CN1138596C - 乙烷和/或乙烯氧化的催化剂和方法 - Google Patents

乙烷和/或乙烯氧化的催化剂和方法 Download PDF

Info

Publication number
CN1138596C
CN1138596C CNB998067091A CN99806709A CN1138596C CN 1138596 C CN1138596 C CN 1138596C CN B998067091 A CNB998067091 A CN B998067091A CN 99806709 A CN99806709 A CN 99806709A CN 1138596 C CN1138596 C CN 1138596C
Authority
CN
China
Prior art keywords
carbon monoxide
olefin polymeric
acetate
ethane
ethene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB998067091A
Other languages
English (en)
Other versions
CN1303320A (zh
Inventor
B・艾利斯
B·艾利斯
琼斯
J·库克
基钦
M·D·琼斯
S·J·基钦
P·霍瓦德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Chemicals Ltd
Original Assignee
BP Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Chemicals Ltd filed Critical BP Chemicals Ltd
Publication of CN1303320A publication Critical patent/CN1303320A/zh
Application granted granted Critical
Publication of CN1138596C publication Critical patent/CN1138596C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
    • C07C67/05Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/686Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
    • C07C67/05Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
    • C07C67/055Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation in the presence of platinum group metals or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

将乙烷和/或乙烯选择性氧化为乙酸的催化剂组合物,该组合物包括与氧结合的以下元素:Moa.Wb.Agc.Ird.Xe.Yf(I),其中,X为元素Nb和V;Y为一种或多种元素,选自Cr、Mn、Ta、Ti、B、Al、Ga、In、Pt、Zn、Cd、Bi、Ce、Co、Rh、Cu、Au、Fe、Ru、Os、K、Rb、Cs、Mg、Ca、Sr、Ba、Zr、Hf、Ni、P、Pb、Sb、Si、Sn、Tl、U、Re和Pd;a、b、c、d、e和f代表元素的克原子比,使0<a≤1,0≤b<1并且a+b=1;0<(c+d)≤0.1;0<e≤2;并且0≤f≤2。所述催化剂组合物可以用于乙酸的生产和生产乙酸和/或乙酸乙烯酯的组合法。

Description

乙烷和/或乙烯氧化的催化剂和方法
本发明涉及将乙烷和/或乙烯氧化为乙酸的催化剂以及利用上述催化剂生产乙酸的方法。
通过氧化乙烷和/或乙烯来生产乙酸的催化剂和方法在本领域中已为人熟知,如US-A-4250346;EP-A-0407091;DE-A-19620542和DE-A-19630832。
美国专利第4250346号公开了在气相反应中在低于500℃的温度下使用催化剂,以高转化率、选择性和生产率将乙烷氧化性脱氢为乙烯,所述催化剂的组成包括元素钼、X和Y:
MoaXbYc其中X为Cr、Mn、Nb、Ta、Ti、V和/或W,并优选Mn、Nb和V和/或WY为Bi、Ce、Co、Cu、Fe、K、Mg、Ni、P、Pb、Sb、Si、Sn、Tl和/或U,并优选Sb、Ce和/或U,a为1,b为0.05-1.0并且c为0-2,并优选0.05-1.0,条件是代表Co、Ni和/或Fe的c的总化合价小于0.5。
EP-A-0407091公开了在高温下使乙烷和/或乙烯以及含氧分子的气体与煅烧的含钼的乙烷氧化性脱氢催化剂组合物接触,由气体乙烷和/或乙烯生产含有乙烯和/或乙酸产物的方法,催化剂组合物的特征在于:
氧化性脱氢催化剂组合物中的钼全部或部分被铼或铼和钨的组合所替代。
EP-A-0407091还公开了含有与氧结合的元素A、X和Y的催化剂,元素A∶X∶Y的克原子比为a∶b∶c,其中A=ModReeWf
X=Cr、Mn、Nb、Ta、Ti、V和/或W,并优选Mn、Nb、
V和/或W,
Y=Bi、Ce、Co、Cu、Fe、K、Mg、Ni、P、Pb、Sb、Si、
Sn、Tl和/或U,并优选Sb、Ce和/或U,
a=1,
b=0-2,优选0.05-1.0,
c=0-2,优选0.001-1.0,更优选为0.05-1.0,条件是代表Co、
Ni和/或Fe的c的总化合价小于0.5,
d+e+f=a,
d为零或大于零,
e大于零,并且
f为零或大于零。
DE-A-19620542公开了将乙烷和/或乙烯选择性氧化为乙酸的催化剂,它含有与氧结合的元素Mo、Pd、Re、X和Y(克分子比为a∶b∶c∶d∶e)
                    MoaPdbRecXdYe     (I)其中符号X、Y的含义如下:
X=Cr、Mn、Nb、B、Ta、Ti、V和/或W
Y=Bi、Ce、Co、Cu、Te、Fe、Li、K、Na、Rb、Be、Mg、Ca、Sr、Ba、Ni、P、Pb、Sb、Si、Sn、Tl和/或U;符号a、b、c、d和e代表对应元素的克原子比,其中a=1,b>0,c>0,d=0.05-2并且e=0-3。DE-A-19620542还公开了由乙烷、乙烯或其混合物以及氧气的气体进料与式(I)催化剂接触,从而选择性生产乙酸的方法。
最后,DE-A-19630832公开了用于乙烷、乙烯或其混合物以及氧气选择性氧化的催化剂,所述催化剂含有与氧结合的元素Mo、Pd、X和Y(其克原子比为a∶b∶c∶d)
             MoaPdbXcYd          (I)其中符号X、Y的含义如下:
X代表一种或多种元素,选自Cr、Mn、Nb、Ta、Ti、V和W
Y代表一种或多种元素,选自B、Al、Ga、In、Pt、Zn、Cd、Bi、
Ce、Co、Rh、Ir、Cu、Ag、Au、Fe、Ru、Os、K、Rb、Cs、
Mg、Ca、Sr、Ba、Zr、Hf、Ni、P、Pb、Sb、Si、Sn、Tl和U;符号a、b、c、d代表对应元素的克原子比,其中
a=1;b>0;c>0并且d=0-2。DE-A-19630832还公开了通过乙烷、乙烯或其混合物以及氧气的气体进料与式(I)催化剂接触来选择性生产乙酸的方法。
在本申请书的优先日之后公开的国际专利公开WO98/47850涉及由乙烷催化氧化制备乙酸的方法和催化剂。所述催化剂的化学式为WaXbYcZd,其中X代表一种或多种元素,选自Pd、Pt、Ag和/或Au;Y代表一种或多种元素,选自V、Nb、Cr、Mn、Fe、Sn、Sb、Cu、Zn、U、Ni和/或Bi;Z代表一种或多种元素,选自Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ti、Zr、Hf、Ru、Os、Co、Rh、Ir、B、Al、Ga、In、Tl、Si、Ge、Pb、P、As和/或Te,式中a=1,b大于0,c大于0,d为0-2的一个数。因此钨为所述催化剂的必要元素。
US 5750777(相当于EP-A-719756)涉及在催化剂的存在下,通过乙烷的氧化生产乙酸,催化剂中的活性相包括钒、钛、钼、磷和氧,包含以下元素的掺杂剂:K、Rb、Cs、Ca、Mg、Zr、Hf、Nb、Ta、Cr、W、Mn、Re、Fe、Ru、Os、Rh、Ir、Ni、Pd、Cu、Ag、Zn、Cd、Tl、Si、Ge、Sn、As、Sb、Bi、Ga以及稀土元素。然而具体实例中不含银或铱。
美国专利第4568790号涉及在气相中使用催化剂在低温下使乙烷催化性氧化脱氢为乙烯的方法,所述催化剂含下面的煅烧组合物:MoaVbNbcSbd,其中a=0.5-0.9,b=0.1-0.4,c=0.001-0.2并且d=0.001-0.1。
美国专利第4596787号涉及用于在低温的气相中使乙烷氧化脱氢为乙烯的承载催化剂的制备方法,包括具有含MoaVbNbcSbdXe的煅烧组合物的催化剂,其中X为无或至少以下元素中的一种:Li、Sc、Na、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、Y、Ta、Cr、Fe、Co、Ni、Ce、La、Zn、Cd、Hg、Al、Tl、Pb、As、Bi、Te、U、Mn和W,a=0.5-0.9,b=0.1-0.4,c=0.001-0.2,d=0.001-0.1并且e=0.001-1.0(当X为至少一种元素时),e=0(当X=0时)。
仍然需要将乙烷和/或乙烯选择性氧化为乙酸的催化剂以及使用所述催化剂选择性生产乙酸的方法。我们已经发现采用银和/或铱作为必要组分的氧化催化剂可以满足选择性氧化催化剂和使用相同催化剂的方法的需要。
因此,本发明提供将乙烷和/或乙烯选择性氧化为乙酸的催化剂组合物,其包括与氧结合的元素:
              MoaWbAgcIrdXeYf     (I)其中X为元素Nb和V;Y为一种或多种元素,选自:
Cr、Mn、Ta、Ti、B、Al、Ga、In、Pt、Zn、Cd、Bi、Ce、Co、Rh、Cu、Au、Fe、Ru、Os、K、Rb、Cs、Mg、Ca、Sr、Ba、Zr、Hf、Ni、P、Pb、Sb、Si、Sn、Tl、U、Re和Pd;a、b、c、d、e和f代表元素的摩尔比(克原子比),使得:
0<a≤1,0≤b<1并且a+b=1;
0<(c+d)≤0.1;
0<e≤2;并且
0≤f≤2。
符合式I的催化剂包括:
Moa.Wb.Agc.Xe.Yf
Moa.Wb.Ird.Xe.Yf
Moa.Wb.[Ag+Ir]c+d.Xe.Yf
Moa.Agc.Xe.Yf
Moa.Ird.Xe.Yf
Moa.[Ag+Ir]c+d.Xe.Yf
[Mo+W]a+b.Agc.Xe.Yf
[Mo+W]a+b.Ird.Xe.Yf
[Mo+W]a+b.[Ag+Ir]c+dXe.Yf
具有式(I)的合适催化剂的实例包括:
(i)Mo0.37.Ag0.01.Re0.25.V0.26.Nb0.07.Sb0.03.Ca0.02.Oy’,在Mo的基础上重正化后与Mo1.00.Re0.69.V0.72.Nb0.25.Sb0.08.Ca0.03.Ag0.028Oy相同;
(ii)Mo0.37.Ir0.01.Re0.25.V0.26.Nb0.07.Sb0.03.Ca0.02.Oy’,在Mo的基础上重正化后与Mo1.00.Re0.69.V0.72.Nb0.25.Sb0.08.Ca0.03.Ir0.028Oy相同;
(iii)Mo1.00.V0.25.Nb0.12.Ag0.014Oy;和
(iv)Mo1.00.V0.25.Nb0.12.Ag0.000028Ir0.0000018Oy。其中数字y’和y为满足组合物中元素化合价的氧的数目。
本发明催化剂组合物的一个优点在于它们可以更有活性和选择性地将乙烷和/或乙烯转化为乙酸。
优选地,银和/或铱以有效量存在使c+d至少为10-6。优选使(c+d)≤0.05。银的活性大于铱。优选存在的银的摩尔数(克原子数)大于铱。优选使c至少比d大10倍。
优选e至少为0.05,更优选e至少为0.2。优选e不大于0.5。再更优选使e为0.05≤e≤0.5,然而更优选使e为0.2≤e≤0.5。
优选f至少为10-6。优选f不大于0.2。更优选使f为10-6≤f≤0.2。
优选Y至少为一种元素,选自Cu、Pd、Pt、Re、Ru和Sb。
优选a至少为0.1。更优选a至少为0.5。优选b不大于0.9。
可通过制备催化剂的常规方法来制备所述催化剂组合物。所述催化剂适于由每种金属的可溶性化合物和/或配合物和/或化合物的溶液来制备。所述溶液优选为水溶液系统,pH为1-12,优选为2-8,温度为20°-100℃。
通常通过溶解足够量的可溶性化合物和分散不溶性化合物来提供这些元素在催化剂组合物中的所需克原子比,来制备含有所述元素化合物的混合物。然后可以通过从所述混合物脱除溶剂制备催化剂组合物。通过加热至200-550℃,适于在空气或氧气中,煅烧所述催化剂1分钟到24小时。优选使空气或氧气慢速流过。
可以采用非承载或承载的催化剂。合适的载体包括二氧化硅、氧化铝、氧化锆、二氧化钛、碳化硅及其两种或更多种的混合物。
制备催化剂组合物的合适方法的更详细内容参见如EP-A-0166438。
所述催化剂可以固定床或流化床的形式使用。
本发明的另一个实施方案提供由含有乙烷和/或乙烯的气体混合物生产乙酸的方法,该方法包括在高温下在上述催化剂组合物的存在下,使气体混合物与含氧分子的气体接触。
进料气体包含乙烷和/或乙烯,优选乙烷。
乙烷和/或乙烯可以基本纯态或与一种或多种大量[如大于5%(体积)]组分氮气、甲烷、二氧化碳和水蒸汽,或与一种或多种小量[如小于5%(体积)]组分氢气、一氧化碳、C3/C4链烷和链烯掺合使用。
含氧分子的气体可以为空气或富氧气体或贫氧气体(以空气为基准),如氧气。合适的气体可以为如用合适的稀释剂如氮气稀释的氧气。
除了乙烷和/或乙烯以及含氧分子的气体外,还优选加入水(蒸汽),因为这可以提高对乙酸的选择性。
合适的高温为200-500℃,优选为200-400℃。
合适的压力为大气压或超计大气压,如1-50巴,优选1-30巴。
在使用本发明方法之前,优选煅烧所述催化剂组合物。通过在合适的温度下(250-500℃),在含氧气体(如空气)的存在下进行煅烧。
操作条件和适用于本发明操作的其它信息可以参见前述的先有技术,如美国专利第4250346号。
在一个优选的实施方案中,本发明的氧化催化剂可用于生产乙酸和/或乙酸乙烯酯的组合方法,如国际专利公开WO98/05620,其内容在此通过引用并入本文。因此,根据这个实施方案,提出用于生产乙酸和/或乙酸乙烯酯的组合法,包括:
(a)在第一反应区,在如上所述的对乙烯氧化为乙酸和/或乙烷
   氧化为乙酸和乙烯具有活性的催化剂的存在下,使含有乙烯
   和/或乙烷以及任选的蒸汽与含有氧分子的气体接触,产生
   第一产物流体,其包含乙酸、水和乙烯(未反应的和/或副产
   物的乙烯)以及任选的乙烷、一氧化碳、二氧化碳和/或氮气;
   并且
(b)在第二反应区,在对产生乙酸乙烯酯具有活性的催化剂的存
   在下,在有或无另外的乙烯和/或乙酸的存在下,使第一气
   体产物流体的至少一部分(至少包含乙酸和乙烯以及任选的
   水、乙烷、一氧化碳、二氧化碳和/或氮气的一种或多种)与
   含氧分子的气体接触,产生第二产物流体,其包含乙酸乙烯
   酯、水、乙酸以及任选的乙烯。
   优选所述组合法包括以下另外的步骤:
(c)通过蒸馏出塔顶共沸部分从步骤(b)分离出产物流体,共沸部
   分包含乙酸乙烯酯和水以及含乙酸的塔底部分(base
   fraction);和
(d)(i)从步骤(c)分离出来的塔底部分中回收乙酸,并任选在部
   分或完全分离出水后,将在步骤(c)分离的共沸部分循环
   到步骤(c),
   或(ii)从步骤(c)分离出来的共沸部分中回收乙酸乙烯酯,并
   任选将在步骤(c)分离的基础部分循环至步骤(b),
   或(iii)从步骤(c)分离出来的塔底部分中回收乙酸,并从步骤
(c)回收的塔顶共沸部分回收乙酸乙烯酯。
下面将参考以下实施例,对本发明的催化剂和方法作进一步的阐述说明。催化剂的制备
在下面的实施例和比较例中给出了催化剂的标称(nominal)组成。它们由制备所述催化剂的试剂量计算得出。比较例A-G
下面的比较例A-G不是本发明的实施例,因为它们与这种催化剂的基本组成不符,即不含银和/或铱。这里它们只是用于比较目的。比较例A(Mo1.00V0.25Nb0.12Oy)
将12.71g钼酸铵溶于加热至70℃的50ml水制备溶液A.将2.11g钒酸铵溶于加热至70℃的70ml水制备第二溶液B.将2.43g氯化铌和2.02g草酸溶于加热至70℃的50ml水制备另一种溶液C.然后将溶液C加入溶液B并将得到的混合物加热至70℃,保持15分钟.随后,在将所述混合物蒸发至干不足2小时前,加入溶液A并将最终混合物在70℃加热15分钟。研磨得到的催化剂饼,然后在炉中在350℃的静止空气中煅烧5小时。因而催化剂的标称组成为Mo1.00V0.25Nb0.12Oy。比较例B(Mo1.00V0.25Oy)
参照比较例A,不同之处在于没有制备溶液C。因而所述催化剂的标称组成为Mo1.00V0.25Oy。比较例C(Mo1.00V0.25Nb0.12Pd0.01Oy)
参照比较例A,不同之处在于在溶液A的制备中加入0.23g乙酸钯。因此所述催化剂的标称组成为Mo1.00V0.25Nb0.12Pd0.01Oy。比较例D(Mo1.00V0.25Nb0.12Ru0.01Oy)
参照比较例A,不同之处在于在溶液A的制备中加入0.36g六氯铵钌。因此所述催化剂的标称组成为Mo1.00V0.25Nb0.12Ru0.01Oy。比较例E(Mo1.00V0.25Nb0.12Rh0.01Oy)
参照比较例A,不同之处在于在溶液A的制备中加入0.15g氢氧化铼(III)。因此所述催化剂的标称组成为Mo1.00V0.25Nb0.12Rh0.01Oy。比较例F(Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.03Oy)
将9.53g钼酸铵和10.06g铼酸铵溶于加热至70℃的50ml水制备溶液A。将4.56g钒酸铵溶于加热至70℃的70ml水制备溶液B。将3.65g氯化铌、1.34g乙酸锑、0.26g硝酸钙和4.05g草酸溶于加热至70℃的50ml水制备溶液C。其它步骤同比较例A。因此所述催化剂的标称组成为Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.03Oy。比较例G(Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.03Pd0.011Oy)
将4.76g钼酸铵、5.03g铼酸铵和0.06g乙酸钯溶于加热至70℃的50ml水制备溶液A。将2.28g钒酸铵溶于加热至70℃的70ml水制备溶液B。将1.82g氯化铌、0.67g乙酸锑、0.26g硝酸钙和1.97g草酸溶于加热至70℃的50ml水制备溶液C。其它步骤同比较例A。因此所述催化剂的标称组成为Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.03Pd0.011Oy本发明实施例实施例I(Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.03Ag0.028Oy)
将6.50g钼酸铵、6.61g铼酸铵和0.17g乙酸银溶于加热至70℃的50ml水制备溶液A。将3.01g钒酸铵溶于加热至70℃的70ml水制备溶液B。将1.89g氯化铌、0.88g乙酸锑、0.32g硝酸钙和2.24g草酸溶于加热至70℃的50ml水制备溶液C。其它步骤同比较例A。因此所述催化剂的标称组成为Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.03Ag0.028Oy。实施例II(Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.03Ir0.028Oy)
将6.50g钼酸铵、6.61g铼酸铵和0.49g六氯铵铱溶于加热至70℃的50ml水制备溶液A。将3.01g钒酸铵溶于加热至70℃的70ml水制备溶液B。将1.89g氯化铌、0.88g乙酸锑、0.32g硝酸钙和2.24g草酸溶于加热至70℃的50ml水制备溶液C。其它步骤同比较例A。因此所述催化剂的标称组成为Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.03Ir0.028Oy。实施例III(Mo1.00V0.25Nb0.12Ag0.014Oy)
参照例A,不同之处在于在溶液A的制备中加入0.17g乙酸银。因此所述催化剂的标称组成为Mo1.00V0.25Nb0.12Ag0.014Oy。实施例IV(Mo1.00V0.25Nb0.12Ag0.000028Ir0.0000018Oy)
参照例A,随后的分析提示银和铱的存在量相当于制备中0.00036g乙酸银和0.0000013g氯化铵铱。因此所述催化剂的组成为Mo1.00V0.25Nb0.12Ag0.000028Ir0.0000018Oy催化剂测试法
通常将5mls的催化剂装载于固定床反应器(由内径12mm、长40cm的Hasetelloy grade C276制成)。使用玻璃珠,使所述催化剂位于反应器的中心位置。因而催化剂上的玻璃珠作为气体和液体试剂的混合和预热区。随后用氦在21巴下对测试设备进行压力测试来检验泄漏。然后通过在氦气中在21巴下以5℃/分钟的速度在16小时内加热至220℃,活化催化剂,从而确保催化剂前体完全分解。
将所需的乙烷、20%的氧气(氦气中)和水的流体按需要的流量导入反应器,确保入口组成为42%(v/v)乙烷、6.6%(v/v)氧气、25%(v/v)氮和26.4%(v/v)水(蒸汽形式)。维持总的进料流速来确保进料GHSV为2970/h。平衡30分钟后,从出口流体对气体取样,对乙烷、氧气和氦进行GC(model Unicam 4400)校正。随后升高反应器的设定温度直至一般地获得75%的氧气转化率(出口流体中2.2%(v/v)氧气作为指示)。
达到平衡30分钟后,在稳态条件下通常进行4-5小时的催化剂评估。在运行期间,通过水-气仪(water-gas meter)测量排出的气体体积。收集液体产物并在运行后进行称重。用GC分析仪(Unicam 4400和4200,各自安装TCD和FID检测器)对气体和液体产物的组成进行测量。
将所有进料和产物流速以及组成输入Excel spreadsheet,并计算如下参数:
乙烷转化率(cnv)=(乙烷的输入摩尔数-乙烷的输出摩尔数)/乙烷的输入摩尔数×100
氧气的转化率(cnv)=(氧气的输入摩尔数-氧气的输出摩尔数)/氧气的输入摩尔数×100
乙酸的选择性(C-mol%)=(乙酸的输出摩尔数×2)/(乙烷的转化摩尔数×2)×100
乙烯的选择性(C-mol%)=(乙烯的输出摩尔数×2)/(乙烷的转化摩尔数×2)×100
CO的选择性(C-mol%)=(CO的输出摩尔数)/(乙烷的转化摩尔数×2)×100
CO2的选择性(C-mol%)=(CO2的输出摩尔数)/(乙烷的转化摩尔数×2)×100
COx的选择性(C-mol%)=CO的选择性+CO2的选择性
STY(时空收率)%=(乙酸,g)/催化剂床,升/小时
通常反应的质量平衡和碳平衡为100+/-5%。催化剂比较
下表对上述催化剂的性能进行了比较。为便于比较,每种催化剂在如表所示的标准条件下进行评估,除了改变温度以便获得70-90%的氧气转化率。
表中数据清楚显示了Ag、Ir和Ag-Ir在基于Mo-V-Nb的氧化物催化剂上的促进效果。因此,表中数据清楚表明银促进的催化剂(催化剂I)在高的乙酸选择性和低的碳氧化物选择性上优于未促进的催化剂(F)。另外,数据显示铱促进的催化剂(II)在高的乙酸选择性上优于未促进的催化剂(催化剂F)。
基于这些结果,在没有钯的条件下,银和铱都是将乙烷氧化为乙酸的有效催化剂促进剂。
实施例/比较例                   催化剂组成   Tset℃   Tbed℃   乙烷cnv%   氧气cnv%   S(C2H4)%C-mol   S(COx)%C-mol  S(乙酸)%C-mol  STY乙酸g/l-cat/h
    A     Mo1.00V0.25Nb0.12   326   3.2    82.4     41.9     16.2     41.3     82.0
    B     Mo1.00V0.25   314   4.8    79.4     15.1     67.0     17.8     19.7
    C     Mo1.00V0.25Nb0.12Pd0.014   253   3.9    76.8     0.0     36.9     62.9     82.4
    D     Mo1.00V0.25Nb0.12Ru0.014   293   5.0    71.8     43.7     16.5     39.8     70.2
    E     Mo1.00V0.25Nb0.12Rh0.014   304   5.7    87.5     43.1     15.5     40.3     89.3
    F     Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.03  300   309   5.7    75.1     26.3     22.7     50.4     126.0
    G     Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.04Pd0.011   286   6.2    73.0     14.8     8.2     76.5     187.8
    I     Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.04Ag0.028   250   262   5.7    75.0     19.3     3.6     76.2     183.3
    II     Mo1.00Re0.69V0.72Nb0.0.08Sb0.08Ca0.04Ir0.028   230   243   2.6    57.2     33.9     3.0     63.0     81.9
    II     Mo1.00Re0.69V0.72Nb0.25Sb0.08Ca0.04Ir0.028   280   308   5.3    98.8     20.1     20.8     59.1     131.9
    III     Mo1.00V0.25Nb0.12Sb0.08Ag0.014   280   296   3.4    74.9     33.9     7.2     59.0     100.0
    IV     Mo1.00V0.25Nb0.12Ag0.000028Ir0.0000018   296   4.1    77.1     28.2     6.8     65.1     124.9
    条件:21巴,42%(v/v)乙烷,6.6%氧气,25%水,GHSV=2970

Claims (31)

1.催化剂组合物,该组合物包含与氧结合的下列元素:
              MoaWbAgcIrdXeYf          (I)
其中X为元素Nb和V;
Y为一种或多种元素,它们选自:
Cr,Mn,Ta,Ti,B,Al,Ga,In,Pt,Zn,Cd,Bi,Ce,Co,Rh,Cu,Au,Fe,Ru,
Os,K,Rb,Cs,Mg,Ca,Sr,Ba,Zr,Hf,Ni,P,Pb,Sb,Si,Sn,Tl,U,Re
和Pd;
a、b、c、d、e和f代表元素的摩尔比,并且,
0<a≤1,0≤b<1并且a+b=1;
0<(c+d)≤0.1;
0<e≤2;并且
0≤f≤2。
2.权利要求1的催化剂组合物,其中c+d为至少10-6
3.权利要求2的催化剂组合物,其中(c+d)≤0.05。
4.前述权利要求中任一项的催化剂组合物,其中存在的银的摩尔数大于铱。
5.权利要求4的催化剂组合物,其中c至少为d的10倍。
6.权利要求1的催化剂组合物,其中e至少为0.05。
7.权利要求1的催化剂组合物,其中e不大于0.5。
8.权利要求1的催化剂组合物,其中f至少为10-6
9.权利要求8的催化剂组合物,其中f不大于0.2。
10.权利要求1的催化剂组合物,其中Y为选自Cu、Pd、Pt、Re、Ru和Sb的至少一种元素。
11.权利要求1的催化剂组合物,其中a至少为0.1。
12.权利要求1的催化剂组合物,其中b不大于0.9。
13.权利要求1的催化剂组合物,选自:Moa.Wb.Agc.XeYf;Moa.Wb.Ird.XeYf;Moa.Wb.[Ag+Ir]c+d.Xe.Yf;Moa.Agc.Xe.Yf;Moa.Ird.Xe.Yf;Moa.[Ag+Ir]c+d.Xe.Yf;[Mo+W]a+b.Agc.Xc.Yf;[Mo+W]a+b.Ird.Xe.Yf;[Mo+W]a+b.[Ag+Ir]c+d.Xe.Yf,其中X为元素Nb和V,并且其中Y、a、b、c、d、e和f的含义如权利要求1。
14.由含有乙烷和/或乙烯的气体混合物生产乙酸的方法,其包括在高温下在如权利要求1的催化剂组合物的存在下,使所述气体混合物与含氧分子的气体接触。
15.权利要求1的催化剂组合物在生产乙酸和/或乙酸乙烯酯的组合法中的应用,包括以下步骤:
(a)在第一反应区,在权利要求1-13中任一项的、对乙烯氧化为
   乙酸和/或乙烷氧化为乙酸和乙烯具有活性的催化剂的存在
   下,使含有乙烯和/或乙烷以及任选的蒸汽的气体原料与含有
   氧分子的气体接触,产生第一产物流体,其包含乙酸、水和
   乙烯(未反应的和/或副产物的乙烯)以及任选的乙烷、一氧化
   碳、二氧化碳和/或氮气;并且
(b)在第二反应区,在对产生乙酸乙烯酯具有活性的催化剂的存
   在下,在有或无另外的乙烯和/或乙酸的存在下,使第一气体
   产物流体的至少一部分(至少包含乙酸和乙烯以及任选的
   水、乙烷、一氧化碳、二氧化碳和/或氮气的一种或多种)与含
   氧分子的气体接触,产生第二产物流体,其包含乙酸乙烯酯、
   水、乙酸以及任选的乙烯。
16.权利要求15的权利要求1的催化剂组合物在生产乙酸和/或乙酸乙烯酯的组合法中的应用,进一步包含以下步骤:
(c)通过蒸馏将步骤(b)的产物流分离成包含乙酸乙烯酯和水的塔
   顶共沸部分以及含乙酸的塔底部分(base fraction);和
(d)(i)从步骤(c)的塔底部分中回收乙酸,并任选在部分或完全分
   离出水后,将在步骤(c)分离的共沸部分循环到步骤(c),
或(ii)从步骤(c)分离出来的共沸部分中回收乙酸乙烯酯,并任
选将在步骤(c)分离的塔底部分循环至步骤(b),
或(iii)从步骤(c)分离出来的塔底部分中回收乙酸,并从步骤(c)
回收的塔顶共沸部分回收乙酸乙烯酯。
17.催化剂组合物,选自:
        Mo1.00.Re0.69.V0.72.Nb0.25.Sb0.08.Ca0.03.Ag0.028Oy;
        Mo1.00.Re0.69.V0.72.Nb0.25.Sb0.08.Ca0.03.Ir0.028Oy;
        Mo1.00.V0.25.Nb0.12.Ag0.014Oy;
        Mo1.00.V0.25.Nb0.12.Ag0.000028.Ir0.0000018Oy其中,y为满足组合物中各元素对氧要求的化合价的数字。
18.催化剂组合物,包括与氧结合的下列元素:Moa.Wb.Agc.Ird.Xe.Yf其中X是元素Nb和V;
Y为选自下列的一种或多种元素:Cr,Mn,Ta,Ti,B,Al,Ga,In,Pt,Zn,Cd,Bi,Ce,Co,Rh,Cu,Au,Fe,Ru,Os,K,Rb,Cs,Mg,Ca,Sr,Ba,Zr,Hf,Ni,P,Pb,Sb,Si,Sn,Tl,U,Re和Pd;
a、b、c、d、e和f代表元素的克原子比,且
        0<a≤1,0≤b<1 a+b=1;
        0<(c+d)≤0.1;
        0.2≤e≤2;
        0≤f≤2.
19.权利要求18的催化剂组合物,其中c+d至少为10-6
20.权利要求19的催化剂组合物,其中c+d≤0.05。
21.权利要求18的催化剂组合物,其中以克原子计,存在的银多于铱。
22.权利要求21的催化剂组合物,其中c至少为d的10倍。
23.权利要求18的催化剂组合物,其中e不大于0.5。
24.权利要求1 8的催化剂组合物,其中f至少为10-6
25.权利要求24的催化剂组合物,其中f不大于0.2。
26.权利要求18的催化剂组合物,其中Y为至少一种下列的元素:Cu、Pd、Pt、Re、Ru和Sb。
27.权利要求18的催化剂组合物,其中a为至少0.1。
28.权利要求18的催化剂组合物,其中b不大于0.9。
29.权利要求18的催化剂组合物,其中式(I)选自:Moa.Wb.Agc.Xa.Yf;Moa.Wb.Ird.Xe.Yf;Moa.Wb.c+d.Xe.Yf;Moa.Agc.Xe.Yf;Moa.Ird.Xe.Yf;Moa.c+d.Xe.Yfa+b.Agc.Xe.Yfa+b.Ird.Xe.Yfa+b.c+d.Xe.Yf,其中X为元素Nb和V,Y和a、b、c、d、e和f如权利要求18定义。
30.权利要求1的催化剂组合物,其中a为至少0.5。
31.权利要求18的催化剂组合物,其中a为至少0.5。
CNB998067091A 1998-04-02 1999-03-31 乙烷和/或乙烯氧化的催化剂和方法 Expired - Fee Related CN1138596C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9807142.6 1998-04-02
GBGB9807142.6A GB9807142D0 (en) 1998-04-02 1998-04-02 Catalyst and process utilising the catalyst

Publications (2)

Publication Number Publication Date
CN1303320A CN1303320A (zh) 2001-07-11
CN1138596C true CN1138596C (zh) 2004-02-18

Family

ID=10829783

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998067091A Expired - Fee Related CN1138596C (zh) 1998-04-02 1999-03-31 乙烷和/或乙烯氧化的催化剂和方法

Country Status (17)

Country Link
US (1) US6350716B1 (zh)
EP (1) EP1069945B1 (zh)
JP (1) JP4374140B2 (zh)
KR (1) KR100540016B1 (zh)
CN (1) CN1138596C (zh)
AU (1) AU3160899A (zh)
BR (1) BR9909164B1 (zh)
DE (1) DE69907899T2 (zh)
ES (1) ES2200516T3 (zh)
GB (1) GB9807142D0 (zh)
ID (1) ID26782A (zh)
NO (1) NO321051B1 (zh)
RU (1) RU2208480C2 (zh)
SG (1) SG105561A1 (zh)
TR (1) TR200002817T2 (zh)
UA (1) UA66848C2 (zh)
WO (1) WO1999051339A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9819221D0 (en) * 1998-09-04 1998-10-28 Bp Chem Int Ltd Process for the production of acetic acid
US6114278A (en) * 1998-11-16 2000-09-05 Saudi Basic Industries Corporation Catalysts for catalytic oxidation of propane to acrylic acid, methods of making and using the same
WO2000048971A1 (en) * 1999-02-22 2000-08-24 Symyx Technologies, Inc. Compositions comprising nickel and their use as catalyst in oxidative dehydrogenation of alkanes
GB9907704D0 (en) 1999-04-01 1999-05-26 Bp Chem Int Ltd Catalyst and process utilising the catalyst
JP4809532B2 (ja) * 1999-11-15 2011-11-09 サウディ ベーシック インダストリーズ コーポレイション プロパンのアクリル酸への接触酸化用触媒、その製造法及び使用法
US6693059B2 (en) * 2000-02-09 2004-02-17 Rohm And Haas Company Process for preparing a catalyst and catalytic oxidation therewith
GB0014584D0 (en) * 2000-06-14 2000-08-09 Bp Chem Int Ltd Apparatus and process
GB0026242D0 (en) 2000-10-26 2000-12-13 Bp Chem Int Ltd Apparatus and process
GB0026243D0 (en) * 2000-10-26 2000-12-13 Bp Chem Int Ltd Process
US7368599B2 (en) * 2001-10-16 2008-05-06 Bp Chemicals Limited Ethane oxidation catalyst and process utilising the catalyst
TWI322709B (en) * 2001-12-04 2010-04-01 Bp Chem Int Ltd Oxidation process in fluidised bed reactor
US6919472B2 (en) * 2001-12-21 2005-07-19 Saudi Basic Industries Corporation Catalyst compositions for the selective conversion of alkanes to unsaturated carboxylic acids, methods of making and methods of using thereof
GB0223681D0 (en) * 2002-10-10 2002-11-20 Bp Chem Int Ltd Catalyst and process
US7718811B2 (en) 2002-11-26 2010-05-18 Ineos Europe Limited Oxidation process in fluidised bed reactor
EP1656200A1 (en) * 2003-08-21 2006-05-17 BP Chemicals Limited Catalyst composition and use thereof in ethane oxidation
US7727928B2 (en) 2004-07-30 2010-06-01 Bp Chemicals Limited Catalyst composition and use thereof in ethane oxidation
US20120208695A1 (en) * 2009-11-02 2012-08-16 Dow Global Technologies Llc Supported rhodium synthesis gas conversion catalyst compositions
WO2011126545A1 (en) * 2010-04-09 2011-10-13 Dow Global Technologies Llc Catalyst compositions for producing mixed alcohols
AU2011258422C1 (en) 2010-05-24 2017-03-30 Lummus Technology Llc Nanowire catalysts
CA2837201C (en) 2011-05-24 2018-02-13 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
EA029490B1 (ru) 2011-11-29 2018-04-30 Силурия Текнолоджиз, Инк. Катализаторы из нанопроволоки и способы их применения и получения
US9545610B2 (en) 2013-03-04 2017-01-17 Nova Chemicals (International) S.A. Complex comprising oxidative dehydrogenation unit
US20140274671A1 (en) 2013-03-15 2014-09-18 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
EP3137211A2 (en) 2014-05-02 2017-03-08 Siluria Technologies, Inc. Heterogeneous catalysts
EP3194070B1 (en) 2014-09-17 2020-12-23 Lummus Technology LLC Catalysts for oxidative coupling of methane and oxidative dehydrogenation of ethane
CN106582866B (zh) * 2015-10-19 2019-08-06 中国石油化工股份有限公司 制备乙烯法醋酸乙烯所用的催化剂
CN106582820B (zh) * 2015-10-19 2019-07-05 中国石油化工股份有限公司 乙烯法醋酸乙烯合成所用的催化剂
US20170267605A1 (en) 2016-03-16 2017-09-21 Siluria Technologies, Inc. Catalysts and methods for natural gas processes
JP7516397B2 (ja) 2019-01-30 2024-07-16 ルーマス テクノロジー エルエルシー メタンの酸化的カップリングのための触媒

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885409A (en) * 1957-05-27 1959-05-05 American Cyanamid Co Maleic anhydride production and catalyst therefor
GB944494A (en) * 1961-01-06 1963-12-18 Allied Chem Improvements relating to oxidation catalysts
JPS552619A (en) * 1978-06-21 1980-01-10 Nippon Kayaku Co Ltd Preparation of methacrylic acid and catalyst
US4250346A (en) * 1980-04-14 1981-02-10 Union Carbide Corporation Low temperature oxydehydrogenation of ethane to ethylene
US4419270A (en) * 1980-06-26 1983-12-06 Nippon Shokubai Kagaku Kogyo Co. Ltd. Oxidation catalyst
GB8915410D0 (en) 1989-07-05 1989-08-23 Bp Chem Int Ltd Chemical process
US4524236A (en) * 1984-06-28 1985-06-18 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
US4568790A (en) * 1984-06-28 1986-02-04 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
US4596787A (en) 1985-04-11 1986-06-24 Union Carbide Corporation Process for preparing a supported catalyst for the oxydehydrogenation of ethane to ethylene
US4808563A (en) * 1986-03-24 1989-02-28 The Standard Oil Company Molybdenum-tungsten-containing catalyst for methane conversion process
US4797381A (en) * 1987-07-30 1989-01-10 The Standard Oil Company Preparation of abrasion resistant alumina-supported vanadium-antimony oxidic catalysts
DE4022212A1 (de) * 1990-07-12 1992-01-16 Basf Ag Massen der allgemeinen formel mo(pfeil abwaerts)1(pfeil abwaerts)(pfeil abwaerts)2(pfeil abwaerts)(pfeil hoch)p(pfeil hoch)(pfeil abwaerts)a(pfeil abwaerts)(pfeil hoch)v(pfeil hoch)(pfeil abwaerts)b(pfeil abwaerts)(pfeil hoch)x(pfeil hoch)(pfeil hoch)1(pfeil hoch)(pfeil abwaerts)c(pfeil abwaerts)(pfeil hoch)x(pfeil hoch)(pfeil hoch)2(pfeil hoch)(pfeil abwaerts)d(pfeil abwaerts)(pfeil hoch)x(pfeil hoch)(pfeil hoch)3(pfeil hoch)(pfeil abwaerts)e(pfeil abwaerts)(pfeil hoch)s(pfeil hoch)(pfeil hoch)b(pfeil hoch)(pfeil abwaerts)f(pfeil abwaerts)(pfeil hoch)r(pfeil hoch)(pfeil hoch)e(pfeil hoch)(pfeil abwaerts)g(pfeil abwaerts)(pfeil hoch)s(pfeil hoch)(pfeil abwaerts)h(pfeil abwaerts)(pfeil hoch)o(pfeil hoch)(pfeil abwaerts)n(pfeil abwaerts)
US5300682A (en) 1991-06-10 1994-04-05 The Standard Oil Co. Catalytic oxidation of ethane to acetic acid
DE4335973A1 (de) * 1993-10-21 1995-04-27 Basf Ag Verfahren zur Herstellung von katalytisch aktiven Multimetalloxidmassen, die als Grundbestandteile die Elemente V und Mo in oxidischer Form enthalten
US5498588A (en) * 1994-09-09 1996-03-12 The Standard Oil Company Surface modification and promotion of vanadium antimony oxide catalysts
FR2728898B1 (fr) 1994-12-29 1997-01-31 Rhone Poulenc Chimie Procede de preparation d'acides carboxyliques par oxydation menagee des alcanes correspondants
DE19519004A1 (de) 1995-05-24 1996-11-28 Hoechst Ag Neue selen- und rutheniumhaltige Metalloxidkatalysatoren sowie ein Verfahren zu ihrer Herstellung und ihre Verwendung
US5625084A (en) * 1996-01-31 1997-04-29 Arco Chemical Technology, L.P. Vapor phase oxidation of propylene to propylene oxide
DE19620542A1 (de) 1996-05-22 1997-11-27 Hoechst Ag Verfahren zur selektiven Herstellung von Essigsäure
DE19630832A1 (de) * 1996-07-31 1998-02-05 Hoechst Ag Verfahren zur selektiven Herstellung von Essigsäure
GB9616573D0 (en) 1996-08-07 1996-09-25 Bp Chem Int Ltd Process
FR2754817B1 (fr) * 1996-10-21 2000-03-17 Toagosei Co Ltd Procede de production d'acide acrylique a partir de propane et d'oxygene gazeux
DE19717076A1 (de) 1997-04-23 1998-10-29 Hoechst Ag Katalysator und Verfahren zur katalytischen Oxidation von Ethan zu Essigsäure
US6013597A (en) * 1997-09-17 2000-01-11 Saudi Basic Industries Corporation Catalysts for the oxidation of ethane to acetic acid processes of making same and, processes of using same
DE19745902A1 (de) 1997-10-17 1999-04-22 Hoechst Ag Verfahren zur selektiven Herstellung von Essigsäure durch katalytische Oxidation von Ethan
US6043185A (en) * 1999-04-02 2000-03-28 The Standard Oil Company Gallium promoted molybdenum vanadium-antimony-oxide based catalyst for selective paraffin ammoxidation

Also Published As

Publication number Publication date
JP2002510543A (ja) 2002-04-09
RU2208480C2 (ru) 2003-07-20
KR20010042430A (ko) 2001-05-25
NO20004909D0 (no) 2000-09-29
NO20004909L (no) 2000-11-17
EP1069945B1 (en) 2003-05-14
TR200002817T2 (tr) 2000-12-21
AU3160899A (en) 1999-10-25
JP4374140B2 (ja) 2009-12-02
DE69907899T2 (de) 2004-01-22
NO321051B1 (no) 2006-03-06
CN1303320A (zh) 2001-07-11
ID26782A (id) 2001-02-08
BR9909164B1 (pt) 2010-07-13
DE69907899D1 (de) 2003-06-18
US6350716B1 (en) 2002-02-26
SG105561A1 (en) 2004-08-27
WO1999051339A1 (en) 1999-10-14
ES2200516T3 (es) 2004-03-01
UA66848C2 (uk) 2004-06-15
KR100540016B1 (ko) 2005-12-29
GB9807142D0 (en) 1998-06-03
EP1069945A1 (en) 2001-01-24
BR9909164A (pt) 2001-10-16

Similar Documents

Publication Publication Date Title
CN1138596C (zh) 乙烷和/或乙烯氧化的催化剂和方法
CN1227194C (zh) 生产链烯烃和羧酸的氧化方法
CN1188387C (zh) 通过乙烷或乙烯氧化生产乙酸乙烯酯单体的方法
CN1128666C (zh) 氧化催化剂及其使用方法
CN1241895C (zh) 乙酸乙烯酯的生产方法
CN1145527C (zh) 丙烷催化氧化成丙烯酸的催化剂及其制造和使用方法
CN1123561C (zh) 乙烷催化氧化选择性生产乙酸的方法
CN1027060C (zh) 制取乙烯和乙酸的方法及所用的催化剂
CN1231293C (zh) 多金属氧化物催化剂的制备方法
CN1028752C (zh) 生产腈的工艺
CN1105599C (zh) 用于乙烷氧化成乙酸的催化剂及其制备方法和用途
CN86102452A (zh) 通过羧酸加氢制备醇
CN1255366C (zh) 丙烯醛和丙烯酸的制备方法
CN1829676A (zh) 羰基化合物的脱氢方法
CN1231656A (zh) 选择性制备醋酸的方法和适用的催化剂
CN1225453C (zh) 乙酸乙烯酯的综合生产方法
CN1524615A (zh) 复合氧化物催化剂以及使用该催化剂的丙烯酸制备方法
CN1225438C (zh) 生产链烯烃和羧酸的氧化方法
CN101041135A (zh) 催化氧化乙烷和/或乙烯选择性制备乙酸的方法
CN1173781C (zh) 至少包括铁、碱金属和贵金属的脱氢催化剂
CN1191215C (zh) 生产苯乙烯的方法
CN1744946A (zh) 氧化催化剂及其制备方法
CN1110966A (zh) 腈的生产方法
CN1871064A (zh) 催化剂组合物及其在乙烷氧化中的用途
CN1612853A (zh) 生产羧酸链烯酯的集成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040218

Termination date: 20170331