CN1794433A - 异质结构沟道绝缘栅极场效应晶体管的制造方法及晶体管 - Google Patents

异质结构沟道绝缘栅极场效应晶体管的制造方法及晶体管 Download PDF

Info

Publication number
CN1794433A
CN1794433A CNA2005101030147A CN200510103014A CN1794433A CN 1794433 A CN1794433 A CN 1794433A CN A2005101030147 A CNA2005101030147 A CN A2005101030147A CN 200510103014 A CN200510103014 A CN 200510103014A CN 1794433 A CN1794433 A CN 1794433A
Authority
CN
China
Prior art keywords
raceway groove
layer
substrate
active region
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005101030147A
Other languages
English (en)
Inventor
斯特凡娜·蒙弗瑞
斯特凡恩·博雷尔
托马斯·斯克特尼科基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics Crolles 2 SAS
Original Assignee
STMicroelectronics Crolles 2 SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Crolles 2 SAS filed Critical STMicroelectronics Crolles 2 SAS
Publication of CN1794433A publication Critical patent/CN1794433A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66651Lateral single gate silicon transistors with a single crystalline channel formed on the silicon substrate after insulating device isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • H01L29/78687Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys with a multilayer structure or superlattice structure

Abstract

本发明涉及一种绝缘栅极场效应晶体管(T),其包括窄的异质结构应变半导体沟道(4,5),该沟道在栅极(6)和隐埋在基片(SB)中的介电块(91)之间延伸。

Description

异质结构沟道绝缘栅极场效应晶体管的制造方法及晶体管
技术领域
本发明涉及集成电路,更具体地说,涉及集成电路中的异质结构沟道晶体管的制造。
背景技术
直接在较大基片中制作的硅/硅锗异质结构半导体沟道晶体管是已知的。
然而,这种晶体管存在SCE(短沟道效应)和DIBL(漏极感应势垒降低效应)的缺点。更准确地说,当晶体管栅极的长度下降时,由于源极和漏极间的势垒降低,沟道中心的电势变化很大因而晶体管的阈值电压也会改变。这就是SCE效应。在此基础上又加上漏极电势的作用,就会进一步降低势垒,这就是DIBL效应。
发明内容
本发明旨在提供上述问题的解决方案。
本发明的目的是提供一种晶体管,在克服SCE和DIBL效应的同时改善沟道中载流子迁移率,尽管载流子采用隐埋传导。
本发明的另一目的是提高nMOS器件中穿过拉伸应变硅层的电子的传导性。
本发明的再一目的是提高pMOS器件中穿过压缩应变硅和硅锗层的空穴的传导性。
因此,本发明提供一种制备绝缘栅极场效应晶体管的方法,其包括:
a)在基片的活性区上沉积一层相对于构成活性区的材料能选择性地除去的材料;
b)在能选择性地除去的材料层上形成窄的异质结构的应变半导体沟道;
c)在该沟道上形成绝缘栅极;
d)有选择地除去能选择性地除去的材料层,以便在该沟道下形成空腔;
e)在所述空腔内沉积介电材料以便形成介电块;以及
f)从基片的活性区起形成源极区和漏极区,与沟道相接触并分别在其一边延伸,于是介电块被隐埋在沟道下。
通过把窄的异质结构应变半导体沟道与隐埋在所述沟道下的介电块结合起来并界定后者,使沟道中的载流子获得更好的迁移率,同时克服了现有技术中晶体管的问题,即短沟道和DIBL效应。
本领域的技术人员知道怎么选择沟道厚度以便得到薄的沟道。这里提示一下,这种沟道的厚度最好小于10纳米。
按照实施本发明的一种方法,基片的活性区包含硅锗合金,其锗含量与硅含量的比率随着与基片表面的接近而增长,而由能选择性地除去的材料形成的层是一种从基片的活性区上表面外延生长得到的应变硅层。
例如,沟道可以这样形成:在应变硅层上外延生长第一硅锗合金层以便得到压缩的硅锗合金层,以及在所述第一层上外延生长第二硅层以便得到拉伸的应变硅层。
按照实施本发明的一种实施方法,通过含有硅的材料的外延生长形成源极和漏极区。
本发明还提供一种绝缘栅极场效应晶体管,其包含窄的、厚度为1到10纳米之间的异质结构半导体沟道,该沟道包含位于基片活性区之上的栅极和介电块之间的硅锗合金层和应变硅层。
按照一个实施例,该应变硅层的厚度范围在1到5纳米之间。
附图说明
为了进一步理解本发明的其它优点和特征,下面结合附图对本发明的实施方式和实施例进行详细说明。但本分明并不限于此。
附图中:
图1到7示意性地图示了按照本发明一个实施例的方法的主要步骤;以及
图8示意性地显示了集成电路中按照本发明的绝缘栅极场效应晶体管。
具体实施方式
现在更详细地说明按照本发明一个实施例的方法的主要步骤。
图1中,在例如由硅制成的基片SB上,通过外延形成硅锗合金层1,该合金中锗含量与硅含量的比率随着与基片SB表面的接近而增长。组成该合金的硅和锗对应于分子式Si1-xGex,其中x随着与基片SB表面的接近而变化,例如从0变到0.2。
活性区AZ形成于层1中两个隔离区2之间,所述隔离区可以是隔离沟。比如,这些隔离沟可以是DTI(深沟隔离)类型的深沟或者STI(浅沟隔离)类型的浅沟。
硅层3通过在活性区AZ上选择性的外延生长形成(图2),由于层3中硅的晶格和活性区AZ中硅锗合金的晶格之间的晶格失配,所述硅处于应变状态。提示一下,层3的厚度可以是15纳米,但更一般地是在10纳米到40纳米之间。
以类似的方法,压缩的应变硅锗合金层4通过在层3上选择性的外延生长形成。在这点上,选择层4中锗的百分含量比活性区AZ中锗的百分含量大。例如,层4的厚度可以是3纳米,但更一般地是在1纳米到5纳米之间。
然后拉伸状态的应变硅层5在层4上通过选择性的外延生长形成。例如,层5的厚度可以是3纳米,但更一般地是在1纳米到5纳米之间。
接着,通过已知的方法形成栅极区6,该栅极区6可以用多晶硅制成。该栅极区6由间隔层7环绕(图3),并通过硅氧化物(栅极氧化物)层71与拉伸状态的硅层5分隔开。
图4中,通过已知手段,例如通过非等向性蚀刻,蚀刻分别为压缩状态的硅锗合金层4和拉伸状态的应变硅层5,使用栅极区6和间隔层7作为掩模。附加的间隔层8分别形成在间隔层7和层4、层5的一边——所述间隔层随后用作掩模。
然后,除去应变硅层3(图5),这样在压缩状态的硅锗合金层4与活性区AZ表面之间留下空腔9。该除去操作可以通过已知手段实施,比如通过用CF4,CH2F2,N2,O2类型的等离子进行选择性的各向同性等离子蚀刻。压力和温度条件可以由本领域的技术人员调节以便得到所需的蚀刻速率。比如,蚀刻可以在25℃和大气压下进行。
接着,介电(比如SiO2)层90沉积在活性区AZ表面上和空腔9中(图6)。
使用间隔层8作掩模,通过已知手段蚀刻所述介电层90(图7),比如通过非等向性蚀刻。
半导体区10和11通过选择性外延生长分别形成于晶体管的一边(图8),从活性区AZ开始直到与拉伸状态应变硅层5的表面处于同水平高度处。然后在半导体区10和11中注入掺杂剂以便形成源极和漏极区。
现隐埋在基片中的介电块91,具有与原来应变硅层3相同的厚度,也就是说典型的是15纳米,但更一般地可以在10纳米到40纳米之间。
图8显示包含本发明的绝缘栅极场效应晶体管T的集成电路IC。
该集成电路包含基片SB,该基片SB上有硅锗合金层1,其锗含量与硅含量的比率随着与基片SB表面的接近而增长。
晶体管T在所述层1的活性区AZ上形成并位于两隔离区2之间。所述晶体管包括窄的异质结构应变半导体沟道,该沟道包含压缩的硅锗合金层4和拉伸的硅层5,并在栅极6和隐埋在基片SB中的介电块91之间延伸。

Claims (7)

1.一种制备绝缘栅极场效应晶体管(T)的方法,包括:
a)在基片(SB)的活性区(AZ)上沉积一层(3)相对于构成活性区(AZ)的材料能选择性地除去的材料;
b)在能选择性地除去的材料层(3)上形成窄的异质结构应变半导体沟道(4,5);
c)在该沟道(4,5)上形成绝缘栅极(6);
d)有选择地除去能选择性地除去的材料层(3),以便在该沟道(4,5)下形成空腔(9);
e)在所述空腔(9)内沉积介电材料以便形成介电块(91);以及
f)从基片(SB)的活性区(AZ)形成源极区(10)和漏极区(11),与沟道(4,5)相接并分别在其一侧延伸,于是介电块(91)被隐埋在沟道(4,5)下。
2.根据权利要求1所述的方法,其中,所述沟道(4,5)的厚度小于10纳米。
3.根据权利要求1或者2所述的方法,其中,所述基片(SB)的活性区(AZ)包含硅锗合金,其锗含量与硅含量的比率随着与基片(SB)表面的接近而增长,并且,由能选择性地除去的材料形成的层(3)是一种从基片(SB)的活性区(AZ)上表面外延生长而得到的应变硅层。
4.根据权利要求3所述的方法,其中,所述沟道(4,5)的是这样形成的:在应变硅层(3)上外延生长第一硅锗合金层以便得到压缩的硅锗合金层(4),以及在所述第一层上外延生长第二硅层(5)以便得到拉伸的应变硅层。
5.根据权利要求1至4任一项所述的方法,其中,所述源极(10)和漏极(11)区由含有硅的材料外延生长而成。
6.一种集成电路,包含一种绝缘栅极场效应晶体管(T),该晶体管包含窄的异质结构半导体沟道(4,5),该沟道厚度在1到10纳米之间,该沟道包含硅锗合金层(4)和应变硅层(5),它们位于基片(SB)活性区(AZ)上的栅极(6)和介电块(91)之间。
7.根据权利要求6所述的集成电路,其中,应变硅层的厚度在1到5纳米之间。
CNA2005101030147A 2004-09-15 2005-09-15 异质结构沟道绝缘栅极场效应晶体管的制造方法及晶体管 Pending CN1794433A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0409749 2004-09-15
FR0409749 2004-09-15

Publications (1)

Publication Number Publication Date
CN1794433A true CN1794433A (zh) 2006-06-28

Family

ID=34949409

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005101030147A Pending CN1794433A (zh) 2004-09-15 2005-09-15 异质结构沟道绝缘栅极场效应晶体管的制造方法及晶体管

Country Status (3)

Country Link
US (1) US7436005B2 (zh)
EP (1) EP1638149B1 (zh)
CN (1) CN1794433A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188201B (zh) * 2006-11-24 2010-11-10 日产自动车株式会社 制造半导体器件的方法
CN102437127A (zh) * 2011-11-30 2012-05-02 上海华力微电子有限公司 基于硅-锗硅异质结的单晶体管dram单元及其制备方法
CN102437126A (zh) * 2011-11-30 2012-05-02 上海华力微电子有限公司 基于源体异质结的单晶体管dram单元及其制备方法
CN103515441A (zh) * 2012-06-25 2014-01-15 三星电子株式会社 具有嵌入式应变感应图案的半导体器件

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271210B2 (ja) 2006-06-30 2009-06-03 株式会社東芝 電界効果トランジスタ、集積回路素子、及びそれらの製造方法
US8154051B2 (en) * 2006-08-29 2012-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. MOS transistor with in-channel and laterally positioned stressors
DE102006042617B4 (de) * 2006-09-05 2010-04-08 Q-Cells Se Verfahren zur Erzeugung von lokalen Kontakten
US8716752B2 (en) * 2009-12-14 2014-05-06 Stmicroelectronics, Inc. Structure and method for making a strained silicon transistor
FR2976401A1 (fr) * 2011-06-07 2012-12-14 St Microelectronics Crolles 2 Composant electronique comportant un ensemble de transistors mosfet et procede de fabrication
US9093530B2 (en) * 2012-12-28 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of FinFET
EP2930752A3 (en) * 2014-04-08 2016-01-20 IMEC vzw Method for manufacturing a transistor device
RU2621370C2 (ru) * 2015-09-18 2017-06-02 федеральное государственное бюджетное образовательное учреждение высшего образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова Способ изготовления полупроводникового прибора

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332108B1 (ko) * 1999-06-29 2002-04-10 박종섭 반도체 소자의 트랜지스터 및 그 제조 방법
WO2001093338A1 (en) * 2000-05-26 2001-12-06 Amberwave Systems Corporation Buried channel strained silicon fet using an ion implanted doped layer
FR2838237B1 (fr) * 2002-04-03 2005-02-25 St Microelectronics Sa Procede de fabrication d'un transistor a effet de champ a grille isolee a canal contraint et circuit integre comprenant un tel transistor
WO2003105204A2 (en) * 2002-06-07 2003-12-18 Amberwave Systems Corporation Semiconductor devices having strained dual channel layers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188201B (zh) * 2006-11-24 2010-11-10 日产自动车株式会社 制造半导体器件的方法
CN102437127A (zh) * 2011-11-30 2012-05-02 上海华力微电子有限公司 基于硅-锗硅异质结的单晶体管dram单元及其制备方法
CN102437126A (zh) * 2011-11-30 2012-05-02 上海华力微电子有限公司 基于源体异质结的单晶体管dram单元及其制备方法
CN103515441A (zh) * 2012-06-25 2014-01-15 三星电子株式会社 具有嵌入式应变感应图案的半导体器件
CN103515441B (zh) * 2012-06-25 2018-04-27 三星电子株式会社 具有嵌入式应变感应图案的半导体器件

Also Published As

Publication number Publication date
EP1638149A3 (fr) 2008-11-05
EP1638149A2 (fr) 2006-03-22
US20060081876A1 (en) 2006-04-20
US7436005B2 (en) 2008-10-14
EP1638149B1 (fr) 2011-11-23

Similar Documents

Publication Publication Date Title
CN1794433A (zh) 异质结构沟道绝缘栅极场效应晶体管的制造方法及晶体管
US10164022B2 (en) FinFETs with strained well regions
US8796735B2 (en) Fabrication of a vertical heterojunction tunnel-FET
CN108281422B (zh) 应变沟道的场效应晶体管
KR100856437B1 (ko) 반도체 디바이스 제조 방법 및 반도체 장치
CN2726123Y (zh) 半导体组件
CN101764062B (zh) 具有高掺杂源/漏极和应变增强器的n型场效应晶体管
US9202920B1 (en) Methods for forming vertical and sharp junctions in finFET structures
US8802531B2 (en) Split-channel transistor and methods for forming the same
US8476169B2 (en) Method of making strained silicon channel semiconductor structure
US9159629B2 (en) High performance CMOS device design
US20150132920A1 (en) Fin Structure for a FinFET Device
US9748142B2 (en) FinFETs with strained well regions
CN101317252A (zh) 采用ⅲ族-n源极/漏极区的拉伸应变nmos晶体管
CN1902758A (zh) 沟道区中具有硅和碳层的晶体管
CN106098771A (zh) 具有半导体鳍结构的隧穿场效应晶体管
US8723223B2 (en) Hybrid Fin field-effect transistors
CN101061587A (zh) 应变全耗尽绝缘层上覆硅半导体装置及其制造方法
CN1783496A (zh) 将应力施加到pfet和nfet晶体管沟道以改善性能的结构和方法
JP2004531901A5 (zh)
US9773904B2 (en) Vertical field effect transistor with biaxial stressor layer
US8633522B2 (en) Semiconductor structure and method for fabricating the same
CN102082096A (zh) 一种Ge或SiGe纳米线场效应晶体管的制备方法
CN1905211A (zh) 应变沟道晶体管及其制造方法
CN1956214A (zh) 场效应晶体管及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication