性,进行了杯突试验。即,对板材(在630℃、1小时的条件下退火后,以达到0.40mm厚地冷轧的板材)进行杯突试验,求出其杯突值。其结果如表5~表8所示。
从表5~表8可以确认,比较例合金材料No.501~No.515,至少在0.2%屈服强度、挤压性、弯曲加工性及成型性中的一项存在问题,不适合用作热交换器的传热管、散热片、钢板、翼缘等构成部件,但是,第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412中的任何一种,在0.2%屈服强度、挤压性、弯曲加工性及成型性等方面都优良,能够用作热交换器的传热管、散热片、钢板、翼缘等构成部件。
此外,对于作为管材得到的第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412以及比较例合金材料No.501~No.515(不能得到管材的No.504~No.509、No.514除外),为了确认作为钎焊制品、部件使用时的导热性,测定了实施钎焊用热处理的合金材料的导热率。即,通过按与实施上述炉内钎焊法时相同的条件(在800℃将管材加热10分钟后,按20℃/分钟炉内冷却),使管材(No.101~No.114、No.201~No.217、No.301~No.304、No.401~No.412、No.501~No.503、No.510~No.513及No.515)通过连续热处理炉内,对管材实施钎焊用热处理,然后测定其导热率。其结果如表5~表8所示,对于第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412,所有都测定出0.65cal/cm·sec·℃以上的高导热性,确认具有优良的导热性。
此外,在进行了钎焊处理或与之同等条件的加热处理后,为了确认通过实施开头所述的第1后处理、第2后处理或第3后处理得到的导热性提高效果,对作为管材得到的第1发明合金材料No.101~No.114、第2发明合金材料No.201~No.217、第3发明合金材料No.301~No.304、第4发明合金材料No.401~No.412,实施了各种后处理,测定了该后处理后的导热率及强度。即,按与上述钎焊用热处理相同的条件(加热温度:800℃,加热时间:10分钟)分别加热管材No.101~No.114、No.201~No.217、No.301~No.304及No.401~No.412,然后对经过该加热处理的管材(以下称为“加热管材”),实施了以下的第1后处理、第2后处理或第3后处理。在第1后处理中,在加热管材的炉内冷却工序,以4℃/分钟降低从670℃到480℃的冷却速度。此外,从800℃到670℃的炉内冷却速度及从480℃到常温的炉内冷却速度设定为20℃/分钟。此外,在第2后处理中,以20℃/分钟将加热管材炉内冷却到常温,之后,以580℃、30分钟的条件进行再加热。另外,在第2后处理中,再加热后的炉内冷却速度设定为20℃/分钟。此外,在第3后处理中,水冷却(急速冷却)加热管材后,与第2后处理同样,以580℃、30分钟的条件进行再加热。这些热处理后的导热率如表5~表7所示。
此外,对于加热管材No.104、No.111、No.210、No.212、No.215、No.217、No.301、No.402、No.406、No.408,按不同的多种条件进行第1~第3后处理,测定了各条件下的热处理后的导热率。即,对于第1后处理,除在以如上述所述的4℃/分钟降低从670℃到480℃的冷却速度外,也分别在以1.8℃/分钟、2.5℃/分钟、6℃/分钟、10℃/分钟、12℃/分钟降低时进行。此外,对于第2后处理及第3后处理,除在再加热条件为上述的580℃、30分钟时进行外,也分别在再加热条件为480℃、100分钟,520℃、50分钟,580℃、10分钟,580℃、50分钟,640℃、30分钟,640℃、10分钟及670℃、3分钟时进行。这些热处理后的导热率如表9~表11所示。
此外,在实施如上所述的第2后处理及第3后处理的管材中,对于将再加热条件设定为520℃、50分钟,580℃、30分钟及640℃、30分钟的管材,用阿姆斯拉型万能试验机进行拉伸试验,测定了其强度即0.2%屈服强度。其结果如表12所示。
此外,在作为如上所述的外径10mm、壁厚1mm的管材得到的管材中,对管材No.104、No.111、No.210、No.212、No.215、No.217、No.301、No.402、No.406、No.408及比较例的管材No.501、No.503、No.512,进行了如下的耐蚀性确认试验。
首先,在按与上述钎焊用热处理相同的条件对上各管材实施热处理后,通过将上述热处理管材压扁到厚度为4mm,得到管材压扁试验片。然后,第一,对各管材压扁试验片,进行如下的应力腐蚀裂纹试验。即,将各管材压扁试验片在加入12%氨水的干燥器内的气相部暴露48小时,测定该管材压扁试验片的应力裂纹的长度。在管材压扁试验片的最扁平部分即曲率最小的部分,用显微镜观察、测定在其纵截面的外面侧的裂纹长度和内面侧的裂纹长度,将外面侧裂纹长度的最大值和内面侧裂纹长度的最大值的之和作为应力腐蚀裂纹长度(mm)。此外,第二,调整各管材压扁试验片,使其表面积达到100cm2后,将各管材压扁试验片分别在加温到75℃的1%硫酸的溶液1L及1%盐酸的溶液1L中浸渍48小时,测定浸渍前后的各管材压扁试验片的重量差即溶解造成的减量(mg)。其结果如表13所示。
从表5~表7及表9~表12可以看出,在对加热材实施第1~第3后处理时,与在只实施钎焊用热处理时相比,能够显著提高导热率,由此确认,通过实施第1~第3后处理,能够谋求导热性的飞跃般的提高。此外,在实施第2后处理时及实施第3后处理时,导热性的提高程度大体相同,在进行再加热处理时,加热处理管材的冷却速度不影响导热性的提高,确认导热性的提高依赖于再加热条件。特别是对于实施第3后处理的管材,从表12可以看出,不仅提高导热性,而且还提高强度(0.2%屈服强度),确认在进行再加热处理时,进行冷却速度快的急速冷却能有效提高强度。
此外,从表13可以看出,发明合金材料No.104、No.111、No.210、No.212、No.215、No.217、No.301、No.402、No.406、No.408与比较例合金材料No.501、No.503、No.512相比,应力腐蚀裂纹长度极短,此外,在1%硫酸及1%盐酸的任何一种溶液中浸渍时,溶解造成的减量也小。从此点可以看出,本发明的合金材料能够有效防止、抑制晶粒粗大化造成的应力腐蚀裂纹、孔腐蚀、蚁巢状腐蚀等腐蚀,具有优良的耐蚀性。
表1
合金材No.     合金组成(mass%)   A1   A2   A3
  Co   P   Sn   Zn   Ni   Fe   Mn   Mg   Zr   Y
实施例 第1发明合金材   101  0.22 0.059  0.13  0.21  3.39  0.39   -
  102  0.15 0.049  0.05  0.03  2.65  0.22   -
  103  0.21 0.066  0.23  0.25  2.88  0.48   -
  104  0.24 0.069  0.07  0.08  3.19  0.35   -
  105  0.18 0.042  0.06  0.08  3.81  0.26   -
  106  0.20 0.057  0.10  0.11  3.16  0.33   -
  107  0.19 0.055  0.08  0.08  3.09  0.30   -
  108  0.22 0.060  0.05  0.03  3.33  0.30   -
  109  0.17 0.048  0.15  0.12  3.13  0.34   -
  110  0.29 0.070  0.11  0.25  3.86  0.45   -
  111  0.28 0.064  0.04  0.05  4.06  0.35   -
  112  0.22 0.082  0.07  0.21  2.44  0.35   -
  113  0.24 0.043  0.12  0.14  5.12  0.38   -
  114  0.31 0.075  0.14  0.31  3.87  0.50   -
A1=([Co]+0.8[Ni]+0.8[Fe]-0.02)/[P]A2=[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+0.9[Ni]+1.5[Fe]+[Mn]+[Mg]+[Y]+3[Zr]A3=[Co]+0.8[Ni]+0.8[Fe]
表2
合金材No.     合金组成(mass%)   A1   A2   A3
  Co   P   Sn   Zn   Ni   Fe   Mn   Mg   Zr   Y
实施例 第2发明合金材     201   0.12   0.048   0.05   0.14   0.04   2.75   0.24   0.15
    202   0.24   0.070   0.09   0.08   0.02   3.37   0.38   0.26
    203   0.16   0.056   0.02   0.17   0.03   2.93   0.25   0.18
    204   0.15   0.047   0.23   0.13   0.12   4.81   0.50   0.25
    205   0.21   0.064   0.12   0.11   0.04   3.47   0.40   0.24
    206   0.19   0.060   0.09   0.07   0.03   3.23   0.34   0.21
    207   0.17   0.056   0.07   0.05   0.03   3.11   0.29   0.19
    208   0.16   0.068   0.07   0.25   0.12   3.47   0.39   0.26
    209   0.18   0.071   0.18   0.29   0.08   3.15   0.48   0.24
    210   0.25   0.072   0.08   0.06   0.10   4.31   0.45   0.33
    211   0.24   0.074   0.16   0.15   0.10   4.05   0.53   0.32
    212   0.20   0.066   0.07   0.03   0.07   3.58   0.36   0.26
    213   0.21   0.065   0.08   0.11   0.04   3.42   0.39   0.24
    214   0.19   0.075   0.04   0.30   0.09   3.23   0.43   0.26
    215   0.22   0.074   0.05   0.05   0.13   4.11   0.50   0.32
    216   0.21   0.070   0.10   0.08   0.06   0.03   3.74   0.44   0.28
    217   0.17   0.066   0.08   0.14   0.02   0.09   3.61   0.44   0.26
  A1=([Co]+0.8[Ni]+0.8[Fe]-0.02)/[P]A2=[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+0.9[Ni]+1.5[Fe]+[Mn]+[Mg]+[Y]+3[Zr]A3=[Co]+0.8[Ni]+0.8[Fe]
表3
合金材No.     合金组成(mass%)   A1   A2   A3
  Co   P   Sn   Zn   Ni   Fe   Mn   Mg   Zr   Y
实施例 第3发明合金材   301   0.27   0.068   0.06   0.08   0.06   3.68   0.40   0.27
  302   0.20   0.058   0.08   0.06   0.005   3.10   0.31   0.20
  303   0.18   0.050   0.12   0.10   0.004   3.20   0.33   0.18
  304   0.23   0.066   0.07   0.06   0.013   3.18   0.35   0.23
  第4发明合金材   401   0.22   0.070   0.05   0.13   0.05   0.11   3.43   0.41   0.26
  402   0.20   0.068   0.06   0.15   0.05   0.05   3.24   0.40   0.24
  403   0.19   0.072   0.12   0.15   0.04   0.04   0.02   3.25   0.46   0.25
  404   0.20   0.070   0.15   0.30   0.06   0.002   3.26   0.46   0.25
  405   0.18   0.073   0.05   0.22   0.07   0.009   2.96   0.40   0.24
  406   0.16   0.073   0.09   0.08   0.03   0.07   0.046   3.01   0.46   0.24
  407   0.17   0.065   0.11   0.10   0.10   0.007   3.54   0.42   0.25
  408   0.20   0.065   0.08   0.15   0.05   0.016   3.38   0.43   0.24
  409   0.18   0.071   0.12   0.03   0.07   0.02   0.001   3.27   0.42   0.25
  410   0.19   0.058   0.06   0.13   0.02   0.044   3.21   0.35   0.21
  411   0.24   0.075   0.08   0.21  0.03   0.005   3.25   0.40   0.26
  412   0.16   0.063   0.10   0.16   0.01   0.07   0.002   3.24   0.41   0.22
  A1=([Co]+0.8[Ni]+0.8[Fe]-0.02)/[P]A2=[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+0.9[Ni]+1.5[Fe]+[Mn]+[Mg]+[Y]+3[Zr]A3=[Co]+0.8[Ni]+0.8[Fe]
表4
合金材No.     合金组成(mass%)   A1   A2   A3
   Co   P   Sn   Zn   Ni   Fe   Mn   Mg   Zr   Y
比较例     501  0.031   -  0.02   -
    502  0.052   -  0.03   -
    503     0.16  0.043   3.26  0.18   -
    504     0.38  0.079  0.11  0.09   4.56  0.53   -
    505     0.22  0.062  0.29  0.23   3.23  0.54   -
    506     0.32  0.077  0.24  0.16   3.90  0.59   -
    507     0.29  0.078  0.16  0.26   0.10   4.49  0.59   0.37
    508     0.24  0.070  0.25  0.75   3.14  0.58
    509     0.23  0.078  0.20  0.08   0.15   4.23  0.59   0.35
    510     0.25  0.041  0.10  0.08   5.61  0.37   -
    511     0.16  0.087  0.11  0.14   1.61  0.32   -
    512     0.12  0.045  0.08  0.12   0.13   4.53  0.34   0.22
    513     0.12  0.044  0.12  0.14   0.02   2.64  0.28   0.14
    514     0.28  0.079  0.15  0.21   0.13   4.61  0.59   0.38
    515     0.36  0.080  0.13  0.03   4.25  0.52   -
A1=([Co]+0.8[Ni]+0.8[Fe]-0.02)/[P]A2=[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+0.9[Ni]+1.5[Fe]+[Mn]+[Mg]+[Y]+3[Zr]A3=[Co]+0.8[Ni]+0.8[Fe]
表5
  合金材No.   0.2%屈服强度(N/mm2) 挤压性 弯曲加工性     成型性     热处理后的导热率(cal/cm·sec·℃)
    杯突值(mm)   钎焊用热处理 第1后处理 第2后处理 第3后处理
实施例 第1发明合金材     101     107     ○     ○     12.1     0.69     0.72     0.73     0.73
    102     59     ○     ○     12.3     0.69     0.72     0.72     0.73
    103     112     △     △     11.6     0.67     0.69     0.69     0.69
    104     110     ○     ○     12.1     0.71     0.74     0.74     0.73
    105     61     ○     ○     12.3     0.71     0.74     0.75     0.74
    106     101     ○     ○     12.1     0.71     0.73     0.74     0.73
    107     91     ○     ○     12.2     0.72     0.75     0.76     0.75
    108     96     ○     ○     12.2     0.72     0.75     0.75     0.74
    109     90     ○     ○     12.0     0.70     0.72     0.73     0.73
    110     118     ○     △     11.8     0.68     0.71     0.72     0.71
    111     110     ○     ○     12.2     0.69     0.73     0.73     0.72
    112     94     ○     ○     12.0     0.66     0.70     0.71     0.70
    113     69     ○     ○     11.9     0.66     0.69     0.71     0.70
    114     123     △     △     11.5     0.67     0.70     0.70     0.70
表6
合金材No.   0.2%屈服强度(N/mm2) 挤压性 弯曲加工性     成型性     热处理后的导热率(cal/cm·sec·℃)
    杯突值(mm) 钎焊用热处理 第1后处理 第2后处理 第3后处理
实施例 第2发明合金材     201     57     ○     ○     12.3     0.70     0.73     0.75     0.74
    202     110     ○     ○     12.2     0.70     0.73     0.74     0.74
    203     72     ○     ○     12.3     0.71     0.74     0.76     0.75
    204     74     △     △     11.6     0.65     0.68     0.68     0.68
    205     105     ○     ○     12.0     0.69     0.71     0.72     0.72
    206     94     ○     ○     12.2     0.70     0.73     0.73     0.73
    207     82     ○     ○     12.2     0.70     0.73     0.74     0.73
    208     96     ○     ○     12.0     0.69     0.72     0.73     0.73
    209     105     ○     △     11.7     0.67     0.70     0.70     0.70
    210     113     ○     △     11.6     0.67     0.71     0.71     0.71
    211     115     △     △     11.5     0.65     0.68     0.68     0.67
    212     101     ○     ○     12.2     0.70     0.73     0.74     0.74
    213     100     ○     ○     12.1     0.69     0.72     0.72     0.72
    214     102     ○     ○     12.0     0.68     0.72     0.72     0.72
    215     111     △     △     11.7     0.65     0.69     0.70     0.70
    216     104     ○     ○     12.0     0.68     0.70     0.71     0.70
    217     99     ○     ○     11.9     0.68     0.71     0.71     0.71
表7
合金材No.   0.2%屈服强度(N/mm2) 挤压性 弯曲加工性     成型性     热处理后的导热率(cal/cm·sec·℃)
    杯突值(mm)   钎焊用热处理 第1后处理 第2后处理 第3后处理
实施例 第3发明合金材     301     109     ○     ○     12.0     0.66     0.69     0.70     0.70
    302     94     ○     ○     12.2     0.70     0.73     0.73     0.72
    303     90     ○     ○     12.1     0.69     0.71     0.72     0.72
    304     100     ○     ○     12.1     0.70     0.73     0.73     0.73
第4发明发明材     401     105     ○     ○     12.1     0.67     0.70     0.71     0.71
    402     98     ○     ○     12.0     0.68     0.71     0.72     0.72
    403     102     ○     ○     12.0     0.68     0.70     0.71     0.70
    404     104     ○     ○     12.0     0.67     0.69     0.69     0.68
    405     100     ○     ○     12.1     0.69     0.72     0.72     0.72
    406     95     ○     ○     12.0     0.67     0.70     0.71     0.71
    407     98     ○     ○     12.0     0.68     0.71     0.70     0.70
    408     102     ○     ○     12.0     0.68     0.72     0.71     0.71
    409     106     ○     ○     12.0     0.67     0.70     0.71     0.71
    410     85     ○     ○     12.2     0.68     0.71     0.72     0.71
    411     111     ○     ○     12.1     0.69     0.72     0.72     0.72
    412     97     ○     ○     12.0     0.68     0.70     0.71     0.70
表8
合金材No.   0.2%屈服强度(N/mm2) 挤压性 弯曲加工性     成型性 钎焊用热处理后的导热率(cal/cm·sec·℃)
    杯突值(mm)
比较例     501     25     ○     ○     12.3     0.78
    502     29     ○     ○     12.1     0.64
    503     43     ○     ○     12.2     0.73
    504     -     ×     -     -     -
    505     -     ×     -     -     -
    506     -     ×     -     -     -
    507     -     ×     -     -     -
    508     -     ×     -     -     -
    509     -     ×     -     -     -
    510     49     ○     △     11.8     0.62
    511     52     ○     ×     11.5     0.59
    512     48     ○     ○     12.0     0.62
    513     43     ○     ○     12.3     0.67
    514     -     ×     -     -     -
    515     119     △     ×     11.3     0.62
表9
实施例 合金材No.     热处理后的导热率(cal/cm·sec·℃)
钎焊用热处理     第1后处理(炉内冷却速度)
 1.8℃/分  2.5℃/分  4℃/分  6℃/分  10℃/分  12℃/分
    104     0.71     0.74     0.74     0.74     0.74     0.73     0.72
    111     0.69     0.74     0.74     0.73     0.73     0.72     0.71
    210     0.67     0.72     0.72     0.71     0.71     0.71     0.69
    212     0.70     0.74     0.74     0.73     0.72     0.72     0.71
