CN1121728C - 非水电解质二次电池 - Google Patents

非水电解质二次电池 Download PDF

Info

Publication number
CN1121728C
CN1121728C CN98109226A CN98109226A CN1121728C CN 1121728 C CN1121728 C CN 1121728C CN 98109226 A CN98109226 A CN 98109226A CN 98109226 A CN98109226 A CN 98109226A CN 1121728 C CN1121728 C CN 1121728C
Authority
CN
China
Prior art keywords
lithium
active material
battery
mah
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN98109226A
Other languages
English (en)
Other versions
CN1200581A (zh
Inventor
佐藤俊忠
美藤靖彦
村田年秀
伊藤修二
松田宏梦
丰口吉德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1200581A publication Critical patent/CN1200581A/zh
Application granted granted Critical
Publication of CN1121728C publication Critical patent/CN1121728C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种可形成具优异循环使用寿命的高能量密度非水电解质二次电池的负极活性物质。该负极活性物质由下式表示的化合物组成。LiκZεXγ(其中,Z为选自金属及半金属组成的一组元素中的至少二种元素,其至少一种选自由Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、Cd及Pd组成的D组。X为选自O、S、Se及Te组成的一组元素中的至少一种元素。0<κ+ε+γ≤25,0≤κ<10,0<ε<10,0<γ≤8。)

Description

非水电解质二次电池
本发明涉及一种非水电解质二次电池,特别是,本发明涉及对所述电池负极进行的改善。
为得到一种具有高电压、高能量密度的电池,人们对以锂或锂化合物为负极的非水电解质电池作了广泛的研究。
迄今为止,作为非水电解质电池正极的活性物质,已知有LiMn2O4、LiCoO2、LiNiO2、V2O5、Cr2O5、MnO2、TiS2、MoS2等过渡金属的氧化物及硫属化合物。这些化合物具有层状或隧道状构造,并具有可使锂离子出人的晶体结构。另一方面,作为负极活性物质,许多人已研究了金属锂。然而,由于充电时在锂表面析出树枝状锂,所以,其问题是,降低了充放电的效率,或是析出的锂与正极接触,发生内部短路。为解决所述问题,人们研究使用可抑止锂的树枝状生长、并可吸留、放出锂的锂-铝等的锂合金,将该锂合金作为负极。然而,在使用锂合金时,如果反复进行深度的充放电,则导致电极的细微化,所以,其循环使用特性有问题。
因此,有人提出:在铝等金属中,再添加其它元素,作成合金,将该合金作成电极,由此,可以抑止电极的细微化(特开昭62-119856号公报,特开平-109562号公报等)。然而,上述方法仍未能使所述特性得到充分的改善。现在所实用的锂离子电池是采用碳材料作为负极的锂电池,碳材料的容量虽比这些负极活性物质小,但可以可逆地吸留、放出锂、因而,具有优异的循环使用特性及安全性。其中,有许多人建议:为了进一步提高容量,而在负极上使用氧化物。例如,有人提出,晶体性质的SnO、SnO2比起以往的WO2来为具有更高容量的负极材料(特开平7-122274号公报,特开平7-235297号公报等),另外,还有人提出,将SnSiO3或SnSi1-xPxO3等的非晶体氧化物用作负极,可由此改善循环使用特性(特开平7-288123号公报)。然而,上述化合物的使用仍未能充分改善特性。
本发明的目的在于,提供一种具有优异的充放电循环特性的非水电解质二次电池用负极。
本发明的其它目的在于,提供一种负极,上述负极可由充电吸留锂,但不发生枝晶现象,其电容量大,且具有优异的充放电循环寿命的负极。
本发明提供了一种非水电解质二次电池,所述电池具有可充放电的正极、非水电解质及可充放电的负极,所述负极由以式(1)所表示的化合物组成。
                      LiκZεXγ           (1)(其中,Z为选自金属及半金属的一组元素中的至少二种元素,其至少一种元素选自由Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、Cd及Pd组成的D组。X选自O、S、Se及Te的一组元素中的至少一种元素。0<κ+ε+γ≤25,0≤κ<10,0<ε<10,0<γ≤8。)
在本发明的其它较好的方式中,Z由选自上述D组的至少一种元素D和选自由Si、Ge、Sn、Pb、Bi、P、B、Ga、In、Al、As、及Sb组成的A组的至少一种的元素A组成,以式(2)表示之。
                    (A)α(D)β             (2)(其中,0<α、0<β、α+β=ε)
在本发明的其它较好的方式中,Z由选自上述D组的二种元素D1和D2组成,以式(3)表示之。
                     (D1)δ(D2)ζ          (3)(其中,0<δ、0<ζ、δ+ζ=ε)
在本发明的其它较好的方式中,Z由选自上述D组的三种元素D1、D2及D3组成,以式(4)表示之。
                     (D1)δ(D2)ζ(D3)η    (4)(其中,0<δ、0<ζ、0<η、δ+ζ+η=ε)
在本发明的其它较好的方式中,Z由选自上述A组的一种元素A和选自前述D组的二种元素D1和D2组成,以式(5)表示之。
                     (A)α(D1)β-i(D2)i    (5)(其中,0<i<β)
再有,式(2)表示的Z由选自上述A组的二种元素A1、A2和选自前述D组的一种元素D组成,以式(6)表示之。
                     (A1)α-j(A2)j(D)β    (6)(其中,0<j<α)
在上述中,选自前述D组的至少一种元素较好的是碱土类金属元素。
又,选自前述A组的金属较好的是锡。
图1为用于评价本发明的活性物质电极特性的试验电池的纵向剖视示意图。
图2为本发明的实施例使用的圆筒型电池的纵向剖视图。
图3为试验电池的第10次循环的阴极极化后的负极活性物质的X射线衍射图。
本发明的负极活性物质通常在组装入电池之后,可由充电插入锂。若插入锂后的复合化合物的组成以LiθZεXγ表示,则其表示锂的含量θ最好是在1≤θ<10的范围。如10≤θ,则循环性能恶化,不实用。如θ<1,则其容量减小,也不利。若插入锂,再进而由于充放电,反复进行锂的插入、脱离,则无法完全保持初始的化合物状态。因此,可以认为,Li、Z、及X分别以θ、ε、及γ的原子比存在的组合物较为合适。
根据本发明,可以得到高能量密度、无枝晶状导致的短路、具有优异的循环寿命的可靠性高的非水电解质电池。
以下,说明本发明的实施例。但是,本发明并不限于这些实施例。
实施例1
在本实施例中,就上述式中X为氧的化合物、即,氧化物进行研究。
在本实施例中,为研究作为各种氧化物的负极活性物质的电极特性,制作如图1所示的试验电池。
将作为导电剂的石墨粉末3g及作为粘结剂的聚乙烯粉末1g混合于活性物质粉末6g中,作成混合剂。将该混合剂0.1g加压成型为直径17.5mm的圆盘,制得电极1。将上述电极1置于盒体2的中央,其上设置由多孔聚丙烯薄膜组成的隔膜3。制得溶解了1摩尔/升的过氯酸锂(LiClO4)的碳酸乙烯酯和二甲氧基乙烷的体积比1∶1的混合溶液。将该混合溶液作为非水电解液,灌注于隔膜上。接着,在电池的内侧贴上直径17.5mm的金属锂圆盘4、而在外圆周部分装有聚丙烯制密封垫圈5的封口板6与上述盒体2组装起来,封口,作成试验电池。
对该试验电池,以2mA的恒定电流,作阴极极化(在将活性物质电极作为负极的场合,则相当于充电),直至电极相对于锂反电极为0V。接着,作阳极极化(相当于放电),直至电极为1.5V。反复进行上述的阴极极化及阳极极化,评价其电极特性。
作为比较例,使用了表1所示的以往的金属氧化物及金属硫化物。
在本实施例中,使用了表2~7所示的氧化物。每相当于1次循环的1g活性物质的放电容量分别示于各个表内。
可以看到,使用了本实施例的氧化物的电池皆进行了充放电。在上述试验电池的第10次循环的阴极极化完毕之后,分解该试验电池,未见有任何金属锂的析出。
从上述结果可以明白,使用本发明的活性物质的电极,因阴极极化而使锂吸留于电极中,因阳极极化而使吸留的锂放出于电极外,所以没有金属锂的析出。
下面,为评价将本发明的活性物质使用于负极的电池的循环特性,制作如图2所示的圆筒型电池。电池的制作顺序如下:
将正极活性物质的LiMn1.8Co0.2O4与Li2CO3、和Mn3O4、CoCO3以一定的摩尔比混合,900℃下加热合成。将分级为100目以下的上述合成物作为正极活性物质。对该正极活性物质100g添加作为导电剂的碳粉末10g、作为粘结剂的聚四氟乙烯水性分散液的固体成份8g、及纯水,作成膏浆状,涂布于钛制心材上,干燥、轧压,得到正极板。
将各种活性物质、作为导电剂的石墨粉末、及作为粘结剂的聚四氟乙烯按重量比60∶30∶10的比例混合。使用石油系溶剂,作成膏浆状,涂布于铜制心材上之后,100℃下干燥,制得负极板。隔膜使用多孔性的聚丙烯。
将具有通过点焊连接的、与心材为同一材质的正极引线14的正极板11、具有同样通过点焊连接的、与心材为同一材质的负极引线15的负极板12、及夹于二极板之间的、带状的多孔聚丙烯制的隔膜13卷成螺旋状,组成电极组。将该电极组分别在上下二端配以绝缘板16、17,插入电槽18中。在电槽18的上部形成凹槽,制得溶解了1摩尔/升的过氯酸锂(LiClO4)的碳酸乙烯酯和二甲氧基乙烷的等体积混合溶液,将该混合溶液作为非水电解液,灌注。以装有正极端子20的封口板19密封,作成电池。
这些电池在温度30℃下,以充放电电流1mA/cm2、充放电电压4.3~2.6V,作充放电的循环试验。
以比较例及实施例的氧化物作为负极的电池第2次循环的放电容量为基准,测得第100次循环的放电容量保持率,分别示于表1~7。
                            表1
  金属氧化物金属硫化物     放电容量(mAh/g)   容量保持率(%)
  WO2Fe2O3SnOSnSiO3PbOSnSPbSSnSi0.8P0.2O3.1     190185522453453498436406     91052026325
表2氧化物            放电容量          容量保持率
              (mAh/g)              (%)Al2MgO4         360                 90MgSnO3           550                 85MgSiO3           400                 80MgPbO3           600                 90MgCdO2           350                 85MgBi2O6         300                 80MgIn2O4         460                 85MgZnO2           400                 90MgGa2O4         390                 85Mg2GeO4         450                 90Al2CaO4         370                 90CaSnO3           570                 90CaSiO3           400                 85CaPbO3           600                 90CaCdO2           390                 85CaBi2O6         320                 80CaIn2O4         520                 80CaZnO2           400                 90CaGa2O4         390                 85Ca2GeO4         510                 85Al2SrO4         380                 85SrSnO3           630                 95SrSiO3           450                 90SrPbO3           600                 85SrCdO2           400                 85SrBi2O6         320                 90SrIn2O4         500                 90SrZnO2           410                 85SrGa2O4         410                 90Sr2GeO4         520                 80表3氧化物           放电容量            容量保持率
             (mAh/g)                (%)Al2BaO4        390                   85BaSnO3          400                   95BaSiO3          400                   85BaPbO3          580                   90BaCdO2          390                   80BaBi2O6        410                   80BaIn2O4        530                   85BaZnO2          400                   85BaGa2O4        400                   90Ba2GeO4        500                   90Ba0.5Sr0.5SnO3 600                   95Ba0.7Sr0.3SnO3 620                   95Ba0.9Sr0.1SnO3 630                   95Ba0.5Ca0.5SnO3 600                   90Ba0.5Mg0.5SnO3 580                   90Ba0.5Sr0.5SiO3 500                   90Ba0.5Sr0.5PbO3 620                   90Al2Na2O4      420                   90Na2SnO3        400                   90Na2SiO3        400                   85Na2PbO3        600                   80Na2CdO2        400                   85Na2Bi2O6      380                   80Na2In2O4      550                   85Na2ZnO2        400                   85Na2Ga2O4      400                   90Na4GeO4        500                   85Al2K2O4       430                   90K2SnO3         450                   90K2SiO3         420                   90表4氧化物          放电容量         容量保持率
