TWI812186B - 包含具氧18富集單層之超晶格之半導體元件及相關方法 - Google Patents

包含具氧18富集單層之超晶格之半導體元件及相關方法 Download PDF

Info

Publication number
TWI812186B
TWI812186B TW111115599A TW111115599A TWI812186B TW I812186 B TWI812186 B TW I812186B TW 111115599 A TW111115599 A TW 111115599A TW 111115599 A TW111115599 A TW 111115599A TW I812186 B TWI812186 B TW I812186B
Authority
TW
Taiwan
Prior art keywords
oxygen
region
superlattice
semiconductor
layer
Prior art date
Application number
TW111115599A
Other languages
English (en)
Other versions
TW202249276A (zh
Inventor
馬瑞克 海太
奈爾斯溫 柯迪
凱斯多蘭 維克斯
Original Assignee
美商安托梅拉公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/330,831 external-priority patent/US11728385B2/en
Priority claimed from US17/330,860 external-priority patent/US11682712B2/en
Application filed by 美商安托梅拉公司 filed Critical 美商安托梅拉公司
Publication of TW202249276A publication Critical patent/TW202249276A/zh
Application granted granted Critical
Publication of TWI812186B publication Critical patent/TWI812186B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location

Abstract

一種半導體元件可包括半導體層,及鄰接半導體層且包括堆疊之層群組 的超晶格。各層群組可包括堆疊之基底半導體單層,其界定出基底半導體部份,以及被拘束在相鄰的基底半導體部份之晶格內之至少一氧單層。一給定層群組之至少一氧單層可包含原子百分比大於百分之10的氧18。

Description

包含具氧18富集單層之超晶格之半導體元件及相關方法
本發明一般而言與半導體元件有關,詳細而言,本發明涉及含先進半導體材料之半導體元件及相關方法。
利用諸如增強電荷載子之遷移率(mobility)增進半導體元件效能之相關結構及技術,已多有人提出。例如,Currie等人之美國專利申請案第2003/0057416號揭示了矽、矽-鍺及鬆弛矽之應變材料層,其亦包含原本會在其他方面導致效能劣退的無雜質區(impurity-free zones)。此等應變材料層在上部矽層中所造成的雙軸向應變(biaxial strain)會改變載子的遷移率,從而得以製作較高速與/或較低功率的元件。Fitzgerald等人的美國專利申請公告案第2003/0034529號則揭示了同樣以類似的應變矽技術為基礎的CMOS反向器。
授予Takagi的美國專利第6,472,685 B2號揭示了一半導體元件,其包含夾在矽層間的一層矽與碳層,以使其第二矽層的導帶及價帶承受伸張應變(tensile strain)。這樣,具有較小有效質量(effective mass)且已由施加於閘極上的 電場所誘發的電子,便會被侷限在其第二矽層內,因此,即可認定其N型通道MOSFET具有較高的遷移率。
授予Ishibashi等人的美國專利第4,937,204號揭示了一超晶格,其中包含一複數層,該複數層少於八個單層(monolayer)且含有一部份(fractional)或雙元(binary)半導體層或一雙元化合物半導體層,該複數層係交替地以磊晶成長方式生長而成。其中的主電流方向係垂直於該超晶格之各層。
授予Wang等人的美國專利第5,357,119號揭示了一矽-鍺短週期超晶格,其經由減少超晶格中的合金散射(alloy scattering)而達成較高遷移率。依據類似的原理,授予Candelaria的美國專利第5,683,934號揭示了具較佳遷移率之MOSFET,其包含一通道層,該通道層包括矽與一第二材料之一合金,該第二材料以使該通道層處於伸張應力下的百分比替代性地存在於矽晶格中。
授予Tsu的美國專利第5,216,262號揭示了一量子井結構,其包括兩個阻障區(barrier region)及夾於其間的一磊晶生長半導體薄層。每一阻障區各係由厚度範圍大致在二至六個交替之SiO2/Si單層所構成。阻障區間則另夾有厚得多之一矽區段。
在2000年9月6日線上出版的應用物理及材料科學及製程(Applied Physics and Materials Science & Processing)pp.391-402中,Tsu於一篇題為「矽質奈米結構元件中之現象」(Phenomena in silicon nanostructure devices)的文章中揭示了矽及氧之半導體-原子超晶格(semiconductor-atomic superlattice,SAS)。此矽/氧超晶格結構被揭露為對矽量子及發光元件有用。其中特別揭示如何製作並測試一綠色電輝光二極體(electroluminescence diode)結構。該二極體結構中的電流流動方向是垂直的,亦即,垂直於SAS之層。該文所揭示的SAS可包含由諸 如氧原子等被吸附物種(adsorbed species)及CO分子所分開的半導體層。在被吸附之氧單層以外所生長的矽,被描述為具有相當低缺陷密度之磊晶層。其中的一種SAS結構包含1.1nm厚之一矽質部份,其約為八個原子層的矽,而另一結構的矽質部份厚度則有此厚度的兩倍。在物理評論通訊(Physics Review Letters),Vol.89,No.7(2002年8月12日)中,Luo等人所發表的一篇題為「直接間隙發光矽之化學設計」(Chemical Design of Direct-Gap Light-Emitting Silicon)的文章,更進一步地討論了Tsu的發光SAS結構。
授予Wang等人之美國專利第7,105,895號揭示了薄的矽與氧、碳、氮、磷、銻、砷或氫的一阻障建構區塊,其可以將垂直流經晶格的電流減小超過四個十之次方冪次尺度(four orders of magnitude)。其絕緣層/阻障層容許低缺陷磊晶矽挨著絕緣層而沉積。
已公開之Mears等人的英國專利申請案第2,347,520號揭示,非週期性光子能帶間隙(aperiodic photonic band-gap,APBG)結構可應用於電子能帶間隙工程(electronic bandgap engineering)中。詳細而言,該申請案揭示,材料參數(material parameters),例如能帶最小值的位置、有效質量等等,皆可加以調節,以獲致具有所要能帶結構特性之新非週期性材料。其他參數,諸如導電性、熱傳導性及介電係數(dielectric permittivity)或導磁係數(magnetic permeability),則被揭露亦有可能被設計於材料之中。
除此之外,授予Wang等人的美國專利第6,376,337號揭示一種用於製作半導體元件絕緣或阻障層之方法,其包括在矽底材上沉積一層矽及至少一另外元素,使該沉積層實質上沒有缺陷,如此實質上無缺陷的磊晶矽便能沉積於 該沉積層上。作為替代方案,一或多個元素構成之一單層,較佳者為包括氧元素,在矽底材上被吸收。夾在磊晶矽之間的複數絕緣層,形成阻障複合體。
儘管已有上述方法存在,但為了實現半導體元件效能的改進,進一步強化先進半導體材料及處理技術的使用,是吾人所期望的。
半導體元件可包括半導體層,及鄰接半導體層且包括複數個堆疊之層群組的超晶格。各層群組可包括複數個堆疊之基底半導體單層,其界定出基底半導體部份,以及被拘束在相鄰的基底半導體部份之晶格內之至少一氧單層。一給定層群組之至少一氧單層可包含的18O原子百分比大於百分之10的氧18(18O)。
舉例來說,一給定層群組之至少一氧單層可包含原子百分比大於百分之50的氧18,且更具體地大於百分之90。在一些實施例中,給定層群組之至少一氧單層更可包含氧16(16O)。在一例示實施例中,各層群組之至少一氧單層可包括原子百分比大於百分之10的氧18。
在一例示組構中,半導體元件更可包括位於半導體層上且在超晶格中界定出通道之源極區及汲極區,以及超晶格上方之閘極。根據另一例示實施例,半導體元件更可包括超晶格上方之金屬層。此外,在一些實施例中,超晶格可將半導體層劃分為第一區及第二區,第一區及第二區具有相同導電類型,但第一區及第二區具有不同摻雜物濃度。根據另一例示實施方式,超晶格可將半導體層劃分為第一區及第二區,第一區及第二區具有不同導電類型。例如,基底半導體層可包括矽。