    215     0.65     0.70     0.70     0.69     0.69     0.68     0.67
    217     0.68     0.72     0.72     0.71     0.71     0.70     0.69
    301     0.66     0.71     0.71     0.69     0.69     0.68     0.67
    402     0.68     0.72     0.71     0.71     0.70     0.70     0.69
    406     0.67     0.71     0.71     0.70     0.70     0.69     0.69
    408     0.68     0.74     0.73     0.72     0.71     0.70     0.69
表10
实施例   合金材No.     进行第2后处理后的导热率(cal/cm·sec·℃)
    第2后处理的再加热条件
480℃×100分 520℃×50分 580℃×10分 580℃×30分 580℃×50分 640℃×30分 640℃×10分 670℃×3分
    104     0.72     0.74     0.73     0.74     0.75     0.73     0.73     0.72
    111     0.71     0.72     0.72     0.73     0.74     0.73     0.72     0.71
    210     0.69     0.71     0.70     0.71     0.72     0.71     0.71     0.69
    212     0.72     0.73     0.72     0.74     0.74     0.73     0.72     0.72
    215     0.68     0.70     0.68     0.70     0.72     0.71     0.69     0.67
    217     0.69     0.71     0.70     0.71     0.72     0.71     0.70     0.69
    301     0.68     0.69     0.69     0.70     0.71     0.70     0.69     0.68
    402     0.70     0.71     0.70     0.72     0.72     0.72     0.71     0.70
    406     0.69     0.70     0.70     0.71     0.71     0.71     0.70     0.69
    408     0.70     0.72     0.70     0.71     0.73     0.71     0.71     0.69
表11
实施例 合金材No.     进行第3后处理后的导热率(cal/cm·sec·℃)
    第3后处理的再加热条件
480℃×100分 520℃×50分 580℃×10分 580℃×30分 580℃×50分 640℃×30分 640℃×10分 670℃×3分
    104     0.72     0.72     0.69     0.73     0.76     0.74     0.71     0.70
    111     0.72     0.71     0.69     0.72     0.75     0.73     0.70     0.69
    210     0.69     0.70     0.68     0.71     0.73     0.72     0.71     0.68
    212     0.70     0.72     0.70     0.74     0.75     0.73     0.70     0.68
    215     0.67     0.70     0.66     0.70     0.73     0.71     0.68     0.66
    217     0.69     0.71     0.70     0.71     0.73     0.70     0.70     0.67
    301     0.67     0.69     0.67     0.70     0.72     0.71     0.68     0.66
    402     0.70     0.71     0.70     0.72     0.73     0.72     0.70     0.67
    406     0.68     0.70     0.68     0.71     0.72     0.71     0.69     0.66
    408     0.69     0.71     0.69     0.71     0.73     0.71     0.70     0.67
表12
实施例 合金材No.     0.2%屈服强度(N/mm2)
    第2后处理(再加热条件)     第3后处理(再加热条件)
520℃×50分 580℃×30分 640℃×30分 520℃×50分 580℃×30分 640℃×30分
    104     114     118     112     116     122     115
    111     116     119     113     121     123     117
    210     117     123     114     119     126     115
    212     103     106     101     107     110     106
215     116     115     112     120     121     115
    217     103     104     100     106     106     103
    301     115     117     112     121     123     119
    402     104     103     100     107     109     103
    406     97     99     96     104     104     101
    408     107     108     103     110     110     105
表13
实施例  合金材No. 应力腐蚀裂纹长度(mm) 溶解造成的减量(mg)
  1%硫酸   1%盐酸
    104     0.01     6.4     27
    111     0.01     6.6     27
    210     0.02     6.9     25
    212     0.01     6.5     26
    215     0.02     6.8     30
    217     0.03     7.3     28
    301     0.02     7.2     29
    402     0.03     7.5     32
    406     0.03     7.1     34
    408     0.03     7.2     33
比较例     501     0.45     10.5     48
    503     0.23     9.3     40
    512     0.20     8.6     38
本发明的耐热性铜合金材料在加热到高温(600℃~700℃)时,由于加热不使晶粒粗大化,加热后也不降低屈服强度及铜合金本来的特性(导热性等),对于晶粒粗大化引起的以应力腐蚀裂纹、孔腐蚀、蚁巢状腐蚀为首的腐蚀,也能够有效防止、抑制。因此,如果采用本发明的耐热铜合金材料,能够提供传热管等制品,其与一般的磷脱氧铜制的制品、部件相比,在制作时或使用时,能够大幅度提高在600℃~700℃以上的高温下暴露(例如,通过钎焊被加热到800℃左右)的热交换器的传热管、散热片、翼缘或钢板等各种制品、部件的耐久性或耐用寿命,即使在产生应力腐蚀裂纹、孔腐蚀、蚁巢状腐蚀等腐蚀的条件下,也能够充分发挥耐蚀性。特别是管材,能够适合用作使用HCFC系氟利昂以外的热介质气体的热交换器的传热管的构成材,与使用众所周知的耐热铜合金材料时相比,能够期待扩大使用范围。此外,对于板材,能够适合用作在供热水器、空调器等的传热管上设置的散热片等的构成材,解决众所周知的在使用耐热铜合金材料时产生的问题(例如,在清扫等时,轻微的外力就变形散热片,严重损失热交换器的热效率),能够大幅度提高板状制品、部件的功能及耐久性。如此,如果采用本发明,能够提供一种耐热铜合金材料,其特别适合用作构成装备在瞬间沸水器、供热水器、温水器、空调机、制冷机、散热器等的热交换器及热水系统、空调系统、制冷系统等中的热交换器的传热管及配管(供水管、供热水管、气体配管)以及构成其他各种装置(电、化学装置等)的配管或其附属部件、设备(冷暖切换用四通阀等)等的所用的管材、板材、棒材、线材、加工材(利用钎焊、焊接、切削、挤压等加工成规定的形状)。

Claims (13)

1.一种耐热铜合金材料,其特征在于:是形成以在Co含量[Co]mass%、P含量[P]mass%、Sn含量[Sn]mass%和Zn含量[Zn]mass%之间具有2.4≤([Co]-0.02)/[P]≤5.2及0.20≤[Co]+0.5[P]+0.9[Sn]+0.1[Zn]≤0.54的关系地含有0.15~0.33mass%Co、0.041~0.089mass%P、0.02~0.25mass%Sn、0.01~0.40mass%Zn,且其余由Cu及不可避免的杂质构成的合金组成的管材、板材、棒材、线材或将上述材料加工成规定形状的加工材料。
2.一种耐热铜合金材料,其特征在于:是形成以在Co含量[Co]mass%、P含量[P]mass%、Sn含量[Sn]mass%、Zn含量[Zn]mass%、Ni含量[Ni]mass%和Fe含量[Fe]mass%之间具有2.4≤([Co]+0.8[Ni]+0.8[Fe]-0.02)/[P]≤5.2、0.20≤[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+0.9[Ni]+1.5[Fe]≤0.54、0.15≤[Co]+0.8[Ni]+0.8[Fe]≤0.35、1.2[Ni]<[Co]、1.5[Fe]<[Co]及[Ni]+[Fe]<[Co]的关系地含有0.11~0.31mass%Co、0.041~0.089mass%P、0.02~0.25mass%Sn、0.01~0.40mass%Zn、0.01~0.17mass%Ni及/或0.01~0.15mass%Fe,且其余由Cu及不可避免的杂质构成的合金组成的管材、板材、棒材、线材或将上述材料加工成规定形状的加工材料。
3.如权利要求1记载的耐热铜合金材料,其特征在于:形成以在Mn含量[Mn]mass%、Mg含量[Mg]mass%、Y含量[Y]mass%或Zr含量[Zr]mass%和上述添加元素的含量之间,具有0.20≤[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+0.9[Ni]+1.5[Fe]+[Mn]+[Mg]+[Y]+3[Zr]≤0.54的关系地进一步含有0.01~0.20mass%Mn或0.001~0.10mass%Mg、Zr或Y的合金组成。
4.如权利要求2记载的耐热铜合金材料,其特征在于:形成以在Mn含量[Mn]mass%、Mg含量[Mg]mass%、Y含量[Y]mass%或Zr含量[Zr]mass%和上述添加元素的含量之间,具有0.20≤[Co]+0.5[P]+0.9[Sn]+0.1[Zn]+0.9[Ni]+1.5[Fe]+[Mn]+[Mg]+[Y]+3[Zr]≤0.54的关系地进一步含有0.01~0.20mass%Mn或0.001~0.10mass%Mg、Zr或Y的合金组成。
5.如权利要求1~4中任一项记载的耐热铜合金材料,其特征在于:作为不可避免的杂质的氧含量在0.0070mass%以下。
6.如权利要求1~4中任一项记载的耐热铜合金材料,其特征在于:在钎焊处理或与之同等条件的加热处理后的0.2%屈服强度在55N/mm2以上。
7.如权利要求1~4中任一项记载的耐热铜合金材料,其特征在于:是通过在钎焊处理或与之同等条件的加热处理后,进行炉内冷却,在该炉内冷却工序,通过以1.5~12℃/分钟减速从670℃到480℃的冷却速度,提高导热率的耐热铜合金材料。
8.如权利要求1~4中任一项记载的耐热铜合金材料,其特征在于:是通过在钎焊处理或与之同等条件的加热处理后,进行炉内冷却,在该炉内冷却工序结束之前或之后,通过实施按480℃~670℃、3~100分钟的条件加热的再加热处理,提高导热率的耐热铜合金材料。
9.如权利要求1~4中任一项记载的耐热铜合金材料,其特征在于:是通过在钎焊处理或与之同等条件的加热处理后,进行急速冷却,在该急速冷却工序结束之后,通过实施按480℃~670℃、3~100分钟的条件加热的再加热处理,提高导热率及强度的耐热铜合金材料。
10.如权利要求1~4中任一项记载的耐热铜合金材料,其特征在于:是钎焊的管材、板材、棒材、线材或将上述材料加工成规定形状的加工材料。
11.如权利要求10记载的耐热铜合金材料,其特征在于:是可用作热交换器传热管或其配管的无缝铜合金管或焊接铜合金管。
12.如权利要求10记载的耐热铜合金材料,其特征在于:是构成使用HCFC系氟利昂以外的热介质气体的热交换器传热管或其配管的无缝铜合金管或焊接铜管。
13.如权利要求10记载的耐热铜合金材料,其特征在于:是作为热交换器中的板状部件或将其与传热管或其他板状部件连结的连结板的构成材料使用的板材。
CNB038005328A 2003-03-03 2003-09-19 耐热铜合金 Expired - Lifetime CN1296500C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003055846 2003-03-03
JP055846/2003 2003-03-03

