CN1309769A - 分析仪 - Google Patents

分析仪 Download PDF

Info

Publication number
CN1309769A
CN1309769A CN99808013A CN99808013A CN1309769A CN 1309769 A CN1309769 A CN 1309769A CN 99808013 A CN99808013 A CN 99808013A CN 99808013 A CN99808013 A CN 99808013A CN 1309769 A CN1309769 A CN 1309769A
Authority
CN
China
Prior art keywords
reagent
sample
chip
passage
analyser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99808013A
Other languages
English (en)
Inventor
下出浩治
木口昌
向山滋美
黑川洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Publication of CN1309769A publication Critical patent/CN1309769A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/056Laminated construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • G01N2021/1712Thermal lens, mirage effect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明披露了一种分析仪,其特征在于它包括一芯片和一检测器,其中所述芯片是一种有机聚合物部件,其具有精细的毛细管,通过所述毛细管,流体试样或流体试样和流体试剂流动,并且可以在毛细管中和试样进行化学反应,而不使用单独的称量装置,并且所述检测器是光热转换检测器,用于测量由试样和试剂的局部温度变化而引起的物理量的改变例如折射率的改变,其中对通过化学反应产生的要被测量的物质施加激发光,借以提供一种芯片报废处置极好的、能够廉价、简单和快速分析的并且适用于POC分析的体积小的分析仪。

Description

分析仪
技术领域
本发明涉及一种用于简单地分析和检测试样中微量成分的分析仪。
背景技术
在需要进行分析或测量的地点或在所述地点附近进行分析或测量(下文称为“POC分析”)的重要性已经引起重视,例如为进行床旁诊断所需的分析,其中为医学诊断在病人附近进行所需的测量〔POC(point of care)分析〕,对河流中的危险物质和例如在河流、垃圾场等地进行的危险物质的分析,以及在烹调、收割和进口食品的现场进行的污染检查,目前着重于研制进行这些POC分析所需的方法和设备。这些POC分析要求简单、快速和费用低廉地进行。
关于常规的显微分析方法,在利用毛细管气相色谱(CGC)、毛细管液相色谱(CLC)等分离试样之后,一般使用借助于质谱仪对试样进行定量的GCMS设备和LCMS设备。然而,这些分析不适用于例如病人床旁、污染的河流和垃圾场这种测量地点,因为质谱仪体积大,操作复杂。此外,利用血样进行医学诊断所用的分析仪,希望试样接触部分是一次性的。
为了解决这些问题,提出了一种被称为μTAS(micro totalanalysis system)的分析方法的概念,旨在使常规使用的分析仪小型化,并使用几个平方厘米的芯片进行试样的反应和分离,所述芯片包括为进行电泳所需的毛细管,用于进行简单的显微分析〔Sensorsand Actuators,B1(1990),244-248,A.Manz et al.〕。这种μTAS的优点在于,用于成分检测所需的试样和试剂的数量以及用于检测所需的消耗品的废弃物和流出的废弃物的数量被减少了,并且可以在短的时间内进行检测。
除去为进行每个研究所需的上述的芯片和分析方法之外,μTAS由包括在芯片中的液体、气体之类(下文称为“流体”)的试样,用于输送试剂的装置,以及用于实现试样和试剂的反应的装置构成。然而这些具有下述的缺点,并且包括所有这些要素的复杂的μTAS在所述的环境中尚未完成。
例如,形成毛细管的材料一般是玻璃或者是硅,它们以高的精度进行过精处理(例如日本专利公开2-245655),但是它们仍然具有处理费用高和需要小心操作的缺点,因为它们容易折断。此外,如上所述,用于医学诊断时,需要芯片是一次性的,因为它们接触取自病人的试样,例如血液,但是玻璃和硅这些材料是非易燃的,因而还产生了废物处理的问题。当使用玻璃和硅时,便出现了旨在解决这些问题的研究,提出了一种利用树脂生产芯片的方法〔R.M.McCormick et al./Anal.Chem.Vol.69,No.14(1997)2626-2630,日本专利公开2-259557,日本专利2639087(注册:1997,4,25Shimadzu Corp.)〕。生产树脂芯片的方法包括这样一种方法,其中硅晶片的表面利用半导体精处理技术处理,接着电熔Ni,并通过分解除去Si,从而制造一种利用树脂处理的主体,然后使用上述的主体作为基体,利用丙烯酸树脂进行注模而形成模制芯片〔Analytical Chemistry 69,2626-2630(1997)(Aclara Biosciences)〕。
用这种方式,由树脂制成的芯片在一次性和生产量方面是优异的,但是如果采用在常规检测设备中使用的荧光方法、吸收比色计方法作为检测芯片中的物质的方法,则如同在玻璃与硅的情况下那样存在下述的问题。
下面进一步说明现有技术,重点放在检测设备上。
分析在毛细管中流动的试样的方法一般包括荧光光谱方法(例如S.C.Jacobson et al.,Anal.Chem.Vol.66,4127-4132,1994,日本专利公开2-245655),吸收比色计方法(例如N.Kuroda et al.,J.Chromatogr.,Vol.798,325-334,1998),和化学发光方法(例如M.F.Regehr etal.,J.Capillary Electrophor,Vol.3,117-124,1996)。
在这些方法当中,化学发光方法和荧光方法是这样一种方法,其中要被检测的物质在存在催化剂例如氧化剂时在受激状态下被转变成一种化合物,并检测当化合物从这一状态转变成基态时作为光发出的能量(在荧光方法的情况下,所述能量被传递给和受激化合物共存的能量接收器,并检测当所述接收器从受激状态转变成基态时发出的能量)。另一方面,吸收比色计方法是这样一种方法,其中光被引入含有要被检测的物质的溶液中,以便测量透射光的强度,并确定透射光的强度对进入光的强度之比。关于灵敏度,一般地说,从最低到最高排列时为:吸收比色计方法,荧光方法和化学发光方法。
作为主要的化学发光方法,长期来已知的方法有利用发光氨和光泽精的方法。化学发光反应也具有许多优点,例如速度高,灵敏度高,设备成本较低,因为不需要光源便能检测,但是也具有许多缺点,例如发光衰减快,使用的试剂不稳定,背景值较高等等。
在类似的方式中,荧光方法的优点在于,其反应系统长期来是熟知的,但是需要激发光源和用于分离激发光和荧光的光学系统以及光学滤光片。
此外,使用荧光现象的这些方法具有低的光截取效率,因为发出的光被沿所有方向发散。在荧光方法的情况下,总的适应性不高,因为发出的荧光的数量低,因而需要建立一种反应系统,使要被测量的物质转换成有限的荧光物质。
特别是,在用于医学诊断的临床研究领域,因为利用由理论界规定的标准的方法汇集测量值的方法还在研究中,所以在测量系统中的实质的改变可能会引起问题。
此外,吸收比色计方法的缺点在于,其需要大的光路长度才能获得精确的结果,特别是需要获得长的光路才能检测微量的试样,因而使得检测装置的结构复杂,因为通常要检测进入光和透射光的比。
由此可见,利用使用试管的常规的吸收比色计方法和荧光方法可以使用相当小的设备实施,使用具有旨在用于POC分析的毛细管的芯片进行测量只允许小的光路长度,因为毛细管的直径被减少,只能获得低的灵敏度。
已经提出了不把光垂直地加于毛细管,而是沿着流动的方向施加光,以便得到较长的光路长度的方法(例如日本专利8-304339),但是这些方法具有这样的缺点,即在毛细管在平面芯片上形成的情况下,难于沿流动方向进行检测,并且芯片的结构和检测部分的结构更加复杂。
作为检测微量成分的另一种方法,光热检测方法(热透镜方法)长期来被公知,其中在液体中的试样利用激发光被激励,从而形成所谓的热透镜,并利用检测光测量热透镜中的变化(日本专利公开60-174933,A.C.Boccara et al.,Appl.Phys.Lett..36,130,1980)。
在光热检测方法中,通常利用激发光形成厚度大约为0.1μm-1mm的热透镜。在光路的长度足够长的情况下,例如,大约可以达到1cm的长度,光热检测方法是不适用的,因为和吸收比色计方法以及荧光方法相反,通常需要两种光源,即激发光和检测光。此外,激发光和检测光是同轴的,并且在毛细管中发射,因而使得设备复杂。不过,已经提出了这样的方法,其中两种激光不同轴,而是相互交叉〔J.Liquid Chromatography 12,2575-2585(1989),日本专利公开10-142177(Molecular Biophotonics)〕,还提出了这样的方法,其中使一个激光发散,并用于检测由于热光转换而引起的聚焦位置的变化〔日本专利公开4-369467(Yokogawa Electric Corp.)〕。
使用Ar激光和He-Ne激光的光热检测方法的一个例子是这样一种方法,其中试样被放在玻璃板上,并用另一个玻璃板夹住〔Anal.Chem.65,2938-2940(1993)〕。
此外,还有一个例子,其中从包括毛细管的平面芯片的外部对分析仪施加激光,所述分析仪使用泵输出液体(Analysis No.4,280-284,1997,M.Harasa et al.,Anal.Chem.Vol.65,2938-2940,1993,Kawanishi et al.,Japan Analytical Chemistry,Abstracts of 44thAnnual Meeting,p.119,1995,etc)。
这些光热检测方法主要旨在改善局部的绝对灵敏度,所述绝对灵敏度指的是可以检测到多少个分子。因而,这些方法主要用来使激光尽可能地聚焦,使激发光汇集在一个小的区域内,检测在一个微空间内发生的热透镜。
此外,在这些例子当中,还具有利用这样一个概念的方法,即,化学反应系统,例如反应箱、流体控制元件和检测部分被集中在一个芯片中〔Journal of Japan Mechanics Association 100,615-617(1997),Sensor/Actuator/Week 1997 General Symposium Abstracts“Microsensor”Session 3,pp.19-23(April 17,1997)〕。此外,在这些例子中,形成有毛细管,因而使用玻璃作为在表面上形成槽的材料。
在使用硅和玻璃作为制造芯片的材料的情况下,在玻璃制成的基片或者石英或硅制成的基片上例如使用真空汽化技术形成厚度为几千个埃的刻蚀保护涂层(Cr等),并使用旋转器在其上形成光刻胶图形。然后,使用掩模使光刻胶曝光,从而进行光刻,然后进行显影(利用溶剂除去未处置的部分)而得到所需形状的图形。接着,使用被形成图形的光刻胶作为刻蚀掩模,利用钾的铁氰化物溶液溶解并除去刻蚀保护涂层,从而得到图形。接着,使用被形成图形的光刻胶和刻蚀保护涂层作为刻蚀掩模,例如利用氢氟酸溶液刻蚀基片,从而形成槽。然后,利用刻蚀除去光刻胶和保护涂层。此外,除去上述的基片之外,还例如利用超声波处理制备具有通孔的例如玻璃基片。最后,把具有槽的基片和具有通孔的基片层叠在一起,使槽处于内表面上,并例如利用真空炉对层叠的基片加热(在两者都是玻璃基片的情况下,在大约600℃下加热几小时),接着使其冷却熔合,从而形成芯片。
如上所述,在玻璃的情况下,必须逐个地在玻璃板上形成槽,以便使用作为生产半导体集成电路的技术的扩展(光刻技术和刻蚀技术的组合)的方法制造芯片。此外,在制造过程中,使用许多危险的化学元素,并且生产过程长达几小时,并需要用于生产半导体的昂贵的大型设备。此外,上述用玻璃制造的芯片具有易碎裂的缺点,因而必须小心处置。
此外,用于医学诊断时,所述芯片可能接触取自病人的试样例如血液,希望上述的芯片被制成一次性的,但是玻璃是非易燃材料,因而产生了废弃物处置的问题。因此,用于要求费用低的POC分析是不适用的。
另一方面,用于医学诊断时,取自生物体的试样例如血液、尿液和脑脊液中的各种物质的浓度被广泛地进行定量的和定性的检测。取自生物体的要被检测的项目包括GOT的酶的活性,GPT,γ-GPT和ALP,总胆固醇,甘油三酸酯,葡萄糖,血色素Alc(HbAlc),此外还有蛋白质,例如肌氨酸酐致活酶,C反应蛋白质(CRP)和细胞分裂素,来自细菌和病毒的抗原及其抗体。
通过使试样和酶以及对要被检测的物质的特殊抗体反应,最终使所述物质转换成可以通过吸光率、荧光、化学发光等检测的物质(染料,荧光物质,发光物质等),进行检测要被检测的物质,并确定物质的最终数量〔Ogawa,Z.et al.,Clinical Investigation,41:981(1997),Kanno,T.,Clinical Investigation,42:309(1998)〕。
这些检测反应被这样进行:称量一定量的试样和一种或几种试剂溶液,将它们分别混合,使得在一段固定的时间内在预定的温度下进行反应。
在大医院的中央实验室和由医疗化验公司采用的自动分析仪中,利用自动吸量管分别称量一定量的试样和试剂溶液。此外,在人工分析的情况下,操作者使用吸量管和定量的毛细管称量一定量的试样和溶液。
以类似方式进行食品污染的检验(日本专利公开4-64063,检验食品细菌污染的方法)。
在确定环境污染物质的数量的情况下,使用多种试剂和河水进行反应,并用土壤作为试样用于检测污染物质(日本专利公开9-72898,分析土壤的方法)。
在芯片中进行这些反应的方法,即将一些起反作用的试剂和标准的试剂在芯片中和试样混合,从而进行反应,并对反应后的试样进行分析,所述方法包括下述的一些方法。
一种方法是这样的:其中在芯片外部称量预定量的试样和试剂溶液,然后注入芯片中。此外,还有这样一种方法,其中在芯片中提供预定容积的通道(容器),例如小的圆柱体,利用泵和阀门的组合或者通过施加电场精确地控制被输送的液体,借以在芯片中称量一定量的试样和试剂溶液(例如A.Manz et al.,TrendsAnal.Chem.,vol.10,144,1991)。此外,有一种这样的方法,其中试样和试剂溶液被注入室内并被混合,从而进行反应,然后称量一个固定数量的反应物,对其成分进行分离,并分析每种成分的数量(S.C.Jacobson et al.,Anal.Chem,vol.6,4127,1994)。在这些方法的任何一个方法中,需要进行称量试样和试剂溶液或其混合物的处理,尚未提出一种在以恒定的流量连续地输送液体的同时进行分析的方法。
另一方面,提出了以预定的比例混合两种液体而不进行称量操作的方法的概念〔US5785831(HP)日本专利公开8-261986(相应于US5785831的日本专利)〕。不过,这种概念是在输送通道中简单地混合两种液体,其不包括连续地进行预定的化学反应并且使用所述反应检测特定物质的概念。类似地,提出了一种方法,其中在两个相互接触的具有预定流量的层流当中,使用在界面附近的相互反应(WO9739338,USP5716852,WO9747390)。不过,在这种情况下,所述方法基本上是一种用于提取或测量所需的分子和颗粒的方法,其中使用由在每个流中包含的不同尺寸的颗粒和分子导致的不同的扩散率,并且不实行预定的化学反应。
此外,有一个不经过称量操作来进行所需的化学反应的例子〔J.Micromech,Microeng.4,246-256(1994),Verpoorte E.M.J.,//ManzA.,de RooijN.F.INTERFACIAL DESIGN AND CHEMICALSENSING,Chpter 21pp.244-254,America Chemical Society(1994)〕。即,由硅制成的在表面上具有槽的两个或多个芯片被相互重叠而形成毛细管,利用泵以恒定的流量向毛细管输送反应试剂溶液,借以使反应试剂溶液和试样溶液以预定的比例混合,并在毛细管中进行反应。
不过,在这种方法中,试样溶液和试剂溶液以预定的比例被简单地混合,并且在实际的处理中,其和批处理系统有本质的不同,其中在批处理中,试样溶液和试剂溶液以预定的比例被输入混合容器中。
此外,在这种具有多个芯片相互重叠的结构中,通道具有三维结构,因而难于在通道中逐步地进行反应并获得在不同的反应时间的测量值。即,可以在酶反应的终点进行定量的测量,但是难于用比率测定进行定量分析,在比率测定中,酶的数量由反应速度确定。
关于分析仪,旨在用于POC分析的分析仪目前尚处于研究开发阶段,其中已经提出了包括毛细管的芯片。不过,如上所述,包括毛细管的芯片的材料一般是玻璃和硅,其需要高精度的精细处理。因此,处理费用是高的,并且还具有这样的缺点,即,芯片易于碎裂,因而必须小心处置。此外,在用于医学诊断时,芯片可能和取自病人的试样例如血液相接触,因而需要包括毛细管的芯片是一次性的,但是玻璃材料是非易燃的,因而产生了废弃物处置的问题。
此外,对于使用发光现象的方法的组合通道设备和检测设备的分析仪,因为发出的光沿所有方向发散而截取光的效率不高。
在使用发光现象的方法当中,化学发光反应具有速度高,灵敏度高和设备成本相对较低的优点,因为不需要光源便可检测,但是具有发光快速衰减,试剂不稳定,背景高等缺点。
此外,与此类似,荧光方法的优点在于,其反应系统长期以来是熟知的,但是其需要具有激励光源和光学滤光片的光学系统,用于从荧光中分离激励光等等。
此外,荧光方法不适用于在本发明中使用毛细管进行检测微量试样的情况,因为所发出的荧光太低。
此外,吸收比色计方法的缺点在于,其需要长的光路,以便获得精确的结果,尤其是用于检测微量试样,要获得长的光路长度,势必使检测装置变得复杂,因而在原则上要检测入射光对透射光的比。
由此可见,对于用在本发明中用于检测细毛细管中的微量试样的分析仪,容易处置而且经济、具有小的体积、具有高的灵敏度的分析仪是没有的,因而在所述的环境中需要适用于POC分析等的分析仪。
另一方面,市场上具有一种能够检测血糖值的试纸,其中使用在血浆试样中溶解的固体溶剂(冻干的试剂或者用预定量的试剂浸渍的试纸和纤维)。这些固体溶剂是方便的,因为其不需要称重,但是其缺点在于,和液体试剂相比,其定量的精度较差。
此外,试样和试剂在芯片外部被称重然后注入芯片实现反应的方法不仅需要太多的人力,而且除去芯片之外还产生其它的废弃物。此外,在不用人工称量试样和试剂的情况下,除去芯片之外还需要称量系统,这使得整个设备的体积增大。此外,需要在芯片中提供通道用于称量试样和试剂,因而使通道更加复杂,并且导致高的成本。此外,这些方法具有这样的缺点,即引入称量试样和试剂的操作,不区分芯片的内部和外部,使得分析过程更加复杂。此外,现有技术需要一种附加的装置,用于调整连续进行的需要精确控制定时的每个处理的定时,由于进行批量试样的处理和检测。
发明公开
本发明的分析仪包括一个具有毛细管的芯片,其容易被处置,能够具有复杂的结构和极好的安全性、一次性和可大量生产性;还包括检测设备,其容易被缩小尺寸,并且能够以高的灵敏度检测微量成分。因而,本发明的目的在于提供一种分析仪,其具有极好的操作性,体积小,并且成本低,其中只在芯片的毛细管中进行预定的混合和化学反应,而不需对试样和试剂等分别进行称重,并且不需对所有处理中的每个处理精密地调整定时。
本发明至少部分地使用有机聚合物作为包括供流体流动的毛细管的芯片材料。具有高的尺寸精度的被模制的有机聚合物制成的芯片适用于显微分析,其可以被廉价地生产,并且可以通过焚化被容易地处置,因而适用于作为一次性芯片。此外,所述芯片容易操作,可以具有复杂的结构,且具有极好的安全性和可大量生产性。
此外,在所申请的本发明中,在由有机聚合物制成的芯片中形成的毛细管中的流体状的试样和流体状的试剂的流量分别以预定的值被控制,而且这些流体连续地流动,因而以预定的流量比例使流体状和试样和流体状的试剂融合。在融合之后,具有所需的并足够的长度的毛细管能够使流体在一个所需的时间间隔内流动,以便以预定的流量进行混合和反应,提供这样的毛细管以进行预定的操作,例如混合、稀释和化学反应。利用这种装置,可以进行预定的操作,例如多种流体的混合和稀释,而不需要进行称重(不用区分芯片的内部和外部),从而能够精确而简单地进行所需的化学反应,而不用对所有处理中的每个处理精确地调整定时。
此外,当由上述装置产生的反应后产物利用由物镜聚焦的激发光照射时,会发生伴随着局部温度变化(光热效应)的物理数量的变化,特别是发生折射率的变化,这是由于激发和吸收所致。利用这种包括检测设备(热透镜检测设备)的分析仪,除去用激发光照射之外,通过利用检测光检测折射率的改变,可以测量被检测物质的浓度,利用现有技术,这些是难于检测的,这是因为,光路的长度和芯片的垂直宽度那样小(对芯片表面的角度不必是直角),即和槽的深度那样小(大约1到1000微米)。
不过,常规使用的热透镜检测方法是一种用于在微小的空间内检测物质的通用方法,但是在这种方法中,为了改善最少可以检测到多少个分子的绝对灵敏度,无论如何,激发光不可能被物镜聚焦并在试样溶液中被会聚,因而减少了要被形成的热透镜的厚度。
例如,在一种常规的热透镜检测方法中说明,见“Developmentof Integrated Liquid Phase Chemical Analysis Ststem Using MicroChannel on Glass Substrate and Thermal Lens Microspectrometry(I)”(Japan Analytical Chemistry,Abstracts of 44th AnnualMeeting,p.119,1995,Kawanishi et al.),通过把显微镜的放大倍数设置为70倍,在焦点附近的激发光的光束直径被减少到大约4微米,通过把显微镜的放大倍数设置为280倍,激发光的光束直径可以被进一步减少到亚微米的数量级。不过,在这些常规的热透镜检测方法中,在试样溶液的某个数量内,确定物质的数量的浓度灵敏度是低的。
对于医学诊断和环境分析,重要的是浓度灵敏度高,而不是绝对灵敏度高。本发明人发现,和常规的热透镜检测方法相反,通过减少激发光的会聚程度,并把热透镜扩大到近似于通道的横截面积,可以增加浓度灵敏度,因而,即使在具有能够形成稳定的电渗流的小的横截面积的毛细管中,也能够以高的浓度灵敏度检测物质。
此外,当包括毛细管的由有机聚合物制成的芯片应用于上述的热透镜检测设备时,在所述热透镜检测方法中输出的背景信号根据芯片的材料而增加。在常规方法中使用玻璃材料的情况下,作为一般的可得到的商品,容易获得排除在热透镜检测方法中使用的反射激光〔例如He-Ne激光(波长633nm;)氩离子激光(波长:488nm);半导体激光(例如,波长:780nm)〕之外的,透射率不低于99%或几乎等于100%的玻璃。因而,在执行热透镜检测方法时不会产生问题。
不过,关于有机聚合物,一般可得到的商品含有添加剂、塑化剂、稳定剂等,和玻璃一样具有高的透射率的这些商品一般是得不到的。因此,已经发现,适用于热透镜检测设备的有机聚合物制成的基体材料是有限的。特别是,在激发光的光路中激发光的吸收对于热透镜检测设备具有很大的影响。因而,已经通过实验获得了可接受的吸收量的范围。
就是说,关于本发明的分析仪是这样一种分析仪,其用于在毛细管中流动的流体状的试样或者流体状的试样和流体状的试剂,分析在上述试样或上述试样和上述试剂的混合流体中的预定的成分,其特征在于该分析仪由芯片和光热检测设备构成,所述芯片至少部分地由有机聚合物制成,并且包括上述的毛细管,所述光热检测设备用于利用激发光照射上述的预定成分,以便测量伴随在上述毛细管中的最终的局部温度改变而发生的物理量的改变。
此外,在本发明中的流体指的是包括液体和气体在内的具有流动性的物质。
此外,关于要在毛细管中流动的流体状试样,仅仅指可以流动的试样以及可以和流动的流体状的载体混合的试样,或者可以和流动的流体状的试剂混合的试样,只要混合后的产物是流体即可。
它们可以在被提供给毛细管之前被混合,或者把每个试样单独提供给毛细管,然后使其在毛细管中混合。