一種用於製作半導體元件之方法,可包括形成半導體層,以及形成超晶格,使其鄰接半導體層且包括複數個堆疊之層群組。各層群組可包括複數個堆疊之基底半導體單層,其界定出基底半導體部份,以及被拘束在相鄰的基底半導體部份之晶格內之至少一氧單層。給定層群組之至少一氧單層可包含原子百分比大於百分之10的氧18。
舉例來說,給定層群組之至少一氧單層可包含原子百分比大於百分之50的氧18,更特別地大於百分之90。在一些實施例中,給定層群組之至少一氧單層更可包含氧16(16O)。在一例示實施例中,各層群組之至少一氧單層可包括原子百分比大於百分之10的氧18。
在一例示組構中,該方法更可包括形成位於半導體層上且在超晶格中界定出通道之源極區及汲極區,以及形成超晶格上方之閘極。根據另一例示實施例,該方法更可包括在超晶格上方形成金屬層。此外,在一些實施例中,超晶格可將半導體層劃分為第一區及第二區,第一區及第二區具有相同導電類型,但第一區及第二區具有不同摻雜物濃度。根據另一例示實施方式,超晶格可將半導體層劃分為第一區及第二區,第一區及第二區具有不同導電類型。例如,基底半導體層可包括矽。
21,21’:底材
25,25’:超晶格
45a~45n,45a’~45n’:層群組
46,46’:基底半導體單層
46a~46n,46a’~46n’:基底半導體部份
50,50’:能帶修改層
52,52’:頂蓋層
120,120',300,400:半導體元件
121:半導體層
121':底材
125,225,325:超晶格
145a,145a',145b,145b':單層群組
146:半導體單層
146a,146b:基底半導體部份
150a,150a',150b:氧濃化單層
170:曲線圖
171,172:曲線
180:表格
190,195:關係圖
220:MOSFET
221,301:底材
222,302:源極區
223,303:汲極區
226:源極延伸區
227:汲極延伸區
230:源極矽化物層
231:汲極矽化物層
232:源極接點
233:汲極接點
234a,234b:殘留超晶格區
235,308:閘極
236,310:閘電極
237,309:閘極絕緣層
240,241,311:側壁間隔件
304,404:下源極區
305,405:上源極區
306,406:下汲極區
307,407:上汲極區
330:通道區
425s:源極摻雜物擴散阻擋超晶格
425d:汲極摻雜物擴散阻擋超晶格
442,443:下金屬層
444,445:上金屬層
圖1為依照一例示實施例之半導體元件用超晶格之放大概要剖視圖。
圖2為圖1所示超晶格之一部份之透視示意原子圖。
圖3為依照另一例示實施例之超晶格放大概要剖視圖。
圖4A為習知技術之塊狀矽及圖1-2所示之4/1矽/氧超晶格兩者從迦碼點(G)計算所得能帶結構之圖。
圖4B為習知技術之塊狀矽及圖1-2所示之4/1矽/氧超晶格兩者從Z點計算所得能帶結構之圖。
圖4C為習知技術之塊狀矽及圖3所示之5/1/3/1矽/氧超晶格兩者從G點與Z點計算所得能帶結構之圖。
圖5為根據例示實施例之包括具有富含氧18單層的超晶格的半導體元件的示意性剖視圖。
圖6為包括具有複數個富含氧18的單層且將半導體層劃分為不同導電類型的區域之超晶格之另一半導體元件的示意性剖視圖。
圖7為針對包括常規氧16單層及氧18增強單層的測試半導體元件之測量氧濃度與深度的曲線圖。
圖8為顯示用於圖7的實施方式之氧18及氧16劑量損失的表格。
圖9為用於圖7的實施方式之氧18及氧16劑量損失與退火溫度之關係圖。
圖10為用於圖7的實施方式之氧18及氧16劑量損失百分比與退火溫度之關係圖。
圖11為包括具有一個或多個富含氧18的單層的超晶格通道的半導體元件之示意性剖視圖。
圖12為包括具有一個或多個富含氧18的單層且將半導體層劃分為具有相同導電類型及不同摻雜物濃度的區域的超晶格之半導體元件之示意性剖視圖。
圖13為包括具有一個或多個富含氧18的單層的超晶格且包括在超晶格上方之金屬接觸層的半導體元件之示意性剖視圖。
茲參考說明書所附圖式詳細說明例示性實施例,圖式中所示者為例示性實施例。不過,實施例可以許多不同形式實施,且不應解釋為僅限於本說明書所提供之特定例示。相反的,這些實施例之提供,僅是為了使本發明所揭示之發明內容更為完整詳盡。在本說明書及圖式各處,相同圖式符號係指相同元件,而撇號(‘)則用以標示不同實施方式中之類似元件。
整體而言,本發明涉及應用強化半導體超晶格形成半導體元件。在本發明中,該強化之半導體超晶格亦可稱為「MST層/薄膜」或「MST技術」。
詳言之,MST技術涉及進階的半導體材料,例如下文將進一步說明之超晶格25。申請人之理論認為(但申請人並不欲受此理論所束縛),本說明書所述之超晶格結構可減少電荷載子之有效質量,並由此而帶來較高之電荷載子遷移率。有效質量之各種定義在所屬技術領域之文獻中已有說明。為衡量有效質量之改善程度,申請人分別為電子及電洞使用了「導電性反有效質量張量」(conductivity reciprocal effective mass tensor)
Figure 111115599-A0305-02-0009-1
Figure 111115599-A0305-02-0009-2
Figure 111115599-A0305-02-0009-3
為電子之定義,且:
Figure 111115599-A0305-02-0010-4
為電洞之定義,其中f為費米-狄拉克分佈(Fermi-Dirac distribution),EF為費米能量(Fermi energy),T為溫度,E(k,n)為電子在對應於波向量k及第n個能帶狀態中的能量,下標i及j係指直交座標x,y及z,積分係在布里羅因區(Brillouin zone,B.Z.)內進行,而加總則是在電子及電洞的能帶分別高於及低於費米能量之能帶中進行。
申請人對導電性反有效質量張量之定義為,一材料之導電性反有效質量張量之對應分量之值較大者,其導電性之張量分量(tensorial component)亦較大。申請人再度提出理論(但並不欲受此理論所束縛)認為,本說明書所述之超晶格可設定導電性反有效質量張量之值,以增進材料之導電性,例如電荷載子傳輸之典型較佳方向。適當張量項數之倒數,在此稱為導電性有效質量(conductivity effective mass)。換句話說,若要描述半導體材料結構的特性,如上文所述,在載子預定傳輸方向上計算出電子/電洞之導電性有效質量,便可用於分辨出較佳之材料。
申請人已辨識出可用於半導體元件之改進材料或結構。更具體而言,申請人所辨識出之材料或結構所具有之能帶結構,其電子及/或電洞之適當導電性有效質量之值,實質上小於對應於矽之值。這些結構除了有較佳遷移率之特點外,其形成或使用之方式,亦使其得以提供有利於各種不同元件類型應用之壓電、焦電及/或鐵電特性,下文將進一步討論。
參考圖1及圖2,所述材料或結構是超晶格25的形式,其結構在原子或分子等級上受到控制,且可應用原子或分子層沉積之已知技術加以形成。超晶格25包含複數個堆疊排列之層群組45a~45n,如圖1之概要剖視圖所示。
如圖所示,超晶格25之每一層群組45a~45n包含複數個堆疊之基底半導體單層46,其界定出各別之基底半導體部份46a~46n與其上之一能帶修改層50。為清楚呈現起見,該能帶修改層50於圖1中以雜點表示。
如圖所示,該能帶修改層50包含一非半導體單層,其係被拘束在相鄰之基底半導體部份之一晶格內。「被拘束在相鄰之基底半導體部份之一晶格內」一語,係指來自相對之基底半導體部份46a~46n之至少一些半導體原子,透過該些相對基底半導體部份間之非半導體單層50,以化學方式鍵結在一起,如圖2所示。一般而言,此一組構可經由控制以原子層沉積技術沉積在半導體部份46a~46n上面之非半導體材料之量而成為可能,這樣,可用之半導體鍵結位置便不會全部(亦即非完全或低於100%之涵蓋範圍)被連結至非半導體原子之鍵結佔滿,下文將進一步討論。因此,當更多半導體材料單層46被沉積在一非半導體單層50上面或上方時,新沉積之半導體原子便可填入該非半導體單層下方其餘未被佔用之半導體原子鍵結位置。
在其他實施方式中,使用超過一個此種非半導體單層是可能的。應注意的是,本說明書提及非半導體單層或半導體單層時,係指該單層所用材料若形成為塊狀,會是非半導體或半導體。亦即,一種材料(例如矽)之單一單層所顯現之特性,並不必然與形成為塊狀或相對較厚層時所顯現之特性相同,熟習所屬技術領域者當可理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),能帶修改層50與相鄰之基底半導體部份46a~46n,可使超晶格25在平行層之方向上,具有較原本為低之電荷載子適當導電性有效質量。換一種方向思考,此平行方向即正交於堆疊方向。該能帶修改層50亦可使超晶格25具有一般之能帶結構,同時有利地發揮作為該超晶格垂直上下方之多個層或區域間之絕緣體之作用。
再者,此超晶格結構亦可有利地作為超晶格25垂直上下方多個層之間之摻雜物及/或材料擴散之阻擋。因此,這些特性可有利地允許超晶格25為高K值介電質提供一界面,其不僅可減少高K值材料擴散進入通道區,還可有利地減少不需要之散射效應,並改進裝置行動性,熟習所屬技術領域者當可理解。
本發明之理論亦認為,包含超晶格25之半導體元件可因為較原本為低之導電性有效質量,而享有較高之電荷載子遷移率。在某些實施方式中,因為本發明而實現之能帶工程,超晶格25可進一步具有對諸如光電元件等尤其有利之實質上之直接能帶間隙。
如圖所示,超晶格25亦可在一上部層群組45n上方包含一頂蓋層52。該頂蓋層52可包含複數個基底半導體單層46。作為例示,該頂蓋層52可包含基底半導體的1及100個之間的單層46,較佳者為10至50個之間的單層。但在某些應用中,頂蓋層52可省略,或者可以使用大於100個單層的厚度。
每一基底半導體部份46a~46n可包含由IV族半導體、III-V族半導體及II-VI族半導體所組成之群組中選定之一基底半導體。當然,IV族半導體亦包含IV-IV族半導體,熟習所屬技術領域者當可理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
每一能帶修改層50可包含由,舉例而言,氧、氮、氟、碳及碳-氧所組成之群組中選定之一非半導體。該非半導體亦最好具有在沈積下一層期間保持熱穩定之特性,以從而有利於製作。在其他實施方式中,該非半導體可為相容於給定半導體製程之另一種無機或有機元素或化合物,熟習所屬技術領域者當能理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
應注意的是,「單層(monolayer)」一詞在此係指包含一單一原子層,亦指包含一單一分子層。亦應注意的是,經由單一單層所提供之能帶修改層50,亦應包含層中所有可能位置未完全被佔據之單層(亦即非完全或低於100%之涵蓋範圍)。舉例來說,參照圖2之原子圖,其呈現以矽作為基底半導體材料並以氧作為能帶修改材料之一4/1重複結構。氧原子之可能位置僅有一半被佔據。
在其他實施方式及/或使用不同材料的情況中,則不必然是二分之一的佔據情形,熟習所屬技術領域者當能理解。事實上,熟習原子沈積技術領域者當能理解,即便在此示意圖中亦可看出,在一給定單層中,個別的氧原子並非精確地沿著一平坦平面排列。舉例來說,較佳之佔據範圍是氧的可能位置有八分之一至二分之一被填滿,但在特定實施方式中其他佔據範圍亦可使用。
由於矽及氧目前廣泛應用於一般半導體製程中,故製造商將能夠立即應用本說明書所述之材質。原子沉積或單層沉積亦是目前廣泛使用之技術。因此,依照本發明之結合超晶格25之半導體元件,可立即加以採用並實施,熟習所屬技術領域者當能理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),對一超晶格而言,例如所述矽/氧超晶格,矽單層之數目理想應為七層或更少,以使該超晶格之能帶在各處皆為共同或相對均勻,以實現所欲之優點。圖1及圖2所示之矽 /氧4/1重複結構,已經過模型化以表示電子及電洞在X方向上之較佳遷移率。舉例而言,電子(就塊狀矽而言具等向性)之計算後導電性有效質量為0.26,而X方向上的4/1矽/氧超晶格之計算後導電性有效質量則為0.12,兩者之比為0.46。同樣的,在電洞之計算結果方面,塊狀矽之值為0.36,該4/1矽/氧超晶格之值則為0.16,兩者之比為0.44。
雖然此種方向上優先(directionally preferential)之特點可有利於某些半導體元件,其他半導體元件亦可得益於遷移率在平行於層群組之任何方向上更均勻之增加。電子及電洞兩者之遷移率同時增加,或僅其中一種電荷載子遷移率之增加,亦皆可有其好處,熟習所屬技術領域者當可理解。
超晶格25之4/1矽/氧實施方式之較低導電性有效質量,可不到非超晶格25者之導電性有效質量之三分之二,且此情形就電子及電洞而言皆然。當然,超晶格25可更包括至少一種類型之導電性摻雜物在其中,熟習所屬技術領域者當能理解。
茲另參考圖3說明依照本發明之具有不同特性之超晶格25’之另一實施方式。在此實施方式中,其重複模式為3/1/5/1。更詳細而言,最底下的基底半導體部份46a’有三個單層,第二底下的基底半導體部份46b’則有五個單層。此模式在整個超晶格25’重複。每一能帶修改層50’可包含一單一單層。就包含矽/氧之此種超晶格25’而言,其電荷載子遷移率之增進,係獨立於該些層之平面之定向。圖3中其他元件在此未提及者,係與前文參考圖1所討論者類似,故不再重複討論。
在某些元件實施方式中,其超晶格之每一基底半導體部份可為相同數目之單層之厚度。在其他實施方式中,其超晶格之至少某些基底半導體部份 可為相異數目之單層之厚度。在另外的實施方式中,其超晶格之每一基底半導體部份可為相異數目之單層之厚度。
圖4A-4C呈現使用密度功能理論(Density Functional Theory,DFT)計算出之能帶結構。在所屬技術領域中廣為習知的是,DFT通常會低估能帶間隙之絕對值。因此,間隙以上的所有能帶可利用適當之「剪刀形更正」(scissors correction)加以偏移。不過,能帶的形狀則是公認遠較為可靠。縱軸之能量應從此一角度解釋之。
圖4A呈現塊狀矽(以實線表示)及圖1之4/1矽/氧超晶格25(以虛線表示)兩者由迦碼點(G)計算出之能帶結構。圖中該些方向係指該4/1矽/氧結構之單位晶格(unit cell)而非指矽之一般單位晶格,雖然圖中之方向(001)確實對應於一般矽單位晶格之方向(001),並因此而顯示出矽導帶最小值之預期位置。圖中方向(100)及方向(010)係對應於一般矽單位晶格之方向(110)及方向(-110)。熟習所屬技術領域者當可理解,圖中之矽能帶係被摺疊收攏,以便在該4/1矽/氧結構之適當反晶格方向(reciprocal lattice directions)上表示。
由圖中可見,與塊狀矽相較,該4/1矽/氧結構之導帶最小值係位於G點,而其價帶最小值則出現在方向(001)上布里羅因區之邊緣,吾人稱為Z點之處。吾人亦可注意到,與矽之導帶最小值曲率比較下,該4/1矽/氧結構之導帶最小值之曲率較大,此係因額外氧層引入之微擾(perturbation)造成能帶分裂(band splitting)之故。
圖4B呈現塊狀矽(實線)及該4/1矽/氧超晶格25(虛線)兩者由Z點計算出之能帶結構。此圖描繪出價帶在方向(100)上之增加曲率。
圖4C呈現塊狀矽(實線)及圖3之5/1/3/1矽/氧超晶格25’(虛線)兩者由迦碼點及Z點計算出之能帶結構之曲線圖。由於該5/1/3/1矽/氧結構之對稱性,在方向(100)及方向(010)上計算出之能帶結構是相當的。因此,在平行於各層之平面中,亦即垂直於堆疊方向(001)上,導電性有效質量及遷移率可預期為等向性。請注意,在該5/1/3/1矽/氧之實施例中,導帶最小值及價帶最大值兩者皆位於或接近Z點。
雖然曲率增加是有效質量減少的一個指標,但適當的比較及判別可經由導電性反有效質量張量之計算而進行。此使得本案申請人進一步推論,該5/1/3/1超晶格25’實質上應為直接能帶間隙。熟習所屬技術領域者當可理解,光躍遷(optical transition)之適當矩陣元素(matrix element)是區別直接及間接能帶間隙行為之另一指標。
現在轉向圖5,在一些實施例中,上述超晶格薄膜25可製造成具有一個或多個氧單層50,該氧單層50具有增加或增強量的氧18。在常規的製造方法中,使用於氧沉積的氣體流中存在的穩定氧同位素的大略濃度可為如下:
Figure 111115599-A0305-02-0016-5
在圖5所示的半導體元件120中,在半導體層121(例如,底材)附近形成超晶格125,該超晶格125包括兩個單層群組145a、145b,各群組包括具有四個半導體(例如,矽)單層146的基底半導體部份146a、146b,以及相應的氧單層150a、150b。然而, 應注意的是,在不同實施例中可使用其他基底半導體部份的厚度,例如,在一些實施方式中,多達二十五個單層146或甚至五十個(或更多)單層。當氧單層150b係使用常規的氣體流而製造時,氧單層150a係使用具有增強或增加量的氧18的氣體流而製造,從而提供氧18濃化單層。舉例來說,單層150a可包括原子百分比大於百分之10氧18。也就是說,存在於單層150a中的氧18原子數量,可構成此單層中總氧原子的10%或更多。在其他例示實施例中,單層150a中氧18原子的原子百分比可大於總氧原子的百分之五十,且更具體地大於百分之九十。在任何情況下,氧18濃化單層150a亦可包括一些氧16的部份。
另外參考圖6的半導體元件120',在一些實施方式中,可使用多於一個氧18濃化單層150a'。此處,兩個層群組145a'、145b'中的每一個都具有各自的氧18濃化單層150a'。在不同的實施例中,也可使用其他超晶格層組構。
鑑於基底半導體部份146a、146b的半導體(例如,矽)晶格內的間隙氧的動力學同位素效應,在MST層中使用一個或多個氧18濃化單層150a可能是有利的。更特別地,矽中的游離氧原子係相對高度地可移動,這可能經由間隙機制導致不樂見的擴散。氧的擴散是被熱激活的,因此在超晶格125形成之後的後續熱處理步驟(例如,閘極形成等)中容易發生。因為氧18在其核自旋(nuclear spin)方面在化學上等同於氧16(兩者均為0),所以它非常適合用於上述超晶格結構,不然本來會使用具有常規氧16濃度的氧單層。然而,由於動力學同位素效應,較輕同位素的活化能小於較重同位素的活化能。在本例示中,氧16是比氧18輕的同位素,這意味著氧18將具有比氧16更高的活化能。因此,氧18的活化過程相應地較慢,這意味著氧18將比氧16擴散慢。結果,並且如申請人所推論但不欲被其束縛,例如,氧18濃化單層150a將在上述熱處理期間會經歷較少的擴散/氧損失。
前述內容將參照圖7的曲線圖170、圖8的表格180而可進一步理解,且圖9與圖10的關係圖190、195,係表示來自包括四個氧16單層及四個氧18濃化單層的已製元件的測試結果。測試元件是在製造過程中使用回蝕程序(在圖中稱為「MEGA」)製造的,這在授予Weeks等人的美國專利第10566191號及第10811498號中對其進行了進一步描述,這些專利已轉讓給本案申請人,其全部揭示內容經此引用而併入本說明書。氧18濃度係由曲線171所表示,而氧16濃度係由曲線172所表示。可以看出,氧單層150a的位置出現在距離表面20到30nm之間,並且具有1×1021原子/cm3範圍內的氧18濃度。測試薄膜的相應測量顯示於圖8的表格180中,對應的劑量損失對比退火溫度顯示於關係圖190中,而對應的劑量損失百分比對比退火溫度係顯示於圖10的關係圖195中。
多種類型的半導體結構可利用上述氧18增強的超晶格120或120'來製造,並從中受益。一個這樣的元件是參考圖11所描述的平面MOSFET 220。圖示的MOSFET 220包括底材221、源極區/汲極區222、223、源極/汲極延伸區226、227,以及二者之間的通道區,其由富含氧18之超晶格225所提供。該通道可部份地或完全地形成在超晶格225內。如所屬技術領域者將可理解的,源極/汲極矽化物層230、231及源極/汲極接點232、233係覆蓋源極/汲極區。由虛線234a、234b所指示的區域是最初由超晶格225所形成但其後予以重摻雜的選擇性殘留部份。在其他實施例中,這些殘留超晶格區234a、234b可能不存在,熟習所屬技術領域者當能理解。閘極235概要地包括與超晶格225所提供的通道相鄰的閘極絕緣層237,以及在閘極絕緣層上的閘電極層236。側壁間隔件240、241也設置在所示的MOSFET 220中。
另外參考圖12,可結合氧18濃化超晶格325的元件的另一例示是半導體元件300,其中超晶格係作為摻雜物擴散阻擋超晶格,以有利地增加表面摻雜物濃度,而在原位摻雜磊晶處理期間,藉由防止擴散到元件的通道區330中,來允許較高的ND(金屬/半導體界面處的活性摻雜物濃度)。更特別地,元件300例示性地包括半導體層或底材301,以及形成在半導體層中隔開的源極區及汲極區302、303,而通道區330則在二者之間延伸。圖示之摻雜物擴散阻擋超晶格325延伸穿過源極區302,以將源極區劃分成下源極區304及上源極區305,並延伸穿過汲極區303,以將汲極區劃分為下汲極區306及上汲極區307。
摻雜物擴散阻擋超晶格325在概念上也可被認為是源極區302內的源極摻雜物阻擋超晶格、汲極區303內的汲極摻雜物阻擋超晶格、以及通道330下方的本體摻雜物阻擋超晶格,儘管在此組構中,所有這三者都是藉由MST材料作為連續薄膜在底材301上的單一地毯式沉積(single blanket deposition)所提供。例如,摻雜物阻擋超晶格325上方的半導體材料(當中定義出上源極區/汲極區305、307及通道區330)可磊晶生長在摻雜物阻擋超晶格325上面,作為厚的超晶格頂蓋層或是作為本體半導體層。在所繪示例中,上源極區/汲極區305、307可各自與此半導體層的上表面齊平(亦即,它們被植入此層內)。
因此,上源極/汲極區305、307可有利地具有與下源極區/汲極區304、306相同的導電性,但具有更高的摻雜物濃度。在所繪示例中,上源極區/汲極區305、307及下源極區/汲極區304、306對於N通道元件來說是N型的,但對於P通道元件來說這些區域也可以是P型的。例如,表面摻雜物可藉由離子植入而引入。然而,摻雜物擴散被擴散阻擋超晶格325的MST薄膜材料降低,因為它 能捕獲離子植入所引入的點缺陷/間隙子,這些點缺陷/間隙子會促成摻雜物擴散。
圖示之半導體元件300更包括在通道區330上的閘極308。該閘極概要地包括閘極絕緣層309和閘電極310。側壁間隔件311亦提供在所繪示例中。關於元件300的進一步細節,以及其中可使用氧18濃化超晶格的其他類似結構,係闡述於Takeuchi等人的美國專利第10818755號中,其已轉讓給本案申請人,其整體揭示內容經此引用而併入本說明書。
轉到圖13,現在描述其中可使用氧18濃化超晶格的另一例示實施例半導體元件400。更特別地,在所示的例示中,源極及汲極摻雜物擴散阻擋超晶格425s、425d均經由異質磊晶薄膜集成(hetero-epitaxial film integration)而有利地提供肖特基能障高度調節(Schottky barrier height modulation)。更特別地,下源極區及汲極區404、406包括與上源極區及汲極區405、407不同的材料。在此例示中,下源極區及汲極區404、406是矽,而上源極區及汲極區405、407是SiGeC,但在不同的實施例中可使用不同的材料。下金屬層(Ti)442、443係形成在上源極區及汲極區(SiGeC層)405、407上。上金屬層(Co)444、445係分別形成在下金屬層442、443上。由於MST材料在集成異質磊晶半導體材料方面是有效的,將C(1-2%)結合到Si或Si上的SiGe可能會引起正向導帶偏移(positive conduction band offset)。更特別地,這是一種SiGeC/MST/n+ Si結構,其可有效降低肖特基能障高度。關於元件400的進一步細節闡述於上述10818755專利中。
然而,本領域的技藝人士將可理解,本說明書中所述材料及技術可用於許多不同類型的半導體元件,例如離散元件及/或積體電路。再次參考圖6,在摻雜物阻擋應用的脈絡中,氧18濃化超晶格125'將底材121'與頂蓋層52'分 開,但底材具有與頂蓋層(N)不同的導電類型(P),從而定義了一個PN界面。在其他例示實施例中,PN界面可以是橫向的,而不是如圖6所示的垂直定向。其中可使用氧18濃化超晶格的進一步PN界面應用係闡述於Mears等人的美國專利第7227174號,該專利已轉讓給本案申請人,其全部揭示內容經此引用而併入本說明書。亦應注意的是,在一些實施例中,氧18濃化單層也可結合到超晶格及相關應用中,例如在2021年4月21日所提交的美國申請案第17/236289號及第17/236329號所描述者,其全部揭示內容經此引用而併入本說明書。
申請人之理論認為(但申請人並不欲受此理論所束縛),氧18源可與傳統氧16源互換地使用,以製造上述半導體超晶格。此外,申請人已發現到,類似的氧18流速會產生類似於氧16的氧劑量。此外,氧16與氧18源之間的半導體單層生長及蝕刻速率也相似。現象學研究/觀察已揭明,在氧18超晶格層中的氧16摻入,係受上述MEGA蝕刻影響。更特別地,關於圖7所示的測試元件,在元件沒有受到MEGA蝕刻的情況下,第一個氧16峰值低於相同堆疊中的其他三個氧16峰值,但在第一個氧劑量循環之前加入MEGA蝕刻,則會產生所有四個氧16峰值具有相同濃度的超晶格堆疊。舉例來說,氧18的劑量維持可比氧16的劑量維持好30%(或更多)。
用於製作半導體元件120的相關方法,可包括形成半導體層121,以及形成超晶格125,使其鄰接該半導體層且包括堆疊之層群組145a、145b。各層群組145a、145b可包括堆疊之基底半導體單層146,其界定出基底半導體部份146a、146b,以及被拘束在相鄰的基底半導體部份之晶格內之至少一氧單層150a。如上文所討論,該至少一氧單層150a可包括原子百分比大於百分之10的氧18。
根據圖11的例示,進一步的方法態樣可包括在半導體層221上形成源極區及汲極區222、223且在超晶格225中界定出通道,以及在超晶格上方形成閘極235。根據圖13的例示,進一步的方法態樣可包括在超晶格425s、425d上方形成金屬層442/444及/或443/445,如上文所討論。
熟習所屬技術領域者將受益於本說明書揭示之內容及所附圖式而構思出各種修改及其他實施方式。因此,應了解的是,本發明不限於本說明書所述之特定實施方式,且相關修改及實施方式均落入以下申請專利範圍所界定之範疇。
52:頂蓋層
120:半導體元件
121:半導體層
125:超晶格
145a,145b:單層群組
146a,146b:基底半導體部份
150a,150b:氧濃化單層

Claims (28)

  1. 一種半導體元件,其包括: 一半導體層;及 一超晶格,其鄰接該半導體層且包括複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一氧單層; 一給定層群組之至少一氧單層包含原子百分比大於百分之10的氧18( 18O)。
  2. 如請求項1之半導體元件,其中該給定層群組之至少一氧單層包含原子百分比大於百分之50的氧18。
  3. 如請求項1之半導體元件,其中該給定層群組之至少一氧單層包含原子百分比大於百分之90的氧18。
  4. 如請求項1之半導體元件,其中該給定層群組之至少一氧單層更包含氧16( 16O)。
  5. 如請求項1之半導體元件,其中各層群組之至少一氧單層包含原子百分比大於百分之10的氧18。
  6. 如請求項1之半導體元件,其更包括位於該半導體層上且在該超晶格中界定出一通道之源極區及汲極區,以及該超晶格上方之一閘極。
  7. 如請求項1之半導體元件,其中該超晶格將該半導體層劃分爲一第一區及一第二區,該第一區及該第二區具有相同導電類型,但該第一區及該第二區具有不同摻雜物濃度。
  8. 如請求項1之半導體元件,其更包括該超晶格上方之一金屬層。
  9. 如請求項1之半導體元件,其中該超晶格將該半導體層劃分爲一第一區及一第二區,該第一區及該第二區具有不同導電類型。
  10. 如請求項1之半導體元件,其中該基底半導體層包括矽。
  11. 一種半導體元件,其包括: 一半導體層;及 一超晶格,其鄰接該半導體層且包括複數個堆疊之層群組,各層群組包含複數個堆疊之基底矽單層,其界定出一基底矽部份,以及被拘束在相鄰的基底矽部份之一晶格內之至少一氧單層; 一給定層群組之至少一氧單層包含原子百分比大於百分之50的氧18。
  12. 如請求項11之半導體元件,其中該給定層群組之至少一氧單層包含原子百分比大於百分之90的氧18。
  13. 如請求項11之半導體元件,其中該給定層群組之至少一氧單層包含氧16。
  14. 如請求項11之半導體元件,其中該超晶格內各層群組之至少一氧單層包含原子百分比大於百分之50的氧18。
  15. 如請求項11之半導體元件,其更包括位於該半導體層上且在該超晶格中界定出一通道之源極區及汲極區,以及該超晶格上方之一閘極。
  16. 如請求項11之半導體元件,其中該超晶格將該半導體層劃分爲一第一區及一第二區,該第一區及該第二區具有相同導電類型,但該第一區及該第二區具有不同摻雜物濃度。
  17. 如請求項11之半導體元件,其更包括該超晶格上方之一金屬層。
  18. 如請求項11之半導體元件,其中該超晶格將該半導體層劃分爲一第一區及一第二區,該第一區及該第二區具有不同導電類型。
  19. 一種用於製作一半導體元件之方法,其包括: 形成一半導體層;及 形成一超晶格,使其鄰接該半導體層且包括複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一氧單層; 一給定層群組之至少一氧單層包含原子百分比大於百分之10的氧18。
  20. 如請求項19之方法,其中該給定層群組之至少一氧單層包含原子百分比大於百分之50的氧18。
  21. 如請求項19之方法,其中該給定層群組之至少一氧單層包含原子百分比大於百分之90的氧18。
  22. 如請求項19之方法,其中該給定層群組之至少一氧單層更包含氧16。
  23. 如請求項19之方法,其中各層群組之至少一氧單層包含原子百分比大於百分之10的氧18。
  24. 如請求項19之方法,其更包括形成位於該半導體層上且在該超晶格中界定出一通道之源極區及汲極區,以及形成該超晶格上方之一閘極。
  25. 如請求項19之方法,其中該超晶格將該半導體層劃分爲一第一區及一第二區,該第一區及該第二區具有相同導電類型,但該第一區及該第二區具有不同摻雜物濃度。
  26. 如請求項19之方法,其更包括形成該超晶格上方之一金屬層。
  27. 如請求項19之方法,其中該超晶格將該半導體層劃分爲一第一區及一第二區,該第一區及該第二區具有不同導電類型。
  28. 如請求項19之方法,其中該基底半導體層包括矽。
TW111115599A 2021-05-26 2022-04-25 包含具氧18富集單層之超晶格之半導體元件及相關方法 TWI812186B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/330,860 2021-05-26
US17/330,831 US11728385B2 (en) 2021-05-26 2021-05-26 Semiconductor device including superlattice with O18 enriched monolayers
US17/330,831 2021-05-26
US17/330,860 US11682712B2 (en) 2021-05-26 2021-05-26 Method for making semiconductor device including superlattice with O18 enriched monolayers

Publications (2)

Publication Number Publication Date
TW202249276A TW202249276A (zh) 2022-12-16
TWI812186B true TWI812186B (zh) 2023-08-11

Family

ID=82321540

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111115599A TWI812186B (zh) 2021-05-26 2022-04-25 包含具氧18富集單層之超晶格之半導體元件及相關方法

Country Status (3)

Country Link
EP (1) EP4331017A1 (zh)
TW (1) TWI812186B (zh)
WO (1) WO2022251173A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472685B2 (en) * 1997-12-03 2002-10-29 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US9343293B2 (en) * 2013-04-04 2016-05-17 Applied Materials, Inc. Flowable silicon—carbon—oxygen layers for semiconductor processing
US9666669B1 (en) * 2015-12-22 2017-05-30 International Business Machines Corporation Superlattice lateral bipolar junction transistor
US20190189670A1 (en) * 2017-12-15 2019-06-20 Atomera Incorporated Method for making cmos image sensor including pixels with read circuitry having a superlattice
WO2020092492A1 (en) * 2018-10-31 2020-05-07 Atomera Incorporated Method for making a semiconductor device including a superlattice having nitrogen diffused therein
US20200161429A1 (en) * 2018-11-16 2020-05-21 Atomera Incorporated Method for making semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210679A (ja) 1985-03-15 1986-09-18 Sony Corp 半導体装置
US5216262A (en) 1992-03-02 1993-06-01 Raphael Tsu Quantum well structures useful for semiconductor devices
US5357119A (en) 1993-02-19 1994-10-18 Board Of Regents Of The University Of California Field effect devices having short period superlattice structures using Si and Ge
US5561302A (en) 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
US6376337B1 (en) 1997-11-10 2002-04-23 Nanodynamics, Inc. Epitaxial SiOx barrier/insulation layer
GB9905196D0 (en) 1999-03-05 1999-04-28 Fujitsu Telecommunications Eur Aperiodic gratings
US20020100942A1 (en) 2000-12-04 2002-08-01 Fitzgerald Eugene A. CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US6831292B2 (en) 2001-09-21 2004-12-14 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
US7227174B2 (en) 2003-06-26 2007-06-05 Rj Mears, Llc Semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US10811498B2 (en) 2018-08-30 2020-10-20 Atomera Incorporated Method for making superlattice structures with reduced defect densities
US10566191B1 (en) 2018-08-30 2020-02-18 Atomera Incorporated Semiconductor device including superlattice structures with reduced defect densities

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472685B2 (en) * 1997-12-03 2002-10-29 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US9343293B2 (en) * 2013-04-04 2016-05-17 Applied Materials, Inc. Flowable silicon—carbon—oxygen layers for semiconductor processing
US9666669B1 (en) * 2015-12-22 2017-05-30 International Business Machines Corporation Superlattice lateral bipolar junction transistor
US20190189670A1 (en) * 2017-12-15 2019-06-20 Atomera Incorporated Method for making cmos image sensor including pixels with read circuitry having a superlattice
WO2020092492A1 (en) * 2018-10-31 2020-05-07 Atomera Incorporated Method for making a semiconductor device including a superlattice having nitrogen diffused therein
US20200161429A1 (en) * 2018-11-16 2020-05-21 Atomera Incorporated Method for making semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance

Also Published As

Publication number Publication date
TW202249276A (zh) 2022-12-16
EP4331017A1 (en) 2024-03-06
WO2022251173A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
TWI722398B (zh) 包含具有超晶格之改良接觸結構之半導體元件及相關方法
US10727049B2 (en) Method for making a semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
US10468245B2 (en) Semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
TWI624004B (zh) 包含超晶格空乏層堆疊之半導體元件及其相關方法
TWI543362B (zh) 包含超晶格貫穿中止層之垂直式半導體元件及其相關方法
TW202025481A (zh) 用於製作具有降低接觸電阻之半導體元件之方法
TWI761725B (zh) 具有包含用於限制摻雜物之氧插入層之金屬半導體接點的半導體元件及相關方法
EP3871269A1 (en) Method for making a finfet having reduced contact resistance
US20230361178A1 (en) Semiconductor device including superlattice with o18 enriched monolayers
CN115868004A (zh) 使用具有不同非半导体热稳定性的超晶格制造半导体器件的方法
EP3871270A1 (en) Finfet including source and drain regions with dopant diffusion blocking superlattice layers to reduce contact resistance and associated methods
CN117413364A (zh) 包括具富集o18的单层的超晶格的半导体器件及相关方法
TWI812186B (zh) 包含具氧18富集單層之超晶格之半導體元件及相關方法
TWI747378B (zh) 設有含分隔超晶格之突陡接面區之半導體元件及相關方法
TWI751609B (zh) 設有含超晶格之突陡接面區之可變電容器及相關方法
TWI747377B (zh) 設有含超晶格之突陡接面區之半導體元件及相關方法
TWI772839B (zh) 設有含分隔超晶格之突陡接面區之可變電容器及相關方法
EP3756212B1 (en) Semiconductor device and method including compound semiconductor materials and an impurity and point defect blocking superlattice
TW202406141A (zh) 含提供金屬功函數調諧之超晶格之半導體元件及相關方法
TW202027273A (zh) 包含用於降低接觸電阻之源極/汲極摻雜物擴散阻擋超晶格的半導體元件及相關方法
CN113228293A (zh) 包括具有减小的接触电阻的本体接触部掺杂剂扩散阻挡超晶格的半导体器件和方法以及相关方法