Publications (2)

Publication Number Publication Date
CN1568375A true CN1568375A (zh) 2005-01-19
CN1296500C CN1296500C (zh) 2007-01-24

Family

ID=32958673

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038005328A Expired - Lifetime CN1296500C (zh) 2003-03-03 2003-09-19 耐热铜合金

Country Status (10)

Country Link
US (2) US7608157B2 (zh)
EP (1) EP1630240B1 (zh)
JP (1) JP3878640B2 (zh)
KR (1) KR100576141B1 (zh)
CN (1) CN1296500C (zh)
AT (1) ATE414182T1 (zh)
AU (1) AU2003264537A1 (zh)
DE (1) DE60324711D1 (zh)
TW (1) TWI254745B (zh)
WO (1) WO2004079026A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932741A (zh) * 2008-02-26 2010-12-29 三菱伸铜株式会社 高强度高导电铜棒线材
CN101960028B (zh) * 2008-03-28 2013-03-13 三菱伸铜株式会社 高强度高导电铜合金管/棒/线材
CN102165080B (zh) * 2009-01-09 2013-08-21 三菱伸铜株式会社 高强度高导电铜合金轧制板及其制造方法
CN103789570A (zh) * 2012-10-29 2014-05-14 宁波金田铜业(集团)股份有限公司 高强耐热微合金化铜管及其制备方法
CN104278170A (zh) * 2013-07-01 2015-01-14 株式会社科倍可菱材料 热交换器用磷脱氧铜管
CN104279910A (zh) * 2013-07-11 2015-01-14 上海林内有限公司 用于热交换器的管接头
CN105229181A (zh) * 2013-05-24 2016-01-06 三菱综合材料株式会社 铜合金线
CN105438080A (zh) * 2015-12-08 2016-03-30 靖江市新程汽车零部件有限公司 汽车车身用补强板及其加工方法
CN113396329A (zh) * 2019-01-29 2021-09-14 大金工业株式会社 制冷剂配管的检查方法以及制冷剂配管

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296500C (zh) 2003-03-03 2007-01-24 三宝伸铜工业株式会社 耐热铜合金
DE102006013384B4 (de) * 2006-03-23 2009-10-22 Wieland-Werke Ag Verwendung eines Wärmeaustauscherrohrs
US20100008817A1 (en) * 2006-10-04 2010-01-14 Tetsuya Ando Copper alloy for seamless pipes
JP2008151422A (ja) * 2006-12-18 2008-07-03 Daikin Ind Ltd 熱交換器
JP4818179B2 (ja) * 2007-03-29 2011-11-16 株式会社コベルコ マテリアル銅管 銅合金管
JP5111922B2 (ja) * 2007-03-30 2013-01-09 株式会社コベルコ マテリアル銅管 熱交換器用銅合金管
WO2009081664A1 (ja) * 2007-12-21 2009-07-02 Mitsubishi Shindoh Co., Ltd. 高強度・高熱伝導銅合金管及びその製造方法
EP2340318B1 (de) * 2008-10-31 2017-02-15 Sundwiger Messingwerk GmbH & Co. KG Kupfer-zinn-legierung, verbundwerkstoff und verwendung
US10311991B2 (en) 2009-01-09 2019-06-04 Mitsubishi Shindoh Co., Ltd. High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same
JP5380117B2 (ja) * 2009-03-11 2014-01-08 三菱伸銅株式会社 電線導体の製造方法、電線導体、絶縁電線及びワイヤーハーネス
US20110123643A1 (en) * 2009-11-24 2011-05-26 Biersteker Robert A Copper alloy enclosures
MX2012006044A (es) * 2009-11-25 2012-09-28 Luvata Espoo Oy Aleaciones de cobre y tubos de intercambio de calor.
KR101317566B1 (ko) * 2010-11-02 2013-10-11 미쓰비시 신도 가부시키가이샤 동합금 열간단조품 및 동합금 열간단조품의 제조 방법
JP2012112562A (ja) * 2010-11-23 2012-06-14 Mitsubishi Electric Corp ドロンカップ型熱交換器
US8211250B1 (en) 2011-08-26 2012-07-03 Brasscraft Manufacturing Company Method of processing a bismuth brass article
US8465003B2 (en) 2011-08-26 2013-06-18 Brasscraft Manufacturing Company Plumbing fixture made of bismuth brass alloy
EP2881476A4 (en) * 2012-07-31 2016-07-06 Mitsubishi Materials Corp COPPER ALLOY WIRE AND COPPER ALLOY WAXING PROCESSING
IN2015DN00537A (zh) * 2012-07-31 2015-06-26 Mitsubishi Cable Ind Ltd
EP2881475A4 (en) * 2012-07-31 2016-07-06 Mitsubishi Materials Corp COPPER ALLOY WIRE AND METHOD FOR MANUFACTURING COPPER ALLOY WIRE
JP5792696B2 (ja) * 2012-08-28 2015-10-14 株式会社神戸製鋼所 高強度銅合金管
FR2995383B1 (fr) 2012-09-12 2015-04-10 Kme France Sas Alliages de cuivre pour echangeurs de chaleur
JP6034727B2 (ja) * 2013-03-08 2016-11-30 株式会社神戸製鋼所 高強度銅合金管
JP6202131B1 (ja) * 2016-04-12 2017-09-27 三菱マテリアル株式会社 銅合金製バッキングチューブ及び銅合金製バッキングチューブの製造方法
JP6446010B2 (ja) * 2016-09-29 2018-12-26 株式会社神戸製鋼所 放熱部品用銅合金板