上述的芯片可以通过层叠一对平板部件构成,所述一对平板部件中的至少一个的平表面上包括槽,并且至少一个平板部件由有机聚合物制成,使上述的包括槽的平表面处于叠层的内部。
此外,关于上述的一对部件,两个平板部件都可以由有机聚合物制成,或者只其中的一个由有机聚合物制成。不过需要上述的包括槽的平板部件由有机聚合物制成。
此外,把上述的物理量的改变认为是折射率的改变时,上述的光热检测设备可以是一种用于在由上述折射率的改变而形成的热透镜中检测光的设备,用于测量由上述热透镜引起的上述的检测光的改变。
需要使构成上述芯片的部件不会通过吸收上述的激发光而对光热效应带来大的影响。
例如,需要使构成上述芯片的部件对上述的激发光的吸收率是5%或更小。
此外,需要使上述激发光的会聚程度已经被这样调整,使得在上述的毛细管中发生的局部的温度变化处于这样一个范围内,在此范围内可以获得用于分析上述预定成分的足够的浓度灵敏度。
不过,最好是上述的激发光的光轴垂直于上述的试样和上述的混合流体的流动方向,并且上述的激发光的会聚程度已经被这样调整,使得上述的毛细管中在垂直于所述流动的方向并包括上述的轴线的截面内发生的局部温度变化处于这样一个范围内,在此范围内可以获得用于分析上述的预定成分的足够的浓度灵敏度。
此外,上述激发光的光轴对于上述的试样和上述的混合流体的流动方向可以是倾斜的。
此外,上述激发光的会聚程度可以利用以上述激发光照射上述毛细管的物镜的数值孔径进行调节。
此外,关于本发明的上述分析仪的毛细管可以是这样的构型,除此之外,其具有用于流通上述试样的试样通道和用于进行上述测量的通道,并且在上述的试样通道和用于进行上述测量的通道之间具有至少一个试剂混合装置;
其中上述的试剂混合装置包括至少一个用于流通上述试剂的试剂通道,从上述试样通道侧流出的流体和从上述试剂通道流出的试剂的汇合处,以及位于所述汇合处的下游的混合通道,用于以预定的流量比混合从上述试样通道侧流出的流体和从上述试剂通道流出的试剂,以便在一个预定的时间间隔内进行反应,
在上述的试剂混合装置的数量是两个或多个的情况下,每个试剂混合装置被串联地设置,以及
还包括一个流量调节机构,用于按照上述的混合比调节上述的试样通道和上述的试剂通道中的流量。
在这种结构的情况下,上述的试样和上述的试剂在上述的毛细管中连续地流动,并且上述的混合通道可以是这样的通道,其具有足够的长度,用于使刚好在其汇合处之前合流的流体流动一个所需的时间间隔,以便完成预定的混合和在预定流量下进行反应。
此外,可以通过对上述的试样施加一个电压,或者对上述的试样和试剂分别施加一个电压使上述的试样或者上述的试样和试剂流动。
此外,上述的试样可以是源于生物材料的试样。
此外,在上述的芯片是由上述的一对平板部件构成的情况下,所述一对平板部件中的一个可以是由有机聚合物制成的平板部件,其利用加压模制方法、模压方法、注模方法、在存在气体的情况下降低树脂的玻璃转变温度的注模方法、注压模制方法、和使用由电磁感应加热的模具表面的注模方法之一或者其组合被模制。
在这种情况下,在上述在存在气体的情况下降低树脂的玻璃转变温度的注模方法中使用的气体可以是二氧化碳。
因而,按照本发明的分析仪,在进行预定的混合和反应之后,利用光热检测设备的检测系统并使用光热检测方法检测预定的成分,不需要称量芯片中的试样和试剂。通过使用光热检测方法作为检测方法,可以以高的灵敏度检测微量的预定成分。此外,因为不需要进行称量,不区分芯片的内侧和外侧,所以不仅具有极好的可操作性,而且还减少了设备的体积。
附图简述
图1示意地表示按照本发明的基于光热检测方法的分析仪的热透镜检测部分;
图2是按照本发明的光热检测设备的方块图;
图3是旨在用于定量采样的通道图形1;
图4是旨在用于定量采样的通道图形2;
图5是一通道的示意图-1,其中多种流体相互汇合,以便按照本发明进行稀释和混合等处理;
图6是一通道的示意图-2,其中多种流体相互汇合,以便按照本发明进行稀释和混合等处理;
图7是一通道的示意图-3,其中多种流体相互汇合,以便按照本发明进行稀释和混合等处理;
图8是一通道的示意图-4,其中多种流体相互汇合,以便按照本发明进行稀释和混合等处理;
图9是示意图-1,表示由有机聚合物制成的板部件的槽,在表面上具有细槽,槽上有流体流动,其是用注模方法模制的;
图10是示意图-1,表示由层叠一对由有机聚合物制成的板部件构成的芯片,其上具有利用导电油墨印刷的导线、用于俘获(trapping)液体的电极和用于连接检测设备中的电源端子的电极;
图11是沿着图10的a-a’线所取的截面图;
图12是一通道的示意图,其中在汇合点侧流呈直角汇合,从而使两种试剂彼此汇合;
图13是一通道的示意图,其中在汇合点侧流呈锐角汇合,从而使两种试剂彼此汇合;
图14是一通道的示意图,其中两种或多种试剂在两个或多个汇合点被汇合;
图15是表示在热透镜检测方法中对聚合物基材料的激光束吸收率和输出的测量结果的表;
图16是一表示用于模制由有机聚合物制成的板部件的模制设备的截面图,在板部件的表面上具有供流体流动的细槽;
图17A是表示按照本发明模制的(传送)通道的细的形状的平面图,所述通道由在模具的模具表面部分上制做的槽组成,所述模具用于模制由有机聚合物制成的板部件,所述板部件的表面上具有供流体流动的细槽,图17B表示沿着细的形状上的线a-a’所取截面的形状,图17C表示沿着线b-b’所取截面的形状;
图18是示意图-2,表示由有机聚合物制成的板部件上的槽的图形,所述板部件的表面上具有供流体流动的细槽,其利用注模方法模制;
图19是示意图-2,表示由层叠一对由有机聚合物制成的板部件构成的芯片,其上具有利用导电油墨印刷的导线、用于俘获液体的电极和用于连接检测设备中的电源端子的电极;
图20是沿图19的c-c’所取的截面图;
图21是在本实施例中使用的热透镜检测设备的示意图;
图22是表示按照热透镜检测方法在相对于热透镜检测设备的毛细管的激光聚焦位置和输出之间的关系的曲线;
图23是示意图-3,表示由有机聚合物制成的板部件的槽的图形,所述板部件的表面上具有供流体流动的细槽,其利用注模方法模制;
图24是示意图3,表示由层叠一对由有机聚合物制成的板部件构成的芯片,其上具有利用导电油墨印刷的导线、用于俘获液体的电极和用于连接检测设备中的电源端子的电极;
图25是沿图24的a-a’所取的截面图;
图26是表示按照例3的热透镜检测方法在胆固醇的浓度和输出之间的关系的曲线;以及
图27是表示按照例4的热透镜检测方法在胆固醇的浓度和输出之间的关系的曲线。
实施本发明的最佳方式
按照本发明的分析仪由包括毛细管的芯片和检测设备构成。
所述芯片由利用聚合物制成的一对平板部件制成,在至少一个部件的表面上制成有供流体流动的槽。这些平板部件被相互叠置,使槽处于叠层的内表面,从而形成毛细管。所述毛细管具有用于试样的通道和用于至少一种试剂溶液的通道,还具有汇合点,在所述汇合点上所述通道相继汇合或者同时汇合。此外,所述毛细管在汇合点的下游侧具有预定长度的通道或者较大的通道,用于混合上述的试样和上述的试剂溶液并进行化学反应,并且还具有使通道和通道相连以便进行测量的结构。因为所述试样和试剂溶液需要被这样控制,使得它们以预定的流量输送,所以上述的分析仪具有满足这个要求的结构。即,具有这样的结构,在所述结构中,上述的试样和上述的试剂溶液在毛细管中以预定的流量流动。
于是,该检测设备包括用于发射激发光和检测光的机构,并包括基于光热检测方法的光学检测系统〔例如,Analysis No.4,280-284(1977)〕。
(聚合物芯片)
在本发明中,在平板部件的表面上形成的槽的截面形状包括多边形例如四边形和三角形,半圆形和半椭圆形,没有特殊的限制。此外,芯片的表面上可以具有由几种不同形状的槽组合而成的通道。槽的上面(敞开的一面)的宽度可以和槽的下面(底)的宽度相同或较大。此外,为了实现下面更简明地说明的基于光热检测方法的检测装置,需要使槽的截面形状为四边形。
如果所述的槽太小,则流动可能被细颗粒干扰。此外,如果槽太大,则当在平板部件的表面上制造许多槽时,不仅必须加大平板部件的面积,而且在通过扩散进行混合时,会出现扩散距离的问题。因而,较好是,槽的宽度是1-1000μm,深度是0.1-1000μm,截面面积是1-1000000μm2。更好是,槽的宽度是2-500μm,深度是1-500μm,截面面积是2-250000μm2;最好是,槽的宽度是2-200μm,深度是1-200μm,截面面积是2-40000μm2
对于本发明的由有机聚合物制成的平板部件,在部件表面上的槽的尺寸的精度没有具体地限制。不过,在进行超显微成分的分析和定量的分析时,最好具有高的尺寸精度。即,为了达到操作的精度和在各个分析仪当中实现重复性,槽的尺寸精度最好在宽度和深度上在±5%以内(传递的尺寸精度),对于模具的凸起的形状的横截面积的精度在±7%以内(利用模制传递,在平板部件上形成槽的情况下)。为了以高的精度进行定量的分析,最好是在宽度和深度上的精度在±2%以内,在横截面积上的精度为±4%以内。
包括本发明的毛细管的芯片通过层叠两个平板部件构成,至少一个平板部件的表面上具有供流体流动的槽,所述的槽在叠层的内部,其中使用超声熔接、热熔接、利用黏合剂的粘合,例如热熔黏合剂和UV黏合剂,具有粘结剂的粘连,直接或通过薄的弹性板进行的压力接触。在任何情况下,最好使用能够在真空中进行压接的真空层叠器,并使用能够从中心向周边进行压接同时能够排出气泡的方法,以便防止在层叠期间留下气泡。
作为没有槽的平板部件(下文称为“盖板”),可以使用由树脂制成的平板片,例如甲基丙烯酸树脂,聚碳酸酯,聚苯乙烯或玻璃板(薄玻璃片)等。这些板的厚度没有具体限制,除非具有下述的影响光热分析的问题,例如光吸收问题等,不过最好在0.05毫米到几毫米的范围内。
此外,芯片具有开口,用于引入试样或试剂,并用于在要被层叠的两个平板部件中的一个上作为通孔安装电极。需要在平板部件的每个通道的端部提供通孔,或者在要层叠的另一个平板部件的部分中提供通孔,其和上述每个通道的端部的通孔汇合,通孔的尺寸没有具体限制,不过通孔的直径最好在0.1毫米到几毫米的范围内。
在选择在具有槽的平板部件中使用的有机聚合物基的材料时,模制的可操作性是重要的。根据模制的可操作性,优选的材料包括可进行一般的模制加工的透明的热塑树脂,利用UV塑化和热塑化而获得的透明树脂。此外,前者更为合适,因为可以制造大量的廉价的平板部件。在这些树脂当中,非晶体的热塑树脂,具有非晶体树脂为主要成分的热塑聚合物的混合物,或者一部分具有低的晶体度的晶体热塑树脂是优选的。尤其优选的树脂是刚性树脂,包括苯乙烯类树脂,例如聚苯乙烯和苯乙烯-丙烯腈共聚物,甲基丙烯酸树脂,例如聚甲基丙烯酸酯(PMMA)和甲基丙烯酸酯-苯乙烯共聚物,聚碳酸酯(PC),聚砜,聚醚砜,聚醚酰亚胺,多芳基化合物,聚甲基戊烯,乙烯聚合物的氯化物,聚环己二烯,和聚酯。
此外,优先使用1,3-环己二烯型聚合物。1,3-环己二烯型聚合物可以使用单体聚合物,但是也可以使用共聚物。这些共聚物包括具有共轭的二烯型脂肪族单体的共聚物,例如1,3-丁二烯,橡胶基质,1,3-戊二烯和1,3-己二烯,芳香族乙烯基单体,例如苯乙烯,α-甲基苯乙烯,p-甲基苯乙烯,1,3-二甲基苯乙烯,乙烯基奈,和乙烯基苯乙烯,极化乙烯基单体,例如甲基丙烯酸酯,丙烯酸甲酯,丙烯腈,甲基乙烯基酮和甲基腈基丙烯酸盐黏合剂,或极化单体,例如乙烯氧化物,丙烯氧化物,环形内酯,环形内酰胺和环形硅氧烷,或乙烯与α烯烃型单体。在这种情况下,共聚合比最好是1,3环己二烯单体/共聚用单体=75/25-100/0(重量)。透光性高的环己二烯型聚合物在日本专利申请9-277045中详细说明了。这种聚合物也可以利用短波光源被检测,因为当它们作为无定形的C-H聚合物材料时,它们对于200nm或较长的波长的吸收很少。
对于本发明的由这些聚合物基制成的芯片,构成芯片的一对平板部件由允许检测光通过的材料制成,并且两个平板部件中的一个由允许激发光通过的材料制成。本发明的分析仪由所述的芯片和光热转换检测设备构成,因而可以以高的灵敏度检测只在紫外线范围内吸收光的被检测的物质,这利用具有常规树脂芯片的分析仪是难于检测的,并且其具有高的通用性。这对于用于医学诊断的分析是非常重要的,因为许多生物物质只在紫外线的范围内吸收光(此范围眼睛看不到)。
下面附带说明关于只在紫外区内吸收的物质的分析。有机聚合物(树脂)根据其生产率、成本和废弃物处置而言作为芯片材料是比玻璃优越的。不过,有机聚合物一般在紫外区内具有吸收作用。因而,使用作为通用的检测方法的吸收比色计方法检测物质,所述芯片材料的吸收是如此之大,以致使得不能获得正确的测量值。此外,利用100μm左右的光路长度,即使使用芯片材料不吸收的波长,也难于检测微量的成分。利用荧光可以进行检测,但是被检测的物质局限于发射荧光的物质,因而通用性差。
与此相反,在光热转换检测方法中,检测光的波长可以从有机物质不能吸收的波长范围内自由选择,只要激发光在被测物质中被吸收即可。在由一对平板部件构成的芯片中,如果两个平板部件对于有机聚合物不能吸收的波长的检测光(通常是可见光)是“透明”的,并且一对平板部件中的一个具有允许激发光穿过的透射率,使得被测物质被激励,则可以进行通用的测量。作为一个特定的例子,考虑一种这样的情况,其中具有槽的平板部件的厚度大约为1-5mm,要被和具有槽的平板部件层叠的平板部件(盖板)是一个厚度大约为500μm或更薄的薄片,并且该薄片由对于激发光具有高的透射率的材料制成。在这种情况下,从薄片侧施加激发光,借以使得即使在具有槽的平板部件对激发光具有低的透射率时也能够以高灵敏度检测被测物质。
用于本发明的有机聚合物需要是对在光热方法中使用的波长的光具有透明度的树脂。考虑到激光的功率损失,需要使用在光热检测中使用的激发光和检测光的波长下透射率为80%或更高的,最好90%或更高的有机聚合物。考虑到激发光和检测光的波长,按照ASTM D1003,当在波长范围600-800nm内(最好在400-800nm内)测量时,需要使用光透射率为80%或更高的,最好90%或更高的有机聚合物。
上述的光透射率是通过从100%中减去在芯片的表面上的反射率和由有机聚合物基本身的吸收率所得的值。在芯片的表面上散射的光对有机聚合物没有影响,而由有机聚合物基吸收的光对有机聚合物有影响,即,使其产生热量。因此,当光通过有机聚合物时,便产生类似于热透镜的效果,这形成热透镜检测方法中的输出的背景,因而,在测量中引起误差。因而,在制造实际的芯片之前,需要评价有机聚合物材料,并确定对于实际的热透镜检测方法没有影响的吸收率的范围。
在利用吸收率检测的情况下,如果10%被有机聚合物吸收,光的总量只减少90%,对检测灵敏度基本上没有影响。不过,在光热检测方法的情况下,由于在树脂中形成热透镜,即使10%或更少的吸收率对于测量结果也具有严重影响。
从下述的例子得到的测量结果看来,在具有本申请的热透镜的分析仪被用于定量测量的情况下,已经证明,在激发光通过芯片的整个光路内,由有机聚合物吸收的激发光的百分数需要是5%或更少。
不过,在需要进行高灵敏度测量的情况下,例如被测物质的浓度低并且毛细管细(槽浅)的情况下,即使微量的吸收也可能引起对毛细管中的物质所测量结果的负面影响。
在被测物质是血液中的成分并使用目前销售的成套试剂作为试剂的情况下,通常进行其中对于1cm的试管的吸收率大约是0.1的测量。假定使用本发明的由有机聚合物制成的芯片进行这种测量,在芯片中包括50μm的毛细管(即光路长度为50μm),则对于1cm的光路长度的0.1的吸收率等效于50μm的毛细管的0.103%的吸收率。如果由有机聚合物制成的芯片的吸收(形成热透镜)直到10倍仍然是可以接受的,则如果可接受的吸收是2倍,吸收率应当是0.2%。
这就是说,为了使用本发明的分析仪进行对于1cm的光路长度的吸收率是0.1的测量,则需要使由制造芯片的有机聚合物吸收的光为1%或更少,最好为0.2%或更少。
不过,这些值可以根据成套试剂的修正和毛细管的长度的不同而改变。例如,把1cm试管的吸收率增加到约0.5在当前的技术条件下是没有困难的。在这种情况下,50μm毛细管的吸收率等效于0.342%,如果由有机聚合物制成的芯片的吸收(形成热透镜)直到10倍仍然是可以接受的,则如果可接受的吸收是2倍,吸收率应当略小于1%。
此外,关于检测光,为了避免由于吸收而引起其本身光路的改变,同样需要使在所述光通过的整个光路中由有机聚合物吸收的光的百分数为百分之几或更少。
由此可见,已经证明,在使用热透镜检测方法进行测量和分析的情况下,制造芯片的材料应当被合适地选择。在激发光或检测光的情况下,由聚合物基材料接收的吸收率根据被测物质的浓度或吸收率而改变。因而,由构成芯片的材料吸收的激发光和检测光应当是对于热透镜检测方法的测量结果基本上没有影响的数值。以生物化学反应系统为例,需要聚合物基的吸收率是百分之几或更小。
由根据上述准则选择的有机聚合物构成的平板部件可以例如利用切割处理和利用激光进行的刻蚀处理,在模具中的UV塑化和单体与/或宏单体的热塑以及热塑树脂的塑化处理制成。可以优先选用的模制方法是热塑树脂的熔融处理和塑化处理,利用所述方法,可以大量而廉价地生产在表面上具有槽的平板部件。更优先选用的方法是使用模具的热塑树脂的注模方法与/或加压模制方法以及模压方法。包括注压模制的注模方法是用于大量而经济地生产的很好的方法。加压模制在大量生产方面次于注模,但是能够以好的可传递率形成模制的表面。特别是,被模制的预先呈板形的热塑树脂被放入模具中,然后用热压机对其加热到软化温度。此后,施加压力进行压缩,因而模具的表面被传递,接着在软化温度或更低的温度下通过热压机在施加压力的情况下使热塑树脂冷却并固化。特别是,优先选用的模制方法是这样一种方法,其中在模具腔体内填充树脂期间在降低接触模具的树脂表面的固化温度的同时进行注模(日本专利公开10-128783,日本专利申请10-50719),因为这种方法可以以高的生产率生产具有高的可模制性的细槽的有机聚合物树脂制成的平板部件。这种注模方法的一个特定的例子包括这样一些方法,其中在进行注模之前在腔体中填充二氧化碳。二氧化碳的压力最好是10MPa或更低,更好是0.3-2MPa,这是考虑到阻止气体被俘获和降低树脂表面的固化温度的效果之间的折中而得到的。
此外,用于生产本发明的有机聚合物制成的平板部件的优选方法有,注模方法,其中模具的表面被加热,以便进行模制,例如这样一些模制方法,其中在模制之前利用高频感应加热对模具表面快速加热(日本专利公开62-58287,US4439492),和这样一些模制方法,其中在模制之前利用辐射热对模具表面快速加热(在MoldingSymposia 1995,241<1995>,Molding 1996,69<1996>,SyntheticResin Vol.42(1),48<1992>等中描述)。这是因为上述的方法是这样一些方法,其中被设置的模制温度较低,并且在模制之前利用热源例如高频感应加热和卤灯只对模具表面进行有选择地快速加热,因而可以实现模具表面的可传递率和模制周期时间之间的兼容性。
本发明的由有机聚合物制成的平板部件也可以根据日本专利申请公开6-283830披露的生产电路板的方法制造。按照这种方法,分散的颗粒的方向最好沿和厚的光刻胶垂直的方向定向而不沿通常和薄的光刻胶垂直的方向定向,借以可以使用较锐利的模制制造高的纵横比的槽。此外,也可以使用这样的方法,其中在树脂基片上涂覆光刻胶,并对除去槽之外的部分曝光,然后除去未固化的部分,从而在表面上形成槽形的光刻胶图形。
关于模具,最好使用含有铁作为主要成分的铁或钢,含有铝作为主要成分的铝或铝合金,锌合金,铍铜合金,镍等等,它们一般用于合成树脂的模制。
下面说明模具制造方法的一个例子。首先,例如采用切割处理和刻蚀处理,或者采用紫外线固化树脂的光刻处理,利用金属、塑料、硅或玻璃制备一个基体,其具有包括所需的细槽的由有机聚合物制成的平板部件的表面形状。然后,使用镍或其类似物利用电化学铸造方法由所述基体制造模具。
此外,所述模具可以使用上面日本专利公开6-283830所述的形成光刻胶图形的方法制造。在金属底板上形成光刻胶图形,然后利用电镀把没有光刻胶的部分填满。然后,除去光刻胶,从而形成具有在底板表面上形成的精细图形的金属板。
此外,对于由本发明的有机聚合物制成的平板部件构成的芯片,可以通过嫁接聚合聚乙烯乙二醇对毛细管的内表面进行蛋白质吸收防止处理。此外,在使用下述的电渗流作为液体输送装置的情况下,毛细管的表面可以利用氢氧化钠溶液进行处理,从而产生稳定的电渗流。特别是,当使用PMMA作为有机聚合物时,利用氢氧化钠进行的处理会使表面上的酯进行水解,从而暴露羧酸,借以使电渗流扩大和稳定,这是需要的。
此外,当使用下述的电渗流(EOF)作为液体输送装置时,所述芯片的表面上可以具有由金属针、金属板、金属箔等构成的金属电极,一直使用经过导电率增加处理的无机或有机聚合物制成的电极,或者利用导电油墨印刷的电极。在这种情况下,最好所述电极接触位于毛细管中的在其端部或在其中部的存储槽(其中放置有试剂、试样、缓冲剂、废液等等),在芯片中还可以包括和检测设备相连的在电极之间连通的电极。
在插入金属针的情况下,由铂、铜、青铜、铝、铁制成的具有0.1-2.5mm直径的,长度能够达到平板部件的槽附近的钉、针、金属圈等元件最好被固定在通孔中。
在利用导电油墨印刷的情况下,电极可以通过使用含有金、银、铜、镍、碳黑、石墨等的细颗粒的油墨利用丝网印刷制成。为了利用丝网印刷印制通孔的内壁,可以使用利用丝网印刷机利用导电油墨进行通孔印刷的技术,这是一种连续的印刷方法,其中使用多层印刷板。通孔印刷是这样进行的,把要被印刷的样品放置在样品台上,使样品的通孔和样品台的吸孔对准,吸存在于通孔周边的油墨,从而在对样品印刷的同时或者之后使油墨爬到通孔的内壁上。
在印刷通孔的全部内壁或部分内壁的情况下,可以使用真空淀积和溅射,金或铂被足够深地淀积或印刷,以便达到平板部件的槽的附近。在这种情况下,如果通孔是锥形的,则可以在通孔的内壁上形成电极而不使平板部件倾斜。
此外,除去上述的电极之外,还形成用于连接具有所述芯片的检测设备中的电源端子并用于连通各个电极的电极,这些电极可以使用导电油墨印刷,利用真空淀积和溅射涂镀制成。此外,它们可以通过粘结一个薄板例如铜版,然后,通过刻蚀形成导线图形,并被转移或粘结到其上形成有图形的铜箔上。
此外,通过在具有槽的平板部件之外的第三个平板部件上形成电极和导线以及被制造的项目,并使用上述方法将该平板部件(盖板)和具有槽的平板部件叠置,使第三平板部件被夹在中间,可以提供具有电极和导线的设备。
在任何情况下,材料和尺寸应当这样选择,使得当施加高电压时产生的热量可以被控制而对电泳现象没有影响。
(流体)
本发明要分析的流体原则上是液体或气体,尤其是它们的水溶液。可以处理有机溶剂和气态物质,不过在任何情况下,它们不应当具有对树脂和类似的芯片材料及黏合剂的腐蚀性、溶解性和漂白作用。在采用电输送液体的情况下,最好采用水溶液作为分析的对象。
(热透镜)
在关于本发明的分析仪的芯片中,由电渗流、电泳或其它合适的方法精确地控制试样自身的流量。在试样被稀释和根据需要和其它试剂反应之后,使用上述方法在通道的下游检测被测物质。
图1表示使用基于光热效应形成的热透镜的检测方法的原理。当试样被通过透镜会聚的激光束(激发光)照射时,由激发光从被包含在试样中的测量对象产生热量(光热效应),激光焦点附近的折射率由于发热而降低。由于例如热扩散效应而形成折射率的空间分布。通过这个区域的光由于折射率的分布而不沿直线传播,而是产生和由透镜产生的相同的光效果。这些虚拟透镜的效应被叫做热透镜效应。例如在水的情况下,其在室温下折射率的温度系数是负的,便产生和凸透镜相同的效果。透镜效应的强度(透镜度)和产生的热量即受激分子数成正比。此时,当用于检测光的另一个激光束发出时,检测激光束便由于透镜效应比原始光路膨胀和收缩。根据检测激光束的变化大小,可以测量由测量对象发出的热量或者所吸收的光的数量,因而可以对测量对象进行定量测量。在原理上,因为在激发激光束的焦点附近形成热透镜,所以不需要长的光路,因而适用于在微小的区域内检测试样。
通过提供具有这种分析仪的热透镜检测设备,可以测量利用现有技术由于光路的长度和芯片表面的垂直宽度那样小,即和槽的深度那样小(约为1到1000μm)而难于测量的被测物质的浓度(对芯片表面的角度不必是直角)。
如前所述,有机聚合物制成的平板部件的槽的宽度和深度大约是1-1000微米,因此在垂直于板的表面方向上的光路长度(对芯片的表面的角度不必是直角),即沿垂直或倾斜于流体流动的方向的光路长度和槽的深度那样小。不过,使用热透镜检测方法,即使在这样的光路长度下,也能以足够高的灵敏度检测被测物质。因而,光热检测方法变得需要复杂的通道结构来提供长的光路,所以可以降低芯片成本。此外,可以利用小型的、廉价的和简单的光学设备例如半导体激光器和光电二极管的组合进行检测。不过,关于用于检测的芯片的材料,要求对激发光具有小的吸收率。另外,如图1所示,除去主要用于检测浓度的透镜之外,还形成相应于热透镜的区域,因而引起误差。
作为使用光热检测方法的检测设备,需要具有被对象物质吸收的波长和具有足够的输出以便用于形成热透镜的激发光源。激发光可以是具有所需波长的光,其通过使用棱镜从氙灯中获得,或者从能够激发所检测的对象物质的波长的激光器中获得。作为激光器,可以使用He-Ne激光器,Ar激光器,二氧化碳激光器,YAG激光器等,不过使用半导体激光器可以使得设备体积小,这适用于进行POC分析和环境测量。检测光源可以具有小于激发光的输出的输出,其波长可以和激发光相同或不同。最好是,激发光和检测光在毛细管通道内或者在毛细管附近聚焦,因而在这种情况下需要聚光镜。
激发光由斩波器及其类似物产生,其是大约0.1-10ms的脉冲光。此时,由光电二极管、CCD摄象机、光电倍增管等捕获的检测光经过和上述斩波器同步的同步放大器进行信号处理,只取出由热透镜引起改变的部分。此外,关于检测光的检测,从缩小设备的体积看来,使用光电二极管是合适的。
同步放大器可以利用功能简单的半导体元件被简化。此外,为了发出激发光的脉冲,可以用电的方式调制半导体激光器。此外,当检测检测光时,一般使用同步放大器,但是在激发光和检测光的轴线附近的光通量可以利用在日本专利公开9-229883中披露的暗视野型的光热光谱分析仪中使用的方法利用屏蔽板被屏蔽,因而只检测由热透镜发出的检测光。此外,其可以利用用于激发光脉冲的功能集中的LSI等代替。
此外,在本发明中,不需要使用涉及计算一个微小空间内的分子数的绝对灵敏度,只需要能够利用高的灵敏度测量毛细管中的物质的浓度。即,需要高的浓度灵敏度。换句话说,热透镜应当覆盖毛细管的整个的预定截面,使得在其中存在的测量对象物质的分子数增加,因而增强热透镜的效果。
此外,所述预定的截面是在垂直于包括毛细管中流体的流动方向和上述的激发光的光轴的平面当中由包括光轴的平面截取的一个截面。此外,所述光轴最好垂直于但是也可以倾斜于毛细管中的流体的流动方向。
不过,由于热扩散等因素的影响,如果激发光覆盖太广,则每单位空间的光的数量被减少,因而热透镜的效果被减少,因而激发光的宽度有一个最佳值。在本例1的情况下,对于50微米深的毛细管使用NA=0.4的物镜,在毛细管深度方向中心的激发光(最大光量的13.5%)的光束直径为38微米,利用热透镜检测方法提供输出的最大值。如果热透镜被加宽,则在由有机聚合物制成的芯片中也形成热透镜,从而产生背景,并明显减少测量的灵敏度,如上所述。
由此可见,热透镜应当在上述的预定截面的一部分中被形成,使得预定成分的浓度灵敏度足够大,以便分析上述的预定成分。为此目的,激发光应当被调节,使得具有合适的会聚度,并在合适的位置聚焦。
有几种用于调节所述热透镜大小(温度发生变化的范围)的方法,不过也可以通过调节通过激发光照射毛细管的物镜的数值孔径来实现。当对于本发明的芯片直接使用一般透镜时,例如在JapanAnalytical Chemical Association 44th Meeting(1995)Abstraacts IC05说明的显微镜透镜系统时,就不需要高的对象物质的检测灵敏度。热透镜的检测部分的毛细管的深度和宽度的尺寸最好大约20微米或更大。另一方面,其中提及在上述的显微镜热透镜中,利用70倍的放大倍数实现大约4微米的激发光光束的直径,进一步增加显微镜的放大倍数可以使激光束的直径减少到亚微米的数量级,以便增加绝对灵敏度。本发明人测量了大约4微米的光束直径的激发光在热透镜检测方法中的输出,其中使用检测部分的深度和宽度都是50微米的毛细管,并且发现检测的灵敏度是低的。
此时,数值孔径被减少到大约0.1,以便把光束直径增加到大约50微米,作为考虑聚光镜的不同的数值孔径的实验结果,并且在本例中,发现检测灵敏度有所改善。这或许说明这样的事实,即,在常规的热透镜检测方法中,利用光学聚光镜使激发光高度地被聚焦在试样溶液上而成为会聚光,并且所形成的热透镜的厚度被减少,以便增加涉及在微空间内最多可以检测到多少个物质的分子的绝对灵敏度,在试样溶液的每个固定的空间对物质进行定量的浓度灵敏度是低的。
另一方面,在医学诊断、环境分析等领域中,重要的是要求浓度灵敏度高,而不要求绝对灵敏度高。因此,和常规的热透镜检测方法不同,激发光的会聚度被减小,热透镜被加宽到大约等于通道的截面积,从而确保稳定的电渗流,借以使得能够增加浓度灵敏度,并且利用能够形成稳定的电渗流的小的横截面积的的毛细管以高的灵敏度检测物质。
下面说明利用热透镜检测方法精确地分析在本发明的芯片中形成的毛细管中的物质的过程。
包括图2所示的显微镜的每个光学部件被置于稳定的实验桌上。实验桌最好具有抗振功能。此外,用于使激光束会聚的显微镜包括用于从外部直接引入激光束的入口。此外,把被置于激发光的光路上的斩波器的频率调整到116Hz。这个值可以被改变,只是需要小心,以便防止从噪声源例如电源产生噪声。
首先调整激发光、检测光和基本上位于激发光和检测光的各自光路的中点的扩束器的光轴。尤其是对于检测光,要进行严格的调整,使得即使光束的准直度改变时,其轴线也不偏移。此时,扩束器的放大倍数被设置为10倍。接着,使用二向色反射镜把所述两个激光束设置成同轴的。二向色反射镜对激发光具有90%或更高的透射率,对于检测光具有80%或更高的反射系数。由于这些特性,便可以把激发光和检测光设置成同轴的,同时又能减少光量的损失。在它们被设置成同轴之后,改变检测光的扩束器的准直度,并且借助于在显微镜下目测,使激发光和检测光的同轴性能增加到这样的程度,使得不会减少和激发光的同轴性能。
把用于测量的芯片置于显微镜下,把试样引入芯片中形成的毛细管中。然后,进行高度调整,使得激发光的焦点在毛细管深度方向的中心。如果毛细管的深度(宽度)范围是50-100微米,则物镜可以在0.2-0.8NA的范围内调整,并且灵敏度适用于0.2,0.4和0.6NA三个点。通过上下稍微移动芯片,同时观察在空气/基片的交界处或基片/毛细管的交界处的反射进行高度调整。在这种情况下,可能由于目测而产生大约等于激发光的焦深的误差,在数值孔径是0.4的物镜的情况下,误差的大小可能是2微米,但是这样大小的误差不会引起问题。首先,放入试样的芯片的高度使用数值孔径为0.2的物镜按照上述被调整。此时,扩束器被这样调整,使得激发光和检测光的聚焦位置之间的差几乎等于毛细管的深度,而检测光的聚焦位置从激发光的聚焦位置向着物镜移动。在这种情况下,其大约为50微米。扩束器被这样调整,使得检测光会聚,并且检测光的聚焦位置从激发光向物镜移动。在这种情况下,同步放大器的输出,即使用热透镜检测方法的输出被改变。此时,同步放大器的时间常数被设置为1秒。在这种情况下,为了确保产生足够大的值和在光检测器中不存在激发光的杂散光,在只施加激发光的条件下,检查热透镜检测方法的上述的输出是否被充分地减小。接着,调整检测光的扩束器的会聚角,并且被调整到一个信号最大的位置,同时观察热透镜检测方法的输出。上述的操作对于0.2,0.4和0.63点进行,并选择能够提供最佳灵敏度的数值孔径。取具有50微米的深度的毛细管为例,当使用数值孔径为0.4的物镜时,利用热透镜检测方法可以获得最高的浓度灵敏度。
此外,可以利用热透镜检测方法检测的对象不受限制,只要它们吸收激发光即可,但是它们应当和试样中的其它物质分开,特别是吸收激发光的物质和吸收检测光的物质,或者对于在进行光热转换之前的检测光的波长具有影响的物质。根据灵敏度,检测光的吸收程度最好在1000-100000摩尔的范围内。
不吸收或者极少吸收检测光的检测对象物质被转换成吸收激发光的物质(在可见光线的情况下是色素),用于利用酶的反应组合进行测量,在所述组合中利用检测对象物质作为基片。此外,使用对于检测对象物质的抗体,所述抗体或者二次抗体利用吸收激发光的物质被标记,并测量直接产生的激发光或作为酶反应结果而产生的激发光。
在生物材料作为检测对象物质的情况下,例如,利用和酶的反应,可以将它们最终转换成下列物质,在组合中使用检测对象物质作为基片(Aoyama,N.Clinical Examination,41:1014(1997)),即,转换成吸收激发光的物质,它们是下述物质的浓缩产物:
N-乙基-N-(3-甲基苯基)-N′-乙酰亚乙基二胺(EMAE);
N-乙基-N-(3-甲基苯基)-N′-琥珀酰亚乙基二胺(EMSE);
N-乙基-N-(3-磺丙基)-3,5-二甲氧基苯胺(DAPS);
N-(3-磺丙基)-3,5-二甲氧苯胺(HDAPS);
N-乙基-N-(2-羟基-3-磺丙基)-3,5-二甲氧基苯胺(DAOS);
N-(2-羟基-3-磺丙基)-3,5-二甲氧基苯胺(HDAOS);
N-(2-羟基-3-磺丙基)-3,5-二甲氧基苯胺(HSDA);
N-乙基-N-(2-羟基-3-磺丙基)-3-甲基苯胺(TOPS);
N-乙基-N-(2-羟基-3-磺丙基)-3-甲基苯胺(TOOS);
N-乙基-N(2-羟基-3-磺丙基)-3,5-二甲基苯胺(MAPS);
N-乙基-N(2-羟基-3-磺丙基)-3,5-二甲基苯胺(MAOS);
N,N-二(4-磺丁基)-3,5-二甲基苯胺(MADB);
N,N-二(4-磺丁基)-3,5-二甲氧基苯胺(DADB)等,以及
4-氨基安替比林或吸收激发光的物质,例如:
二{4-[N-3′-磺基-正丙基]-N-n-乙基}氨基-2,6-二甲基苯基}甲烷(Bis-MAPS-C2);
二{4-[N-3′-磺基-正丙基]-N-正丙基}氨基-2,6-二甲基苯基}甲烷(Bis-MAPS-C3);
以及
二{4-[N-3′-磺基-正丙基]-N-n-丁基}氨基-2,6-二甲基苯基}甲烷(Bis-MAPS-C4)。
当这些反应在芯片中进行时,可以使用管子和针从芯片的外部提供试剂溶液。此外,预备含在小容器例如塑料袋中的试剂溶液(可以是聚乙烯,聚丙烯,聚酯,尼龙,乙烯聚合物氯化物及其类似物,只要它们不和试剂反应即可),然后通过在外部利用针把袋压破,把试剂输送到芯片中的试剂容器中。此外,还有一种方法,其中试剂作为干燥的固体被包含在芯片中,然后利用芯片外部或者内部的水或者来自缓冲容器中的水注入含有固体试剂的部分,使试剂具有预定的浓度。
此外,可以直接把试样置入芯片中。另外,在分析河流污染或分析尿样的情况下,试样可以在预处理时借助于膜过滤器被浓缩,按照分子量被分离。此外,试样可以在通过利用过滤器除去尘土和血细胞之后被引入毛细管。
(流量比)
在本发明的毛细管的情况下,可以制造旨在用于不同操作的通道部分,例如,旨在用于固定数量的试样的通道部分,旨在用于混合试剂和试样的通道部分,旨在用于输送试样和试剂的部分。在使用电渗流作为液体输送装置的情况下,除去上述的通道部分之外,还要制造旨在用于电泳分离的通道部分。当然,一个通道部分可以具有两种或多种用途,而不管液体输送装置,例如用于输送液体的泵输送或电渗流输送。此外,对于本发明的芯片,可以由旨在用于一种操作的通道部分构成,也可以利用旨在用于不同操作的多个通道部分的组合构成。由此可见,所述设备不只是能够进行简单的定性分析,而且能够提供精确的定量分析和所需的反应。
旨在主要用于定量试样的通道部分的形状如图3所示,其中两个通道呈十字形互相交叉,或者如图4所示的形状,其中两个通道和一个通道汇合而分别形成T形,并且图4所示的形状是优选的。在具有图3所示形状的通道中,试样被这样定量:在某个时间间隔内,通过使试样从A流向B,随后停止流向B,然后使试样从A流向D,然后停止从A的流动,接着使流体从C流向D。
此外,在具有图4所示形状的通道中,试样被这样定量:使试样从A流向B,随后停止流动,然后使试样从C流向D。在这种情况下,试样的定量借助于毛细管的截面积和T形通道汇合点E与T形通道汇合点F之间的长度来实现。对于这种形状,试样的数量只由毛细管的截面积和汇合点E与汇合点F之间的长度确定,而不管流体的流速和流体流动的时间间隔,只要毛细管具有高的尺寸精度。这可能是一种更可取的试样定量方法,因为可以通过改变毛细管的截面积和汇合点E与F之间的长度任意地设置试样的数量。
旨在用于混合和稀释试剂和试样的通道部分的形状包括一种这样的形状:基本上在通道的中点具有被加宽与/或加深的区域(所述区域的尺寸为毫米到厘米的数量级),用于和定量试样相结合进行混合和稀释。
此外,最好采用以下的使液体均匀的处理:通过使液体暂时停止流动,借助于扩散使液体均匀,或者借助于机械晃动使液体均匀。特别是最好采用能够进行机械晃动的结构(例如设置搅拌棒和使用磁力进行搅拌),其优点是基本上不需要时间便可使液体均匀。
此外,取决于通道结构,旨在用于混合和稀释试样和试剂的通道的形状可以包括这样的形状:其中一个通道和另一个通道汇合,以及多个通道在一点和一个通道汇合。通过使一个通道和另一个通道汇合,或者使多个通道和一个通道汇合,可以只利用通道形状进行混合和稀释操作。此外,此时,可以通过改变各自的流量使混合和稀释以不同的比例进行。在使用泵输送液体的情况下,可以利用机械方式改变被汇合的每个通道中的流量。此外,在使用电渗流输送液体的情况下,可以通过改变截面尺寸和要被汇合的每个通道的长度、改变对每个通道提供电压的方式、以及改变利用表面处理对每个通道的内表面的充电状态来改变要被汇合的每个通道中的流量。此外,在外部具有泵的情况下,泵的种类不受限制,其中包括具有注射器泵的产生气压的系统,在所述压力下将流体推出,还包括吸力系统等等。在这种情况下,最好在汇合区域提供一个隔板结构,并在汇合区域后面提供一个通过扩散使液体均匀的通道。用于使液体均匀的通道部分的形状例如包括直线形状和弯曲以及螺旋形状。此外,必须确保使混合液体进行预定的反应所需所时间,而所需的反应不使用用于测量反应时间的附加的装置,其中通过使一个汇合点和下一个汇合点之间的通道距离或者检测部分是一个按照混合之后获得的预定的流量所需的距离。
关于输送流体的装置,可以使用机械装置例如泵,或者使用电装置例如电渗流。
在毛细管中的流体是通过使用由位于芯片外部的驱动装置操作的液体输送泵或抽吸泵输送的情况下(也包括在芯片内部的泵由芯片外部的驱动装置操作的情况),流量可以由泵的排出或吸入流量控制,或者利用包括使用流量控制阀的机械装置控制。
此外,和上述的相反,也可以通过使一个通道分成多个通道实现分流(对通道分流)。
在使用电渗流作为液体输送装置的情况下,旨在主要用于电泳分离的通道部分的形状包括直线形状和弯曲形状,例如弯道或螺旋形。如同弯道和螺旋形的弯曲形状和直线形相比,可以增加分离能力,因为其可以使用于分离的通道长度大于芯片的较长边的长度。
通过改变通道形状(构型),本发明的分析仪可以用于多种分析。例如,可以提供这样一些构型:其中心在用于混合和分离的通道上,用于定性分析的构型;用于定量采样和用于分离的通道相结合的构型;其中心在用于定量混合的通道上,用于和分离有关的定量分析和用于和反应有关的定量分析的构型;用于定量采样的通道和用于混合的通道结汇合和用于分离的通道结合,用于和反应有关的定量分离分析的构型;以及主要具有用于定量采样的通道和用于混合的通道用于和分离无关的构型。
在按照本发明的分析仪的芯片中,试样通过电渗流、电泳或其它合适的方法进行控制,并进行稀释以及和其它试剂的反应。此外,对于例如汇合这些流体的操作,定时一般应当被精确地控制。已经发现,下述的方法可以精确地进行这些操作,所述方法简单而不使用额外的装置,所述方法是:在预定的流量下使各个流体混合与反应,使毛细管具有足够的所需长度,用于使汇合的流体在预定流量下在一定的时间间隔内流动,在所述的时间间隔内,能够进行混合和反应。此外,按照本发明的流量指的是在某个时间间隔内在毛细管中运动的液体的体积。
在下面的说明中,结合附图详细说明关于混合和反应技术的一部分。在下面的说明中,为了简化,假定所有通道具有相同的深度,而在实际情况下,这些深度可以不同。类似地,假定在汇合之前所有流体的流速,即单位时间移动的长度等于v。同样,在实际情况下各个流体的流速是不同的。在以下的说明中,假定每种流体在汇合之前连续地以v运动而永不停止。
图5表示一个通道,其中流体1和流体2在汇合点1汇合,并经过一个预定的时间进行混合和反应,此后,使流体1和流体2的混合物与流体3汇合。在图5中,流体1和流体2在到达汇合点1之前,其通过的毛细管的宽度w等于a,在它们汇合之后从汇合点1到汇合点2通道的宽度也等于a。在这种条件下,显然,在汇合点1和汇合点2之间流动的混合物的流速等于2v。此外,显然,流体1和流体2的混合比是1∶1。假定在汇合点1和汇合点2之间的通道长度等于k,则汇合的流体从汇合点1运动到汇合点2所需的时间是k/2v。因为k和v的值可以通过调整毛细管的构型和液体输送装置等而被单独地调节,所以它们可以被这样调节,使得可以提供足够的时间用于混合和反应,从而可以精确地调节在下一步和流体3汇合之前的时间,而不需外部定时器之类。因此,最终被汇合的流体数量是3个或更多个,3种流体或多种流体可以在同一点汇合。这在以下的说明中保持不变。
图6表示另一个例子,在图6中,流体1和流体2通过的通道的宽度w和图5的情况相同,但是,在它们在汇合点1汇合之后通道的宽度等于2a。在这种条件下,显然在汇合点1和汇合点2之间流过的流体1和流体2的混合物的流速被保持为v。在这种情况下,如果用于使流体1和流体2进行混合和反应所需的时间和图5所示的情况下的时间相同,为此,在汇合点1和汇合点2之间的通道的长度可以被设置为k/2,如图6所示,或者在图6中的流速v对在图5中的流速v的比可以被设置为2∶1,而保持长度为k。不管采用哪种方法或者使用v和k值的合适的组合,基本上可以自由地被确定,虽然有时受到芯片尺寸和液体输送装置的限制。此外,如果从汇合点1到汇合点2的宽度w被设置为不等于2a的值,则选择的范围可以进一步放宽。此外,在这种情况下,流体1和流体2的混合比也是1∶1。
图7表示再一个例子。在图7中,流体1和流体2流动的通道的宽度w分别等于b,和图5、图6的情况不同,它们在混合之后通道的宽度w等于a+b。在这种条件下,显然,在汇合点1和汇合点2之间流动的流体1和流体2的混合物的流速被保持为v。在这种情况下,如果用于流体1和流体2的混合和反应所需的时间和上述的图5、图6的相同,为此,从汇合点1和汇合点2的通道的长度可以被设置为k/2,如图6所述,或者在图7中流速v对图5中流量的比可以被设置为2∶1。不管采用哪种方法或者使用v和k值的合适的组合,基本上可以自由地被确定,虽然有时受到芯片尺寸和液体输送装置的限制。此外,如果汇合点1和汇合点2之间的通道的宽度w被设置为不等于a+b的值,则选择的范围还可以放宽,如结合图6所述。这样,可以以a∶b的混合比混合流体1和流体2并实现所需的反应,而不用使用复杂的机构。
图8表示一进一步扩展图5到图7的例子。供流体1到流体4流动的通道的宽度分别等于a,b,c,d,汇合点之间的长度分别等于k/2和j。此外,从汇合点1到汇合点2的通道宽度等于a+b,并且从汇合点2到汇合点3的通道宽度等于a+b+c。当然,因为对用于混合所需的扩散长度和芯片的尺寸具有某些限制,故这些值对通道宽度/通道长度进行折中,并且可以在实际的设计中改变。为了按照附图进行解释,在汇合之后的流速等于v,如图5到图7所示,并且在流体1和流体2汇合和相继的流体3与它们汇合之间的的时间等于k/(2v),流体3和流体1、流体2的混合物的汇合和相继的它们和流体4的汇合之间的时间等于j/v。而且k/(2v)和j/v的值可以是相同的,但是并不需要相同,它们由用于混合所需的长度和用于反应所需的时间确定。由此可见,可以在预定的时间间隔以混合比a∶b∶c∶d成功地混合流体1到流体4。此时,即使要被汇合的流体数量增加,也可以在预定的时间间隔内以相同的方式连续地成功地混合所需的流体。
下面利用图9到11进一步详细说明实现上述说明的实施方案。
在下面的说明中,使用电渗流作为液体输送装置。
本实施例的毛细管通过使预定平板部件相互叠置而成,并且由有槽的板31和盖板32构成,在板31的表面上具有和确定的通道一致的平面形的槽,盖板32和有槽的板的有槽的表面层叠在一起。在下面的说明中,相互层叠的所述有槽的板31和盖板32被称为芯片。图9是有槽的板31和有槽的表面侧的平面图,图10是表示和所述有槽的板31的有槽的表面侧相对的表面的平面图,图11是相应于图10中a-a’线的芯片的局部截面图。
相应于引入液体的部分和用于存储废液的部分和形成有槽的板31的通道的槽的部分具有位于板的表面上的圆形通孔19到22。这些通孔当中,液体引入侧的通孔19到21被用作试样、试剂及其类似物的容器,通孔22被用作缓冲容器和废液容器。所述有槽的板31可以利用PMMA的注模被制成,其中使用在空腔的表面上具有相应于和确定的通道一致的平面形槽的凸起和凹陷的模具。
如图9所示,所述的毛细管包括和试样引入容器19相连的试样通道23,和第一试剂引入容器24相连的第一试剂通道24,和第二试剂引入容器21相连的第二试剂通道26,被提供在相应于试样和第一试剂之间的反应时间的长度中的第一混合通道25,和被提供在相应于试样和第二试剂之间的反应时间的长度中的第一混合通道27,并使用第二混合通道27的缓冲容器/废液容器一侧上的边缘作为检测器的检测部分29。
此时,试样通道23,第一混合通道25和第二混合通道27(包括检测部分29)被制成连续的直线形状,第一试剂通道24的汇合点5被设置在所述直线形的连续通道的上游侧上的预定位置,并和汇合点5的距离等于相应于在试样和第一试剂之间进行反应所需的长度。此外,第二试剂通道26的汇合点6被这样设置,使得第二混合通道27的检测部分29和上游侧之间的距离等于相应于在试样和第二试剂之间进行反应所需的长度。此外,第一试剂通道24和第二试剂通道26以锐角通过直线形通道被汇合。
此外,试剂混合装置由分别由第一试剂通道24、汇合点5和第一混合通道25,以及第二试剂通道26、汇合点6和第二试剂通道27构成。
如图11所示,电极30被提供在作为第一试剂通道24的上游的边缘的的等同物的通孔20的内表面上。以类似方式,在作为试样通道23的上游的边缘等同物的的通孔19的的内表面上、在作为第二试剂通道26的上游的边缘等同物的的通孔21的的内表面上、在作为混合通道27的下游的边缘等同物的的通孔22的的内表面上也提供有电极。
如图10所示,每个电极30利用不同的引线28和被提供在有槽板31的液体引入侧的边缘上的一不同的电极33相连。这些电极33和检测器中的电源端子相连,并被如此设置,使得从每个电极33向通孔19和通孔22之间、通孔20和通孔22之间、通孔21和通孔22之间分别施加电压。要对每个电极33施加的电压由检测器中的电压控制装置响应在试样通道23、第一试剂通道24、第二试剂通道26确定的每个流量被控制。
此外,这些电极30,33和引线28被这样形成:在利用黏合剂层叠有槽板31和盖板32之后,利用含有颗粒例如银和铜的导电油墨对和有槽板31的有槽表面侧相对的表面进行印刷。此外,如图11所示,通孔20的截面呈锥形,使有槽的表面侧较窄,借以使得能够通过印刷在通孔20的内表面上提供电极30,同时保持有槽板31的水平的板平面。
在使用所述分析仪的情况下,首先,在芯片22的上述缓冲剂容器中加入预定量的缓冲剂,以便在所有通道23-27内充满缓冲剂,然后,在第一试剂容器20、第二试剂容器21、和试样容器19中分别放入预定量的第一试剂、第二试剂和试样。接着,在通孔19和通孔22之间、通孔20和通孔22之间、以及通孔21和通孔22之间,借助于电压控制装置的电压设置分别施加相应于每个通道流量设置值的电压产生的电渗流。此时,流量的设置值被如此设置,使得试样通道23的流量对第一试剂通道24所流量的比等于试样对第一试剂的混合比,第一混合通道25的流量对第二试剂通道26的流量的比等于试样和第一试剂对第二试剂的混合比。
这样,借助于电渗流,在每个通道中的液体以相应于每个通道的设置值的流量运动。具体地说,试样和第一试剂以相应于混合比的流量向汇合点5运动,并相应于在第一混合通道25中的它们的流量的比的比例被混合。然后,在试样和第一试剂之间的反应被完成之后,它们到达汇合点6,并且它们通过第二混合通道27流动。此外,第二试剂以相应于上述的混合比在第二混合通道27中和试样与第一试剂的混合物混合,并在完成试样和第二试剂之间的反应之后,通过检测部分29流动。
因而,按照这种分析仪,一旦所述芯片被设置在下述的检测器中,试样与第一第二试剂的混合和反应便以预定的比例自动地进行。检测部分29使用下述的检测器进行检测,以便自动地检测一种被分析的成分。
为了更清楚和更具体地说明本发明,下面以试样和两种试剂,例如血浆中的总胆固醇的测量为例进行说明。
按照常规,试样被称重,例如取3μl吸管,并且例如和通过称重取的200μl的第一试剂溶液(试剂1)混合,使它们反应例如3分钟。此后,将通过称重取的100μl的第二试剂容器(试剂2)加到反应物的溶液上并被混合。在预定时间内使它们反应之后,例如10分钟,测量在反应物混合物中的彩色试剂的吸收率,从而确定在试样中的检测的对象物质(例如胆固醇)的数量。
为了使用本发明的方法完成所述测量,试剂1以2000nl/min流动的通道和试样以2030nl/min的流量流动的通道汇合,并且如此设计通道长度,使得可以获得3分钟的反应时间。然后,试剂1和试样的混合物的通道和试剂2以1000nl/min的流量流过的通道混合,从而提供3030nl/min的流量,并且如此设计通道的长度,使得可以获得10分钟的反应时间,最后,例如采用光热检测进行检测。
即,所述流量可以借助于泵、电压等进行控制,借以能够以确定的比例进行混合和反应,而不用称重和取一定体积的溶液。特别是,在反应后的液体可以被直接地设置在检测器中而不需要进行特定分离的情况下,本发明尤其有用,例如,用于医学诊断中进行生化项目I的测量。
此外,在上述的说明中,根据需要,借助于改变深度来改变毛细管的截面积可以改变线速度,如上所述。
图12示出了通道图形的一个例子。其中容器1是试样的容器,容器2是试剂1的容器,容器3是试剂2的容器,容器4是废液的容器。试样在汇合点5和试剂1混合,在汇合点6再和试剂2混合。在这种情况下,两个槽形成的角度是直角,但是如图13所示,它们也可以以锐角汇合,借以进一步减少由于来自汇合物的压力而引起的流量变化的影响,因而强迫进行混合。此外,为了更有效地进行混合,可以在汇合区域提供用于干扰流动的障碍物例如挡板,或者借助于使汇合区域的槽的宽度加大,通过扩散并增加驻留的时间进行混合。
在如上所述试样和试剂反应之后不需要分离的情况下进行检测时,特别是在进行生化实验项目的情况下,可以在从混合到反应到检测一致的通道中进行连续地处理,而不需称重和取一定的数量进行分离。例如,一般地说,在要被检测的成分根据吸收的波长不必由其它杂质中断便可以被检测的情况下,以及在需要待检测的物质被改变的情况下,例如在试样中的羟基团被氧化并使用分光光度计检测所得的碳酰基团的情况下,可以从以预定的流量进行混合到反应和检测不通过分离在连续的通道中进行处理。
本发明的方法可以连续地进行几小时。例如,在前一节的说明中,假定用10秒钟进行检测,试剂1和试样最少利用10秒钟被汇合(一般略长一些,20秒钟),并在3分钟之后,它们以同一方式至少用10秒钟和试剂2混合。然后,在10分钟之后,进行检测。即,在本发明的方法中,流量可以通过按照时间编程进行控制,借以使得利用最少量的试剂和试样并且不需称重和取固定的数量便可以进行高效率的微量分析。因而,流量控制的精度和可编程性以及快速反应是重要的。为了验证流量比,可以用标准的试样代替所述试样容易地进行校正。此外,芯片中的通道的尺寸可以提前分批地被检验,可以使用它们的校正值。
通过使用本发明的方法,共用一个通道,即利用简单的通道设计,不仅能够测量试样中的一种对象,而且可以测量多种对象(图14)。即,在前述的试样中,使试剂1和试样在所需的时间内相互进行反应,然后在一个小的时间间隔之后,预定流量的试样的通道(当和试剂1混合时,对于所述流量不需要是相同的)和以另一个预定流量流动的试剂3的通道汇合。然后,经过预定时间反应之后,和试剂4混合,并测量试样和试剂1,2的反应所得的产物,然后,可以使用相同的检测通道检测试样和试剂3,4的反应产物。
当试样物质的数量,例如总胆固醇、甘油三酸酯、和胆红素被直接地确定时,可以用所谓的端点法测量反应产物,并且可以最少量只对一个点进行检测。另一方面,当在试样例如血液中的GOT,GPT和γ-GPT中的酶的活性存在时,则对一个点进行检测,但是最好随时间进行多次测量(检测),以便确保高的精度(比率测定)。
在这种情况下,可以在最终反应物流过的通道上的多个点进行检测,即在和与最后试剂的汇合点的距离(即反应时间)不同的通道上的多个点进行测量。为此目的,可以在检测器中在最后反应混合物的通道上设置多个检测系统,或者在一个检测系统的情况下,检测系统(光学系统)或者芯片可以被移动。热透镜检测系统沿着通道被移动,或者在通道上设置多个热透镜检测边缘,借以使得能够在短时间或者瞬时地理解随时间的变化。即,相应于反应时间的通道长度。实现三维叠置的立体芯片是困难的,但是容易通过本发明的平面芯片和高灵敏度的热透镜检测器组合来实现。
(电液体输送)
在本发明中,可以采用各种装置例如机械泵和电气装置进行液体输送,因为每种流体以预定的流量比被混合。其中,精确而简单的液体输送控制装置包括电气装置例如电渗流是优选的装置。此外,在此处所述的电气装置中,根据需要,也可以采用电压控制装置和电流控制装置。
通过控制电压控制液体输送的方法包括对毛细管中的液体施加电场借助于电泳和电渗流从而输送液体的方法(详见“Capillaryelectrophoresis”Kodansha Co.,Ltd.,等.)。电渗流是一种这样的方法,其中液体在毛细管的内表面上作为离子而运动,并且在毛细管利用玻璃和硅制成的情况下,在玻璃表面上的硅酸的质子提供迁移功率。此外,即使在由有机聚合物例如PMMA和PC制成的芯片中的毛细管的内表面上不存在特定种类的离子的情况下,也可以使由毛细管的内表面吸收的液体中具有电解质,并根据在毛细管中流动的液体的成分,具有由电解质的运动而产生的电渗流。为了产生稳定的电渗流,具有羟基团和碳酰基团的有机聚合物可借助于接枝聚合作用被加于毛细管的内表面上。
在利用电渗输送液体的情况下,在要被汇合的每个通道中的流量可以通过改变每个通道的长度和截面尺寸、改变对每个通道施加电压的方式以及通过表面处理改变每个毛细管通道的内表面上的充电状态被改变。
在理论上,电渗流和与毛细管的壁面的材料有关的ξ电位以及施加于毛细管上的电位差成比例。为了确定电渗流例如在20℃的水中的速度,当100v/cm被施加于具有75mv的ξ电位的毛细管中时,获得的电渗流的速度稍微大于0.5mm/sec。为了产生电渗流,不需要电源具有特殊的功能,不过考虑到这样的事实,即,根据毛细管的长度,可以产生大于1kV或更高的电位差,所以最好采用能够输出高电压(1kV或更高)的电源。这些高压电源最好能够直接地或者通过接口板和外部计算机相连,以便进行控制。这样,对于通过施加电位差从而产生电渗流的定时可被编程,并且可以进行电渗流的更精确的控制。在按照本发明分析仪的的芯片中,试样借助于电渗流与/或电泳被精确地控制,被进行分离和与其它试剂进行反应,然后,在通道的下游进行光热分析。具体地说,根据精确的控制,因为通过精确地按照设置的程序控制电压,电渗流能够精确地控制流量和快速地响应,所以在精确地控制流量比来进行所需的化学反应的应用中,采用电渗流是优选的方法之一。
此外,一些这样的方法,其中相应于反应开始之后的时间的反应产物被定量地检测,例如用于利用酶检测物质中的有机物的方法,在利用泵进行液体输送而在毛细管的截面中引起速度分布的情况下,可能存在精度问题。不过,在上述的电渗流中,精确的检测是可能的,因为液流在原则上是在毛细管的截面方向上没有速度差的层流。
此外,在使用泵的情况下,引起在流的中心凸起的层流,并且可以用热透镜检测方法检测到在凸起的尖部和根部之间的物质的浓度差,不过使流体成为平的层流,并且通过使用电渗流可以稳定地被检测,这也可以作为一个特点。
然而在采用泵输送液体时,通过在毛细管中提供的挡板以及提供供酶反应的足够的通道长度,促进液体均匀地混合和扩散,也可以进行精确地检测。
作为用于产生电渗流的电源,使用一种高压装置(例如Mode 1HCZE-3OPNO,25,Matsusada Precision Co.,Ltd.能产生30kV以上的高压),这些装置可以通过接口板(例如CAQCard-1200,CB-50Connector Block,National Instruments Co.,Ltd.)和外部计算机相连,从而对其输出进行控制。用于定时控制施加的电压的程序可以利用NI-DAQ驱动软件,LabVIEW等。
使用上述实施例的分析仪使得能够在医疗现场进行床旁诊断,并在病人接受诊断时,在同一天通知院外病人检测结果,因而能够根据所述结果选择治疗方法,以便快速地治疗。此外,在河流和废弃物中的危险物质的定量和定性的分析也可以在现场被容易地进行。此外,在对进口食物进行海关检验和烹调现场的快速分析期间,可以进行快速检查。
检测对象物质包括化学物质、蛋白质、核酸等,没有特定的限制,但是环境污染化学物质,血液/脑脊液/唾液和尿中的生物物质、来自器官/组织/粘膜的生物物质,蛋白质例如提供感染源的细菌和病毒、DNA、RNA、过敏源和各种抗体都可以作为检测对象物质。
下面利用例子进一步说明本发明的优点。
例1
下面要说明的本发明的一个例子是,通过端点化验进行血浆中总胆固醇的定量测量,其中控制三种溶液的流量,即,脂类测量标准血浆和两种用于检测总胆固醇检测包〔产品名:胆固醇E-HATESTWAKO(由Wako Chemical Co.,Ltd.制造)〕的反应的试剂溶液。借助于施加电压利用电渗流进行液体输送。
(芯片制造)
首先说明包括毛细管的芯片的制造。
测量板状有机聚合物基的吸收率,以便预测对热透镜的影响,为选择可用的聚合物基材料提供数据。下面说明测量方法和测量结果。
关于测量设备,采用由Shimadzu Co.,Ltd.制造的UV-2200A(UV-VIS记录分光光度测定法)。关于测量方法,制备厚度不同的由相同材料制成的试样,并被切割成足以盖住整个光路的尺寸,接着把试样安装在测量单元(measuring cell)插入部分上,使得平板表面垂直于光路,而不使用测量单元。首先,由相同材料制造的预备平板当中,使用两个最薄的平板进行初始校正。对于实际的测量,使用最薄的板作为参考测量吸收率,其在厚度上和要测量的试样不同。为了测量波长,使用488nm,633nm,780nm3种波长。下面说明例如材料等方面的细节。
(1)测量的试样
    (a)甲基丙烯酸树脂(Delpet 560F:t=2mm,3mm),由Asahi Chemical Industry Co.,Ltd.制造。
    (b)丙烯酸树脂(Clarex:t=0.3mm,0.5mm),由Nitto JushiKogyo Co.,Ltd.制造。
    (c)丙烯酸树脂(Sumipex:t=4.5mm,10mm),由SumitomoChemical Co.,Ltd.制造。
    (d)甲基丙烯酸树脂(丙烯酸酯:t=2mm,5mm),由Mitsubishi Rayon Co.,Ltd.制造。
    (e)聚碳酸酯树脂(Panlite AD 5503:t=1mm,2mm),由Teijin Chemical Co.,Ltd.制造。
    (f)甲基丙烯酸树脂(Deraglass A:t=2mm,3mm),由Asahi Chemical Industry Co.,Ltd.制造。
    (g)聚碳酸酯树脂(Eupilon/Sheet:t=0.5mm,1.0mm,2.0mm),由Mitsubishi Engineering-Plastics Co.,Ltd.制造。
    (h)聚碳酸酯树脂(PCSM PM600:t=0.5mm,1mm),由Takiron Co.,Ltd.制造。
    (i)聚碳酸酯树脂(矩形平板:t=1mm,3mm),由TakironCo.,Ltd.制造。
    (j)聚酯树脂(PETEC PET6010:t=1mm,3mm),由Takiron CO.,Ltd.制造。
    (k)聚氯乙烯树脂(ESS8800A:t=1mm,3mm),由TakironCo.,Ltd.制造。
    (l)层压薄膜(MS Poutch:t=100μm,150μm),由MeikoShokai Co.,Ltd.制造。
(2)测量结果
测量结果的一览如图15所示。此外,对于(a)-(l)的聚合物基,一起测量热透镜检测的输出。为了进行测量,只对要被测量的聚合物基施加激发光和检测光,并记录由热透镜检测方法在聚焦位置提供的最高输出的值。此时,测量厚度最接近于实际芯片的厚度(2mm)的试样,或者测量两种厚度不同的试样取平均值。
此外,对于(g)的由Mitsubishi Engineering Plastic Co.,Ltd.制造的聚碳酸酯树脂,由于测量位置不同而引起的热透镜检测输出的改变严重,并且可预测到例如吸收光的微晶体等物质的不均匀的分布。
由图15所示的结果可见,显然,在本质上,聚合物基体所具有的吸收比(由吸收率转换的)和由热透镜检测获得的输出之间存在有相关性。(热透镜检测的激发光的波长:633nm)。
当进行测量时,使被夹在两个玻璃板之间的二甲苯蓝色素(浓度为5μM)作为基准度量,热透镜检测的输出大约是20mV。
然后,在表面上具有槽的聚碳酸酯基利用前述的由Meiko ShokaiCo.,Ltd.制造的层压薄膜(t=100μm)覆盖,以类似方式使用具有被制成毛细管的槽的芯片测量二甲苯蓝色素(浓度为5μM),但是检测到10mV的背景光,并且由于这个背景,要精确地测量是困难的。由上述测量可见,使用的层压薄膜的吸收率对于t=50μm(150μm-100μm)是0.0085,当被转换成吸收比时,对于t=100μm,这大约相当于4%。不过,在这种情况下,使用热固黏合剂作为使用的层压薄膜,可以观察到由于其不均匀的分布而产生的背景值的改变。不过,在吸收率的测量中,因为改变被平均,所以部分的吸收比可能比4%大。此外,考虑到可能测量比上述的二甲苯蓝色素的浓度高的试剂,在这个浓度范围测量的情况下,由聚合物基引起的可接受的吸收比可以是5%。如果和下述的计算值比较,则该值是一个合理的值。
在上述的基准测量中20mV的测量值在医学诊断进行的生物物质的测量中是一个十分标准的值,当被转换成在测量中使用的50μm的深度的毛细管时,获得0.0005的吸收率的值。在本例中使用的热透镜检测器中,当使用被认为是最理想的透明基材料(背景=0mV)的合成石英时,作为检测限制的同步放大器的输出大约是0.5mV。因而,可以进行浓度被减少到1/10的高灵敏度的测量,对于实际的测量值,使其具有更高的灵敏度在维持系统精度方面是有利的,而不管是否用于医学诊断。不过,如图5所示,如果芯片本身要使用的聚合物基具有对于激发光的吸收率,则产生由热透镜检测引起的输出作为背景,因而引起误差。假定相当于上述的二甲苯蓝(浓度为5μM)的20mV的热透镜输出进行直到1/10的浓度的测量,并且直到10倍,希望直到5倍,更希望直到2倍那样高的来自测量对象物质的信号是可接受的,其作为可接受的背景范围,当高达10倍时输出是20mv,当高达5倍时是10mv,当高达2倍时是4mv。将这些值和图15所示的值一起考虑,关于测量浓度的变化,所需的吸收率为5%或更小,最好2%或更小,更好为1%或更小。
此外,将计算合理的数值。作为实际值,假定当使用光路长度为1cm的试管进行测量被转换的吸光率的值的范围为2到0.01的对象物质。这个值作为透射率等于1到97.7%,作为吸收比等于99到2.27%。假定吸收沿着光路长度均匀地进行,对于50μm的光路长度,吸收比应当是0.495到0.011%。假定来自测量对象物质的作为背景的信号直到10倍是可以接受的,直到5倍是希望的,直到两倍是更希望的,并假定由于激发光的聚焦位置的偏移而引起的热透镜效应被减少一半,则当接收直到10倍的值时为9.9%到0.22%,接收直到5倍的值时为4.95%到0.11%,当接收直到2倍的值时为1.98%到0.044%。
即,这些值表示在激发光的入口和出口之间由形成芯片的平板件吸收的激发光的吸收比,这是在光路长度为1cm的试管中的吸光率为2到0.01的物质被放入深度为50μm的毛细管中利用热透镜检测方法测量的情况下收到的。此外,这意味着,如果在激发光的入口和出口之间芯片对激发光的吸收比达到10%,则可以使用1cm的试管由吸收计测量的物质的测量是不可能的,即使可以接受最大值作为背景。因而,实际的吸收比的可接受范围的上限可以是2到5%。如果对照上述的聚合物基的实际吸收比和热透镜检测的输出,这个值可能是合理的。
不过,当在将来对于光路长度为1cm的当前试管的情况测量其转换的吸光率远大于2的物质时,可接受的树脂聚合物的吸收比的值还可以增加。此外,显然,即使增加毛细管的深度,获得类似的效果,并且被接受的树脂聚合物的吸收比可以被增加。
此外,显然,在检测光的光轴离开在芯片区域中的激发光的光轴较大时,上述的背景没有影响。
下面说明制造用于检测实际的生物系统的芯片的方法。
构成芯片的平板部件利用注模被模制。用于注模的树脂是甲基丙烯酰基树脂(Delpet 560F,由Asahi Chemicl Industry Co.Ltd.制造)。关于气体,使用纯度为99%的二氧化碳。使用由Sumitomo HeavyIndustries Co.,Ltd.制造的SG50作为模制机。使用图16所示的设备作为模制设备。
在图16中,在模具101的模具腔103的周围具有吸入和排出槽104,用于通过分界面的间隙102从模具腔103抽出或吸入二氧化碳,因而吸入和排出槽104通过模具外部的通风口105和二氧化碳供应源相连。在模具腔103的外部具有O形环槽106,用于保持设置有O形环的模具腔体103具有压力。模具外部的通风口105通过气体导管111和二氧化碳源109相连。压力表和安全阀108和气体导管111相连。
模具表面由插入块或压模112形成,这种器具或压模112的表面被加工成具有精细形状的毛细管。精细形状是图17所示的形状,沿a-a’取的截面的槽的形状呈梯形(凸起),其宽度为301μm,深度为50μm,截面积为14500μm2
树脂从入口通过一个通道被注入模具腔体103。
模具表面条件的可转移性借助于利用光学显微镜观察和利用激光显微镜进行形状测量进行评价。
此外,被模制的产品通过光学显微镜进行观察,截面的槽的形状利用光学显微镜和电子显微镜观察,利用激光显微镜和其类似物进行形状测量。
通过使用图16所示的模制设备,二氧化碳在5.0MPa的压力下被注入腔体表面温度为80℃的模具中。然后,温度为240℃的甲基丙烯酰基树脂被注入模具中,在圆筒中的树脂被保持80MPa的压力10秒钟,被冷却20秒钟,然后取出模制的产品。被注入模具中的二氧化碳在填充树脂的同时被连续地排放到大气中,模制成其表面具有槽的平板部件。
所获得的模制产品的表面上是光滑的,在相应于压模的a-a’线的截面部分的区域传递的槽的宽度为303.0μm,深度为49.7μm,截面积为14300μm2。因而,利用2%以内的宽度和深度尺寸精度、4%以内的截面积尺寸精度使槽被传递。
模制的平板部件长度为120mm,宽度为80mm,厚度为2mm,并具有如图18所示的图形。在4点提供有用于保留液体的直径为3mm的通孔,容器213是试样容器,容器214是试剂1容器,容器215是试剂2容器,容器216是废液容器。容器213具有过滤器,用于分离血细胞,当试样(全血)被滴入时,妨碍检测的血细胞被除去,并把血浆送到毛细管中。关于槽的尺寸,槽217的宽度为15μm,深度为10μm,长度为1cm,槽218的宽度为200μm,深度为50μm,长度为1cm,槽219的宽度为203μm,深度为50μm,长度为3cm,槽220的宽度为100μm,深度为50μm,长度为4cm,槽221(和槽220以及检测部分的汇合点之间的长度)的宽度为303μm,深度为50μm,长度为5cm。所述模制产品使用热熔型黏合剂和厚度为300μm的甲基丙烯酰基树脂板层叠在一起而形成芯片。
然后,为了增加电渗流和清洁芯片的毛细管的内表面,毛细管的内部被充以1N-NaOH溶液(由Wako Chemical Co.,Ltd.制造),并在60℃下加热24小时。此后,毛细管的内部利用纯水(KyoeiPharmaceutical Co.,Ltd.制造)刷洗,使用PH作为指示器,直到达到中性并被干燥。
接着,利用含有银颗粒的导电油墨(MSP-600F,Mitsui ChemicalCo.,Ltd.制造)在平板部件的相对侧印刷用于连接检测器中的电源端子的导线和电极,并设置青铜制成的镀铂的金属圈作为容器的电极,从而制成了芯片(图19)。
图20是图19所示沿c-c’线的截面图。本发明的分析仪配备有电源单元,其能够以预定的电压向容器213-216、检测器和打印机供电,所述检测器能够利用光热检测在图19的223所示的位置进行检测,所示打印机用于由检测数据和输出数据计算检测结果。
<血浆中的总胆固醇的定量确定>
(标准血浆的制备)
Kyowa Medix Co.,Ltd.的用于测量脂类的标准血浆的制备方法被部分地修改,并用于制备标准的血浆。特别是,使用851μl附加的标准血浆溶液溶解一小瓶冻干的产品,并被这样制备,使得总胆固醇等于800mg/dl作为计算值,这样提供储备溶液。然后,利用附加的标准的血浆溶液对储备溶液进行稀释,从而制备作为计算值的包括200mg/dl和50mg/dl总胆固醇的溶液。
(检测装备的制备)
按照所附的协议,使用HA Test Wako Cholesterol E-HA Test Wako(Wako Chemical Industry Co.,Ltd.)
(总胆固醇的检测)
在容器216中滴入大约14μl的缓冲剂,以便用缓冲剂填满整个毛细管,接着在容器214中滴入大约14μl的试剂1,在容器215中滴入大约14μl的试剂2,在容器213中滴入大约14μl的试样。对容器213到215的电极相对于容器216施加100V的电压,因而从容器213至215向容器216产生电渗流。此时,进行细调,使得在每个槽中的流量在槽217中是1.5nl/min,在槽218中是100nl/min,在槽219中是101.5nl/min,在槽220中是50nl/min,在槽221中是151.5nl/min。为了测量流量,为了进行常规实验测量过非极化水珠的流量(由OtsukaElectronics,制造,φ:520nm)。试样和试剂1之间的反应需要3分钟,但是通道的长度和施加的电压被预先设置,使得在试样和在槽中运动的试剂混合的同时完成反应。类似地,在试样和试剂2之间的反应需要5分钟,但是通道长度和施加的电压被预先设置,使得在试样在槽中运动的同时完成反应。使用波长633nm的激光作为激发光,波长为780nm的激光作为检测光,利用光热检测方法在图19所示的检测部分223中检测完成反应的试样,如后所述。
在通道的容积需要被校正的情况下,在芯片中用于试样的容器213的附近制备用于标准试样的容器,标准试样和试剂1,2一起被输送,使之进行反应并进行测量,并且由所得结果进行校正。
此外,作为用于产生电渗流的电源,使高压电源(Model HCZE-30PNO,25,Matsusada Pricision)和外部计算机相连,利用所述计算机控制电压。此时,高压电源的输出通过接口板(DAQCard-1200,1200CB-50 Connector Block,National Instrument)被控制,使用软件(N1-DAQ驱动软件,LabVIEW)产生用于控制施加的电压的定时的程序。
(光热检测器的结构)
所使用的基于光热转换原理的检测器如图21所示(光学部件的细节被省略了)。所用的显微镜是一种倒置的显微镜(IX70,由OlympusCo.,Ltd.制造),以便容易处理载物台上的试样。这可以是一种下降型显微镜。这种显微镜已经被这样修正,使得可以引入被调成同轴的激光束。关于激光器,使用He-Ne激光器(633nm,10mW,EdmundScientific制造)作为激发光,使用红外半导体激光器(780nm,15mw,DL-4034-151,Sanyo Electric Co.,Ltd.制造)作为检测光。利用这些激光器,根据使用的试剂和所得反应物的吸收光谱可以使用具有合适频率的激光。
激光器的类型包括气体激光器、固体激光器和半导体型激光器,没有限制。关于光学系统,例如反射镜和扩束器,只使用由Melles GriotCo.,Ltd.制造的产品。用于激发的激光束利用光斩波器调制,然后经过二向色反射镜成为和用于检测的激光束同轴的激光束,并被引入显微镜,以便被加到试样上。
激光束被加到试样上之后,在使之同轴的激发光和检测光当中,利用滤波器除去激发光,把检测光引向光检测器。作为激光束接收部分的元件,考虑到处理方便,使用带有光纤的光检测器放大器(C6386,Hamamatsu Photonics Co.,Ltd.制造)。这种光检测器的光接收部分利用具有针孔的盖板覆盖。来自光检测器和检测器放大器的输出利用低噪声前置放大器(LI-75A,NF Circuit Block Co.,Ltd.制造)放大,然后被引入同步放大器进行信号处理。
使用这种检测器检测毛细管中状态的过程如下。如图21所示,首先,把芯片放在倒置显微镜的载物台上。关于物镜的聚焦,使用用于激发的激光器,使其聚焦在毛细管图形的上边缘和下边缘的位置,在此过程中参看监视器屏幕,然后把毛细管图形的上下边缘之间的中点规定为毛细管的中心位置,以实现聚焦。
此外,如上所述,当毛细管的深度范围为50μm到100μm时,物镜可以在NA=0.2到0.8的范围内调整,可以从0.2,0.4,0.6的数值当中选择数值孔径,使得可以获得最佳灵敏度。不过,在本例中,毛细管的深度是50μm,当使用0.4的数值孔径的物镜进行热透镜检测时获得了最高的浓度灵敏度。在这种条件下,为了获得足够有效的值,并且在光检测器中不存在激发光的杂散光,进行检查观察上述的热透镜检测的输出在只有激发光的条件下是否被足够地减少。接着,把检测光扩束器的会聚角调整到能够提供最大信号的位置,同时观察热检测的输出。
此时,为了确定本例的最佳聚焦位置,芯片被放在X-Z载物台(由Sigma Koki制造)上,使得芯片沿着z方向利用μm装置被控制,并且在使芯片沿z方向移动时检查热检测输出的变化。其结果如图22所示。在本例的情况下,因为着重于在某个区域内的浓度灵敏度而不着重于在一个超微的区域中的测量,激发光的焦点不需要等于毛细管的中心。根据浓度灵敏度,所述的激发光被更有利地施加在覆盖整个毛细管的方向上,但是与此相反,如果激发光被过度地扩散,则在测量区域内的激发光的强度便被减少,因而热扩散使得热透镜检测输出减弱,因而存在一个最佳值。在本例的情况下,如图22所示,在激发光的聚焦位置附近±50μm的范围内,即在从照射侧看时,在离开和毛细管相对的平板部件中的毛细管160μm的距离的位置,获得热透镜检测的输出。这个最佳值显然根据毛细管的宽度和深度而改变,为了增加浓度灵敏度,拓宽温度改变区域仍然是优选的。
在实现聚焦之后,试样和试剂被引入芯片,进行试样和试剂的混合和反应,并把含有反应产物的溶液引入检测部分,如上所述。
用于激发的激光器利用光斩波器被调制到例如116Hz,然后,在检测部分中流动的被包含在溶液中的反应产物被激励而产生热量。利用所述光斩波器调制的频率可能由于信噪(SN)比等因素而改变。因为用于检测的激光器的聚焦位置会由于由产生的热量而产生的热透镜而移动,因而光检测器通过针孔接收的光的量根据所述热量的值而改变,从所述改变可以分析试样中所含的预定的成分。虽然在测量期间试样的流动可以被停止或者被继续,但是在本例中在试样停止流动之后继续进行测量。来自光检测器的信号由同步放大器进行处理,在本例中使用1秒作为时间常数,只有和光斩波器的频率116Hz相同的信号才被有选择地用作输出。同步放大器的输出电压和由激发光激励的反应产物的浓度成正比,因而能够定量地检测反应产物。
对于本例的结果,使用含有800mg/dl和50mg/dl总胆固醇的标准的血清进行5次测量,从测量结果中产生校准曲线。含有等于200mg/dl总胆固醇的标准血清的测量被进行20次,并获得了3%的CV值。使用这种“分析仪”,从上述结果,可以好的可重复性检测试样中的总胆固醇。
例2
作为本发明的一个例子,下面说明这样一个例子,其中共有两种标准血浆溶液和通过修正天冬氨酸转氨酶(GOT)活性测量包(TA-LN Kainos(Kainos Laboratories Inc.)而获得的)反应物试剂被进行流量控制,从而进行定量确定在利用比率测定测量的血浆中的天冬氨酸转氨酶(GOT)。因为进行比率测定,所以不使用反应停止溶液。
(包括芯片的分析仪的制备)
首先,以和例1相同的方式利用注模模制芯片,其中和例1不同的是,二氧化碳被充入模具的压力是2.0MPa,使用70NHX作为甲基丙烯酰基树脂,并且在例1中使用的嵌套和压模具有图23所示的图形。
构成芯片的平板部件的长度是12cm,宽度是8cm,厚度是2mm,在其上形成有图23所示的图形的槽。在三点形成直径为3mm的用于接收液体的通孔,容器319,320,321分别是用于试样、试剂1和废液2的容器。容器319配备有用于分离血细胞的过滤器,且当试样(全血)被滴入时,妨碍检测的血细胞被除去,并把血浆送到毛细管中。关于槽的尺寸,槽301的宽度为30μm,深度为30μm,长度为1cm,槽302的宽度为30μm,深度为30μm,长度为1cm,槽303的宽度为60μm,深度为30μm,长度为5cm。
然后,为了清洁芯片的毛细管的内表面,毛细管的内部被充以1N-NaOH溶液(由Wako Chemical Co.,Ltd.制造),并在60℃下加热24小时。此后,毛细管的内部利用纯水(Kyoei Pharmaceutical Co.,Ltd.制造)刷洗,利用PH值作为指示器,直到达到中性并被干燥。
所述平板部件使用黏合剂和厚度为200μm的和上述平板部件相同尺寸的PMMA盖板(平板部件)层叠在一起,从而形成毛细管。然后,为了使其也可以被用于带电以便进行液体输送,利用含有银颗粒的导电油墨(MSP-600F,由Mitsui Chemical Co.,Ltd.制造)在平板部件的相对侧上(具有通孔的一侧)印刷用于液体容器的导线和电极以及用于连接电源端子的电极,从而形成用于分析的芯片(图24)。所述容器被制成锥形,从而使得不用使芯片倾斜便可以在内壁上印刷。
图25是图24中沿a-a’的截面图。所述的分析仪配备有能够向容器319-321提供预定电压的电源装置。在例2中没有使用这些电极装置,但是在例4中使用了,其中使用电渗流作为液体输送装置。此外,其配备有检测器,因而可以在图24的329的位置利用光热检测进行检测,此外,还可以利用打印机由检测数据计算测量结果并将所述结果输出。
(检测配套物质的制备)
作为检测配套物质,使用我们要求Kainos Laboratories Inc.以特定方式制造和出售的TA-LN Kainos(Kainos Laboratories Inc.)。这种配套物质和现有产品的区别在于,被溶解在通过从GOT基体缓冲剂中只除去钠N-乙基-N-(2-羟基-3磺丙基)-m-甲苯胺(TOOS)而制成的浓度为10mM的检测试剂中的钠3,5-二甲氧基-N-乙基-N-(2-羟基-3-磺丙基)苯胺(DAOS)(Dojin Chemical Laboratory Co.,Ltd.)溶液被用作GOT基体缓冲剂。
然后,一小瓶反应剂试剂被溶解在8ml的GOT基体缓冲剂中,从而提供试剂1。这种操作被这样进行,使得试剂1和下述的稀释的血浆的比是1∶1。此外,不使用在TA-LN Kainos标准协议中使用的反应停止溶液,因为借助于比率测定检测。
(标准血清的制备)
在本例中,使用血清代替全血。
Suitrol A(Nissui Pharmaceutical Co.,Ltd.制造)的制备方法被部分地修正,用于制备标准的血清。具体地说,一小瓶冻干的产品使用1174μl的纯水(Kyoei Pharmaceutical Co.,Ltd.制造)被溶解,并如此制备,使得GOT的活性等于600Karmen单位(KU)作为计算的值,从而提供储备溶液。然后,储备溶液利用纯水(Kyoei PharmaceuticalCo.,Ltd.制造)稀释,并制备包括具有300KU,150KU,75KU的活性作为计算值的血清溶液(以后称为GOT稀释血清)。此外,已经被修正的75KU,150KU,300KU的GOT稀释血清利用被26倍的容积修正的TA-LN Kainos的GOT基体缓冲剂稀释,并被用作GOT检测评价。换句话说,制备被加入10μl的GOT稀释溶液的具有250μl的修正的GOT基体缓冲剂。
(GOT的检测)
在Y形毛细管的顶部的边缘,使用聚四氟乙烯管和橡胶塞分别连接其中含有试剂1和稀释血清的微型注射器(由Hamilton Co.,Ltd.制造)。
使用的溶液被预先加热到37℃,将微型注射器装到注射器泵(由Harvard Co.,Ltd.制造)上,并输送溶液。
此时,在每个槽中的流量是;在槽301中是1.5nl/min,在槽302中是1.5nl/min,在槽303中是3.0nl/min。
使用633nm波长的激发光和780nm波长的检测光,利用光热检测以固定的速度从容器321向容器319和容器320的汇合点扫描,从已经完成反应的区域到每个反应进行点进行测量。
即,利用光热检测进行浓度测量的点以1.5cm/sec的速度沿着槽移动。具体地说,在移动一秒之后,通过识别在槽附近的定位标记,进行精确地定位,在视觉上实现聚焦,并在10秒钟内利用光热在每个点进行检测。即,在本例中,根据设置的定位标记的间隔,可以在短的时间内检测作为比率测定的特征的检测值的变化率。
在通道的容积需要被校正的情况下,在芯片中用于试样的容器的附近制备用于标准试样的容器,标准试样和试剂1一起被输送,使之进行反应并在试样测量前或后进行测量,并且由所得结果进行校正。
(光热检测器的结构)
对于基于光热转换原理的检测器,使用和例1相同的检测器(图21)。
所用的显微镜是一种倒置的显微镜(IX70,由Olympus Co.,Ltd.制造),以便容易处理载物台上的试样。这可以是一种下降型显微镜。这种显微镜已经被这样修正,使得可以引入在显微镜外面的光学系统中被调成同轴的激光束。关于激光器,使用He-Ne激光器(633nm,10mW,Edmund Scientific制造)作为激发光,使用红外半导体激光器(780nm,15mw,DL-4034-151,Sanyo Electric Co.Ltd.制造)作为检测光。作为这些激光器,根据使用的试剂和所得反应物的吸收光谱可以使用具有合适频率的激光。
激光器的类型包括气体激光器、固体激光器和半导体型激光器,没有限制。关于光学系统,例如反射镜和扩束器,只使用由Melles GriotCo.,Ltd.制造的产品。用于激发的激光束利用光斩波器调制,然后经过二向色反射镜成为和用于检测的激光束同轴的激光束,并被引入显微镜,以便被加到试样上。
激光束被加到试样上之后,在使之同轴的激发光和检测光当中,利用滤波器除去激发光,把检测光引向光检测器。作为激光束接收部分的元件,考虑到处理方便,使用带有光纤的光检测器放大器(C6386,Hamamatsu Photonics Co.,Ltd.制造)。这种光检测器的光接收部分利用具有针孔的盖板覆盖。来自光检测器和检测器放大器的输出利用低噪声前置放大器(LI-75A,NF Circuit Block Co.,Ltd.制造)放大,然后被引入同步放大器进行信号处理。
使用这种检测器检测毛细管中状态的过程如下。如图21所示,首先,把芯片放在倒置显微镜的载物台上。试样和试剂被引入芯片中,如上所述进行试样和试剂的混合和反应。为了进行测量,通过以0.5cm/sec的速度移动载物台,并在移动一秒之后识别位于槽附近的定位标记使其被精确地定位。关于物镜的聚焦,使用用于激发的激光器,使其聚焦在毛细管图形的上边缘和下边缘的位置,在此过程中参看监视器屏幕,然后把毛细管图形的上下边缘之间的中点规定为毛细管的中心位置,以实现聚焦。
用于激发的激光器利用光斩波器被调制到例如114Hz,然后,在检测部分中流动的被包含在溶液中的反应产物被激励而产生热量。利用所述光斩波器调制的频率可能由于信噪比等因素而改变。因为用于检测的激光器的聚焦位置会由于由产生的热量而产生的热透镜而移动,因而光检测器通过针孔接收的光的量取决于所述热量值而改变,从所述改变可以分析试样中所含的预定的成分。
来自光检测器的信号由同步放大器进行处理,在本例中使用1秒作为时间常数,只有和光斩波器的频率114Hz相同的信号才被有选择地用作输出。同步放大器的输出电压和由激发光激励的反应产物的浓度成正比,因而能够定量地检测反应产物。
对于本例的结果,使用含有300KU和75KU活性的GOT的标准的血清进行5次测量,从测量结果中产生校准曲线,并且具有GOT活性等于150KU的GOT稀释血清的测量被进行20次,并获得了1%的CV值。使用这种“分析仪”,从上述结果,可以好的可重复性检测试样中的总胆固醇。
例3
使用类似于例2的光热检测器进行总胆固醇的测量,并且使用如同例2情况下的利用注模制成的Y形的PMMA的通道芯片(图23),其区别在于,使用488nm的Ar激光作为检测光。这种芯片的Y形通道的槽的宽度和深度分别是200μm和50μm。使用由Waco ChemicalCo.,Ltd.制造的胆固醇E-Test Wako作为试剂。在Y形毛细管的顶部的两个边缘,使用聚四氟乙烯管连接其中分别含有染色试剂和稀释的标准血清的微型注射器(由Hamilton Co.,Ltd.制造)。如此进行制备,使得当染色试剂和稀释的标准血清以1∶1的流量比混合时,试剂的浓度等于对试剂配套物质规定的浓度。即,使用一半的规定数量的缓冲剂使染色试剂溶解,并且使用按照例1中的方法制备的标准血清利用75倍的缓冲剂稀释。使用注射器泵(Harvard Co.,Ltd.制造)用于液体输送,使染色试剂和稀释的标准血清的流量相等,如此调节流速,使得在混合之后的反应时间是3分钟,并把溶液排放到Y形通道的下侧的废液容器。在芯片下方放置铜版和板状加热器,并利用恒温器和温度控制器进行调节,使得温度被保持在30℃。
热透镜检测输出的测量结果示于图26。
例4
使用类似于例3的设备和芯片进行用于检测总胆固醇的反应,其区别在于,使用电渗流作为输送液体的方法,并使用由Waco Co.,Ltd.制造的胆固醇E-HA Test Wako作为检测试剂。在Y形通道(图23)的每个边缘,通过通孔在和槽相对的一侧的芯片的表面上放置高度和直径分别为6mm和4mm的圆柱容器。然后,为了增加电渗流和清洁芯片的毛细管的内表面,毛细管的内部被充以1N-NaOH溶液(由WakoChemical Co.,Ltd.制造),并在60℃下加热24小时。此后,毛细管的内部利用纯水(Kyoei Pharmaceutical Co.,Ltd.制造)刷洗,利用PH值作为指示器,直到达到中性并被干燥。
然后,平板部件使用黏合剂和厚度为200μm的和上述平板部件相同尺寸的PMMA盖板(平板部件)层叠在一起,从而形成毛细管。然后,为了使其也可以被用于提供电位以便进行液体输送,利用含有银颗粒的导电油墨(MSP-600F,由Mitsui Chemical Co.,Ltd.制造)在平板部件的相对侧上(具有通孔的一侧)印刷用于液体容器的导线和电极以及用于连接电源端子的电极,从而形成用于分析的芯片(图24)。此外,所述容器被制成锥形,从而使得不用使芯片倾斜便可以在内壁上印刷。
图25是图19中沿c-c’的截面图。
酶溶液A和按照例1的方法制备的稀释的标准血清被预先混合,并在37℃下反应5分钟,然后被放入在Y形通道的上侧的容器319中。然后,酶溶液B被放入上方的另一端的容器320中。被如此制备,使得当容器319中的溶液和容器320中的溶液以1∶1的比混合时,试剂的浓度等于为试剂配套物质规定的浓度。Y形的下端用作废液容器,通道和废液容器被充满缓冲剂,用于分解附加有试剂配套物质的酶溶液A,且液面的高度被这样调整,使得消除对于每个容器的液面差。在每个容器中放入铂线电极,对试样和酶溶液A的容器319的电极和酶溶液B的容器320的电极施加电压,同时保持废液容器为0V,以形成25V/cm的电位梯度的条件为依据,如此调节电压,使得从容器319到容器321的流量和从容器320到容器321的流量的比等于1∶1。
关于温度,采用在常规实验时的室温(26℃)。
热透镜检测输出的测量结果如图27所示。
工业实用性
本发明的分析仪是由芯片和光热检测器构成的分析仪,所述芯片由有机聚合物制成,并具有供流体流动的精细的毛细管,能够进行大量生产,并具有好的处理性能,所述光热检测器具有高的灵敏度,并且容易小型化,因而可以提供一种这样的分析仪,其具有极好的芯片可处置性,能够进行廉价的、简单的和快速的分析,并且适用于进行POC等分析。

Claims (13)

1.一种分析仪,其使流体试样或者流体试样和流体试剂流过毛细管,并分析所述试样或所述试样和所述试剂的混合流体中的预定的成分:其特征在于所述分析仪包括:
一芯片,其至少部分地由有机聚合物制成,并提供有所述毛细管,以及
一光热转换检测器,其利用激发光照射所述预定的成分,并测量由于所述毛细管内部的温度的局部改变而引起的物理量的改变。
2.如权利要求1所述的分析仪,其特征在于,所述芯片通过层叠一对平板部件被制成,至少一个所述平板部件的板面上具有槽,并且至少一个平板部件由有机聚合物制成,其中所述具有所述槽的所述板表面位于芯片的内侧。
3.如权利要求1或2所述的分析仪,其特征在于,所述物理量的改变是折射率的改变,所述光热转换检测器是这样一种设备,其利用检测光照射由所述折射率的改变而形成的热透镜,并测量由所述热透镜引起的所述检测光的改变。
4.如权利要求1到3中任何一个所述的分析仪,其特征在于,构成所述芯片的部件基本上不会通过吸收所述激发光而产生光热转换效应。
5.如权利要求4所述的分析仪,其特征在于,构成所述芯片的部件对所述激发光的吸收率为5%或更小。
6.如权利要求1到5中任何一个所述的分析仪,其特征在于,激发光的会聚度被预先调整,使得所述毛细管内部的温度的局部温度改变发生在一个这样的范围内,以便获得足够的浓度灵敏度,用于分析所述的预定成分。
7.如权利要求6所述的分析仪,其特征在于,所述激发光的会聚度利用一物镜的数值孔径进行调整,所述物镜用于利用所述激发光照射所述毛细管。
8.如权利要求1到7中任何一个所述的分析仪,其特征在于,所述毛细管具有供所述试样流动的试样通道,和进行所述测量的通道,还具有至少一个位于所述试样通道和所述进行测量的通道之间的试剂混合装置,
所述试剂混合装置由至少一个供所述试剂流动的试剂通道,来自所述试样通道侧的流体和来自所述试剂通道的所述试剂的汇合点,以及提供在所述汇合点下游的混合通道组成,其中来自所述试样通道侧的流体和来自所述试剂通道的所述试剂以预定的比例混合,并在一预定的时间内进行反应,
如果提供多个所述试剂混合装置,则每个试剂混合装置被相互串联设置,以及
还包括一流量调节机构,用于按照所述混合比调节所述试样通道和所述试剂通道中的流量。
9.如权利要求8所述的分析仪,其特征在于,所述毛细管使得所述试样和所述试剂连续地流动,并且所述混合通道是一种足够长的通道,用于使刚好在所述通道之前的汇合点汇合的流体以预定的流量流动一段为完成预定的混合和反应所需的时间。
10.如权利要求1到9中任何一个所述的分析仪,其特征在于,对所述试样施加一个电压,或者对所述试样和所述试剂单独施加电压,借以使所述试样或所述试样和所述试剂流动。
11.如权利要求1到10中任何一个所述的分析仪,其特征在于,所述试样是源自生物物质的试样。
12.如权利要求2所述的分析仪,其特征在于,所述至少一对平板部件中的一个是由有机聚合物制成的平板部件,其利用加压模制、模压模制、注模、在存在有气体的情况下降低树脂的玻璃转变温度的注模、注压模制、和使用由电磁感应加热的模具表面的注模方法之一或者这些方法的组合被模制而成。
13.如权利要求12所述的分析仪,其特征在于,在存在有气体的情况下降低树脂的玻璃转变点的注模中使用的气体是二氧化碳。
CN99808013A 1998-06-12 1999-06-14 分析仪 Pending CN1309769A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP181586/1998 1998-06-12
JP18158698 1998-06-12

Publications (1)

Publication Number Publication Date
CN1309769A true CN1309769A (zh) 2001-08-22

Family

ID=16103409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99808013A Pending CN1309769A (zh) 1998-06-12 1999-06-14 分析仪

Country Status (8)

Country Link
US (1) US7105354B1 (zh)
EP (1) EP1087223A4 (zh)
KR (1) KR20010052741A (zh)
CN (1) CN1309769A (zh)
AU (1) AU746051B2 (zh)
CA (1) CA2334952C (zh)
RU (1) RU2195653C2 (zh)
WO (1) WO1999064846A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798969B (zh) * 2003-04-03 2012-12-26 株式会社百尼尔 用于生物化学反应的实时监控装置
CN102980996A (zh) * 2012-12-31 2013-03-20 广州市第一人民医院 一种化学发光免疫分析系统及其分析方法和应用
CN106770126A (zh) * 2017-01-06 2017-05-31 中国科学院上海技术物理研究所 一种适用于快速检测橄榄油的装置及方法
CN106959317A (zh) * 2017-05-05 2017-07-18 海南大学 一种自动可控温型近红外光热转换测试仪
CN107741533A (zh) * 2012-05-21 2018-02-27 扩音器研究股份有限公司 场分析仪
CN110646377A (zh) * 2019-09-27 2020-01-03 京东方科技集团股份有限公司 血液检测系统及其检测方法
CN112236667A (zh) * 2018-06-07 2021-01-15 横河电机株式会社 光学分析系统及光学分析方法
CN112326713A (zh) * 2020-10-20 2021-02-05 北京航空航天大学 利用石英封管模拟碳化硅纤维高温水氧环境的简易化方法
TWI761409B (zh) * 2017-01-05 2022-04-21 美商伊路米納有限公司 試劑混合的系統和方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006243A1 (fr) * 1999-07-16 2001-01-25 Asahi Kasei Kabushiki Kaisha Procede de mesure d'une substance et reactif a cet usage
WO2001013127A1 (fr) 1999-08-11 2001-02-22 Asahi Kasei Kabushiki Kaisha Cartouche d'analyse et dispositif de regulation d'apport de liquide
US7036979B2 (en) 2000-01-28 2006-05-02 Asahi Kasei Kabushiki Kaisha Photothermal transducing spectroscopic analyzer
US6627159B1 (en) * 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
US8097471B2 (en) 2000-11-10 2012-01-17 3M Innovative Properties Company Sample processing devices
KR100552078B1 (ko) * 2001-05-31 2006-02-20 유재천 초소형 구슬을 이용한 미세 밸브 장치 및 그 제어 방법
JP2003042982A (ja) 2001-07-27 2003-02-13 Nippon Sheet Glass Co Ltd 光熱変換分光分析方法及びその方法を実行するマイクロ化学システム
JP3848125B2 (ja) 2001-10-22 2006-11-22 日本板硝子株式会社 光熱変換分光分析方法及びマイクロ化学システム
JP2003130825A (ja) * 2001-10-22 2003-05-08 Nippon Sheet Glass Co Ltd 光熱変換分光分析方法及びマイクロ化学システム
JP3824224B2 (ja) 2002-09-27 2006-09-20 日本板硝子株式会社 マイクロ化学システム
JP2004184138A (ja) * 2002-11-29 2004-07-02 Nec Corp 分離装置、分離方法、および質量分析システム
US7604394B2 (en) * 2002-12-02 2009-10-20 Cfd Research Corporation Self-cleaning and mixing microfluidic elements
US7507376B2 (en) * 2002-12-19 2009-03-24 3M Innovative Properties Company Integrated sample processing devices
JP4482929B2 (ja) * 2004-06-01 2010-06-16 富士フイルム株式会社 科学現象の評価装置の製造方法
US7932090B2 (en) * 2004-08-05 2011-04-26 3M Innovative Properties Company Sample processing device positioning apparatus and methods
US7405434B2 (en) * 2004-11-16 2008-07-29 Cornell Research Foundation, Inc. Quantum dot conjugates in a sub-micrometer fluidic channel
EP1691189A3 (en) * 2005-02-14 2010-12-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
JP2006322895A (ja) * 2005-05-20 2006-11-30 Nippon Sheet Glass Co Ltd マイクロ化学システム及びそのtlm出力算出方法
WO2007119399A1 (ja) * 2006-03-22 2007-10-25 Kabushiki Kaisha Kobe Seiko Sho 分析装置
US10753927B2 (en) 2006-09-22 2020-08-25 ALERE TECHNOLOGIES GmbH Methods for detecting an analyte
US20080144007A1 (en) * 2006-12-15 2008-06-19 Skymoon R&D, Llc. Thermal lens spectroscopy for ultra-sensitive absorption measurement
US8906303B2 (en) * 2008-03-14 2014-12-09 Clondiag Gmbh Assays
CN102077086B (zh) * 2008-07-03 2013-06-05 株式会社岛津制作所 质量分析装置
EP2281632B1 (en) * 2009-07-02 2013-11-13 Amic AB Capillary driven assay device and its manufacture
US9170132B2 (en) * 2010-05-05 2015-10-27 Ysi Incorporated Replaceable probe head having an operational amplifier
US8664938B2 (en) 2010-05-05 2014-03-04 Ysi Incorporated Replaceable probe head
RU2449270C1 (ru) * 2010-12-07 2012-04-27 Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН) Установка для пробоподготовки газов из флюидных включений в породах и минералах
DE102011086942B4 (de) 2011-09-30 2024-01-11 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Kalibrierung und/oder Justierung eines Analysegerätes für chemische Substanzen in Flüssigkeiten, insbesondere in wässrige Lösungen
RU2505884C1 (ru) * 2012-07-04 2014-01-27 Общество с ограниченной ответственностью "Бюро аналитического приборостроения "Хромдет-Экология" Способ измерения интенсивности источников вуф-излучения и устройство для его осуществления
RU2627455C1 (ru) * 2016-02-01 2017-08-08 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ изготовления биомеханического сенсора для измерения сил адгезии в системе "клетка-клетка"
JP6763743B2 (ja) * 2016-10-24 2020-09-30 積水化学工業株式会社 マイクロ流体の送液方法
US10241022B2 (en) 2017-03-30 2019-03-26 Intel Corporation Characterizing a fluid sample based on response of a non-planar structure
US20220026361A1 (en) * 2018-12-18 2022-01-27 Hewlett-Packard Development Company, L.P. Ordered arrays of microdots
RU197895U1 (ru) * 2020-02-05 2020-06-04 Общество с ограниченной ответственностью "МедТехПродукт" Электрохимический биосенсор для определения концентрации глюкозы в крови
CN112259275B (zh) * 2020-10-19 2022-02-11 中国核动力研究设计院 一种电磁屏蔽环境下通信系统及通信方法
CN115356372B (zh) * 2022-10-24 2023-03-10 中国空气动力研究与发展中心计算空气动力研究所 一种新型材料在飞行试验中的时变热响应测试方法及系统

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA944466A (en) * 1970-01-26 1974-03-26 Western Electric Company, Incorporated Guided raman devices
JPS578131A (en) 1980-06-19 1982-01-16 Asahi Chem Ind Co Ltd Injection-molded article of rubber-reinforced polystyrene resin excellent in appearance
US4439492A (en) 1980-08-11 1984-03-27 Asahi-Dow Limited Injection molded articles with improved surface characteristics
JPS60174933A (ja) 1984-02-22 1985-09-09 Hitachi Ltd フツ化水素ガス分析装置
US4682897A (en) * 1984-12-10 1987-07-28 Canon Kabushiki Kaisha Light scattering measuring apparatus
JPS6258287A (ja) 1985-09-09 1987-03-13 Casio Comput Co Ltd 記録装置
US4724314A (en) * 1986-08-21 1988-02-09 Harbor Branch Oceanographic Institution Inc. Material characteristics measuring methods and devices
US4938593A (en) * 1987-01-30 1990-07-03 The Regents Of The University Of Michigan Photothermal densitometer for reading electrophoresis gels
US4906095A (en) * 1988-01-25 1990-03-06 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for performing two-frequency interferometry
WO1989007753A1 (en) * 1988-02-19 1989-08-24 Koch High Tech Ag Ultrasonic temperature measurement and applications in optical spectroscopy and calorimetry
EP0376611A3 (en) 1988-12-30 1992-07-22 The Board Of Trustees Of The Leland Stanford Junior University Electrophoretic system
JP2639087B2 (ja) 1989-03-31 1997-08-06 株式会社島津製作所 電気泳動装置
US5622868A (en) * 1989-04-27 1997-04-22 Microbiological Research Authority Camr (Centre For Applied Microbiology & Research) Analytical apparatus utilizing a colorimetric or other optically detectable effect
US5246782A (en) * 1990-12-10 1993-09-21 The Dow Chemical Company Laminates of polymers having perfluorocyclobutane rings and polymers containing perfluorocyclobutane rings
US5126022A (en) * 1990-02-28 1992-06-30 Soane Tecnologies, Inc. Method and device for moving molecules by the application of a plurality of electrical fields
JPH0464063A (ja) 1990-07-03 1992-02-28 Sapporo Breweries Ltd 食品汚染菌の検出法
JPH04369467A (ja) 1991-04-12 1992-12-22 Yokogawa Electric Corp 光熱レンズ分析装置
US6159686A (en) * 1992-09-14 2000-12-12 Sri International Up-converting reporters for biological and other assays
DE4231214C2 (de) * 1992-09-18 1994-12-08 Kernforschungsz Karlsruhe Photothermischer Sensor
JP3073358B2 (ja) 1993-03-25 2000-08-07 旭化成工業株式会社 厚膜回路基板およびその製造方法
CA2097257A1 (en) 1993-05-28 1994-11-29 Norman J. Dovichi Continuous biochemical reactor for analysis of sub-picomole quantities of complex organic molecules and method of operation thereof
EP0720658A1 (en) * 1993-09-23 1996-07-10 E.I. Du Pont De Nemours And Company An electrophoretic method for the isolation and separation of microorganisms
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
US5641400A (en) * 1994-10-19 1997-06-24 Hewlett-Packard Company Use of temperature control devices in miniaturized planar column devices and miniaturized total analysis systems
US5571410A (en) 1994-10-19 1996-11-05 Hewlett Packard Company Fully integrated miniaturized planar liquid sample handling and analysis device
DE69530669T2 (de) 1995-02-18 2003-11-27 Agilent Technologies Deutschla Vermischen von Flüssigkeiten mittels Elektroosmose
DE19511869B4 (de) * 1995-03-31 2004-02-26 Geiler, Hans-Dieter, Dr. Verfahren und Anordnung zur Responseanalyse von Halbleitermaterialien mit optischer Anregung
JP3417143B2 (ja) 1995-04-27 2003-06-16 株式会社島津製作所 キャピラリ電気泳動装置
JP3839524B2 (ja) * 1995-06-07 2006-11-01 アジレント・テクノロジーズ・インク 小型化全分析システム
US5716852A (en) 1996-03-29 1998-02-10 University Of Washington Microfabricated diffusion-based chemical sensor
JP3614568B2 (ja) 1995-06-26 2005-01-26 株式会社住化分析センター 土壌の分析方法
US20010055812A1 (en) * 1995-12-05 2001-12-27 Alec Mian Devices and method for using centripetal acceleration to drive fluid movement in a microfluidics system with on-board informatics
US6709869B2 (en) * 1995-12-18 2004-03-23 Tecan Trading Ag Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system
JPH09229883A (ja) 1996-02-20 1997-09-05 Bunshi Bio Photonics Kenkyusho:Kk 暗視野型光熱変換分光分析装置
US6063633A (en) * 1996-02-28 2000-05-16 The University Of Houston Catalyst testing process and apparatus
JP2935665B2 (ja) * 1996-05-31 1999-08-16 日本原子力研究所 レーザー誘起光熱変位分光法による溶液の光吸収スペクトル測定法
DE69728269T2 (de) 1996-06-14 2005-03-10 University Of Washington, Seattle Absorbtionsverbessertes differentielles extraktionsverfahren
JPH1050719A (ja) 1996-08-02 1998-02-20 Sony Corp バイポーラトランジスタ及びその製造方法
JP3349070B2 (ja) 1996-09-03 2002-11-20 旭化成株式会社 熱可塑性樹脂の成形法
TW429213B (en) * 1996-09-03 2001-04-11 Asahi Chemical Ind Method for molding thermoplastic resin
JP3677691B2 (ja) * 1996-11-13 2005-08-03 株式会社分子バイオホトニクス研究所 光熱変換分光分析装置
US6087181A (en) * 1998-03-16 2000-07-11 Symyx Technologies Sampling and detection of trace gas species by optical spectroscopy
JP2000002675A (ja) 1998-06-12 2000-01-07 Asahi Chem Ind Co Ltd キャピラリー光熱変換分析装置
JP2000002677A (ja) 1998-06-15 2000-01-07 Asahi Chem Ind Co Ltd 分析装置
US6261469B1 (en) * 1998-10-13 2001-07-17 Honeywell International Inc. Three dimensionally periodic structural assemblies on nanometer and longer scales
US6381025B1 (en) * 1999-08-19 2002-04-30 Texas Tech University Interferometric detection system and method
US6676903B2 (en) * 2001-07-30 2004-01-13 General Electric Company Apparatus and method for spatially detecting or quantifying chemical species
JP4508388B2 (ja) * 2000-09-08 2010-07-21 財団法人神奈川科学技術アカデミー 熱レンズ顕微鏡デバイス
AU2002213043A1 (en) * 2000-10-06 2002-04-15 Protasis Corporation Fluid separation conduit cartridge
US20020155033A1 (en) * 2000-10-06 2002-10-24 Protasis Corporation Fluid Separate conduit cartridge
US20040071597A1 (en) * 2000-11-17 2004-04-15 Akihiko Hattori Chip member for micro chemical system, and micro chemical system using the chip member
US20020094580A1 (en) * 2001-01-16 2002-07-18 Jorgenson James W. Photothermal absorbance detection apparatus and method of using same
JP2002365252A (ja) * 2001-06-12 2002-12-18 Nippon Sheet Glass Co Ltd マイクロ化学システム
KR100413535B1 (ko) * 2001-07-18 2003-12-31 학교법인 포항공과대학교 랩온어칩을 위한 흡광검출 시스템
US7338760B2 (en) * 2001-10-26 2008-03-04 Ntu Ventures Private Limited Sample preparation integrated chip
US20030175947A1 (en) * 2001-11-05 2003-09-18 Liu Robin Hui Enhanced mixing in microfluidic devices
US7244393B2 (en) * 2001-12-21 2007-07-17 Kimberly-Clark Worldwide, Inc. Diagnostic device and system
JP2003344323A (ja) * 2002-05-30 2003-12-03 Nippon Sheet Glass Co Ltd 光熱変換分光分析方法およびその方法を実行する光熱変換分光分析装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798969B (zh) * 2003-04-03 2012-12-26 株式会社百尼尔 用于生物化学反应的实时监控装置
CN107741533A (zh) * 2012-05-21 2018-02-27 扩音器研究股份有限公司 场分析仪
CN102980996A (zh) * 2012-12-31 2013-03-20 广州市第一人民医院 一种化学发光免疫分析系统及其分析方法和应用
TWI761409B (zh) * 2017-01-05 2022-04-21 美商伊路米納有限公司 試劑混合的系統和方法
CN106770126A (zh) * 2017-01-06 2017-05-31 中国科学院上海技术物理研究所 一种适用于快速检测橄榄油的装置及方法
CN106770126B (zh) * 2017-01-06 2023-05-05 中国科学院上海技术物理研究所 一种适用于快速检测橄榄油的装置及方法
CN106959317A (zh) * 2017-05-05 2017-07-18 海南大学 一种自动可控温型近红外光热转换测试仪
CN112236667A (zh) * 2018-06-07 2021-01-15 横河电机株式会社 光学分析系统及光学分析方法
CN110646377A (zh) * 2019-09-27 2020-01-03 京东方科技集团股份有限公司 血液检测系统及其检测方法
CN110646377B (zh) * 2019-09-27 2022-07-05 京东方科技集团股份有限公司 血液检测系统及其检测方法
CN112326713A (zh) * 2020-10-20 2021-02-05 北京航空航天大学 利用石英封管模拟碳化硅纤维高温水氧环境的简易化方法
CN112326713B (zh) * 2020-10-20 2022-02-08 北京航空航天大学 利用石英封管模拟碳化硅纤维高温水氧环境的简易化方法

Also Published As

Publication number Publication date
AU746051B2 (en) 2002-04-11
RU2195653C2 (ru) 2002-12-27
CA2334952C (en) 2006-03-14
KR20010052741A (ko) 2001-06-25
US7105354B1 (en) 2006-09-12
EP1087223A4 (en) 2004-06-16
AU4165899A (en) 1999-12-30
WO1999064846A1 (en) 1999-12-16
EP1087223A1 (en) 2001-03-28
CA2334952A1 (en) 1999-12-16

Similar Documents

Publication Publication Date Title
CN1309769A (zh) 分析仪
CN1370278A (zh) 分析盒和液体输送控制装置
CN100339711C (zh) 核酸分析方法、分析装置及分析用盘片
CN1271402C (zh) 色层分析定量测量装置
CN1715932A (zh) 用于处理液体的微结构平台和方法
CN1864058A (zh) 芯片的使用方法及检查芯片
CN1094593C (zh) 改进的发光测定的方法和装置
CN1519563A (zh) 分析化验装置和方法
CN1306269C (zh) 血液检查部件和血液检查装置
CN1201527A (zh) 具有传导阻片的对置部件分析装置
CN1208464A (zh) 利用向心加速度以激发具有自有资讯微型流态系统之中的液体运动的装置和方法
CN1521274A (zh) 用于检测生物和化学材料的系统和方法
CN101031802A (zh) 使用盒的检测装置
CN1596369A (zh) 碱基序列检测装置及碱基序列自动解析装置
CN1142868A (zh) 具有用于调节施加试剂的屏障的测定装置
CN1630707A (zh) 用于快速改变传感器周围溶液环境的系统与方法
JPWO2006054689A1 (ja) マイクロチップ
JP2001165939A (ja) キャピラリー分析装置
CN1384361A (zh) 分立式多通道生化分析仪
CN1890566A (zh) 生物样品鉴别装置、生物样品鉴别方法以及生物样品鉴别用平板
CN1690711A (zh) 基于上转换发光技术免疫层析试纸条
CN1385697A (zh) 测量装置及其内所用的旋转阀
CN1723075A (zh) 微芯片、使用该微芯片的溶剂置换方法、浓缩方法及质谱分析系统
CN1281963C (zh) 自动试样分析器及其部件
CN1703626A (zh) 微量化学系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1035777

Country of ref document: HK