            (mAh/g)             (%)K2PbO3        580                85K2CdO2        400                85K2Bi2O6      390                80K2In2O4      570                85K2ZnO2        400                85K2Ga2O4      400                90Rb4GeO4       510                85Rb2SnO3       450                90Rb2SiO3       420                90Rb2PbO3       580                85Rb2CdO2       400                85Rb2Bi2O6     390                80Rb2In2O4     570                85Rb2ZnO2       400                85Rb2Ga2O4     400                90Rb4GeO4       510                85SrAl2SnO5     550                90SrAl2SiO5     400                85SrAl2PbO5     600                80SrAl2CdO4     350                90SrAlBiO4       300                85SrAlInO3       460                80SrAl2ZnO4     400                85SrAlGaO3       390                90SrAl2GeO4     450                85SrSnAl2O5     360                90SrSnSiO4       400                85SrSnPbO4       600                80SrSnCdO3       350                90SrSnBi2O7     300                85表5氧化物            放电容量       容量保持率
               (mAh/g)           (%)SrSnIn2O5       460               80SrSnZnO3         400               85SrSnGa2O5       390               90SrSn2GeO4       450               85BaSiAl2O5       360               90BaSiSnO4         550               85BaSiPbO4         600               80BaSiCdO3         350               90BaSiBi2O7       300               85BaSiIn2O5       460               80BaSiZnO3         400               85BaSiGa2O5       390               90BaSi2GeO4       450               85BaPbAl2O5       360               90BaPbSnO4         550               85BaPbSiO4         400               80BaPbCdO3         350               90BaPbBi2O7       300               85BaPbIn2O5       460               80BaPbZnO3         400               85BaPbGa2O5       390               90BaPb2GeO4       450               85CdAl2O4         360               90CdSnO3           550               85CdSiO3           400               80CdPbO3           600               90CdBiO4           300               85CdIn2O4         460               80CdZnO2           400               85CdGa2O4         390               90表6氧化物        放电容量        容量保持率
          (mAh/g)            (%)Cd2GeO4     450               85BaBiAlO4     360               90BaBi2SnO7   550               85BaBi2SiO7   400               80BaBi2PbO7   600               90BaBi2CdO6   350               85BaBiInO4     460               80BaBi2ZnO6   400               85BaBiGaO4     390               90BaBi2GeO4   450               85SrInAlO3     360               90SrIn2SnO5   550               85SrIn2SiO5   400               80SrIn2PbO5   600               90SrIn2CdO4   350               85SrInBiO4     300               80SrIn2ZnO4   400               85SrInGaO3     390               90SrIn2GeO4   450               85ZnAl2O4     360               90ZnSnO4       550               85ZnSiO4       400               80ZnPbO3       600               90ZnCdO2       350               85ZnBi2O6     300               80ZnIn2O4     460               85ZnGa2O4     390               90Zn2GeO4     450               85MgGaAlO3     360               90MgGa2SnO5   550               85表7氧化物          放电容量        容量保持率
            (mAh/g)             (%)MgGa2SiO7     400                80MgGa2PbO5     600                90MgGa2CdO4     350                85MgGaBiO4       300                80MgGaInO3       460                85MgGa2ZnO4     400                90MgGa2GeO4     450                85MgGeAl2O5     360                90MgGeSnO4       550                85MgGeSiO4       400                80MgGePbO4       600                90MgGeCdO3       350                85MgGeBi2O7     300                80MgGeIn2O5     460                85MgGeZnO3       400                90MgGeGa2O5     390                85将本发明的活性物质用作负极的电池,比起以往的比较例来,其循环特性得到很大提高。
其次,就上述活性物质良好的循环特性的主要原因作一说明。图3为在负极活性物质中使用了MgSnO3的试验电池在第10次循环的阴极极化(对负极活性物质为充电状态)完毕时的负极活性物质的X射线衍射图。图3中也显示了使用SnO2的比较例。注意观察2θ=38°附近处的峰值,则在比较例中,可以明显观察到表示Li-Sn合金存在的尖锐的峰值。另一方面,在实施例中,可以观察到非常平缓、峰值强度也低的峰值。
上述结果显示,比较例的SnO2基本上是以Sn和Li的合金化反应进行充放电反应的。可以推测,实施例中的MgSnO3也发生了同样的反应。
然而,X射线衍射图的峰值强度比起比较例来很小,且呈平缓状。因此,可以明白,在MgSnO3中充电时生成的Li-Sn合金的结晶性比起比较例的来,非常低。关于更详细的,虽然还有很多部分未明了,但可认为,该结晶性能的低下却是由于上述D组元素的存在(此时为Mg)防止了所述A组元素(此处为Sn)的凝聚使得反应表面积的减少及惰性化的结果,由此提高了循环特性。
这里,是就有关MgSnO3进行了叙述,但对其它活性物质也可得到同样的结果。
实施例2
在本实施例中,为研究示于表8~表13所示的各种硫化物的负极活性物质的电极特性,制作与实施例1相同的试验电池,在同样的条件下进行评价。其结果分别示于各自的表中。
可知,实施例的电池皆可进行充放电。该试验电池的第10次循环的阴极极化完毕后,分解该试验电池,未见有任何金属锂的析出。
从上述结果可以明白,使用本发明的活性物质的电极,因阴极极化而使锂吸留于电极中,因阳极极化而使吸留的锂放出于电极外,所以没有金属锂的析出。
下面,为评价将各种硫化物使用于负极活性物质的电池的循环特性,制作如同实施例1的圆筒型电池。在同样的条件下进行评价。其结果显示于各自的表中。表8硫化物          放电容量        容量保持率
            (mAh/g)            (%)Al2MgS4         360               90MgSnS3           550               85MgSiS3           400               80MgPbS3           600               90MgCdS2           350               85MgBi2S6         300               80MgIn2S4         460               85MgZnS2           400               90MgGa2S4         390               85Mg2GeS4         450               90Al2CaS4         370               90CaSnS3           580               90CaSiS3           400               85CaPbS3           620               90CaCdS2           380               85CaBi2S6         320               80CaIn2S4         500               80CaZnS2           400               90CaGa2S4         370               85Ca2GeS4         500               85Al2SrS4         380               85SrSnS3           600               95SrSiS3           450               90SrPbS3           620               85SrCdS2           400               85SrBi2S6         330               90SrIn2S4         530               90SrZnS2           400               85SrGa2S4         400               90Sr2GeS4         510               80表9硫化物          放电容量        容量保持率
            (mAh/g)            (%)Al2BaS4         370               85BaSnS3           410               95BaSiS3           440               85BaPbS3           450               90BaCdS2           390               80BaBi2S6         400               80BaIn2S4         490               85BaZnS2           400               85BaGa2S4         400               90Ba2GeS4         500               90Ba0.5Sr0.6SnS3  620               95Ba0.7Sr0.3SnS3  630               95Ba0.9Sr0.1SnS3  630               95Ba0.5Ca0.5SnS3  580               90Ba0.5Mg0.5SnS3  570               90Ba0.5Sr0.5SiS3  500               90Ba0.5Sr0.5PbS3  620               90Al2Na2S4       390               90Na2SnS3         470               90Na2SiS3         420               85Na2PbS3         580               80Na2CdS2         400               85Na2Bi2S6       380               80Na2In2S4       520               85Na2ZnS2         370               85Na2Ga2S4       400               90Na4GeS4         500               85Al2K2S4        400               90K2SnS3          450               90K2SiS3          420               90表10硫化物          放电容量        容量保持率
            (mAh/g)            (%)K2PbS3         580               85K2CdS2         400               85K2Bi2S6       390               80K2In2S4       570               85K2ZnS2         400               85K2Ga2S4       420               90K4GeS4         510               85Na2Al2SnS5    550               90Na2Al2SiS5    400               85Na2Al2PbS5    600               80Na2Al2CdS4    350               90Na2AlBiS4      300               85Na2AlInS3      460               80Na2Al2ZnS4    400               85Na2AlGaS3      390               90Na2Al2GeS4    450               85SrSnAl3S5      360               90SrSnSiS4        400               85SrSnPbS4        600               80SrSnCdS3        350               90SrSnBi2S7      300               85SrSnIn2S5      460               80SrSnZnS3        400               85SrSnGa2S5      390               90SrSn2GeS4      450               85BaSiAl2S5      360               90BaSiSnS4        550               85BaSiPbS4        600               80BaSiCdS3        350               90BaSiBi2S7      300               85表11硫化物          放电容量        容量保持率
            (mAh/g)            (%)BaSiIn2S5       460               80BaSiZnS3         400               85BaSiGa2S5       390               90BaSi2GeS4       450               85CaPbAl2S5       360               90CaPbSnS4         550               85CaPbSiS4         400               80CaPbCdS3         350               90CaPbBi2S7       300               85CaPbIn2S5       460               80CaPbZnS3         400               85CaPbGa2S5       390               90CaPb2GeS4       450               85CaCdAl2S4       360               90CaCdSnS3         550               85CaCdSiS3         400               80CaCdPbS3         600               90CaCdBiS4         300               85CaCdIn2S4       460               80CaCdZnS2         400               85CaCdGa2S5       390               90CaCd2GeS5       450               85MgBiAlS5         360               90MgBi2SnS8       550               85MgBi2SiS8       400               80MgBi2PbS8       600               90MgBi2CdS7       350               85MgBiInS5         460               80MgBi2ZnS7       400               85MgBiGaS5         390               90表12硫化物           放电容量        容量保持率
             (mAh/g)            (%)MgBi2GeS5      450               85K2InAlS4       360               90K2In2SnS6     550               85K2In2SiS6     400               80K2In2PbS6     600               90K2In2CdS5     350               85K2InBiS5       300               80K2In2ZnS5     400               85K2InGaS4       390               90K2In2GeS5     450               85ZnAl2S4        360               90ZnSnS4          550               85ZnSiSn4         400               80ZnPbS3          600               90ZnCdS2          350               85ZnBi2S6        300               80ZnIn2S4        460               85ZnGa2S4        390               90Zn2GeS4        450               85SrGaAlS4        360               90SrGa2SnS6      550               85SrGa2SiS8      400               80SrGa2PbS6      600               90SrGa2CdS5      350               85SrGaBiS5        300               80SrGaInS4        460               85SrGa2ZnS5      400               90SrGa2GeS5      450               85BaGeAl2S6      360               90BaGeSnS5        550               85表13硫化物          放电容量        容量保持率
            (mAh/g)            (%)BaGeSiS5         400               80BaGePbS5         600               90BaGeCdS4         350               85BaGeBi2S8       300               80BaGeIn2S6       460               85BaGeZnS4         400               90BaGeGa2S6       390               85
将本发明的各种硫化物用作负极活性物质的电池,比起以往的比较例来,其循环特性得到提高。
实施例3
在本实施例中,为研究示于表14~表19所示的各种硒化物的负极活性物质的电极特性,制作与实施例1相同的试验电池,在同样的条件下进行评价。
可以明白,本实施例的电池皆可进行充放电。该试验电池的第10次循环的阴极极化完毕后,分解该试验电池,未见有任何金属锂的析出。
从上述结果可以明白,使用本发明的活性物质的电极,因阴极极化而使锂吸留于电极中,因阳极极化而使吸留的锂放出于电极外,所以没有金属锂的析出。
下面,为评价将各种硒化物用于负极活性物质时的电池的循环特性,制作如同实施例1的圆筒型电池。在同样的条件下进行评价。其结果显示于各自的表中。表14硒化物          放电容量        容量保持率
            (mAh/g)            (%)Al3MgSe4        360               90MgSnSe3          550               85MgSiSe3          400               80MgPbSe3          600               90MgCdSe2          350               85MgBi2Se6        300               80MgIn2Se4        460               85MgZnSe2          400               90MgGa2Se4        390               85Mg2GeSe4        450               90Al2CaSe4        370               90CaSnSe3          570               90CaSiSe3          400               85CaPbSe3          600               90CaCdSe2          390               85CaBi2Se6        320               80CaIn2Se4        520               80CaZnSe2          400               90CaGa2Se4        390               85Ca2GeSe4        510               85Al2SrSe4        380               85SrSnSe3          630               95SrSiSe3          450               90SrPbSe3          600               85SrCdSe2          400               85SrBi2Se6        320               90SrIn2Se4        500               90SrZnSe2          410               85SrGa2Se4        410               90Sr2GeSe4        520               80表15硒化物          放电容量         容量保持率
            (mAh/g)             (%)Al2BaSe4        390                85BaSnSe3          400                95BaSiSe3          400                85BaPbSe3          580                90BaCdSe2          390                80BaBi2Se6        410                80BaIn2Se4        530                85BaZnSe2          400                85BaGa2Se4        400                90Ba2GeSe4        500                90Ba0.5Sr0.5SnSe3 600                95Ba0.7Sr0.3SnSe3 620                95Ba0.9Sr0.1SnSe3 630                95Ba0.5Ca0.5SnSe3 600                90Ba0.5Mg0.5SnSe3 580                90Ba0.5Sr0.5SiSe3 500                90Ba0.5Sr0.5PbSe3 620                90Al2Na2Se4      420                90Na2SnSe3        400                90Na2SiSe3        400                85Na2PbSe3        600                80Na2CdSe2        400                85Na2Bi2Se6      380                80Na2In2Se4      550                85Na2ZnSe2        400                85Na2Ga2Se4      400                90Na4GeSe4        500                85Al2K2Se4       430                90K2SnSe3         450                90K2SiSe3         420                90表16硒化物          放电容量         容量保持率
            (mAh/g)             (%)K2PbSe3       580                85K2CdSe2       400                85K2Bi2Se6     390                80K2In2Se4     570                85K2ZnSe2       400                85K2Ga2Se4     400                90K4GeSe4       510                85SrAl2SiSe6    400                85SrAl2PbSe6    600                80SrAl2CdSe5    350                90SrAlBiSe5      300                85SrAlInSe4      460                80SrAl2ZnSe5    400                85SrAlGaSe4      390                90SrAl2GeSe5    450                85BaSnAl2Se6    360                90BaSnSiSe5      400                85BaSnPbSe5      600                80BaSnCdSe4      350                90BaSnBi2Se8    300                85BaSnIn2Se6    460                80BaSnZnSe4      400                85BaSnGa2Se6    390                90BaSn2GeSe5    450                85K2SiAl2Se6   360                90K2SiSnSe5     550                85K2SiPbSe5     600                80K2SiCdSe4     350                90K2SiBi2Se8   300                85K2SiIn2Se6   460                80表17硒化物           放电容量        容量保持率
             (mAh/g)             (%)K2SiZnSe4      400                85K2SiGa2Se6    390                90K2Si2GeSe5    450                85MgPbAl2Se6     360                90MgPbSnSe5       550                85MgPbSiSe5       400                80MgPbCdSe4       350                90MgPbBi2Se8     300                85MgPbIn2Se6     460                80MgPbZnSe4       400                85MgPbGa2Se6     390                90MgPb2GeSe5     450                85CdAl2Se4       360                90CdSnSe3         550                85CdSiSe3         400                80CdPbSe3         600                90CdBiSe4         300                85CdIn2Se4       460                80CdZnSe2         400                85CdGa2Se4       390                90Cd2GeSe4       450                85CaBiAlSe5       360                90CaBi2SnSe8     550                85CaBi2SiSe8     400                80CaBi2PbSe8     600                90CaBi2CdSe7     350                85CaBiInSe5       460                80CaBi2ZnSe7     400                85CaBiGaSe5       390                90CaBi2GeSe5     450                85表18硒化物           放电容量         容量保持率
             (mAh/g)             (%)SrInAlSe4         360                90SrIn2SnSe6       550                85SrIn2SiSe6       400                80SrIn2PbSe6       600                90SrIn2CdSe5       350                85SrInBiSe5         300                80SrIn2ZnSe5       400                85SrInGaSe4         390                90SrIn2GeSe5       450                85ZnAl2Se4         360                90ZnSnSe4           550                85ZnSiSe4           400                80ZnPbSe3           600                90ZnCdSe2           350                85ZnBi2Se6         300                80ZnIn2Se4         460                85ZnGa2Se4         390                90Zn2GeSe4         450                85MgGaAlSe4         360                90MgGa2SnSe6       550                85MgGa2SiSe8       400                80MgGa2PbSe6       600                90MgGa2CdSe5       350                85MgGaBiSe5         300                80MgGaInSe4         460                85MgGa2ZnSe5       400                90MgGa2GeSe5       450                85SrGeAl2Se6       360                90SrGeSnSe5         550                85表19硒化物          放电容量        容量保持率
            (mAh/g)            (%)SrGeSiSe5        400               80SrGePbSe5        600               90SrGeCdSe4        350               85SrGeBi2Se8      300               80SrGeIn2Se6      460               85SrGeZnSe4        400               90SrGeGa2Se6      390               85
将本发明的各种硒化物用作负极活性物质的电池,比起以往的比较例来,其循环特性得到提高。
实施例4
在本实施例中,为研究表20~表25所示的各种碲化物的负极活性物质的电极特性,制作与实施例1相同的试验电池,在同样的条件下进行评价。
可以明白,本实施例的电池皆可进行充放电。该试验电池的第10次循环的阴极极化完毕后,分解该试验电池,未见有任何金属锂的析出。
从上述结果可以明白,使用本发明的活性物质的电极,因阴极极化而使锂吸留于电极中,因阳极极化而使吸留的锂放出于电极外,所以没有金属锂的析出。
下面,为评价将本发明的碲化物用作负极活性物质的电池的循环特性,制作如同实施例1的圆筒型电池。在同样的条件下进行评价。其结果显示于各自的表中。表20碲化物          放电容量        容量保持率
             (mAh/g)           (%)Al2MgTe4       360              90MgSnTe3         550              85MgSiTe3         400              80MgPbTe3         600              90MgCdTe2         350              85MgBi2Te6       300              80MgIn2Te4       460              85MgZnTe2         400              90MgGa2Te4       390              85Mg2GeTe4       450              90Al2CaTe4       370              90CaSnTe3         570              90CaSiTe3         400              85CaPbTe3         600              90CaCdTe2         390              85CaBi2Te6       320              80CaIn2Te4       520              80CaZnTe2         400              90CaGa2Te4       390              85Ca2GeTe4       510              85Al2SrTe4       380              85SrSnTe3         630              95SrSiTe3         450              90SrPbTe3         600              85SrCdTe2         400              85SrBi2Te6       320              90SrIn2Te4       500              90SrZnTe2         410              85SrGa2Te4       410              90Sr2GeTe4       520              80表21碲化物           放电容量       容量保持率
             (mAh/g)           (%)Al2BaTe4        390              85BaSnTe3          400              95BaSiTe3          400              85BaPbTe3          580              90BaCdTe2          390              80BaBi2Te6        410              80BaIn2Te4        530              85BaZnTe2          400              85BaGa2Te4        400              90Ba2GeTe4        500              90Ba0.5Sr0.5SnTe3 600              95Ba0.7Sr0.3SnTe3 620              95Ba0.9Sr0.1SnTe3 630              95Ba0.5Ca0.5SnTe3 600              90Ba0.5Mg0.5SnTe3 580              90Ba0.5Sr0.5SiTe3 500              90Ba0.5Sr0.5PbTe3 620              90Al2Na2Te4      420              90Na2SnTe3        400              90Na2SiTe3        400              85Na2PbTe3        600              80Na2CdTe2        400              85Na2Bi2Te6      380              80Na2In2Te4      550              85Na2ZnTe2        400              85Na2Ga2Te4      400              90Na4GeTe4        500              85Al2K2Te4       430              90K2SnTe3         450              90K2SiTe3         420              90表22碲化物          放电容量         容量保持率
            (mAh/g)             (%)K2PbTe3        580                85K2CdTe2        400                85K2B2Te6       390                80K2In2Te4      570                85K2ZnTe2        400                85K2Ga2Te4      400                90K4GeSe4        510                85SrAl2SnTe6     550                90SrAl2SiTe6     400                85SrAl2PbTe6     600                80SrAl2CdTe5     350                90SrAlBiTe5        300                85SrAlInTe4       460                80SrAl2ZnTe5     400                85SrAlGaTe4       390                90SrA2GeTe5      450                85BaSnAl2Te6     360                90BaSnSiTe5       400                85BaSnPbTe5       600                80BaSnCdTe4       350                90BaSnBi2Te8     300                85BaSnIn2Te5     460                80BaSnZnTe4       400                85BaSnGa2Te6     390                90BaSn2GeTe5     450                85K2SiAl2Te6    360                90K2SiSnTe5      550                85K2SiPbTe5      600                80K2SiCdTe4      350                90K2SiBi2Te8    300                85表23碲化物          放电容量        容量保持率
            (mAh/g)            (%)K2SiIn2Te6    460               80K2SiZnTe4      400               85K2SiGa2Te6    390               90K2Si2GeTe5    450               85MgPbAl2Te6     360               90MgPbSnTe5       550               85MgPbSiTe5       400               80MgPbCdTe4       350               90MgPbBi2Te8     300               85MgPbIn2Te6     460               80MgPbZnTe4       400               85MgPbGa2Te6     390               90MgPb2GeTe5     450               85CdAl2Te4       360               90CdSnTe3         550               85CdSiTe3         400               80CdPbTe3         600               90CdBiTe4         300               85CdIn2Te4       460               80CdZnTe2         400               85CdGa2Te4       390               90Cd2GeTe4       450               85SrBiAlTe5       360               90SrBi2SnTe8     550               85SrBi2SiTe8     400               80SrBi2PbTe8     600               90SrBi2CdTe7     350               85SrBiInTe5       460               80SrBi2ZnTe7     400               85SrBiGaTe5       390               90表24碲化物           放电容量        容量保持率
             (mAh/g)            (%)SrBi2GeTe5      450               85BaInAlTe4        360               90BaIn2SnTe6      550               85BaIn2SiTe6      400               80BaIn2PbTe6      600               90FaIn2CdTe5      350               85BaInBiTe       300               80BaIn2ZnTe5      400               85BaInGaTe4        390               90BaIn2GeTe5      450               85ZnAl2Te4        360               90ZnSnTe4          550               85ZnSiTe4          400               80ZnPbTe3          600               90ZnCdTe2          350               85ZnBi2Te6        300               80ZnIn2Te4        460               85ZnGa2Te4        390               90Zn2GeTe4        450               85MgGaAlTe4        360               90MgGa2SnTe6      550               85MgGa2SiTe8      400               80MgGa2PbTe6      600               90MgGa2CdTe5      350               85MgGaBiTe5        300               80MgGaInTe4        460               85MgGa2ZnTe5      400               90MgGa2GeTe5      450               85CaGeAl2Te6      360               90CaGeSnTe5        550               85表25磅化物          放电容量        容量保持率
             (mA/g)            (%)CaGeSiTe5         400               80CaGePbTe5         600               90CaGeCdTe4         350               85CaGeBi2Te8       300               80CaGeIn2Te6       460               85CaGeZnTe4         400               90CaGeGa2Te6       390               85
将本发明的各种碲化物用作负极活性物质的电池,比起以往的比较例来,其循环特性得到提高。
实施例5
在本实施例中,在本发明的有代表性的负极活性物质MgSnO3、SnSrBaO3、CaSnS3、SrSnSe3、BaSnTe3中插入规定量的锂,得到锂复合化合物,评价该复合化合物的电极特性。
首先,使用上述各种活性物质,配制电极,制作如同实施例1所示的试验电池。然后,规定阴极极化及阳极极化的电量,由此估计锂的插入量。试验后,分解电池,由ICP光谱分析法定量测试锂复合化合物。由此,确认各个组合物的组成与估计值一致。
其次,为了评价将各种锂复合化合物用作负极的电池的循环特性,制作如同实施例1的圆筒型电池,在同样的条件下进行评价。但锂对负极活性物质的插入量根据活性物质的量而调节。
此时,在评价电池之后,极化电池,由ICP光谱分析法定量测试取出的负极的锂复合化合物。由此,确认各个组合物的组成。其结果分别示于表26~表28。表26锂复合组成物          放电容量        容量保持率
                   (mAh/g)           (%)Li0.1MgSnO3           200              75Li0.5MgSnO3           400              80LiMgSnO3               550              80Li2MgSnO3             600              90Li3MgSnO3             620              90Li4MgSnO3             650              95Li5MgSnO3             650              90Li6MgSnO3             670              95Li7MgSnO3             680              95Li8MgSnO3             670              90Li9MgSnO3             640              90Li10MgSnO3            580              85Li11MgSnO3            200              23Li12MgSnO3            125              15Li0.1SnSbO3           200              75Li0.5SnSbO3           420              80LiSnSrBaO3             550              85Li2SnSrBaO3           580              90Li3SnSrBaO3           600              90Li4SnSrBaO3           630              90Li5SnSrBaO3           650              85Li6SnSrBaO3           670              85Li7SnSrBaO3           680              85Li8SnSrBaO3           670              85Li9SnSrBaO3           640              85Li10SnSrBaO3          580              75Li11SnSrBaO3          200              30Li12SnSrBaO3          125              10Li0.1CaSnS3           200              75Li0.5CaSnS3           400              80表27锂复合组成物          放电容量        容量保持率
                   (mAh/g)           (%)LiCaSnS3               500              80Li2CaSnS3             580              90Li3CaSnS3             580              90Li4CaSnS3             590              95Li5CaSnS3             600              90Li6CaSnS3             600              95Li7CaSnS3             640              95Li8CaSnS3             620              90Li9CaSnS3             600              85Li10CaSnS3            550              85Li11CaSnS3            200              23Li12CaSnS3            125              15Li0.1SrSnSe3          200              75Li0.5SrSnSe3          400              80LiSrSnSe3              550              80Li2CaSnSe3            600              90Li3CaSnSe3            620              90Li4CaSnSe3            630              90Li5CaSnSe3            650              90Li6CaSnSe3            650              95Li7CaSnSe3            650              95Li8CaSnSe3            670              85Li9CaSnSe3            640              80Li10CaSnSe3           580              85Li11CaSnSe3           190              32Li12CaSnSe3           125              10Li0.1BaSnTe3          200              75Li0.5BaSnTe3          320              80LiBaSnTe3              450              80Li2BaSnTe3            600              90表28锂复合组成物          放电容量        容量保持率
                  (mAh/g)            (%)Li3BaSnTe3             620               90Li4BaSnTe3             650               95Li5BaSnTe3             650               90Li6BaSnTe3             670               95Li7BaSnTe3             690               95Li8BaSnTe3             670               90Li9BaSnTe3             640               90Li10BaSnTe3            600               80Li11BaSnTe3            210               23Li12BaSnTe3            135               15
可以明白,若该锂插入后的复合化合物的组成以LiθZεXγ表示,则表示锂的含量θ在1≤θ<10的范围之内时,显示出良好的电极特性。即,没有金属锂的析出,且在显示良好的可逆性的同时,显示了高的放电容量保持率。
如10≤θ时,则可确认其循环性能皆恶化。可以认为,由于插入锂的量多,易生成惰性的锂。为此,导致循环特性恶化。在将锂的插入量θ规定在0<θ<1的范围之内,使电池工作的场合,则由于所利用的锂的量少,因此不能取出足够的容量。
另外,在上述实施例中,是就氧化物、硫化物、硒化物、及碲化物作了说明。但是,就如下所述的化合物,例如,就氧化物中的氧的一部分被硫取代的化合物,硫化物中的硫的一部分被硒取代的化合物等,选自氧、硫、硒、及碲组成的一组元素中的二种以上的元素和前述金属或半金属的化合物,也可得到同样的结果。
在实施例中,在氧化物、硫化物、硒化物、碲化物的各个化合物中,作为D组元素举的是碱金属或碱土类金属元素的例子,但是,就这些元素的一部分被选自前述D组的其它元素取代的化合物而言,也可得到同样的结果。
又,在上述实施例中,是使用圆筒型电池举例说明,但是,本发明并不限于该结构。不言而喻的是,本发明在硬币型、方形、扁平形状等形状的二次电池中也可获得完全同样的发明效果。
在实施例中,作为正极,是使用了LiMn1.8Co0.2O4举例说明,但是,不言而喻,在使用包括如LiMn2O4、LiCoO2、和LiNiO2等的、对充放电具有可逆性的正极活性物质时,也可获得同样的效果。
如上所述,根据本发明,藉由使用高容量、循环寿命极为优异的负极,可以得到更高的能量密度、没有因枝晶而造成的短路、可靠性高的非水电解质二次电池。

Claims (1)

1.一种非水电解质二次电池,其特征在于,所述电池具有可充放电的正极、非水电解质及可充放电的负极,所述负极由以式(1)所表示的化合物组成,
                  SrxBa-1xSnO3                 (1)
其中,0.1≤x≤0.5。
CN98109226A 1997-05-22 1998-05-22 非水电解质二次电池 Expired - Lifetime CN1121728C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP132298/1997 1997-05-22
JP13229897 1997-05-22
JP132298/97 1997-05-22

Publications (2)

Publication Number Publication Date
CN1200581A CN1200581A (zh) 1998-12-02
CN1121728C true CN1121728C (zh) 2003-09-17

Family

ID=15078031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98109226A Expired - Lifetime CN1121728C (zh) 1997-05-22 1998-05-22 非水电解质二次电池

Country Status (3)

Country Link
EP (1) EP0880187B1 (zh)
CN (1) CN1121728C (zh)
DE (1) DE69827700T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230225A (zh) * 2011-06-27 2011-11-02 中国科学院福建物质结构研究所 非线性光学晶体硒化镓锗钡及其生长方法与用途

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453122B2 (ja) * 1999-06-23 2010-04-21 パナソニック株式会社 非水電解質二次電池
JP4491949B2 (ja) * 2000-10-06 2010-06-30 ソニー株式会社 正極活物質の製造方法及び非水電解質電池の製造方法
JP3533664B2 (ja) * 2001-06-27 2004-05-31 ソニー株式会社 負極材料およびそれを用いた電池
JP4740409B2 (ja) * 2003-06-11 2011-08-03 株式会社日立製作所 電気自動車或いはハイブリット自動車用リチウム二次電池
US7407726B2 (en) * 2003-09-16 2008-08-05 The Gillette Company Primary alkaline battery containing bismuth metal oxide
CN100369301C (zh) * 2004-11-12 2008-02-13 中国科学院物理研究所 一种用于二次锂电池的铬基负极活性材料
JP2006216510A (ja) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd 正極およびそれを用いた非水電解質二次電池
US7300722B2 (en) * 2005-04-11 2007-11-27 The Gillette Company Lithium battery containing bismuth metal oxide
KR100801637B1 (ko) * 2006-05-29 2008-02-11 주식회사 엘지화학 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
CN100530806C (zh) * 2006-09-29 2009-08-19 中国科学院上海硅酸盐研究所 一种可用作锂离子电池固体电解质的硫化物材料及其制备方法
CN101123139B (zh) * 2007-09-29 2010-11-03 李中奇 一种超级蓄电池用双性极板
CN101556997B (zh) * 2009-05-25 2011-07-20 长兴昌盛电气有限公司 一种超级电池极板
CN101964415B (zh) * 2010-04-08 2012-12-12 浙江天能能源科技有限公司 一种锂离子电池负极材料的制备方法
EA025178B1 (ru) 2010-09-06 2016-11-30 Айгис Аг Проточный аккумулятор и способ преобразования электрической энергии с его использованием
CN102383196B (zh) * 2011-03-17 2016-05-18 中国科学院福建物质结构研究所 非线性光学晶体硫化镓锗钡及其生长方法与用途
US8773072B2 (en) 2011-08-29 2014-07-08 Aygis Ag Refuelable storage battery
CN103060917B (zh) * 2011-10-20 2016-02-03 中国科学院理化技术研究所 BaGa2SiS6化合物、BaGa2SiS6非线性光学晶体及制法和用途
DE102012106100B4 (de) 2012-07-06 2014-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrodenmaterial, umfassend binäre oder ternäre Alkalimetallchalkogenidometallate mit Diamant-Topologie, ihre Verwendung und Lithiumchalkogenidometallate
CN106663798B (zh) * 2014-11-27 2019-05-14 株式会社东芝 电池用活性物质、非水电解质电池、组电池、电池包及汽车
WO2016089840A1 (en) * 2014-12-01 2016-06-09 The University Of Chicago Compositionally matched molecular solders for semiconductors
CN104485455B (zh) * 2015-01-12 2017-07-18 中国工程物理研究院电子工程研究所 一种锂离子电池负极材料硒硫化亚铁的制备方法及其应用
EP3333242B1 (en) * 2015-08-04 2020-08-19 NGK Insulators, Ltd. Fine fluorescent-material particles, process for producing fine fluorescent-material particles, thin fluorescent-material film, wavelength conversion film and wavelength conversion device
CN106299342B (zh) * 2016-10-28 2019-01-18 长沙矿冶研究院有限责任公司 K离子掺杂和高电压尖晶石/碳双层包覆的富锂正极材料及其制备方法
CN106757362A (zh) * 2016-11-14 2017-05-31 中国工程物理研究院化工材料研究所 硒锗镉锶化合物及其制备方法、硒锗镉锶晶体及其制备方法和应用
CN106745200A (zh) * 2016-11-15 2017-05-31 中国工程物理研究院化工材料研究所 硫锗铝钡化合物及其制备方法、硫锗铝钡晶体及其制备方法和应用
CN110299559B (zh) * 2018-03-22 2024-06-18 松下知识产权经营株式会社 固体电解质以及使用了该固体电解质的二次电池
CN109616659A (zh) * 2018-12-18 2019-04-12 齐鲁工业大学 一种制备锂离子电池负极材料Nb2O5和Li2O掺杂碲钒玻璃的方法
CN110364711B (zh) * 2019-07-08 2020-07-31 光鼎铷业(广州)集团有限公司 一种梯度铷掺杂的镍钴锰正极材料及其制备方法
CN111628163B (zh) * 2020-05-12 2021-06-08 青岛大学 一种脱嵌型钒基负极材料及其制备方法
CN114768835B (zh) * 2022-05-10 2023-10-13 安徽工业技术创新研究院 一种多级纳米结构复合光催化剂及其制备方法和用途
CN115522244B (zh) * 2022-09-29 2024-06-04 电子科技大学 一种基于锑-铋纳米阵列的高安全储钠材料制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012677A (ja) * 1983-07-01 1985-01-23 Matsushita Electric Ind Co Ltd 固体電解質二次電池
JPS6424369A (en) * 1987-07-21 1989-01-26 Matsushita Electric Ind Co Ltd Solid electrolyte secondary battery
US4965151A (en) * 1989-01-24 1990-10-23 Matsushita Electric Industrial Co., Ltd. Solid-state electrochemical cell
US5478673A (en) * 1992-10-29 1995-12-26 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US5378560A (en) * 1993-01-21 1995-01-03 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP3010226B2 (ja) * 1993-03-10 2000-02-21 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP3197684B2 (ja) * 1993-03-30 2001-08-13 三洋電機株式会社 非水系電解質二次電池
FR2704216A1 (fr) * 1993-04-23 1994-10-28 Centre Nat Rech Scient Matériaux d'électrode pour batteries rechargeables au lithium et leur procédé de synthèse.
JPH06349491A (ja) * 1993-06-04 1994-12-22 Fuji Photo Film Co Ltd 非水二次電池
CA2143047A1 (en) * 1994-02-22 1995-08-23 Yoshinori Takada Alloy for the negative electrode of lithium secondary battery and lithium secondary battery
FR2725709A1 (fr) * 1994-10-14 1996-04-19 Centre Nat Rech Scient Oxyde de lithium et son utilisation comme matiere active d'une electrode
JPH08153541A (ja) * 1994-11-28 1996-06-11 Mitsubishi Cable Ind Ltd リチウム二次電池
JP3605866B2 (ja) * 1995-01-30 2004-12-22 宇部興産株式会社 非水二次電池
US5707756A (en) * 1994-11-29 1998-01-13 Fuji Photo Film Co., Ltd. Non-aqueous secondary battery
FR2730988A1 (fr) * 1995-02-23 1996-08-30 Centre Nat Rech Scient Oxyde amorphe suroxygene et son utilisation comme matiere active d'electrode
US5871863A (en) * 1995-09-06 1999-02-16 Fuji Photo Film Co., Ltd. Lithium ion secondary battery
JPH09213329A (ja) * 1996-01-30 1997-08-15 Fuji Photo Film Co Ltd 非水二次電池
US5700598A (en) * 1996-07-11 1997-12-23 Bell Communications Research, Inc. Method for preparing mixed amorphous vanadium oxides and their use as electrodes in reachargeable lithium cells
JP3489771B2 (ja) * 1996-08-23 2004-01-26 松下電器産業株式会社 リチウム電池およびリチウム電池の製造法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230225A (zh) * 2011-06-27 2011-11-02 中国科学院福建物质结构研究所 非线性光学晶体硒化镓锗钡及其生长方法与用途

Also Published As

Publication number Publication date
EP0880187B1 (en) 2004-11-24
EP0880187A2 (en) 1998-11-25
CN1200581A (zh) 1998-12-02
DE69827700D1 (de) 2004-12-30
EP0880187A3 (en) 2000-05-24
DE69827700T2 (de) 2005-10-06

Similar Documents

Publication Publication Date Title
CN1121728C (zh) 非水电解质二次电池
JP7139264B2 (ja) 固体イオン伝導性高分子材料及び用途
US10381645B2 (en) Low cost rechargeable battery and the method for making the same
CN107086324B (zh) 有机电解液和包含该有机电解液的锂电池
CN102315447B (zh) 正极活性材料、非水电解质电池及制造正极活性材料的方法
US7718319B2 (en) Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
CN101047271B (zh) 电解液和电池
CN100481585C (zh) 负极材料、负极和电池
CN101872860B (zh) 正极活性物质、其制造方法及非水电解质电池
US7906239B2 (en) Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP3332133B2 (ja) 全固体リチウム二次電池
CN1638173A (zh) 用于锂二次电池的正电极材料及使用该材料的锂二次电池
CN1489796A (zh) 阴极活性物质及使用它的二次电池
CN1272698A (zh) 负极材料和含有该材料的非水电解质电池
CN1794511A (zh) 电池
CN101036251A (zh) 改进的锂电池及其形成方法
JP7071289B2 (ja) 固体イオン伝導性高分子材料を有する電気化学電池
US20100279003A1 (en) Free standing nanostructured metal and metal oxide anodes for lithium-ion rechargeable batteries
US11476505B2 (en) Lithium replenishing rechargeable batteries
JP6889213B2 (ja) 正極活物質、その製造方法およびこれを含む正極とリチウム二次電池
EP2472662A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
EP1667258A1 (en) Nonaqueous electrolyte secondary battery
US6953639B2 (en) Heavy metal-free rechargeable zinc negative electrode for an alkaline storage cell
KR102623017B1 (ko) 전고체형 이차전지
JP5028886B2 (ja) 正極活物質およびその製造方法、並びに非水電解質二次電池

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20030917

CX01 Expiry of patent term