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2074713A (en) * 1935-10-19 1937-03-23 United Eng Foundry Co Means and method of making wire and the like
US4016010A (en) * 1976-02-06 1977-04-05 Olin Corporation Preparation of high strength copper base alloy
GB1562870A (en) * 1977-03-09 1980-03-19 Louyot Comptoir Lyon Alemand Copper alloys
US4260432A (en) * 1979-01-10 1981-04-07 Bell Telephone Laboratories, Incorporated Method for producing copper based spinodal alloys
US4388270A (en) * 1982-09-16 1983-06-14 Handy & Harman Rhenium-bearing copper-nickel-tin alloys
JPS60245754A (ja) 1984-05-22 1985-12-05 Nippon Mining Co Ltd 高力高導電銅合金
JPS60245753A (ja) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd 高力高導電銅合金
CN85108316B (zh) * 1985-11-07 1987-09-09 西北大学 半导体致冷器焊料
JPH0653901B2 (ja) 1986-09-08 1994-07-20 古河電気工業株式会社 電子電気機器用銅合金
JPH01108332A (ja) * 1987-10-20 1989-04-25 Kobe Steel Ltd 熱交換器用銅合金
JPH0798980B2 (ja) 1987-10-21 1995-10-25 株式会社ジャパンエナジー 蒸留精製方法
US5004498A (en) * 1988-10-13 1991-04-02 Kabushiki Kaisha Toshiba Dispersion strengthened copper alloy and a method of manufacturing the same
JP2895549B2 (ja) * 1990-02-01 1999-05-24 株式会社神戸製鋼所 半田密着性に優れる電子部品用材料
US5322575A (en) * 1991-01-17 1994-06-21 Dowa Mining Co., Ltd. Process for production of copper base alloys and terminals using the same
JPH0765131B2 (ja) 1991-02-25 1995-07-12 株式会社神戸製鋼所 硬ろう付け性が優れた熱交換器用耐熱銅合金
JPH0694390A (ja) * 1992-09-10 1994-04-05 Kobe Steel Ltd 熱交換器伝熱管用銅合金管及びその製造方法
JP3302840B2 (ja) 1994-10-20 2002-07-15 矢崎総業株式会社 伸び特性及び屈曲特性に優れた導電用高力銅合金、及びその製造方法
JP3550233B2 (ja) * 1995-10-09 2004-08-04 同和鉱業株式会社 高強度高導電性銅基合金の製造法
JP3896422B2 (ja) 1996-10-08 2007-03-22 Dowaメタルテック株式会社 バッキングプレート用銅合金およびその製造方法
JP3347001B2 (ja) * 1996-10-31 2002-11-20 三宝伸銅工業株式会社 耐熱性銅基合金
US6254702B1 (en) 1997-02-18 2001-07-03 Dowa Mining Co., Ltd. Copper base alloys and terminals using the same
US20010001400A1 (en) * 1997-04-18 2001-05-24 Dennis R. Brauer Et Al Grain refined tin brass
JPH1197609A (ja) * 1997-09-17 1999-04-09 Dowa Mining Co Ltd 酸化膜密着性に優れたリードフレーム用銅合金及びその製造方法
JP3957391B2 (ja) 1998-03-06 2007-08-15 株式会社神戸製鋼所 剪断加工性に優れる高強度、高導電性銅合金
JP2001214226A (ja) 2000-01-28 2001-08-07 Sumitomo Metal Mining Co Ltd 端子用銅基合金、該合金条および該合金条の製造方法
JP4228166B2 (ja) 2000-04-28 2009-02-25 三菱マテリアル株式会社 疲労強度の優れた継目無銅合金管
JP3794971B2 (ja) 2002-03-18 2006-07-12 株式会社コベルコ マテリアル銅管 熱交換器用銅合金管
JP3903899B2 (ja) 2002-10-17 2007-04-11 日立電線株式会社 電車線用銅合金導体の製造方法及び電車線用銅合金導体
CN1296500C (zh) 2003-03-03 2007-01-24 三宝伸铜工业株式会社 耐热铜合金
JP2004292917A (ja) 2003-03-27 2004-10-21 Kobe Steel Ltd 熱交換器用銅合金平滑管の製造方法及び熱交換器用銅合金内面溝付管の製造方法
CN1546701A (zh) 2003-12-03 2004-11-17 海亮集团浙江铜加工研究所有限公司 一种耐蚀锡黄铜合金
US7491891B2 (en) 2004-05-19 2009-02-17 Sumitomo (Sei) Steel Wire Corp. Composite wire for wire-harness and process for producing the same
JP4660735B2 (ja) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 銅基合金板材の製造方法
CN1333094C (zh) 2005-05-26 2007-08-22 宁波博威集团有限公司 环保健康新型无铅易切削耐蚀低硼钙黄铜合金
CN101180412B (zh) 2005-07-07 2010-05-19 株式会社神户制钢所 具备高强度和优异的弯曲加工性的铜合金及铜合金板的制造方法
JP4655834B2 (ja) * 2005-09-02 2011-03-23 日立電線株式会社 電気部品用銅合金材とその製造方法
JP4951517B2 (ja) * 2005-09-30 2012-06-13 三菱伸銅株式会社 溶融固化処理物並びに溶融固化処理用銅合金材及びその製造方法
JP5355865B2 (ja) 2006-06-01 2013-11-27 古河電気工業株式会社 銅合金線材の製造方法および銅合金線材
US20100008817A1 (en) * 2006-10-04 2010-01-14 Tetsuya Ando Copper alloy for seamless pipes
JP4357536B2 (ja) * 2007-02-16 2009-11-04 株式会社神戸製鋼所 強度と成形性に優れる電気電子部品用銅合金板
EP2210687B1 (en) * 2007-10-16 2015-08-12 Mitsubishi Materials Corporation Method of producing a copper alloy wire
WO2009081664A1 (ja) * 2007-12-21 2009-07-02 Mitsubishi Shindoh Co., Ltd. 高強度・高熱伝導銅合金管及びその製造方法
KR101291002B1 (ko) 2008-02-26 2013-07-30 미츠비시 마테리알 가부시키가이샤 고강도 고도전 구리봉 선재
US7928541B2 (en) * 2008-03-07 2011-04-19 Kobe Steel, Ltd. Copper alloy sheet and QFN package
JP5051927B2 (ja) 2008-03-28 2012-10-17 三菱伸銅株式会社 高強度高導電銅合金管・棒・線材
JP4913902B2 (ja) 2008-08-05 2012-04-11 古河電気工業株式会社 電気・電子部品用銅合金材料の製造方法
US10311991B2 (en) 2009-01-09 2019-06-04 Mitsubishi Shindoh Co., Ltd. High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same
CN102165080B (zh) 2009-01-09 2013-08-21 三菱伸铜株式会社 高强度高导电铜合金轧制板及其制造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932741A (zh) * 2008-02-26 2010-12-29 三菱伸铜株式会社 高强度高导电铜棒线材
CN101932741B (zh) * 2008-02-26 2012-10-24 三菱伸铜株式会社 高强度高导电铜棒线材
CN101960028B (zh) * 2008-03-28 2013-03-13 三菱伸铜株式会社 高强度高导电铜合金管/棒/线材
CN102165080B (zh) * 2009-01-09 2013-08-21 三菱伸铜株式会社 高强度高导电铜合金轧制板及其制造方法
CN103789570A (zh) * 2012-10-29 2014-05-14 宁波金田铜业(集团)股份有限公司 高强耐热微合金化铜管及其制备方法
CN105229181A (zh) * 2013-05-24 2016-01-06 三菱综合材料株式会社 铜合金线
US10584400B2 (en) 2013-05-24 2020-03-10 Mitsubishi Materials Corporation Copper alloy wire
CN104278170A (zh) * 2013-07-01 2015-01-14 株式会社科倍可菱材料 热交换器用磷脱氧铜管
CN104279910A (zh) * 2013-07-11 2015-01-14 上海林内有限公司 用于热交换器的管接头
CN105438080A (zh) * 2015-12-08 2016-03-30 靖江市新程汽车零部件有限公司 汽车车身用补强板及其加工方法
CN113396329A (zh) * 2019-01-29 2021-09-14 大金工业株式会社 制冷剂配管的检查方法以及制冷剂配管
CN113396329B (zh) * 2019-01-29 2024-02-27 大金工业株式会社 制冷剂配管的检查方法以及制冷剂配管

Also Published As

Publication number Publication date
WO2004079026A1 (ja) 2004-09-16
US20090320964A1 (en) 2009-12-31
EP1630240B1 (en) 2008-11-12
AU2003264537A1 (en) 2004-09-28
CN1296500C (zh) 2007-01-24
JPWO2004079026A1 (ja) 2006-06-08
EP1630240A4 (en) 2007-06-20
US7608157B2 (en) 2009-10-27
KR100576141B1 (ko) 2006-05-03
DE60324711D1 (zh) 2008-12-24
US10266917B2 (en) 2019-04-23
TWI254745B (en) 2006-05-11
EP1630240A1 (en) 2006-03-01
KR20040100838A (ko) 2004-12-02
TW200417616A (en) 2004-09-16
ATE414182T1 (de) 2008-11-15
US20060260721A1 (en) 2006-11-23
JP3878640B2 (ja) 2007-02-07

Similar Documents

Publication Publication Date Title
CN1296500C (zh) 耐热铜合金
US6627330B1 (en) Aluminum alloy brazing sheet for vacuum brazing exhibiting excellent corrosion resistance, and heat exchanger using the brazing sheet
JP6087982B2 (ja) 熱交換管用の銅合金
WO2009081664A1 (ja) 高強度・高熱伝導銅合金管及びその製造方法
JP2006045667A (ja) アルミニウム製熱交換管およびその製造方法
NO333523B1 (no) Aluminiumlegeringer med optimale kombinasjoner av formbarhet, korrosjonsbestandighet og varmebearbeidhet, og anvendelser av disse i varmeveksler
JP2010085065A (ja) フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
JP2010185646A (ja) フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
CN105779810A (zh) 铜合金以及换热器管
JP2011080121A (ja) フィンチューブ型エアコン熱交換器用押出チューブ及び熱交換サイクル用冷媒配管
JPH05263172A (ja) 熱交換器フィン材用アルミニウム合金
JP4484510B2 (ja) アルミニウム管の製造方法
CN114058898A (zh) 热导率和断裂强度优异的热交换器用铜合金管及其制法
JPH10158770A (ja) 耐食性に優れた熱交換器用ブレージングシートおよび該ブレージングシートを使用した熱交換器
CN103352139A (zh) 铜镍合金
US20060243360A1 (en) Aluminum pipe and process for producing same
JP2005089788A (ja) 耐食性に優れる熱交換器用アルミニウム合金配管材およびその製造方法
JP2004176178A (ja) アルミニウム管およびその製造方法
JP2010185647A (ja) フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ
JPH04154932A (ja) 自己耐食性および犠牲陽極効果にすぐれた熱交換器用アルミニウム合金フィン材
JP5360879B2 (ja) 押出性に優れた高強度熱交換器用アルミニウム合金押出チューブ
JPH04371369A (ja) アルミニウム合金製熱交換器
CN1735704A (zh) 铝管及其制造方法
CN1726298A (zh) 铝管及其制造方法
JPH0230742A (ja) ろう付用アルミニウム合金フィン材の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MITSUBISHI CORPORATION SHINDO

Free format text: FORMER OWNER: SAMBO COPPER INDUSTRY CO., LTD.

Effective date: 20080711

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20080711

Address after: Tokyo, Japan

Patentee after: MITSUBISHI SHINDOH Co.,Ltd.

Address before: Osaka

Patentee before: SANBO SHINDO KOGYO Kabushiki Kaisha

CX01 Expiry of patent term

Granted publication date: 20070124

CX01 Expiry of patent term