CN1129358A - 迁移率提高了的mosfet器件及其制造方法 - Google Patents

迁移率提高了的mosfet器件及其制造方法 Download PDF

Info

Publication number
CN1129358A
CN1129358A CN95117359A CN95117359A CN1129358A CN 1129358 A CN1129358 A CN 1129358A CN 95117359 A CN95117359 A CN 95117359A CN 95117359 A CN95117359 A CN 95117359A CN 1129358 A CN1129358 A CN 1129358A
Authority
CN
China
Prior art keywords
layer
carrier transport
transport district
conduction type
monocrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN95117359A
Other languages
English (en)
Inventor
乔恩J·坎迪拉里亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CN1129358A publication Critical patent/CN1129358A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/931Silicon carbide semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种迁移率提高了的MOSFET器件(10),它包含一个形成在单晶硅层(11)上的沟道层(12)。沟道层(12)包含硅和第二种材料的合金,其中,第二种材料替位地出现在硅的晶格位置上,其原子百分比使沟道层(12)处于张应力之下。

Description

迁移率提高了的MOSFET器件及其制造方法
本发明一般涉及到半导体器件、更确切地说是涉及到具有提高了的载流子迁移率的半导体器件。
金属氧化物半导体场效应晶体管(MOSFET)已为人们熟知并广泛地应用于电子工业。MOSFET器件的载流子迁移率由于直接影响到输出电流和开关性能而成为一个重要参数。在标准的MOSFET技术中,为改善电流驱动和开关性能而减小沟道长度和栅极介质厚度。但由于栅极介质厚度的减小相应增加了本征栅电容而会损害器件性能。
在硅MOSFET器件中已表明,上下以硅区为界、由硅锗(Si1-xGex)合金构成的处于压应力下的埋置沟道区可以提高沟道区中的空穴载流子迁移率。这是由于空穴被该周围硅区和Si1-xGex沟道区之间的势能偏移限制于沟道区中。在授予Murakami等人的美国专利5019882和授予Solomon等人的美国专利5241197中示出了这种应变(strained)器件。
埋置Si1-xGex沟道的器件有一些缺点,包括增加了的沟道区合金散射使电子迁移率下降、不希望有的导带偏移使电子迁移率提高很少、得不到比硅更高的载流子速度,以及为了产生应力并提高迁移率而需要高的Ge浓度。高的Ge浓度引起层厚度和工艺温度大大降低。降低了的工艺温度对杂质激活和栅氧化工艺有不利影响。
带有处于张应力下的沟道区的硅器件是可取的,这是由于张应力引起空穴和电子迁移率都提高且比起硅来可提高载流子速度。已报道的一种方法采用了一种在硅沟道区下方带有一个Si0.7Ge0.3合金弛豫层并在Si0.7Ge0.3合金层下方带有一个Si1-xGex(X=5-30%)缓冲层的应变硅表面沟道区。此法的优点是消除了沟道区中的合金散射。但此法有一个缺点,即应变沟道区处于表面从而对会使迁移率降低的表面散射效应很敏感。对热载流子退化和噪声问题也很敏感。此外,此法需要合金弛豫层和缓冲层,使工艺复杂性和成本增加。
另一种已报导的方法采用一种形成在Si1-yGey(其中y>x)弛豫层上的应变Si1-xGex沟道层,在该应变Si1-xGex沟道层上方带有一个硅层并在Si1-yGey弛豫层下方带有一个硅层。这种结构有一些缺点,包括:载流子会迁移出应变Si1-xGex沟道层而进入Si1-yGey合金弛豫层从而降低提高的迁移率效应,由于沟道层中存在锗而出现较大的合金散射效应,以及因多层SiGe而增加工艺复杂性。
显而易见,需要有一种电子和空穴迁移率得提高到的、对合金散射效应不那么敏感的、对表面散射效应也不那么敏感的且不需要合金弛豫层和缓冲层的MOSFET器件。
简要地说,迁移率提高了的MOSFET器件包含一个形成在第一导电类型单晶硅层上的载流子输运区。载流子输运区包含一个硅与第二材料的合金,其中第二材料在载流子输运区中的原子百分比要使载流子输运区处于张力状态。第二导电类型的源区和漏区延伸到载流子输运区中。载流子输运区的一部分将源区和漏区分隔开来。控制电极与载流子输运区电隔离并排列在源区和漏区之间。
制作此处所述迁移率提高了的MOSFET的方法包括在第一导电类型单晶硅层上制作一个载流子输运区。此载流子输运区包含一个硅与第二材料的合金。第二材料在载流子输运区中的原子百分比使载流子输运区处于张应力之下。栅介质层制作在部分载流子输运区上。控制电极制作在栅介质层上。第二导电类型的源区和漏区制作成至少延伸到载流子输运区中,这部分载流子输运区位于源和漏区之间。
图1是本发明一个实施例的放大剖面图;
图2是图1实施例在零栅偏压下的能带图;
图3是本发明另一实施例的放大剖面图;
图4是本发明又一实施例的放大剖面图;
图5是本发明又一实施例的放大剖面图。
图1示出了根据本发明的具有提高了的载流子迁移率的MOSFET器件10的一个实施例。载流子输运区即沟道层12制作在单晶硅层11上。沟道层12为硅和第二材料的合金。p沟道器件的单晶硅层11为n型导电类型而n沟道器件的单晶硅层11为p型导电类型。第二材料以替位形式出现在沟道层12的晶格位置中,其原子百分比要使沟道层相比于单晶硅层11或含硅晶体来说处于张应力之下。沟道层12最好不要用受主或施主杂质掺杂。
MOSFET器件10还包含形成在沟道层12上的外延半导体即外延层13。外延层13最好含有硅,且厚度为50埃数量级。源区14和漏区16延伸通过外延层13且至少伸入沟道层12。源区14和漏区16最好延伸通过沟道层12进入单晶硅层11之中。一部分沟道层12位于源区14和漏区16之间。控制电极即栅电极18和外延层13电隔离。栅电极18最好用栅介质层17和外延层13电隔离。栅介质层17最好由氧化物构成且其厚度在30—125埃范围内。在部分源区14上制作源电极19并在部分漏区16上制作漏电极21。
图2是图1实施例在零栅偏压下的能带图,示出了应变引入的能带分裂对沟道层12的作用。图2示出了外延层13中、沟道层12中和单晶硅层11中价带22与导带23之间的相对关系。当沟道层12处于张应力下时,沟道层12中的价带边即交界面24分裂,并实际上能级向上移向导带23。此外,导带边即界面26分裂并实际上能级向下移向价带22。这就产生了一个比单晶硅层带隙28和外延层带隙29窄的沟道层带隙27。沟道层带隙27的偏移或变窄实际上产生一个在沟道层12中捕获空穴和电子的势阱。而且,上述效应还使沟道12具有被有效载流子质量降低了的空穴和电子优先占据的能级。当栅电极18加有恰当栅偏压时,这又反过来提高了沟道层12中的自由载流子迁移率。
张应力下的沟道层比压应力下的沟道层更好,这是由于张应力能提供更大的导带分裂。此外,比之压应力下的薄膜,张应力下的薄膜预计有较低的有效载流子质量。于是,张应力下的沟道层可提高电子和空穴载流子的迁移率并保证了迁移率提高了的互补p沟道和n沟道器件的制造。
如授予J.Cande laria和Motorola公司的美国专利5360986(此处作为参考文献)所示,掺碳硅是一种适用于沟道层12的合金材料。在最佳实施例中,沟道层12包含一个掺碳的硅而Si1-xCx合金,其中碳是第二材料,碳位于替位硅晶格位置上,x最好≤0.02。x最好在约0.005—0.016的范围内。
当x为0.02—0.005数量级时,沟道层12的厚度最好分别为100—200埃数量级。根据碳存在的原子百分比来调整沟道层12的厚度。当沟道层12包含Si1-xCx合金时,外延层13最好包含硅且厚度在50—100埃范围内。
由于掺碳沟道层的合金/载流子散射效应较低,故掺碳硅沟道层优于掺Ge硅沟道层。这是由于碳与锗原子间的相对尺寸差使得有可能利用比锗量低很多的碳量(11~1的数量级)来获得相似的应变幅度(尽管符号相反)。由于掺碳硅沟道层的合金/载流子散射效应比有类似应变的掺Ge硅沟道层低,故载流子迁移率,特别是电子迁移率得到了额外的提高。而且,由于MOSFET器件10中的沟道层12是埋置的,亦即以外延层13和单晶硅层11为界,故MOSFET10对表面散射、热载流子退化和噪声效应更不敏感。
当沟道层12含有Si1-xCx合金时,采用外延生长即化学气相淀积技术来制作沟道层12。例如采用乙炔、乙稀、丙烷或甲烷碳源。或者为美国专利5360986所示,制作一个硅层,将碳离子注入到硅层中,并加热掺碳的硅层以诱导掺碳硅层的固相外延再生长以形成沟道层12。或者用分子束外延、金属有机化学气相淀积(MOCVD)或超高真空化学气相淀积(UHVCVD)来制作沟道层12。
在制作带有p沟道结构和掺碳的沟道层的MOSFET10的最佳实施例中,n型导电性单晶硅层11被选择性地形成在p型衬底上或p型衬底中。然后在不掺杂的硅层上形成含有掺碳硅的沟道层12。接着在沟道层12上形成含有n型掺杂硅或不掺杂硅且厚度为50—100埃数量级的外延层13。不掺杂硅层、沟道层12以及外延层13最好在同一个外延生长步骤中形成。
然后在外延层13上沉积或生长一个厚度在60—80埃范围内的氧化硅层。接着在氧化硅层上形成一个原位掺杂的n型多晶硅层。接下来对此n型多晶硅层和氧化硅层进行选择性图形化以分别形成栅电极18和栅介质层17。再将p型杂质选择性地引入外延层13。然后将该结构加热以激活p型杂质而形成源区14和漏区16。再用标准的MOSFET工艺来完成MOSFET器件10。为制作n沟道结构形式的MOSFET器件10,杂质的导电类型正好相反。
图3—5示出了根据本发明的迁移率提高了的MOSFET器件的其它实施例。图3所示MOSFET30除不带有外延层13之外均与MOSFET器件10相似。MOSFET30具有如前所述的提高了的迁移率,但由于沟道层12和栅介质层17之间的界面而对表面散射效应更为敏感。然而,比之结构相似的无应力硅沟道MOSFET器件来说,MOSFET30的载流子迁移率仍然提高了。
图4所示的MOSFET器件40相似于MOSFET器件10,另外还带有形成在单晶硅层11中的调制掺杂层或调制层41。单晶硅层11的43部分将调制层41和沟道层12分隔开来。43部分和厚度最好为50—100埃数量级。调制层41的导电类型与源区14和漏区16相同,其杂质浓度高于单晶硅层11,而且导电类型相反。调制层41的厚度最好在100—200埃的范围内。
调制层41采用外延生长即化学气相淀积(CVD)制作在单晶硅层11的42部位。然后用外延生长或CVD技术在调制层41上制作单晶硅层11的43部分。可用离子注入或扩散技术向单晶硅层11的43部分掺入n型或p型杂质,具体根据MOSFET器件10是p沟道抑或是n沟道器件来决定。调制层41和单晶硅层11的43部分最好在同一个原位工序中相继制作。
图5所示的MOSFET50和MOSFET10相似,另还带有隔离层即区51以形成一个绝缘体上半导体(SOI)器件。隔离层51最好包含氧化硅并用离子注入氧或其它技术来制作。隔离层51最好在形成沟道层12和外延层13之前制作。作为变通,隔离层51可制作在支撑用的衬底(未绘出)上,然后将单晶硅衬底固定到隔离层51上,并将单晶硅衬底减薄至所需的厚度以形成单晶硅层11。隔离层51最好与沟道层12隔开一个500—600埃的距离52。
当隔离层51同MOSFET器件3一起使用时(图3),它最好位于沟道层12下方1000埃数量级处。当隔离层51同MOSFET40一起使用时(图4),它最好位于调制层41下方100—200埃数量级处。
至此应认为已提供了一种迁移率提高了的MOSFET器件。借助于在单晶硅层上制作一个载流子输运区(其中的载流子输运区包含一个硅和第二材料的合金,且第二材料在载流子输运区中的原子百分比使载流子输运区处于张应力之下),获得了提高了的载流子迁移率。
而且,借助于使载流子输运区处于张应力之下,获得了比之载流子输运区处于压应力下更大的导带分裂,从而为电子和空穴载流子都提供了更高的迁移率。这保证了迁移率提高了的互补n沟和p沟器件的制造。
此外,借助于在载流子输运区上增加一个外延层,提供了一个对表面散射、热载流子退化和噪声效应较不敏感的埋置结构。
而且,当载流子输运区包含掺碳硅时,获得了比包含掺锗硅的有类似应变的载流子区更低的合金散射。同时,当载流子输运区包含掺碳硅时,无需采用弛豫合金层就获得了张应力下的载流子输运区。这就降低了工艺的复杂性和成本。

Claims (10)

1.一种迁移率提高了的MOSFET器件,其特征是:
一个第一导电类型的单晶硅层(11);
一个形成在单晶硅层(11)上的载流子输运区(22),其中的载流子输运区(12)由硅与第二半导体材料的合金组成,且其中的第二半导体材料替位地出现在载流子输运区(12)的晶格位置,其原子百分比要使载流子输运区处于张应力之下;
一个延伸到载流子输运区(12)中的第二导电类型的源区(14);
一个延伸到载流子输运区(12)中的第二导电类型的漏区(16),其中载流子输运区(12)的一部分位于源区(14)和漏区(16)之间;以及
一个与载流子输运区(12)电隔离的控制电极(18),其中的控制电极(18)排列在源区(14)和漏区(16)之间。
2.如权利要求1的器件,其进一步特征是:
一个排列在载流子输运区(12)和控制电极(18)之间的第一半导体材料的外延层(13),其中的源区(14)和漏区(16)延伸通过外延层(13)至少进入载流子输运区(12)。
3.如权利要求1的器件,其中的载流于输运区(12)包含Si1-xCx合金。
4.如权利要求3的器件,其中的x≤0.02。
5.一种带有埋置的掺碳的硅沟道区的MOSFET结构,其特征是:
一个沟道层(12),它包含形成在第一导电类型单晶硅层(11)上的Si1-xCx合金,其中的碳出现在沟道层(12)中替位晶格位置上,使沟道(12)处于张应力之下;
一个形成在沟道层上的硅外延层(13);
一个延伸通过硅外延层(13)且至少进入沟道层(12)的第二导电类型的源区(14);
一个延伸通过硅外延层(13)且至少进入沟道层(12)的第二导电类型的漏区(16),其中的部分沟道层(12)将源区(14)与漏区(16)分隔开来;
一个形成在硅外延层(13)上至少位于源区(14)和漏区(16)之间的栅介质层(17);以及
一个形成在栅介质层(17)上的栅电极(18)。
6.如权利要求5的结构,其中的x≤0.02,且其中的单晶硅层(11)的厚度为1000埃的数量级,沟道层(12)的厚度为100埃的数量级,而硅外延层(13)的厚度为50埃数量级。
7.如权利要求5的结构,其进一步特征是:一个排列在单晶硅层(11)下方的隔离区(51)。
8.如权利要求5的结构,其中的单晶硅层(11)包括一个排列在单晶硅层(11)中的调制层(41),其中单晶硅层(11)的一部分将调制层(41)与沟道层(21)分隔开来,且其中的调制层(41)是第二导电类型的,调制层(41)的杂质浓度高于单晶硅层(11)的杂质浓度。
9.一种迁移率提高了的MOSFET器件的制造方法,其特征在于下列步骤:
在第一导电类型的单晶硅层(11)上形成一个载流子输运区(12),其中,载流子输运区(12)包含硅和第二半导体材料的合金,且其中的第二半导体材料替位地出现在载流子输运区(12)的晶格位置,其原子百分比使载流子输运区(12)比之第一导电类型的单晶硅层(11)来说处于张应力之下;
在载流子输运区(12)上形成一个外延半导体层(13);
在一部分载流子输运层(12)上的外延半导体层(13)上形成一个栅介质层(17);
在栅介质层(17)上形成一个控制电极(18);
形成一个延伸通过外延半导体层(13)至少进入载流子输运区(12)的第二导电类型的源区(14);以及
形成一个延伸通过外延半导体层(13)至少进入载流子输运区(12)的第二导电类型的漏区(16),其中部分载流子输运区位于源区(14)和漏区(16)之间。
10.如权利要求9的方法,其中,形成载流子输运区(12)的步骤包括形成一个以Si1-xCx合金为特征的载流子输运区(12),其中的x≤0.02。
CN95117359A 1994-09-26 1995-09-25 迁移率提高了的mosfet器件及其制造方法 Pending CN1129358A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/311,979 US5561302A (en) 1994-09-26 1994-09-26 Enhanced mobility MOSFET device and method
US311979 1994-09-26

Publications (1)

Publication Number Publication Date
CN1129358A true CN1129358A (zh) 1996-08-21

Family

ID=23209323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95117359A Pending CN1129358A (zh) 1994-09-26 1995-09-25 迁移率提高了的mosfet器件及其制造方法

Country Status (5)

Country Link
US (2) US5561302A (zh)
EP (1) EP0703628A3 (zh)
JP (1) JPH08111528A (zh)
KR (1) KR960012557A (zh)
CN (1) CN1129358A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317772C (zh) * 2003-06-16 2007-05-23 松下电器产业株式会社 半导体器件及其制造方法
CN1319152C (zh) * 2000-11-29 2007-05-30 英特尔公司 利用特定晶体管取向的cmos制造方法
CN100421262C (zh) * 2005-02-25 2008-09-24 台湾积体电路制造股份有限公司 半导体元件
CN101777498A (zh) * 2010-01-12 2010-07-14 上海宏力半导体制造有限公司 带浅表外延层的外延片形成方法及其外延片
CN101221901B (zh) * 2007-01-11 2012-02-01 国际商业机器公司 应力绝缘体上硅场效应晶体管及其制作方法
CN104319292A (zh) * 2014-11-06 2015-01-28 株洲南车时代电气股份有限公司 一种新型碳化硅mosfet及其制造方法
CN104979399A (zh) * 2014-04-14 2015-10-14 台湾积体电路制造股份有限公司 关于外延沟道器件的错位应力记忆技术

Families Citing this family (327)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321323A (ja) * 1994-05-24 1995-12-08 Matsushita Electric Ind Co Ltd 薄膜トランジスタおよびその製造方法
JP3243146B2 (ja) * 1994-12-08 2002-01-07 株式会社東芝 半導体装置
JP3305197B2 (ja) * 1995-09-14 2002-07-22 株式会社東芝 半導体装置
JP2839018B2 (ja) * 1996-07-31 1998-12-16 日本電気株式会社 半導体装置の製造方法
US6399970B2 (en) 1996-09-17 2002-06-04 Matsushita Electric Industrial Co., Ltd. FET having a Si/SiGeC heterojunction channel
JP3461274B2 (ja) * 1996-10-16 2003-10-27 株式会社東芝 半導体装置
JPH10270685A (ja) 1997-03-27 1998-10-09 Sony Corp 電界効果トランジスタとその製造方法、半導体装置とその製造方法、その半導体装置を含む論理回路および半導体基板
US5891769A (en) * 1997-04-07 1999-04-06 Motorola, Inc. Method for forming a semiconductor device having a heteroepitaxial layer
CA2295069A1 (en) 1997-06-24 1998-12-30 Eugene A. Fitzgerald Controlling threading dislocation densities in ge on si using graded gesi layers and planarization
JP3443343B2 (ja) * 1997-12-03 2003-09-02 松下電器産業株式会社 半導体装置
US7227176B2 (en) 1998-04-10 2007-06-05 Massachusetts Institute Of Technology Etch stop layer system
JP3592981B2 (ja) * 1999-01-14 2004-11-24 松下電器産業株式会社 半導体装置及びその製造方法
US6350993B1 (en) 1999-03-12 2002-02-26 International Business Machines Corporation High speed composite p-channel Si/SiGe heterostructure for field effect devices
US6281532B1 (en) * 1999-06-28 2001-08-28 Intel Corporation Technique to obtain increased channel mobilities in NMOS transistors by gate electrode engineering
US6656822B2 (en) 1999-06-28 2003-12-02 Intel Corporation Method for reduced capacitance interconnect system using gaseous implants into the ILD
EP1102327B1 (en) * 1999-11-15 2007-10-03 Matsushita Electric Industrial Co., Ltd. Field effect semiconductor device
JP2003520444A (ja) 2000-01-20 2003-07-02 アンバーウェーブ システムズ コーポレイション 高温成長を不要とする低貫通転位密度格子不整合エピ層
US6750130B1 (en) 2000-01-20 2004-06-15 Amberwave Systems Corporation Heterointegration of materials using deposition and bonding
US6602613B1 (en) 2000-01-20 2003-08-05 Amberwave Systems Corporation Heterointegration of materials using deposition and bonding
DE10025264A1 (de) * 2000-05-22 2001-11-29 Max Planck Gesellschaft Feldeffekt-Transistor auf der Basis von eingebetteten Clusterstrukturen und Verfahren zu seiner Herstellung
AU2001263211A1 (en) * 2000-05-26 2001-12-11 Amberwave Systems Corporation Buried channel strained silicon fet using an ion implanted doped layer
US6461945B1 (en) 2000-06-22 2002-10-08 Advanced Micro Devices, Inc. Solid phase epitaxy process for manufacturing transistors having silicon/germanium channel regions
US6743680B1 (en) * 2000-06-22 2004-06-01 Advanced Micro Devices, Inc. Process for manufacturing transistors having silicon/germanium channel regions
US6521502B1 (en) 2000-08-07 2003-02-18 Advanced Micro Devices, Inc. Solid phase epitaxy activation process for source/drain junction extensions and halo regions
JP2004519090A (ja) * 2000-08-07 2004-06-24 アンバーウェーブ システムズ コーポレイション 歪み表面チャネル及び歪み埋め込みチャネルmosfet素子のゲート技術
US6573126B2 (en) 2000-08-16 2003-06-03 Massachusetts Institute Of Technology Process for producing semiconductor article using graded epitaxial growth
US6544854B1 (en) * 2000-11-28 2003-04-08 Lsi Logic Corporation Silicon germanium CMOS channel
US6831263B2 (en) 2002-06-04 2004-12-14 Intel Corporation Very high speed photodetector system using a PIN photodiode array for position sensing
US20020100942A1 (en) * 2000-12-04 2002-08-01 Fitzgerald Eugene A. CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US6649480B2 (en) 2000-12-04 2003-11-18 Amberwave Systems Corporation Method of fabricating CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US6844227B2 (en) * 2000-12-26 2005-01-18 Matsushita Electric Industrial Co., Ltd. Semiconductor devices and method for manufacturing the same
US6495402B1 (en) 2001-02-06 2002-12-17 Advanced Micro Devices, Inc. Semiconductor-on-insulator (SOI) device having source/drain silicon-germanium regions and method of manufacture
US6380590B1 (en) 2001-02-22 2002-04-30 Advanced Micro Devices, Inc. SOI chip having multiple threshold voltage MOSFETs by using multiple channel materials and method of fabricating same
US6475869B1 (en) 2001-02-26 2002-11-05 Advanced Micro Devices, Inc. Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
US6410371B1 (en) 2001-02-26 2002-06-25 Advanced Micro Devices, Inc. Method of fabrication of semiconductor-on-insulator (SOI) wafer having a Si/SiGe/Si active layer
US6677192B1 (en) 2001-03-02 2004-01-13 Amberwave Systems Corporation Method of fabricating a relaxed silicon germanium platform having planarizing for high speed CMOS electronics and high speed analog circuits
US6703688B1 (en) 2001-03-02 2004-03-09 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6900103B2 (en) 2001-03-02 2005-05-31 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6724008B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6593641B1 (en) 2001-03-02 2003-07-15 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6830976B2 (en) * 2001-03-02 2004-12-14 Amberwave Systems Corproation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6723661B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6646322B2 (en) 2001-03-02 2003-11-11 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6709935B1 (en) 2001-03-26 2004-03-23 Advanced Micro Devices, Inc. Method of locally forming a silicon/geranium channel layer
US6921743B2 (en) * 2001-04-02 2005-07-26 The Procter & Gamble Company Automatic dishwashing compositions containing a halogen dioxide salt and methods for use with electrochemical cells and/or electrolytic devices
WO2002082514A1 (en) 2001-04-04 2002-10-17 Massachusetts Institute Of Technology A method for semiconductor device fabrication
US6750119B2 (en) 2001-04-20 2004-06-15 International Business Machines Corporation Epitaxial and polycrystalline growth of Si1-x-yGexCy and Si1-yCy alloy layers on Si by UHV-CVD
US6900094B2 (en) * 2001-06-14 2005-05-31 Amberwave Systems Corporation Method of selective removal of SiGe alloys
US7301180B2 (en) 2001-06-18 2007-11-27 Massachusetts Institute Of Technology Structure and method for a high-speed semiconductor device having a Ge channel layer
US6916727B2 (en) * 2001-06-21 2005-07-12 Massachusetts Institute Of Technology Enhancement of P-type metal-oxide-semiconductor field effect transistors
WO2003015142A2 (en) 2001-08-06 2003-02-20 Massachusetts Institute Of Technology Formation of planar strained layers
US7138649B2 (en) 2001-08-09 2006-11-21 Amberwave Systems Corporation Dual-channel CMOS transistors with differentially strained channels
US6974735B2 (en) * 2001-08-09 2005-12-13 Amberwave Systems Corporation Dual layer Semiconductor Devices
KR100425462B1 (ko) * 2001-09-10 2004-03-30 삼성전자주식회사 Soi 상의 반도체 장치 및 그의 제조방법
US6831292B2 (en) 2001-09-21 2004-12-14 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
WO2003028106A2 (en) * 2001-09-24 2003-04-03 Amberwave Systems Corporation Rf circuits including transistors having strained material layers
KR20030035152A (ko) * 2001-10-30 2003-05-09 주식회사 하이닉스반도체 반도체웨이퍼 제조방법
US6621131B2 (en) * 2001-11-01 2003-09-16 Intel Corporation Semiconductor transistor having a stressed channel
JP2003179157A (ja) 2001-12-10 2003-06-27 Nec Corp Mos型半導体装置
US6657276B1 (en) 2001-12-10 2003-12-02 Advanced Micro Devices, Inc. Shallow trench isolation (STI) region with high-K liner and method of formation
US6806151B2 (en) * 2001-12-14 2004-10-19 Texas Instruments Incorporated Methods and apparatus for inducing stress in a semiconductor device
US7060632B2 (en) 2002-03-14 2006-06-13 Amberwave Systems Corporation Methods for fabricating strained layers on semiconductor substrates
AU2003238963A1 (en) * 2002-06-07 2003-12-22 Amberwave Systems Corporation Semiconductor devices having strained dual channel layers
US20030227057A1 (en) 2002-06-07 2003-12-11 Lochtefeld Anthony J. Strained-semiconductor-on-insulator device structures
US7615829B2 (en) 2002-06-07 2009-11-10 Amberwave Systems Corporation Elevated source and drain elements for strained-channel heterojuntion field-effect transistors
US7307273B2 (en) 2002-06-07 2007-12-11 Amberwave Systems Corporation Control of strain in device layers by selective relaxation
US7074623B2 (en) 2002-06-07 2006-07-11 Amberwave Systems Corporation Methods of forming strained-semiconductor-on-insulator finFET device structures
US6995430B2 (en) 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US7335545B2 (en) 2002-06-07 2008-02-26 Amberwave Systems Corporation Control of strain in device layers by prevention of relaxation
AU2003247513A1 (en) 2002-06-10 2003-12-22 Amberwave Systems Corporation Growing source and drain elements by selecive epitaxy
US6982474B2 (en) 2002-06-25 2006-01-03 Amberwave Systems Corporation Reacted conductive gate electrodes
US6680240B1 (en) 2002-06-25 2004-01-20 Advanced Micro Devices, Inc. Silicon-on-insulator device with strained device film and method for making the same with partial replacement of isolation oxide
US6605514B1 (en) 2002-07-31 2003-08-12 Advanced Micro Devices, Inc. Planar finFET patterning using amorphous carbon
AU2003274922A1 (en) 2002-08-23 2004-03-11 Amberwave Systems Corporation Semiconductor heterostructures having reduced dislocation pile-ups and related methods
US7594967B2 (en) 2002-08-30 2009-09-29 Amberwave Systems Corporation Reduction of dislocation pile-up formation during relaxed lattice-mismatched epitaxy
US6573172B1 (en) 2002-09-16 2003-06-03 Advanced Micro Devices, Inc. Methods for improving carrier mobility of PMOS and NMOS devices
CN1286157C (zh) * 2002-10-10 2006-11-22 松下电器产业株式会社 半导体装置及其制造方法
US7388259B2 (en) * 2002-11-25 2008-06-17 International Business Machines Corporation Strained finFET CMOS device structures
US6825506B2 (en) * 2002-11-27 2004-11-30 Intel Corporation Field effect transistor and method of fabrication
US7001837B2 (en) * 2003-01-17 2006-02-21 Advanced Micro Devices, Inc. Semiconductor with tensile strained substrate and method of making the same
EP2337062A3 (en) 2003-01-27 2016-05-04 Taiwan Semiconductor Manufacturing Company, Limited Method for making semiconductor structures with structural homogeneity
US6921913B2 (en) * 2003-03-04 2005-07-26 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel transistor structure with lattice-mismatched zone
EP1602125B1 (en) 2003-03-07 2019-06-26 Taiwan Semiconductor Manufacturing Company, Ltd. Shallow trench isolation process
US6887798B2 (en) * 2003-05-30 2005-05-03 International Business Machines Corporation STI stress modification by nitrogen plasma treatment for improving performance in small width devices
KR100500451B1 (ko) * 2003-06-16 2005-07-12 삼성전자주식회사 인장된 채널을 갖는 모스 트랜지스터를 구비하는반도체소자의 제조 방법
US7329923B2 (en) * 2003-06-17 2008-02-12 International Business Machines Corporation High-performance CMOS devices on hybrid crystal oriented substrates
US7531828B2 (en) * 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a strained superlattice between at least one pair of spaced apart stress regions
US20060231857A1 (en) * 2003-06-26 2006-10-19 Rj Mears, Llc Method for making a semiconductor device including a memory cell with a negative differential resistance (ndr) device
US7045813B2 (en) * 2003-06-26 2006-05-16 Rj Mears, Llc Semiconductor device including a superlattice with regions defining a semiconductor junction
US20060267130A1 (en) * 2003-06-26 2006-11-30 Rj Mears, Llc Semiconductor Device Including Shallow Trench Isolation (STI) Regions with a Superlattice Therebetween
WO2005018005A1 (en) * 2003-06-26 2005-02-24 Rj Mears, Llc Semiconductor device including mosfet having band-engineered superlattice
US7659539B2 (en) 2003-06-26 2010-02-09 Mears Technologies, Inc. Semiconductor device including a floating gate memory cell with a superlattice channel
US7586165B2 (en) * 2003-06-26 2009-09-08 Mears Technologies, Inc. Microelectromechanical systems (MEMS) device including a superlattice
US20060243964A1 (en) * 2003-06-26 2006-11-02 Rj Mears, Llc Method for making a semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US20060289049A1 (en) * 2003-06-26 2006-12-28 Rj Mears, Llc Semiconductor Device Having a Semiconductor-on-Insulator (SOI) Configuration and Including a Superlattice on a Thin Semiconductor Layer
US7491587B2 (en) * 2003-06-26 2009-02-17 Mears Technologies, Inc. Method for making a semiconductor device having a semiconductor-on-insulator (SOI) configuration and including a superlattice on a thin semiconductor layer
US20070063186A1 (en) * 2003-06-26 2007-03-22 Rj Mears, Llc Method for making a semiconductor device including a front side strained superlattice layer and a back side stress layer
US20060273299A1 (en) * 2003-06-26 2006-12-07 Rj Mears, Llc Method for making a semiconductor device including a dopant blocking superlattice
US20060220118A1 (en) * 2003-06-26 2006-10-05 Rj Mears, Llc Semiconductor device including a dopant blocking superlattice
US20040262594A1 (en) * 2003-06-26 2004-12-30 Rj Mears, Llc Semiconductor structures having improved conductivity effective mass and methods for fabricating same
US7202494B2 (en) * 2003-06-26 2007-04-10 Rj Mears, Llc FINFET including a superlattice
US7229902B2 (en) * 2003-06-26 2007-06-12 Rj Mears, Llc Method for making a semiconductor device including a superlattice with regions defining a semiconductor junction
US7531850B2 (en) * 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a memory cell with a negative differential resistance (NDR) device
US20050282330A1 (en) * 2003-06-26 2005-12-22 Rj Mears, Llc Method for making a semiconductor device including a superlattice having at least one group of substantially undoped layers
US7598515B2 (en) * 2003-06-26 2009-10-06 Mears Technologies, Inc. Semiconductor device including a strained superlattice and overlying stress layer and related methods
US6958486B2 (en) * 2003-06-26 2005-10-25 Rj Mears, Llc Semiconductor device including band-engineered superlattice
US7531829B2 (en) * 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US20070015344A1 (en) * 2003-06-26 2007-01-18 Rj Mears, Llc Method for Making a Semiconductor Device Including a Strained Superlattice Between at Least One Pair of Spaced Apart Stress Regions
US7514328B2 (en) * 2003-06-26 2009-04-07 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with a superlattice therebetween
US7153763B2 (en) 2003-06-26 2006-12-26 Rj Mears, Llc Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
US7045377B2 (en) * 2003-06-26 2006-05-16 Rj Mears, Llc Method for making a semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US20070020860A1 (en) * 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making Semiconductor Device Including a Strained Superlattice and Overlying Stress Layer and Related Methods
US7446002B2 (en) * 2003-06-26 2008-11-04 Mears Technologies, Inc. Method for making a semiconductor device comprising a superlattice dielectric interface layer
US7612366B2 (en) * 2003-06-26 2009-11-03 Mears Technologies, Inc. Semiconductor device including a strained superlattice layer above a stress layer
US20060011905A1 (en) * 2003-06-26 2006-01-19 Rj Mears, Llc Semiconductor device comprising a superlattice dielectric interface layer
US20070020833A1 (en) * 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making a Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US20040266116A1 (en) * 2003-06-26 2004-12-30 Rj Mears, Llc Methods of fabricating semiconductor structures having improved conductivity effective mass
US7227174B2 (en) * 2003-06-26 2007-06-05 Rj Mears, Llc Semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US6833294B1 (en) 2003-06-26 2004-12-21 Rj Mears, Llc Method for making semiconductor device including band-engineered superlattice
US20050279991A1 (en) * 2003-06-26 2005-12-22 Rj Mears, Llc Semiconductor device including a superlattice having at least one group of substantially undoped layers
US20070063185A1 (en) * 2003-06-26 2007-03-22 Rj Mears, Llc Semiconductor device including a front side strained superlattice layer and a back side stress layer
US7535041B2 (en) * 2003-06-26 2009-05-19 Mears Technologies, Inc. Method for making a semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US20070010040A1 (en) * 2003-06-26 2007-01-11 Rj Mears, Llc Method for Making a Semiconductor Device Including a Strained Superlattice Layer Above a Stress Layer
US7586116B2 (en) * 2003-06-26 2009-09-08 Mears Technologies, Inc. Semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US20060292765A1 (en) * 2003-06-26 2006-12-28 Rj Mears, Llc Method for Making a FINFET Including a Superlattice
US7279746B2 (en) * 2003-06-30 2007-10-09 International Business Machines Corporation High performance CMOS device structures and method of manufacture
US7410846B2 (en) * 2003-09-09 2008-08-12 International Business Machines Corporation Method for reduced N+ diffusion in strained Si on SiGe substrate
US6890808B2 (en) * 2003-09-10 2005-05-10 International Business Machines Corporation Method and structure for improved MOSFETs using poly/silicide gate height control
US6887751B2 (en) * 2003-09-12 2005-05-03 International Business Machines Corporation MOSFET performance improvement using deformation in SOI structure
US7170126B2 (en) * 2003-09-16 2007-01-30 International Business Machines Corporation Structure of vertical strained silicon devices
US6869866B1 (en) 2003-09-22 2005-03-22 International Business Machines Corporation Silicide proximity structures for CMOS device performance improvements
US7144767B2 (en) * 2003-09-23 2006-12-05 International Business Machines Corporation NFETs using gate induced stress modulation
US6872641B1 (en) * 2003-09-23 2005-03-29 International Business Machines Corporation Strained silicon on relaxed sige film with uniform misfit dislocation density
US7119403B2 (en) 2003-10-16 2006-10-10 International Business Machines Corporation High performance strained CMOS devices
US7037770B2 (en) * 2003-10-20 2006-05-02 International Business Machines Corporation Method of manufacturing strained dislocation-free channels for CMOS
US7303949B2 (en) * 2003-10-20 2007-12-04 International Business Machines Corporation High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture
US7129126B2 (en) * 2003-11-05 2006-10-31 International Business Machines Corporation Method and structure for forming strained Si for CMOS devices
US7015082B2 (en) * 2003-11-06 2006-03-21 International Business Machines Corporation High mobility CMOS circuits
US7029964B2 (en) * 2003-11-13 2006-04-18 International Business Machines Corporation Method of manufacturing a strained silicon on a SiGe on SOI substrate
US20050108101A1 (en) * 2003-11-13 2005-05-19 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system to link orders with quotations
US7122849B2 (en) * 2003-11-14 2006-10-17 International Business Machines Corporation Stressed semiconductor device structures having granular semiconductor material
US7247534B2 (en) 2003-11-19 2007-07-24 International Business Machines Corporation Silicon device on Si:C-OI and SGOI and method of manufacture
US7198995B2 (en) * 2003-12-12 2007-04-03 International Business Machines Corporation Strained finFETs and method of manufacture
US7005333B2 (en) * 2003-12-30 2006-02-28 Infineon Technologies Ag Transistor with silicon and carbon layer in the channel region
US7247912B2 (en) * 2004-01-05 2007-07-24 International Business Machines Corporation Structures and methods for making strained MOSFETs
US7381609B2 (en) 2004-01-16 2008-06-03 International Business Machines Corporation Method and structure for controlling stress in a transistor channel
US7118999B2 (en) * 2004-01-16 2006-10-10 International Business Machines Corporation Method and apparatus to increase strain effect in a transistor channel
US7202132B2 (en) 2004-01-16 2007-04-10 International Business Machines Corporation Protecting silicon germanium sidewall with silicon for strained silicon/silicon germanium MOSFETs
US7407837B2 (en) 2004-01-27 2008-08-05 Fuji Electric Holdings Co., Ltd. Method of manufacturing silicon carbide semiconductor device
US7002224B2 (en) * 2004-02-03 2006-02-21 Infineon Technologies Ag Transistor with doped gate dielectric
US7923782B2 (en) 2004-02-27 2011-04-12 International Business Machines Corporation Hybrid SOI/bulk semiconductor transistors
SE527487C2 (sv) * 2004-03-02 2006-03-21 Infineon Technologies Ag En metod för framställning av en kondensator och en monolitiskt integrerad krets innefattande en sådan kondensator
US7205206B2 (en) * 2004-03-03 2007-04-17 International Business Machines Corporation Method of fabricating mobility enhanced CMOS devices
US7094671B2 (en) * 2004-03-22 2006-08-22 Infineon Technologies Ag Transistor with shallow germanium implantation region in channel
US7226834B2 (en) * 2004-04-19 2007-06-05 Texas Instruments Incorporated PMD liner nitride films and fabrication methods for improved NMOS performance
US7504693B2 (en) 2004-04-23 2009-03-17 International Business Machines Corporation Dislocation free stressed channels in bulk silicon and SOI CMOS devices by gate stress engineering
US7223994B2 (en) * 2004-06-03 2007-05-29 International Business Machines Corporation Strained Si on multiple materials for bulk or SOI substrates
US7037794B2 (en) * 2004-06-09 2006-05-02 International Business Machines Corporation Raised STI process for multiple gate ox and sidewall protection on strained Si/SGOI structure with elevated source/drain
US7227205B2 (en) * 2004-06-24 2007-06-05 International Business Machines Corporation Strained-silicon CMOS device and method
TWI463526B (zh) * 2004-06-24 2014-12-01 Ibm 改良具應力矽之cmos元件的方法及以該方法製備而成的元件
US7288443B2 (en) * 2004-06-29 2007-10-30 International Business Machines Corporation Structures and methods for manufacturing p-type MOSFET with graded embedded silicon-germanium source-drain and/or extension
US7217949B2 (en) * 2004-07-01 2007-05-15 International Business Machines Corporation Strained Si MOSFET on tensile-strained SiGe-on-insulator (SGOI)
US6991998B2 (en) * 2004-07-02 2006-01-31 International Business Machines Corporation Ultra-thin, high quality strained silicon-on-insulator formed by elastic strain transfer
US7384829B2 (en) 2004-07-23 2008-06-10 International Business Machines Corporation Patterned strained semiconductor substrate and device
US7217626B2 (en) * 2004-07-26 2007-05-15 Texas Instruments Incorporated Transistor fabrication methods using dual sidewall spacers
US7012028B2 (en) * 2004-07-26 2006-03-14 Texas Instruments Incorporated Transistor fabrication methods using reduced width sidewall spacers
US7279430B2 (en) * 2004-08-17 2007-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Process for fabricating a strained channel MOSFET device
US7235812B2 (en) * 2004-09-13 2007-06-26 International Business Machines Corporation Method of creating defect free high Ge content (>25%) SiGe-on-insulator (SGOI) substrates using wafer bonding techniques
US7129127B2 (en) * 2004-09-24 2006-10-31 Texas Instruments Incorporated Integration scheme to improve NMOS with poly cap while mitigating PMOS degradation
US7172936B2 (en) * 2004-09-24 2007-02-06 Texas Instruments Incorporated Method to selectively strain NMOS devices using a cap poly layer
US7193254B2 (en) * 2004-11-30 2007-03-20 International Business Machines Corporation Structure and method of applying stresses to PFET and NFET transistor channels for improved performance
US20060113603A1 (en) * 2004-12-01 2006-06-01 Amberwave Systems Corporation Hybrid semiconductor-on-insulator structures and related methods
US7393733B2 (en) 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
US7238565B2 (en) * 2004-12-08 2007-07-03 International Business Machines Corporation Methodology for recovery of hot carrier induced degradation in bipolar devices
US7262087B2 (en) * 2004-12-14 2007-08-28 International Business Machines Corporation Dual stressed SOI substrates
US7173312B2 (en) * 2004-12-15 2007-02-06 International Business Machines Corporation Structure and method to generate local mechanical gate stress for MOSFET channel mobility modification
US7274084B2 (en) * 2005-01-12 2007-09-25 International Business Machines Corporation Enhanced PFET using shear stress
US20060160317A1 (en) * 2005-01-18 2006-07-20 International Business Machines Corporation Structure and method to enhance stress in a channel of cmos devices using a thin gate
US7432553B2 (en) * 2005-01-19 2008-10-07 International Business Machines Corporation Structure and method to optimize strain in CMOSFETs
US7220626B2 (en) * 2005-01-28 2007-05-22 International Business Machines Corporation Structure and method for manufacturing planar strained Si/SiGe substrate with multiple orientations and different stress levels
US7256081B2 (en) * 2005-02-01 2007-08-14 International Business Machines Corporation Structure and method to induce strain in a semiconductor device channel with stressed film under the gate
US7224033B2 (en) * 2005-02-15 2007-05-29 International Business Machines Corporation Structure and method for manufacturing strained FINFET
US7545004B2 (en) * 2005-04-12 2009-06-09 International Business Machines Corporation Method and structure for forming strained devices
JP4948784B2 (ja) * 2005-05-19 2012-06-06 三菱電機株式会社 半導体装置及びその製造方法
US7528028B2 (en) * 2005-06-17 2009-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Super anneal for process induced strain modulation
US20070010073A1 (en) * 2005-07-06 2007-01-11 Chien-Hao Chen Method of forming a MOS device having a strained channel region
US7544577B2 (en) * 2005-08-26 2009-06-09 International Business Machines Corporation Mobility enhancement in SiGe heterojunction bipolar transistors
US7202513B1 (en) * 2005-09-29 2007-04-10 International Business Machines Corporation Stress engineering using dual pad nitride with selective SOI device architecture
US20070096170A1 (en) * 2005-11-02 2007-05-03 International Business Machines Corporation Low modulus spacers for channel stress enhancement
US7655511B2 (en) 2005-11-03 2010-02-02 International Business Machines Corporation Gate electrode stress control for finFET performance enhancement
US20070099360A1 (en) * 2005-11-03 2007-05-03 International Business Machines Corporation Integrated circuits having strained channel field effect transistors and methods of making
US7785950B2 (en) * 2005-11-10 2010-08-31 International Business Machines Corporation Dual stress memory technique method and related structure
US7709317B2 (en) * 2005-11-14 2010-05-04 International Business Machines Corporation Method to increase strain enhancement with spacerless FET and dual liner process
US7348638B2 (en) * 2005-11-14 2008-03-25 International Business Machines Corporation Rotational shear stress for charge carrier mobility modification
US7564081B2 (en) * 2005-11-30 2009-07-21 International Business Machines Corporation finFET structure with multiply stressed gate electrode
TWI316294B (en) * 2005-12-22 2009-10-21 Mears Technologies Inc Method for making an electronic device including a selectively polable superlattice
US7517702B2 (en) * 2005-12-22 2009-04-14 Mears Technologies, Inc. Method for making an electronic device including a poled superlattice having a net electrical dipole moment
US7776695B2 (en) * 2006-01-09 2010-08-17 International Business Machines Corporation Semiconductor device structure having low and high performance devices of same conductive type on same substrate
US7863197B2 (en) * 2006-01-09 2011-01-04 International Business Machines Corporation Method of forming a cross-section hourglass shaped channel region for charge carrier mobility modification
US7635620B2 (en) * 2006-01-10 2009-12-22 International Business Machines Corporation Semiconductor device structure having enhanced performance FET device
US20070158743A1 (en) * 2006-01-11 2007-07-12 International Business Machines Corporation Thin silicon single diffusion field effect transistor for enhanced drive performance with stress film liners
US8900980B2 (en) * 2006-01-20 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Defect-free SiGe source/drain formation by epitaxy-free process
US7718996B2 (en) * 2006-02-21 2010-05-18 Mears Technologies, Inc. Semiconductor device comprising a lattice matching layer
US7691698B2 (en) 2006-02-21 2010-04-06 International Business Machines Corporation Pseudomorphic Si/SiGe/Si body device with embedded SiGe source/drain
US8461009B2 (en) * 2006-02-28 2013-06-11 International Business Machines Corporation Spacer and process to enhance the strain in the channel with stress liner
US7521307B2 (en) 2006-04-28 2009-04-21 International Business Machines Corporation CMOS structures and methods using self-aligned dual stressed layers
US7615418B2 (en) * 2006-04-28 2009-11-10 International Business Machines Corporation High performance stress-enhance MOSFET and method of manufacture
US7608489B2 (en) * 2006-04-28 2009-10-27 International Business Machines Corporation High performance stress-enhance MOSFET and method of manufacture
US8853746B2 (en) * 2006-06-29 2014-10-07 International Business Machines Corporation CMOS devices with stressed channel regions, and methods for fabricating the same
US7790540B2 (en) 2006-08-25 2010-09-07 International Business Machines Corporation Structure and method to use low k stress liner to reduce parasitic capacitance
US7462522B2 (en) * 2006-08-30 2008-12-09 International Business Machines Corporation Method and structure for improving device performance variation in dual stress liner technology
US8754446B2 (en) * 2006-08-30 2014-06-17 International Business Machines Corporation Semiconductor structure having undercut-gate-oxide gate stack enclosed by protective barrier material
US7741200B2 (en) * 2006-12-01 2010-06-22 Applied Materials, Inc. Formation and treatment of epitaxial layer containing silicon and carbon
US7781827B2 (en) 2007-01-24 2010-08-24 Mears Technologies, Inc. Semiconductor device with a vertical MOSFET including a superlattice and related methods
US7928425B2 (en) * 2007-01-25 2011-04-19 Mears Technologies, Inc. Semiconductor device including a metal-to-semiconductor superlattice interface layer and related methods
US7880161B2 (en) 2007-02-16 2011-02-01 Mears Technologies, Inc. Multiple-wavelength opto-electronic device including a superlattice
US7863066B2 (en) * 2007-02-16 2011-01-04 Mears Technologies, Inc. Method for making a multiple-wavelength opto-electronic device including a superlattice
US7812339B2 (en) * 2007-04-23 2010-10-12 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with maskless superlattice deposition following STI formation and related structures
TW200910470A (en) * 2007-05-03 2009-03-01 Dsm Solutions Inc Enhanced hole mobility p-type JFET and fabrication method therefor
US7795119B2 (en) * 2007-07-17 2010-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Flash anneal for a PAI, NiSi process
US7812370B2 (en) * 2007-07-25 2010-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistor with narrow band-gap channel and strong gate coupling
US8115254B2 (en) 2007-09-25 2012-02-14 International Business Machines Corporation Semiconductor-on-insulator structures including a trench containing an insulator stressor plug and method of fabricating same
US8492846B2 (en) 2007-11-15 2013-07-23 International Business Machines Corporation Stress-generating shallow trench isolation structure having dual composition
US7989882B2 (en) * 2007-12-07 2011-08-02 Cree, Inc. Transistor with A-face conductive channel and trench protecting well region
US8017489B2 (en) 2008-03-13 2011-09-13 International Business Machines Corporation Field effect structure including carbon alloyed channel region and source/drain region not carbon alloyed
US7834345B2 (en) * 2008-09-05 2010-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistors with superlattice channels
US8587075B2 (en) * 2008-11-18 2013-11-19 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistor with metal source
US8598006B2 (en) 2010-03-16 2013-12-03 International Business Machines Corporation Strain preserving ion implantation methods
DE102010040064B4 (de) * 2010-08-31 2012-04-05 Globalfoundries Inc. Verringerte Schwellwertspannungs-Breitenabhängigkeit in Transistoren, die Metallgateelektrodenstrukturen mit großem ε aufweisen
US9006052B2 (en) * 2010-10-11 2015-04-14 International Business Machines Corporation Self aligned device with enhanced stress and methods of manufacture
US8741725B2 (en) 2010-11-10 2014-06-03 International Business Machines Corporation Butted SOI junction isolation structures and devices and method of fabrication
US9040399B2 (en) 2011-10-27 2015-05-26 International Business Machines Corporation Threshold voltage adjustment for thin body MOSFETs
US8476706B1 (en) 2012-01-04 2013-07-02 International Business Machines Corporation CMOS having a SiC/SiGe alloy stack
JP6100535B2 (ja) * 2013-01-18 2017-03-22 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
WO2015077595A1 (en) 2013-11-22 2015-05-28 Mears Technologies, Inc. Vertical semiconductor devices including superlattice punch through stop layer and related methods
CN105900241B (zh) 2013-11-22 2020-07-24 阿托梅拉公司 包括超晶格耗尽层堆叠的半导体装置和相关方法
US9224814B2 (en) 2014-01-16 2015-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Process design to improve transistor variations and performance
US9425099B2 (en) 2014-01-16 2016-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial channel with a counter-halo implant to improve analog gain
US9184234B2 (en) 2014-01-16 2015-11-10 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor design
US9147683B2 (en) 2014-02-18 2015-09-29 International Business Machines Corporation CMOS transistors including gate spacers of the same thickness
US9525031B2 (en) 2014-03-13 2016-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial channel
US9716147B2 (en) 2014-06-09 2017-07-25 Atomera Incorporated Semiconductor devices with enhanced deterministic doping and related methods
US9722046B2 (en) 2014-11-25 2017-08-01 Atomera Incorporated Semiconductor device including a superlattice and replacement metal gate structure and related methods
EP3281231B1 (en) 2015-05-15 2021-11-03 Atomera Incorporated Method of fabricating semiconductor devices with superlattice and punch-through stop (pts) layers at different depths
WO2016196600A1 (en) 2015-06-02 2016-12-08 Atomera Incorporated Method for making enhanced semiconductor structures in single wafer processing chamber with desired uniformity control
US9558939B1 (en) 2016-01-15 2017-01-31 Atomera Incorporated Methods for making a semiconductor device including atomic layer structures using N2O as an oxygen source
WO2017197108A1 (en) 2016-05-11 2017-11-16 Atomera Incorporated Dram architecture to reduce row activation circuitry power and peripheral leakage and related methods
US10170604B2 (en) 2016-08-08 2019-01-01 Atomera Incorporated Method for making a semiconductor device including a resonant tunneling diode with electron mean free path control layers
US10107854B2 (en) 2016-08-17 2018-10-23 Atomera Incorporated Semiconductor device including threshold voltage measurement circuitry
US9947789B1 (en) * 2016-10-17 2018-04-17 Globalfoundries Inc. Vertical transistors stressed from various directions
US10410880B2 (en) 2017-05-16 2019-09-10 Atomera Incorporated Semiconductor device including a superlattice as a gettering layer
WO2018231929A1 (en) 2017-06-13 2018-12-20 Atomera Incorporated Semiconductor device with recessed channel array transistor (rcat) including a superlattice and associated methods
US10109479B1 (en) 2017-07-31 2018-10-23 Atomera Incorporated Method of making a semiconductor device with a buried insulating layer formed by annealing a superlattice
EP3669401B1 (en) 2017-08-18 2023-08-02 Atomera Incorporated Manufacturing method for a semiconductor device including the removal of non-monocrystalline stringer adjacent a superlattice-sti interface
US10396223B2 (en) 2017-12-15 2019-08-27 Atomera Incorporated Method for making CMOS image sensor with buried superlattice layer to reduce crosstalk
WO2019118840A1 (en) 2017-12-15 2019-06-20 Atomera Incorporated Cmos image sensor including stacked semiconductor chips and readout circuitry including a superlattice and related methods
US10608043B2 (en) 2017-12-15 2020-03-31 Atomera Incorporation Method for making CMOS image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US10608027B2 (en) 2017-12-15 2020-03-31 Atomera Incorporated Method for making CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
US10355151B2 (en) 2017-12-15 2019-07-16 Atomera Incorporated CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10615209B2 (en) 2017-12-15 2020-04-07 Atomera Incorporated CMOS image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US10529768B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated Method for making CMOS image sensor including pixels with read circuitry having a superlattice
US10367028B2 (en) 2017-12-15 2019-07-30 Atomera Incorporated CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
US10304881B1 (en) 2017-12-15 2019-05-28 Atomera Incorporated CMOS image sensor with buried superlattice layer to reduce crosstalk
US10361243B2 (en) 2017-12-15 2019-07-23 Atomera Incorporated Method for making CMOS image sensor including superlattice to enhance infrared light absorption
US10461118B2 (en) 2017-12-15 2019-10-29 Atomera Incorporated Method for making CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10529757B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated CMOS image sensor including pixels with read circuitry having a superlattice
US10276625B1 (en) 2017-12-15 2019-04-30 Atomera Incorporated CMOS image sensor including superlattice to enhance infrared light absorption
CN111937119B (zh) 2018-03-08 2024-07-23 阿托梅拉公司 包括具有超晶格的增强接触结构的半导体器件和相关方法
WO2019173630A1 (en) 2018-03-09 2019-09-12 Atomera Incorporated Semiconductor device and method including compound semiconductor materials and an impurity and point defect blocking superlattice
US10468245B2 (en) 2018-03-09 2019-11-05 Atomera Incorporated Semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
US10727049B2 (en) 2018-03-09 2020-07-28 Atomera Incorporated Method for making a semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
WO2019199923A1 (en) 2018-04-12 2019-10-17 Atomera Incorporated Semiconductor device and method including vertically integrated optical and electronic devices and comprising a superlattice
WO2019199926A1 (en) 2018-04-12 2019-10-17 Atomera Incorporated Device and method for making an inverted t channel field effect transistor (itfet) including a superlattice
US10811498B2 (en) 2018-08-30 2020-10-20 Atomera Incorporated Method for making superlattice structures with reduced defect densities
US10566191B1 (en) 2018-08-30 2020-02-18 Atomera Incorporated Semiconductor device including superlattice structures with reduced defect densities
TWI720587B (zh) 2018-08-30 2021-03-01 美商安托梅拉公司 用於製作具較低缺陷密度超晶格結構之方法及元件
US20200135489A1 (en) 2018-10-31 2020-04-30 Atomera Incorporated Method for making a semiconductor device including a superlattice having nitrogen diffused therein
US10840335B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Method for making semiconductor device including body contact dopant diffusion blocking superlattice to reduce contact resistance
EP3871270A1 (en) 2018-11-16 2021-09-01 Atomera Incorporated Finfet including source and drain regions with dopant diffusion blocking superlattice layers to reduce contact resistance and associated methods
US10593761B1 (en) 2018-11-16 2020-03-17 Atomera Incorporated Method for making a semiconductor device having reduced contact resistance
WO2020102284A1 (en) 2018-11-16 2020-05-22 Atomera Incorporated Semiconductor device and method including body contact dopant diffusion blocking superlattice having reduced contact resistance and related methods
US10580867B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated FINFET including source and drain regions with dopant diffusion blocking superlattice layers to reduce contact resistance
US10847618B2 (en) 2018-11-16 2020-11-24 Atomera Incorporated Semiconductor device including body contact dopant diffusion blocking superlattice having reduced contact resistance
US10854717B2 (en) 2018-11-16 2020-12-01 Atomera Incorporated Method for making a FINFET including source and drain dopant diffusion blocking superlattices to reduce contact resistance
US10818755B2 (en) 2018-11-16 2020-10-27 Atomera Incorporated Method for making semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance
US10580866B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated Semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance
US10840337B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Method for making a FINFET having reduced contact resistance
WO2020102282A1 (en) 2018-11-16 2020-05-22 Atomera Incorporated Semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance and associated methods
US10840336B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Semiconductor device with metal-semiconductor contacts including oxygen insertion layer to constrain dopants and related methods
US11329154B2 (en) 2019-04-23 2022-05-10 Atomera Incorporated Semiconductor device including a superlattice and an asymmetric channel and related methods
US10879357B1 (en) 2019-07-17 2020-12-29 Atomera Incorporated Method for making a semiconductor device having a hyper-abrupt junction region including a superlattice
TWI772839B (zh) 2019-07-17 2022-08-01 美商安托梅拉公司 設有含分隔超晶格之突陡接面區之可變電容器及相關方法
US10937868B2 (en) 2019-07-17 2021-03-02 Atomera Incorporated Method for making semiconductor devices with hyper-abrupt junction region including spaced-apart superlattices
US11183565B2 (en) 2019-07-17 2021-11-23 Atomera Incorporated Semiconductor devices including hyper-abrupt junction region including spaced-apart superlattices and related methods
US10825901B1 (en) 2019-07-17 2020-11-03 Atomera Incorporated Semiconductor devices including hyper-abrupt junction region including a superlattice
TWI751609B (zh) 2019-07-17 2022-01-01 美商安托梅拉公司 設有含超晶格之突陡接面區之可變電容器及相關方法
US10825902B1 (en) 2019-07-17 2020-11-03 Atomera Incorporated Varactor with hyper-abrupt junction region including spaced-apart superlattices
US10868120B1 (en) 2019-07-17 2020-12-15 Atomera Incorporated Method for making a varactor with hyper-abrupt junction region including a superlattice
US10840388B1 (en) 2019-07-17 2020-11-17 Atomera Incorporated Varactor with hyper-abrupt junction region including a superlattice
US10937888B2 (en) 2019-07-17 2021-03-02 Atomera Incorporated Method for making a varactor with a hyper-abrupt junction region including spaced-apart superlattices
TWI747377B (zh) 2019-07-17 2021-11-21 美商安托梅拉公司 設有含超晶格之突陡接面區之半導體元件及相關方法
US11437487B2 (en) 2020-01-14 2022-09-06 Atomera Incorporated Bipolar junction transistors including emitter-base and base-collector superlattices
US11302836B2 (en) * 2020-01-14 2022-04-12 Hoon Kim Plasmonic field-enhanced photodetector and image sensor using light absorbing layer having split conduction band and valence band
US11177351B2 (en) 2020-02-26 2021-11-16 Atomera Incorporated Semiconductor device including a superlattice with different non-semiconductor material monolayers
TWI760113B (zh) 2020-02-26 2022-04-01 美商安托梅拉公司 包含具有不同非半導體材料單層的超晶格之半導體元件及其相關方法
US11302823B2 (en) 2020-02-26 2022-04-12 Atomera Incorporated Method for making semiconductor device including a superlattice with different non-semiconductor material monolayers
US11075078B1 (en) 2020-03-06 2021-07-27 Atomera Incorporated Method for making a semiconductor device including a superlattice within a recessed etch
US11569368B2 (en) 2020-06-11 2023-01-31 Atomera Incorporated Method for making semiconductor device including a superlattice and providing reduced gate leakage
TWI789780B (zh) 2020-06-11 2023-01-11 美商安托梅拉公司 包含超晶格且提供低閘極漏電之半導體元件及相關方法
US11469302B2 (en) 2020-06-11 2022-10-11 Atomera Incorporated Semiconductor device including a superlattice and providing reduced gate leakage
EP4154320A1 (en) 2020-07-02 2023-03-29 Atomera Incorporated Method for making a semiconductor device using superlattices with different non-semiconductor thermal stabilities
US11837634B2 (en) 2020-07-02 2023-12-05 Atomera Incorporated Semiconductor device including superlattice with oxygen and carbon monolayers
US11742202B2 (en) 2021-03-03 2023-08-29 Atomera Incorporated Methods for making radio frequency (RF) semiconductor devices including a ground plane layer having a superlattice
TWI806553B (zh) 2021-04-21 2023-06-21 美商安托梅拉公司 包含超晶格及富集矽28磊晶層之半導體元件及相關方法
US11923418B2 (en) 2021-04-21 2024-03-05 Atomera Incorporated Semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
US11810784B2 (en) 2021-04-21 2023-11-07 Atomera Incorporated Method for making semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
WO2022245889A1 (en) 2021-05-18 2022-11-24 Atomera Incorporated Semiconductor device including a superlattice providing metal work function tuning and associated methods
US11728385B2 (en) 2021-05-26 2023-08-15 Atomera Incorporated Semiconductor device including superlattice with O18 enriched monolayers
TWI812186B (zh) 2021-05-26 2023-08-11 美商安托梅拉公司 包含具氧18富集單層之超晶格之半導體元件及相關方法
US11682712B2 (en) 2021-05-26 2023-06-20 Atomera Incorporated Method for making semiconductor device including superlattice with O18 enriched monolayers
US11631584B1 (en) 2021-10-28 2023-04-18 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to define etch stop layer
US11721546B2 (en) 2021-10-28 2023-08-08 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to accumulate non-semiconductor atoms
WO2024054282A2 (en) 2022-06-21 2024-03-14 Atomera Incorporated Semiconductor devices with embedded quantum dots and related methods
WO2024044076A1 (en) 2022-08-23 2024-02-29 Atomera Incorporated Image sensor devices including a superlattice and related methods
WO2024191733A1 (en) 2023-03-10 2024-09-19 Atomera Incorporated Method for making radio frequency silicon-on-insulator (rfsoi) structure including a superlattice
WO2024192097A1 (en) 2023-03-14 2024-09-19 Atomera Incorporated Method for making a radio frequency silicon-on-insulator (rfsoi) wafer including a superlattice
US20240322005A1 (en) 2023-03-24 2024-09-26 Atomera Incorporated Method for making nanostructure transistors with offset source/drain dopant blocking structures including a superlattice

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656887B2 (ja) * 1982-02-03 1994-07-27 株式会社日立製作所 半導体装置およびその製法
DE3208500A1 (de) * 1982-03-09 1983-09-15 Siemens AG, 1000 Berlin und 8000 München Spannungsfester mos-transistor fuer hoechstintegrierte schaltungen
US4908678A (en) * 1986-10-08 1990-03-13 Semiconductor Energy Laboratory Co., Ltd. FET with a super lattice channel
JPS63252478A (ja) * 1987-04-09 1988-10-19 Seiko Instr & Electronics Ltd 絶縁ゲ−ト型半導体装置
JPS63308966A (ja) * 1987-06-11 1988-12-16 Seiko Epson Corp 半導体装置
DE68926256T2 (de) * 1988-01-07 1996-09-19 Fujitsu Ltd Komplementäre Halbleiteranordnung
US5241197A (en) * 1989-01-25 1993-08-31 Hitachi, Ltd. Transistor provided with strained germanium layer
EP0380077A3 (en) * 1989-01-25 1990-09-12 Hitachi, Ltd. Transistor provided with strained germanium layer
US5019882A (en) * 1989-05-15 1991-05-28 International Business Machines Corporation Germanium channel silicon MOSFET
US5227644A (en) * 1989-07-06 1993-07-13 Nec Corporation Heterojunction field effect transistor with improve carrier density and mobility
US4992840A (en) * 1989-09-21 1991-02-12 Hewlett-Packard Company Carbon doping MOSFET substrate to suppress hit electron trapping
US5272365A (en) * 1990-03-29 1993-12-21 Kabushiki Kaisha Toshiba Silicon transistor device with silicon-germanium electron gas hetero structure channel
US5155571A (en) * 1990-08-06 1992-10-13 The Regents Of The University Of California Complementary field effect transistors having strained superlattice structure
JPH0590602A (ja) * 1991-09-30 1993-04-09 Rohm Co Ltd 半導体記憶素子およびその製法
JPH05183159A (ja) * 1992-01-07 1993-07-23 Fujitsu Ltd 半導体装置及びその製造方法
US5360986A (en) * 1993-10-05 1994-11-01 Motorola, Inc. Carbon doped silicon semiconductor device having a narrowed bandgap characteristic and method
US5593928A (en) * 1993-11-30 1997-01-14 Lg Semicon Co., Ltd. Method of making a semiconductor device having floating source and drain regions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319152C (zh) * 2000-11-29 2007-05-30 英特尔公司 利用特定晶体管取向的cmos制造方法
CN1317772C (zh) * 2003-06-16 2007-05-23 松下电器产业株式会社 半导体器件及其制造方法
CN100421262C (zh) * 2005-02-25 2008-09-24 台湾积体电路制造股份有限公司 半导体元件
CN101221901B (zh) * 2007-01-11 2012-02-01 国际商业机器公司 应力绝缘体上硅场效应晶体管及其制作方法
CN101777498A (zh) * 2010-01-12 2010-07-14 上海宏力半导体制造有限公司 带浅表外延层的外延片形成方法及其外延片
CN104979399A (zh) * 2014-04-14 2015-10-14 台湾积体电路制造股份有限公司 关于外延沟道器件的错位应力记忆技术
CN104319292A (zh) * 2014-11-06 2015-01-28 株洲南车时代电气股份有限公司 一种新型碳化硅mosfet及其制造方法

Also Published As

Publication number Publication date
EP0703628A2 (en) 1996-03-27
EP0703628A3 (en) 1997-05-14
US5561302A (en) 1996-10-01
US5683934A (en) 1997-11-04
KR960012557A (ko) 1996-04-20
JPH08111528A (ja) 1996-04-30

Similar Documents

Publication Publication Date Title
CN1129358A (zh) 迁移率提高了的mosfet器件及其制造方法
US5777364A (en) Graded channel field effect transistor
US5821577A (en) Graded channel field effect transistor
US10164015B2 (en) Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
US6319799B1 (en) High mobility heterojunction transistor and method
US5179037A (en) Integration of lateral and vertical quantum well transistors in the same epitaxial stack
JP2551364B2 (ja) 半導体装置
JP2528537B2 (ja) 電界効果トランジスタ
KR100497103B1 (ko) 실리콘 게르마늄 바이폴라 트랜지스터
US7435987B1 (en) Forming a type I heterostructure in a group IV semiconductor
US5557118A (en) Hetero-junction type bipolar transistor
EP0860884A2 (en) Vertical junction field effect transistors
US20020030227A1 (en) Strained-silicon diffused metal oxide semiconductor field effect transistors
US20050151164A1 (en) Enhancement of p-type metal-oxide-semiconductor field effect transistors
Mensz et al. High transconductance and large peak‐to‐valley ratio of negative differential conductance in three‐terminal InGaAs/InAlAs real‐space transfer devices
CN1354505A (zh) 补偿型金属氧化物半导体器件结构及其制造方法
US6004137A (en) Method of making graded channel effect transistor
CN1794433A (zh) 异质结构沟道绝缘栅极场效应晶体管的制造方法及晶体管
Kasper Prospects of SiGe heterodevices
US5510275A (en) Method of making a semiconductor device with a composite drift region composed of a substrate and a second semiconductor material
CN1845304A (zh) 制作金属氧化物半导体晶体管的方法
Quinones et al. Enhanced mobility PMOSFETs using tensile-strained Si/sub 1-y/C y layers
CN1053528C (zh) 窄禁带源漏区金属氧化物半导体场效应晶体管
Sato et al. A novel selective SiGe epitaxial growth technology for self-aligned HBTs
Ashburn Materials and technology issues for SiGe heterojunction bipolar transistors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned