CN1098022C - 电路底板激光加工法及其加工装置和二氧化碳激光振荡器 - Google Patents

电路底板激光加工法及其加工装置和二氧化碳激光振荡器 Download PDF

Info

Publication number
CN1098022C
CN1098022C CN96111476A CN96111476A CN1098022C CN 1098022 C CN1098022 C CN 1098022C CN 96111476 A CN96111476 A CN 96111476A CN 96111476 A CN96111476 A CN 96111476A CN 1098022 C CN1098022 C CN 1098022C
Authority
CN
China
Prior art keywords
processing
circuit substrate
laser
laser beam
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN96111476A
Other languages
English (en)
Other versions
CN1142743A (zh
Inventor
黑泽满树
福岛司
水野正纪
竹野祥瑞
森安雅治
金子雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN1142743A publication Critical patent/CN1142743A/zh
Application granted granted Critical
Publication of CN1098022C publication Critical patent/CN1098022C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0548Masks
    • H05K2203/0554Metal used as mask for etching vias, e.g. by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/081Blowing of gas, e.g. for cooling or for providing heat during solder reflowing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明揭示电路底板激光加工方法和装置。该方法将激光束以约10微秒-20微秒的照射时间,约20焦耳/厘米2以上的能量密度,对电流底板的被加工部进行脉冲照射,在该电路板上完成开通孔和盲辅助孔之类的钻削、槽缝加工和外形切割。可解决含玻璃纤维布电路底板激光加工中出现玻璃纤维布伸出、加工孔粗糙和因加热时间长而孔壁有碳化层等问题。

Description

电路底板激光加工法及其加工装置和二氧化碳激光振荡器
本发明涉及电路底板(又称为印刷电路板)通孔、内部辅助孔、盲辅助孔、槽缝加工、外形切割等的激光加工方法和加工装置,尤其涉及可快速且高精度形成微细导通孔的电路底板加工方法和加工装置,以及产生最适合上述加工的脉冲激光束的二氧化碳激光振荡器。
印刷电路板用将多块有导体层的绝缘基体材料多层叠置粘合的方法构成。.各绝缘基体材料上所设导体层,其上、下方任意导体层之间又通过称为通孔(through hole),内部辅助孔(inner via hole)、盲辅助孔(blind via hole)的导通孔进行电气连接。图33为这种历来沿用的多层印刷电路板的剖面图。该图中,51为印刷电路板,52-56为导体层,57为金属镀层,61-64为绝缘基体材料,65-68为导通孔。由导电体52-56构成的5层的印刷电路板51,其结构是采用称为预成形件的绝缘基体材料62、64,将两面贴铜箔的绝缘基体材料61、63和由铜箔构成的导体层56层叠结合,并在导体层52-56之间开穿导通孔65-68。
如图33所示,导通孔65导通绝缘基体材料61的导体层52和导体层53,导通孔66导通绝缘基体材料61的导体层52和绝缘基体材料63的导体层54,此二导通孔称为盲辅助孔(BVH)。导通孔67导通绝缘基体材料63的导体层54和导体层55,称为内部辅助孔(IVH)。导通孔68导通绝缘基体材料61的导体层52和由绝缘基体材料64层叠粘合成的导体层56,称为通孔(TH)。
图33所示导通孔65-68是用钻头加工的。这些孔打穿后,孔内形成金属镀层57,使导体层之间电气相连。
作为以往的导通孔加工方法,其例子有采用旋转刀具的钻削加工。而作为槽缝和外形切割加工方法,其例子有旋转刀具的铣削加工。随着近来电子设备性能的提高,要求电路布线高密度化,为了满足此要求,要求印刷电路板多层化、小型化。为此,导通孔孔径必须微细化,而现状却是这些印刷电路板通常采用钻头进行机械加工。这种方法在加工微孔方面有极限,例如Φ0.2mm以下的钻孔极为困难,钻头折断等的消耗很大,更换钻头需要大量时间,因而存在生产率不高的问题,而且,相靠近的地方同时加工难,相当费时间。再者,为了小型化,绝缘基体材料厚度减薄到0.1mm以下,钻削加工不易以0.1mm以下的精度控制孔深,所以这样薄的绝缘基体材料形成盲辅助孔有困难。同样,对于槽缝加工和外形切割,为了实现印刷电路板小型化和提高成品率以降低成本,需要对槽缝加工进行精密的深度控制、缩小切割宽度、元件安装后进行切割加工,但如上所述,铣削等机械加工也存在极限。
作为这些印刷电路板机械加工的替代方法,《IBM研究开发杂志》(IBMJ.Res.Develop.)第126卷第3号306-317(1982)日本专利特公平4-3676号专利公报所指示应用受激准分子激光器和二氧化碳激光器等的激光束的方法很受人注意,并部分付诸实用。这些激光加工方法利用的是构成印刷电路板的绝缘基体材料(即树脂、玻璃纤维)与导体层铜对受激准分子激光器和二氧化碳激光器的光能吸收率的不同。例如铜几乎将这类激光器发射的激光束全反射,所以用刻蚀先在表面铜箔上形成所需孔径的剥除铜箔部分,再对该部分照射激光束,从而能有选择地分解并去除树脂、玻璃,在短时间内形成微细的通孔、内部辅助孔。而若先在加工处的内部叠置内层铜箔,则绝缘基体材料的分解和去除在内层铜箔处停止,所以能形成在底面铜箔上准确止通的盲辅助孔。使用这些激光器的加工为非接触性加工,完全不会折断损耗工具。
使用上述激光器的激光加工中,采用受激准分子激光器和TEA-二氧化碳激光器等的脉冲宽度小于1微秒的极短脉冲激光,对于用下列三种材料作绝缘基体材料的印刷电路板,可快速且高精度地形成加工部位光滑、变质层少的良好加工孔。上述三种材料有:(1)聚酰亚胺、环氧树脂等高分子材料的单一基体材料,(2)用芳族聚酰胺纤维等增强的聚酰亚胺、环氧树脂等的复合材料,(3)将玻璃等无机材料碾碎为片状细末分散到聚酰亚胺、环氧树脂等之中的复合材料。
以往的电路底板激光加工方法,其安排如上所述。因而,使用受激准分子激光器和TEA-二氧化碳激光器,对一般用作底板材料较多的玻璃纤维制玻璃纤维布和树脂组成的具有绝缘基体材料的印刷电路板(例如,玻璃纤维布和环氧树脂组成的、称为FR-4的玻纤环氧印刷电路板)上加工通孔和内部辅助孔时,所得孔的内壁极为粗糙,存在难于在该内壁镀上导电性镀层,或镀层可靠性不能保证的问题。其原因可列举出:印刷电路板的绝缘基体材料为包含有机材料和无机材料的复合材料;该基体材料为有机材料和无机材料在某种程度凝聚存在的非均匀材料。
还存在由于有机材料和无机材料两部分对激光的吸收率、分解温度、热扩散率等不同,因而不能得到均匀的加工孔的问题。例如,在受激准分子激光器的情况下,玻璃对激光束的波长难以吸收,要分解玻璃,又不能投入足够的能量,存在玻璃部分难去除且加工孔粗糙的问题。另一方面,在TEA-二氧化碳激光器的情况下,虽然树脂和玻璃的吸收率都高,但要取得高效地加工玻纤环氧材料所需的能量密度20焦耳/厘米2,则脉冲宽度小到1微秒以下,所以功率密度变成2×107瓦特/厘米2,非常高。功率密度如此提高,则加工部位容易产生等离子体,而一旦形等离子体,激光能量就在该处被吸收掉,到达加工部位的能量不够,就有分解温度高的玻璃难以去除,且加工孔变得粗糙的问题。
再者,采取不产生等离子体的能量密度时,则又存在加工进展非常慢,生产率低下的问题。
即使对上述(1)、(2)和(3)的材料都可良好加工,也限于光束直径比加工部位大的情况。反之,在加工部位比光束直径大时,例如切割、挖槽和开大口径孔时,光束照射处产生的去除物会附在该照射处以外。结果是加工后的加工部位由再附着的灰尘覆盖,印刷电路板的绝缘可靠性和镀层可靠性降低,存在需要湿刻蚀等复杂的后处理之类的工序的问题。
除受激准分子激光器和TEA-二氧化碳激光器等的极短脉冲激光外,以往也有用一般高速轴流式或三轴正交式二氧化碳激光器的电路底板激光加工方法。然而,这些已有的二氧化碳激光器为了提高振荡效率,把等幅波(CW)输出特性看得比脉冲输出特性重要,而原理上却存在脉冲振荡时的脉冲响应特性,尤其是激光脉冲下降费时间的特点。因此,加工中采用已有的具有这种特性的二氧化碳激光器时,结果加工部位照射激光的时间变长,因而该加工部位外围的温度梯度平缓,如图34所示,分解温度不同造成的树脂和玻璃去除量差别加大。若仅大量去除树脂,则如图35所示,产生玻璃纤维伸出,加工孔粗糙,而且加热时间长,还存在孔壁出现碳化层的问题。
再者,加工部位周围生成碳化物,通过该碳化物,铜吸收激光,因而如图36所示,往往使铜箔受损伤,因而有盲辅助孔加工困难的问题。
以上对孔的加工情况进行讲述,但槽缝加工和分割中也存在同样的问题。
本发明是为解决上述问题而作出的,其目的在于取得一种稳定的电路底板激光加工方法和实现该加工方法并谋是高生产效率的电路底板激光加工装置,该方法对绝缘基体材料中含有玻璃纤维布的印刷电路板的通孔、内部辅助孔、盲辅助孔、槽缝加工、外形切割等的加工均能快速且高精度地完成,加工部位不粗糙,无需对再附着物作复杂的后处理,而且铜箔不受损伤。
本发明的目的还在于取得可输出具有最适合电路底板激光加工方法的脉冲宽度的激光束的、电路底板加工用的二氧化碳激光振荡器。
权利要求1所述的本发明的电路底板激光加工方法是将激光束脉冲以10微秒至200微秒范围的光束照射时间,20焦耳/厘米2以上的能量密度,照射电路底板的被加工部。
权利要求2所述的本发明的电路底板激光加工方法是对电路底路的同一被加工部,将激光束以15毫秒以上的照射休止时间间隔,20焦耳/厘米2以上的能量密度,进行脉冲性照射。
权利要求3所述的本发明的电路底板激光加工方法是将分别具有20焦耳/厘米2以上能量密度,以规定的光束照射休止时间间隔发生的多脉冲激光束组合为一个脉冲群,对电路底板的同一被加工部,由多个脉冲分别构成的多个脉冲群的激光束隔开比规定光束照射休止时间长的脉冲群间照射休止时间间隔,进行脉冲性照射。
权利要求4所述的本发明的电路底板激光加工方法是在激光束脉冲性照射电路底板被加工部,并同时扫描电路底板表面时,该扫描使不超过15毫秒的光束照射休止时间间隔中连续发生4个以上脉冲的激光束不照射被加工部。
权利要求5所述的本发明的电路底板激光加工方法是将被加工部表面上的光束直径定为1毫米,以10微秒至200微秒范围的光束照射时间,2.5毫秒的光束照射休止时间间隔,将激光束照射于被加工部,并同时以8m/分至6m/分范围的扫描速度扫描电路底板的表面。
权利要求6所述的本发明的电路底板激光加方法是使对电路底板被加工部加工的有效的激光束的光点形状成方形,而且激光束一边脉冲性照射电路底板被加工部,一边扫描电路底板的表面。
权利要求7所述的本发明的电路底板激光加工方法是预先去除电路底板被加工部所对应的、电路底板上的金属层部分,通过去除金属层的部分,对被加工部的基体材料照射激光束、实施加工、形成基体材料去除部,再对基本材料去除部及其周围,或仅对其周围再照射激光束。
权利要求8所述的本发明电路底板激光加工方法是在预先去除被加工部所对应的电路底板上的金属层部分时,部分去除金属层,以使激光束仅到达被加工部基体材料照射激光束后要形成的基体材料去除部的周围。
权利要求9所述的本发明的电路底板激光加工方法预先去除被加工部所对应的电路底板上的金属层部分,在激光束通过金属层去除部分,对被加工部的基体材料边扫描边照射进行加工时,从被加工部上激光束扫描起始点向激光束扫描终点的方向通以气体。
权利要求10所述的本发明的电路底板激光加工方法是用具有能熔化并去除电路底板金属层的强度的激光束进行脉冲照射,从而部分去除金属层,形成具有所需形状的金属层,再通过去除金属层的部分,对电路底板照射具有不使金属层熔化的强度、10微秒至200微秒的光束照射时间,并以15毫秒以上的光束照射休止时间间隔连续发生多个脉冲的激光束。
权利要求11所述的本发明的电路底板激光加工方法是在将激光束光点与激光束脉冲频率同步地依次在电路底板各目标位置定位,并一边脉冲照射激光束时,要求分别照射各目标位置的任意2个连续脉冲状激光束之间的时间间隔不论脉冲频率高低,均为15毫秒以上,在该期间输出的脉冲激光束照射别的目标位置。
权利要求12所述的本发明的电路底板激光加工方法设置分别载放各应加工电路底板的多个加工工位,激光振荡器脉冲输出的激光束按每一脉冲依次分配给多个加工工位中的每一个,同时隔开15毫秒以上的时间间隔,将脉冲状激光束分别引导到各加工工位。
权利要求13所述的本发明的电路底板激光加工装置具备用于使激光束光点在电路底板各目标位置依次定位,并一边改变激光束方向,使其在电路底板上移动的光学手段,还具备控制手段,用来控制光学手段,以同步控制激光振荡器的振荡动作和光学手段的动作,而且使分别照射各目标位置的任意2个连续激光束脉冲之间的时间间隔不论激光振荡器的脉冲频率高低,均为15毫秒以上。
权利要求14所述的本发明的电路底板激光加工装置具备光学手段,用来将激光振荡器脉冲输出的激光束按每一脉冲依次分配给多个加工工位中的每一个,而且隔开15毫秒以上的时间间隔,将激光束脉冲每一脉冲分别向各加工工位引导,此外,还具备控制使光学手段的分配动作与激光振荡器的脉冲振荡动作同步的同步控制手段。
权利要求15所述的本发明的电路底板加工用二氧化碳激光振荡器,其放电空间二氧化碳气流方向的长度至少大于孔口宽度,并将构成孔口中心的光轴设定为,孔口的整个区域不超出放电空间二氧化碳气流方向长度区域的范围内,光轴相对于二氧化碳气流位于最上流侧,而且放电空间所投入放电电力的上升时间和下降时间分别为50毫秒以下。
图1为本发明实施形态1的电路底板激光加工方法的图解。
图2为表示本发明实施形态1的电路底板激光加工方法中激光束能量密度与玻纤环氧材料加工深度的关系的曲线图。
图3为表示本发明实施形态1的电路底板激光加工方法中脉冲宽度变化时,加工部位玻璃纤维布伸出量和铜箔损伤比例的变化的曲线图。
图4为本发明实施形态2的电路底板激光加工方法的图解。
图5为表示本发明实施形态2的电路底板激光加工方法中激光束照射方式的波形图。
图6为表示本发明实施形态2的电路底板激光加工方法中光束照射休止时间变化时,刚加工后在加工孔内侧所见碳化层厚度变化的曲线图。
图7为表示将光束照射休止时间作为参数时,对加工部表面的距离与温度的关系的加工部温度特性图。
图8为表示本发明实施形态3中激光束照射方式的波形图。
图9为表示本发明实施形态3的电路底板激光加工方法中脉冲群内各脉冲间的光束照射休止时间变化时,碳化层的厚度变化的曲线图。
图10为表示本发明实施形态3的电路底板激光加工方法中脉冲群间光束照射休止时间变化时,碳化层厚度的变化的曲线图。
图11为表示本发明实施形态3的电路底板激光加工方法中脉冲群内脉冲数变化时,开孔所需加工时间的变化的曲线图。
图12为本发明实施形态4的电路底板激光加工方法的图解。
图13为本发明实施形态4的电路底板激光加工方法中铜箔去除部存在区域和光栅扫描路径的说明图。
图14为表示本发明实施形态4的电路底板激光加工方法中激光束扫描速度变化时,加工部玻璃纤维布伸出量的变化的曲线图。
图15为本发明实施形态5的电路底板激光加工方法的图解。
图16为本发明实施形态5的电路底板激光加工方法中表示用圆形光束和方形光束扫描时,光束照射处重合部分的说明图。
图17为本发明实施形态6的电路底板激光加工方法的图解。
图18为本发明实施形态7的电路底板激光加工方法的图解。
图19为本发明实施形态7的电路底板激光加工方法中铜箔去除部加工形状的说明图。
图20为本发明实施形态8的电路底板激光加工方法的图解。
图21为本发明实施形态8的电路底板激光加工方法中表示激光束光栅扫描方向和二氧化碳气流喷射方向的说明图。
图22为本发明实施形态9的电路底板激光加工方法的图解。
图23为表示本发明实施形态9的印刷电路底板加工结果的图解。
图24为本发明实施形态10的电路底板激光加工方法的图解。
图25为本发明实施形态10的一变形例的电路底板激光加工方法的图解。
图26为本发明实施形态11的电路底板激光加工方法及其加工装置的图解。
图27为本发明实施形态12的电路底板激光加工方法及其加工装置的图解。
图28为本发明实施形态12中旋转遮光器的图解。
图29为本发明实施形态12中触发器脉冲和激光脉冲的时序图。
图30为本发明实施形态13的电路底板加工用二氧化碳激光振荡器的立体图。
图31为已有的二氧化碳激光振荡器放电空间增益分布和光轴配置的图解。
图32为本发明实施形态13的电路底板加工用二氧化碳激光振荡器的光轴配置图解。
图33为表示已有的多层印刷电路板结构的剖面图。
图34为表示已有的电路底板激光加工方法中发生质量下降的机制的曲线图。
图35为表示已有的电路底板激光加工方法中玻璃纤维布伸出量和碳化层厚度的加工部剖面图。
图36为表示已有的电路底板激光加工方法中铜箔损伤的加工部剖面图。
下面说明本发明的实施形态。
实施形态1
图1为本发明实施形态1的电路底板激光加工方法的图解。图中,1A为印刷电路板(电路底板),2、3、4为由铜箔形成的导体层(金属层),8为表面导体层2上用蚀刻形成的铜箔去除部,9为使二氧化碳激光振荡器发射的激光束27集束用的ZnSe透镜,10为保护透镜用的助吹气体,这是采用空气。11、12为绝缘基体材料,19为喷出助吹气体10的气嘴。铜箔去除部8形成于导体层2的绝缘基体材料11中被加工部所对应的部分。
本实施形态1中,采用厚200微米的3层的双面贴铜箔的玻纤环氧印刷电路板(FR-4),作为多层印刷电路板1A。导体层2、3、4的铜箔厚度为18微米,并在表面导体层2用蚀刻形成直径200微米的铜箔去除部8。
下面说明其动作。
图2是,以二氧化碳激光器作为光源,并使其激光束27的1个脉冲的能量密度发生变化,从而使印刷电路板1A的被加工部所对应的铜箔去除部8上面的能量密度在7-35焦耳/厘米2的范围内变化,通过铜箔去除部8,只用上述1个脉冲照射绝缘基体材料11的露出部分时的加工结果的曲线图,该图横轴表示能量密度(焦耳/厘米2),纵轴表示玻纤环氧材料的加工深度(微米)。由图2显然可见,使激光束27的1个脉冲的能量密度发生变化,则对玻纤环氧组成的印刷电路板1A的加工深度发生变化,而且能量密度在20焦耳/厘米2以下时,虽然进行加工,但去除量很小,要穿通100微米的玻纤环氧,必须照多个脉冲。因此,考虑生产效率时,必须每个孔照射多个脉冲才能打穿。由图2所示实验结果可知,要进行快速的高效率加工,需要照射能量密度为20焦耳/厘米2以上的激光束27。
图3是,将1个脉冲的激光束27的能量固定为200毫焦,用ZnSe透镜9汇聚光束27,使印刷电路板1A的被加工部上的光束直径为500微米,使其能量密度为100焦耳/厘米2,而且使脉冲宽度在1微秒-500微秒范围内变化,并仅用1个脉冲照射铜箔去除部8的情况下的加工结果的曲线,图中横轴表示脉冲宽度(微秒),纵轴表示玻璃纤维布伸出量(微米)和铜箔损伤率(%)。这时,保护透镜用的助吹气体10为空气,以10升/分的流量通过气嘴19提供给被加工部。
激光束27的脉冲宽度变化时加工孔(或基体材料去除部)的玻璃纤维布伸出量可用显微镜观察加工孔的剖面进行审查,如图35所示。图3是相对于1-500微秒范围的脉冲宽度变化,玻璃纤维布伸出量最大值和铜箔损伤率的变化的曲线。铜箔损伤率以1000个加工孔中在底面铜箔(导体层3)上穿孔的加工孔数所占的百分比表示。如图3所示,激光束27的脉冲宽度在10-200微秒范围时,所得加工孔玻璃纤维伸出量少,底面铜箔完全无损伤。这样,通过取光束照射时间为200微秒以下,可使印刷电路板1A正在加工的加工部(以下,本说明书中加工部含义为正在加工或加工后的加工孔等)表面到内部的温度梯度大,玻璃纤维布伸出量达到实用上可忽略的程度。再者,碳化物出现少,所以铜箔也能减少损伤,可稳定地形成盲辅助孔。
对所得加工孔进行超声波清洗、去污处理后,镀铜,形成电路线条,再观察剖面时,显然当激光束27的脉冲宽度小于10微秒的情况下,正在加工的加工部上出现等离子体,因而不能去除玻璃纤维布。结果发现很多孔内不能完全镀到底面铜箔实现导体化,失去导通孔的作用。反之,激光束27的脉冲宽度在10微秒-200微秒范围内时,可得镀到底面铜箔、完全导体化的良好导通孔。采用直径200微米的金刚石钻头进行同样的加工,但深度不易控制,加工总数1000个的孔中,10%穿到作为背面铜箔的导体层4,使导体层3和导体4短路。这样,钻头加工难以取得用本实施形态1的电路底板激光加工方法实现的效果。
如上所述,采用实施形态1,当高效加工玻璃纤维布和环氧树脂组成的玻纤环氧材料印刷电路板1A所需的20焦耳/厘米2以上能量密度的激光束27照射被加工部时,将光束照射时间适当设定在10微秒-200微秒的范围内,可使功率密度控制在2×106瓦特/cm2以下从而能进行加工而不在加工部产生等离子体。又取光束照射时间为200微秒以下,可使印刷电路板1A上正在加工的加工部从表面到内部的温度梯度剧增,玻璃纤维布伸出量少到实用上能忽略的程度。还可减少发生碳化物,减少铜箔受损,稳定地形成盲辅助孔。
实施形态2
图4为本发明实施形态2的电路底板激光加工方法的图解,该图中与图1相同的部分标注相同的符号,省略说明。图4中,1B为多层印刷电路板,5为导体层,6为多层印刷电路板1B背面导体层,7为通孔17内壁所施金属镀层,13、14为绝缘基体材料。图5为表示本实施形态2的激光束27照射方式的波形图。
本实施形态2中,印刷电路板1B采用厚400微米的5层玻纤聚酰亚胺底板。作为表面导体层2和背面导体层6的铜箔厚度为18微米,要加工的导通孔所对应的导体层2部分和导体层6部分各自用蚀刻分别形成直径200微米的铜箔去除部8。
下面说明其动作。
用ZnSe透镜9将脉冲宽度50微秒、脉冲能量280毫焦的二氧化碳激光器的激光汇聚到印刷电路板1B,使被加工部表面的激光束直径为500微米,从而能量密度为143焦耳/厘米2。使图5所示光束照射休止时间在12.5毫秒-50毫秒的范围内变化,并通过铜箔除部8在绝缘基体材料11的露出部分照射激光束脉冲27。这时,将空气作为保护透镜用的助吹气体10以10升/分的流量,通过气嘴19提供给被加工部。图6的曲线表示这样改变光束照射休止时间时,刚加工后在加工孔内壁上观察到的碳化层厚度(微米)变化。碳化层的厚度可通过用显微镜观察加工孔剖面来审查,如图35所示。
如图6所示,若光束照射休止时间减少到15毫秒以下,则碳化层厚度剧增。激光加工后,所得印刷电路板1B在纯水中用超声波洗3分钟,在光束照射休时间为15毫秒以上的情况下,可完全去除碳化层。对所得加工孔进行超声波洗净、去污处理后,镀铜,形成电路线条,再观察剖面,这时,在光束照射休止时间为15毫秒以上的情况下,可得直径200微米的内壁光滑良好的通孔。反之,光束照射休止时间小于10毫秒时,发现镀膜与印刷电路板1B的基体材料之间残存碳化层且玻璃纤维布伸出,而且发现孔内壁粗糙,镀层难覆满。
可认为其原因在于,如图7所示,光束照射休止时间小于15毫秒时,随对正在加工的加工部表面的距离而变化的、加工引起的温度梯度变化缓慢,同时本来温度不必升高的、离加工部表面深的部分的温度却过分升高。反之,在同一光束照射部以15毫秒以上的光束照射休止时间照射脉冲激光束27,可使每一脉冲下加工部完全达到冷却的冷却时间得到保证。如图7所示,在光束照射休止时间为15毫秒以上时,能抑制激光束27照射时加工部温度上升带来的温度梯度变化平缓,可减少玻璃纤维布伸出。
如上所述,通过采用二氧化碳激光器,设定合适的照射间隔,用多个脉冲照射,可获得单脉冲不能得到的高深宽(aspect)比导通孔,并能快速且高精度地加工含玻璃纤维布的印刷电路板。
采用直径200微米的金刚石钻机进行同样的加工,在加工孔总数1000个左右时,产生钻头损耗,孔内壁粗糙,而且钻头折损,因而所需加工时间约为本实施形态2电路底板激光加工方法的10倍。
如上所述,采用实施形态2,在同一光束照射部以15毫秒以上的光束照射休止时间,照射脉冲激光束,可在每一脉冲确保加工部完全达到冷却的冷却时间,因而如图7所示,可使加工部温度梯度变大,能抑制加工部的加热。于是,玻璃纤维布伸出可减少,进行多脉冲照射时,也能快速且高精度地加工含玻璃纤维布的印刷电路板。
实施形态3
图8为表示本发明实施形态3的电路底板激光加工方法中的激光束照射方式的波形图。本实施形态采用用与上述实施形态2(图4)相同的400微米厚度的5层玻璃纤维聚酰亚胺底板作为多层印刷电路板1B。作为表面导体层2和背面导体层6的铜箔,其厚度为18微米,要加工的导通孔所对应的导体层2的部分和导体层6的部分均以蚀刻分别形成直径200微米的铜箔去除部8。
下面说明其动作。
采用ZnSe透镜9将脉冲宽度定为50微秒、脉冲能量固定为280毫焦的二氧化碳激光器发射的激光束27汇聚到多层印刷电路板1B,使被加工表面的激光束直径为500微米,从而能量密度为143焦耳/厘米2。如图8所示,由光束照射休止时间为t1的2-10个脉冲分别组成的多个脉冲群,以t2的脉冲群间照射休止时间进行照射。
本实施例中,使光束照射休止时间t1和脉冲群间照射休止时间t2分别在0-10毫秒和50-10毫秒的范围内变化,并通过铜箔去除部8对绝缘基体材料11的露出部分照射52个脉冲。这时,空气作为保护透镜用的助吹气体10,以10升/分的流量通过气嘴19提供给被加工部。
图9的曲线表示脉冲群中各脉冲间的光束照射休止时间t1变化时,刚加工后在加工孔内壁观察到的碳化层厚度变化。这时,脉冲群间光束照射休止时间t2取足够大的值50毫秒。如图9所示,可知光束照射休止时间t1为4毫秒以上时,碳化层的厚度比光束休止时间t1为0毫秒时的厚度(约50微米-100微米)小,在降低碳化层厚度方面有效。
图10的曲线表示脉冲群间光束照射休止时间t2从50毫秒变到10毫秒时,刚加工后在加工孔内壁观察到的碳化层厚度变化。这时,脉冲群中的脉冲数为2个,光束照射休止时间t2为10毫秒。如图10所示,若脉冲群间光束照射休止时间t2在20毫秒以下,则碳化层厚度剧增。
图11的曲线表示,相对于脉冲群中的脉冲数变化时钻孔所需加工时间的变化,刚加工后在加工孔内壁观察到的碳化层厚度变化。这时,各脉冲间的光束照射休止时间t1为25毫秒,脉冲群间的光束照射休止时间t2为50毫秒。如图11所示,脉冲数为4个时,与以单一脉冲频率加工时相比,在同样的加工质量下,加工时间可减少6%-22%。
对所得加工孔进行超声波洗净、去污处理后,镀铜,形成电路线条,再观察其剖面。这时,在脉冲间光束照射休止时间t1为4毫秒以上,脉冲群间光束照射休止时间t2为20毫秒以上,脉冲数为4个以下的情况下,与单一脉冲频率时相同,可得直径200微米的内壁光滑良好的通孔。对于厚度薄的电路底板,遵守上述光束照射休止时间t1和脉冲群间光束照射休止时间t2的条件,即使脉冲数为4个以上时,也能取得良好的通孔。即,通过遵照光束照射休止时间t1和脉冲群间光束照射休止时间t2的条件,按照板厚选择脉冲群中的脉冲数,可缩短加工时间。若偏离上述光束照射休止时间t1和脉冲群间光束照射休止时间t2的条件,则发现镀膜与印刷电路板1B的基体材料之间残存碳化层且玻璃纤维布伸出,而且发现内壁粗糙,镀层难覆全。
如上所述,采用实施例3,设定合适的光束照射休止时间,以多个脉冲组成的脉冲群进行多脉冲照射,从而可比单脉冲时缩短加工时间,此外,用比各脉冲间光束照射休止时间长的脉冲群间光束照射休止时间,在加工部脉冲照射由对同一光束照射部具有规定光束照射休止时间的多个脉冲分别组成的多个脉冲群的激光束,可防止加工部温度升高,抑制相对于离加工部表面的深度的,温度梯度的平缓变化,减少玻璃纤维布伸出。
实施形态4
图12为本发明实施形态4的电路底板激光加工方法的图解,与图1相同或相当的部分标注相同符号并省略其说明。本实施例中,采用厚500微米的3层玻纤环氧印刷电路板(FR-4)作为多层印刷电路板1C。用作导体层2、3、4的铜箔,厚度为18微米,导体层2和导体3的距离为200微米,并用蚀刻在表面的导体层2上形成直径为200微米的铜箔去除部8。
下面说明其动作。
采用ZnSe透镜9将脉冲能量280毫焦、脉冲宽度50微秒、脉冲频率400Hz均固定的二氧化碳激光器发射的激光束27汇聚到印刷电路板1C上,使被加工部表面的光束直径为1毫米,从而能量密度为35焦耳/厘米2。又如图13所示,为了激光束27能全面照射铜箔去除部8的存在区域25,扫描速度从8m/分变到3m/分,并按100微米的扫描间距沿路径26进行光栅扫描。这时,空气作为保护透镜用的助吹气体10以10升/分的流量经气嘴19提供给被加工部。
图14的曲线表示激光束27的扫描速度变化时,加工孔的玻璃纤维布伸出量的变化。图中,玻璃纤维布伸出量画出其最大值。如图14所示,在激光束27的扫描速度为8m/分-6m/分时,所得加工孔玻璃纤维布伸出量少,底面铜箔完全没有损伤。
对所得加工孔进行超声波洗净、去污处理后,镀铜,形成电路线条、进行剖面观察。这时,在激光束27的扫描速度小于6m/分的情况下,由于热影响,玻璃纤维布伸出量超过20微米,镀层难以完全覆盖,发现多处镀层沿玻璃纤维布渗入。与此相反,激光束27的扫描速度为6m/分-8m/分时,可高效率地获得镀层达到底面铜箔、完全导体化的良好导通孔。
如上所述,采用实施形态4,可保持与激光束27对被加工部逐个定位进行同样加工时相同的加工质量,而且能使加工速度跃增,进行印刷电路板加工时玻璃纤维布伸出等减少的,高质量通孔、盲辅助孔的开孔加工、槽缝加工和外形切割等加工。
实施形态5
图15为本发明实施形态5的电路底板激光加工方法的图解,图中与图1相同的部分标注相同的符号并省略其说明。48为整形光学系统,该系统用万花筒(Kaleidoscope)将激光束27整形为在被加工部表面激光束27的光束光点呈0.9毫米×0.9毫米的形状。
与上述实施形态4相同,本实施形态5采用厚500微米的3层玻纤环氧印刷电路(FR-4)作为多层印刷电路板1C。用作导体层2、3、4的铜箔,厚18微米,导体层2和导体层3的距离为200微米,并用蚀刻在表面的导体层2上形成直径为200微米的铜箔去除部8。
下面说明其动作。将脉冲能量280毫焦、脉冲宽度50微秒、脉冲频率800Hz均固定的二氧化碳激光器发射的激光束27用借助于万花筒的光束整形光学系统48整形为在被加工部表面上其光点呈0.9毫米×0.9毫米的形状后,用ZnSe透镜汇聚在多层印刷电路板1C上,从而光能量密度为35焦耳/厘米2。与上述实施形态4相同,为了使激光束27全面照射铜箔去除部8,使扫描速度为6m/分,并以200μm的扫描间距进行光栅扫描。这时,空气作为保护ZnSe透镜9的助吹气体10,以10升/分的流量经气嘴19提供给被加工部。为了比较,还用具有同样能量密度的圆形光束(直径1毫米)进行同样的加工。
其结果如图16(a)所示,以方形激光束27a沿路径26对加工区21扫描时,所得加工孔玻璃纤维布伸出量少,底面铜箔完全无损。反之,如图16(b)所示,用圆形激光束27b时,出现加工孔内碳化和底面铜箔穿孔的情况。
其原因在于,方形激光束27a对印刷电路板1C的加工区域21扫描时,如图16(a)和(b)所示,与用圆形激光束27b扫描时相比,光束照射部的重合部分少,因而加工部温度升高带来的温度梯度变得平缓的部分可减少,能使光束照射休止时间的下限值缩得比圆形激光束27b时短。因此,和用圆形激光束27b、进行同样质量的加工的情况相比,能以更快的速度完成二氧化碳激光器脉冲激光对印刷电路板1C表面扫描所进行的通孔、盲辅助孔的钻孔、槽缝加工和外形切割等。
对这样得到的加工孔进行超声波洗净和去污处理后,镀铜,形成电路线条,观察其剖面。这时,圆形激光束27b因热影响,玻璃纤维布伸出量大于20微米,镀层难于完全覆盖,发现多处镀层沿玻璃纤维布渗入。反之,方形激光束27a可得到良好的导通孔,镀层到达底面铜箔,完全导体化。
如上所述,采用实施形态5,将试样表面激光束形状定为方形,因而能保持良好的加工质量,而且比圆形激光束27b时加工速度提高。
实施形态6
图17为本发明实施形态7的电路底板激光加工方法的图解,图中与图1相同的部分标注相同的符号并省略说明。1D为印刷电路板,采用厚200微米且双面贴铜箔的玻纤环氧印刷电路板(FR-4)。作为导体层2、3的铜箔,厚为18微米。利用蚀刻在印刷电路板1D表面和背面的导体层2、3的相同处以10毫米的间距用蚀刻方法形成宽1毫米、长10毫米的铜箔去除部8。
下面说明其动作。
本实施形态6中,利用ZnSe透镜9将脉冲能量280毫焦、脉冲宽度50微秒、脉冲频率400Hz均固定的二氧化碳激光器的激光束27汇聚到印刷电路板1D上,使被加工部表面上光束直径为1毫米,从而能量密度为35焦耳/厘米2。又如图13所示,为了激光束27全面照射铜箔去除部8的存在区域25,扫描速度取8m/分,并以100微米的扫描间距进行光栅扫描。这时,空气作为保护ZnSe透镜9用的助吹气体10,以10升/分的流量经气嘴19提供给被加工部。这样,虽然不出现玻璃纤维布伸出和碳化层,但去除的体积大,因而加工后的加工孔周围残留坚固的再附着物。
加工后,又用ZnSe透镜9将脉冲能量200毫焦耳、脉冲宽度50微秒、脉冲频率400Hz均固定的二氧化碳激光器发射的激光束27汇聚到上述印刷电路板1D上,使被加工部表面上该光束直径为1mm,从而能量密度为25焦耳/厘米2。和加工时相同,为了激光束27能全面照射铜箔去除部8存在的区域25,扫描速度取为10m/分,并以100微米的扫描间距再一次进行光栅扫描。这时,空气作为保护ZnSe透镜用的助吹气体10,以10升/分的流量经气嘴10提供给被加工部。这样,加工孔周围的再附着大体上可去,且不损伤表面铜箔。
对所得加工电路板进行超声波洗净和去污处理后,镀铜,形成电路线条,并观察其剖面。这时,加工孔周围无再附着物残留,可得到用镀层完全导体化的良好切口。
如上所述,采用实施形态6,用光束照射去除基体材料后,再使激光束27照射加工孔及其周围,或只照射其周围,去除再附于加工孔的尘灰,而且第二次光束照射做到只去除尘灰,去除量少,不会再附着尘灰。这样,在应加工部分比激光束直径大时,例如切割、开槽和钻削大口径孔时,也不需要去除加工后的加工孔残留的再附着物灰尘用的湿蚀刻之类的复杂的后处理工序,而能去除再附着物,因而能防止印刷电路板的绝缘可靠性和镀层可靠性的降低。
实施形态7
图18为本发明实施形态7的电路底板激光加工方法的图解,图中与图1相同的部分标注相同的符号并省略说明。18为铜箔去除部。本实施形态7采用与上述实施形态6相同的300微米厚双面贴铜箔玻纤环氧印刷电路板(FR-4)作为印刷电路板1D。作为导体层2、3的铜箔,厚为18微米,利用蚀刻在印刷电路板1D的表面和背面的导体层2、3上相同处,以2毫米的间距形成宽1mm、长10mm的铜箔去除部18。如图19(a)所示,该铜箔去除部18仅将其外周部18a的铜箔蚀刻掉100微米的宽度。为了证实使用该铜箔去除部18时的效果,如图19(b)所示,还利用蚀刻形成上述实施形态6那样的、完全去除被加工部相应部分的铜箔去除部8,制得试件。
下面说明其动作。
利用ZnSe透镜9将脉冲能量280毫焦、脉冲宽度50微秒、脉冲频率400Hz均固定的二氧化碳激光器发射的激光束27汇聚在印刷电路板1D上,使被加工部表面上该光束的直径为1mm,从而其光能密度为35焦耳/厘米2。和上述实施形态6相同,为了激光束27全面照射铜箔去除部18存在的区域,扫描速度取为8m/分,并以100微米的间距进行光栅扫描。这时,空气作为保护ZnSe透镜用的助吹气体10以10升/分的流量经气嘴19提供给被加工部。
其结果如图19(a)所示,对于只加工铜箔去除部18的外周部18a的电路板,不存在玻璃纤维伸出、碳化层和加工孔周围的牢固再附着物,形成良好的切口。反之,如图19(b)所示,形成被加工部相应部分全去除的铜箔去除部8的电路板,如已讲述的那样,虽然无玻璃纤维布伸出和碳化层,但去除的体积大,因而加工后的加工孔周围残留牢固的再附着物。
对仅加工铜箔去除部18的外周部18a后得到印刷电路板1D进行超声波洗净、去污处理后,镀铜,形成电路线条,并观察其剖面。这时,可得良好的切口,其加工孔周围无再附着物残存,铜箔无剥落,由镀层完全导体化。
如上所述,采用实施形态7,仅加工铜箔去除部18的外围部18a,所以加工时去除的体积少,而且加工后可得相同形状的加工孔。这时,加工体积小,可减少加工孔周围的温升,如图7所示,能抑制温度梯度的变平缓的情况。即,可加大温度梯度,在去除部分相对于非去除部分所占比例大的加工中,可不发生铜箔剥落等不良现象,情况良好。和光束全面照射被加工部的情况相比,还可缩短光束照射休止时间,因而能以较高的速度进行加工。
实施形态8
图20为本发明实施形态8的电路底板激光加工方法的图解,图中与图1相同的部分标注相同的符号并省略说明。本实施形态8中,作为加工对象的印刷电路板1D,采用和上述实施形态6相同的200微米厚双面贴铜玻纤环氧印刷电路板(FR-4)。作为导体层2、3的铜箔,厚为18微米。利用蚀刻在印刷电路板1D的表面和背面的导体层2、3的相同处,以10mm的间距蚀刻形成宽1mm、长10mm的铜箔去除部8。
下面说明其动作。
利用ZnSe透镜9将脉冲能量280毫焦、脉冲宽度50微秒、脉冲频率400Hz均固定的二氧化碳激光器发射的激光束27汇聚到印刷电路板1D上,使被加工表面上该光束的直径为1mm,从而其能量密度为35焦耳/厘米2。如图21所示,为了使激光束27全面照射铜箔去除部8存在的区域,扫描速度取为8m/分,并以100微米的间距沿径26进行光栅扫描。这时,空气作为助吹气体10,以50升/分的流量经和激光束27连在一起移动的气嘴19,从加工起始处向朝加工结束处的方向吹给被加工部。
结果是加工后的加工孔周围的再附着物被助吹气体中吹散,仅贴附在未加工部。此再附着物在加工时由激光束27去除,最后仅在加工结束处残留少量再附着物。该再附着物用与上述实施形态6的电路底板激光加工方法中说明的相同办法去除。
对这样得到的印刷电路板1D进行超声波洗净和去污处理后,镀铜,形成电路线条,并观察其剖面。这时,可得良好的切口,其加工孔周围无再附着物残留,用镀层完全导体化。
如上所述,采用实施形态8,使气流从被加工部的光束照射起始处向朝光束照射结束处的方向吹到正加工中的印刷电路板1D上,去除物从这里飞到激光束27照射的区域,堆积在其表面上。此堆积物在去除基体材料时同时被去除,因而可减少加工后印刷电路板1D表面堆积的去除物,减少加工后印刷电路板的洗净工序。在去除体积大的加工中,也可使再附着物残留区域显著减少。
实施形态9
图22为本发明实施形态9的电路底板激光加工方法的图解,图中与图1相同的部分标注相同的符号并省略说明。本实施形态9中,采用厚200微米的3层双面贴铜箔玻纤环氧印刷电路板(FR-4)作为印刷电路板1E。作为导体层2、3的铜箔,厚为18微米。表面的导体层2不设蚀刻的铜箔去除部。
下面说明其动作。
利用ZnSe透镜将脉冲能量400毫焦、脉冲宽度100微米的二氧化碳激光器发射的激光束27汇聚到印刷电路板1E,使该光束位于被加工表面上光点直径最小的准确聚焦处,并照射1个脉冲。然后,每隔50毫秒的光束照射休止时间,照射10个脉冲能量150毫焦、脉冲宽度100微秒的激光束27的脉冲。这时,空气作为保护透镜用的助吹气体10,以10升/分的流量经气嘴19提供给被加工部。首先照射的激光束27的脉冲能量,其强度能熔化并去除表面的导体层2,第2次及其后发出的激光束27的脉冲能量,其强度不能熔化上述导体层2。
图23为一例本实施形态9的印刷电路板加工结果的图解。表面的导体层2上,去除直径200微米、大致为正圆的铜箔,而且对周围大体上不出现热影响,同时在该去除处下方,加玻璃纤维布29伸出少、大体上光滑的孔,深达最下层的铜箔。对所得加工孔进行超过波洗净和去污处理后,镀铜,形成电路线条,并观察其剖面。这时,可得直径200微米、内壁光滑的良好通孔。
如上所述,即使不预先用蚀刻等其他工序去除铜箔,而将二氧化碳激光器的脉冲激光束27以准确的聚焦位置照射被加工部分,使能量密度增大,这样也能细致地去除表面的铜箔,对其周围几乎没有热影响。然后,加大光束照射休止时间,并一边多次照射脉冲能量小的激光束27,就可加工出无碳化层的通孔。这样,可省略已有方法中不可少的前工序蚀刻处理,简化制造过程。又,不管什么光束照射条件都取上述实施形态1、2所述的玻纤环氧电路板加工最适合的10微秒到200微秒范围的光束照射时间、15毫秒以上的光束照射休止时间间隔,由于激光束27脉冲式照射,因而可使温度梯度大,能获得玻璃纤维布伸出量实用上可忽略的、适于镀层的孔。综上所述,不用蚀刻等方法预先去除印刷电路板表面的铜箔等导体层,表面贴铜箔且包括玻璃纤维布的印刷电路基板也能仅用激光加工工序快速且高精度地进行加工。
实施形态10
图24为应用本发明实施形态10的电路底板激光加工方法时的图解,图中与图1相同的部分标注相同的符号并省略说明。本实施形态中,和上述实施形态9一样,也采用厚200微米的3层双面贴铜箔玻纤环氧印刷电路板(FR-4)作为印刷电路板1E。作为导体层2、3、4的铜箔,厚度为18微米,表面的导体层2上在比应加工形状的面积小的范围内设置微细去除部30。
下面说明其动作。
使用脉冲能量200毫焦、脉冲宽度100微秒的二氧化碳激光器发射的激光束27,以ZnSe透镜9将该光束汇聚到印刷电路板1E的被工部表面时使该光束处于光点直径最小的准确聚焦位置,并照射1个脉冲。然后,每隔50毫秒的光束照射休止时间,照射10个脉冲的脉冲能量150毫焦、脉冲宽度100微秒的激光束27。其结果与实施形态9相同,表面的导体层2上去除直径200微米的大致正圆状铜箔,而且对其周围几乎不出现热影响,可以在该去除处下方加工玻璃纤维布伸出少、大体上光滑的孔,深达最下面导体4的铜箔。
图24所示的微细去除部30也可代之以在导体层2的表面进行符号31所示的表面粗糙化处理,如图25所示。此粗糙化处理的例子是利用通常为提高树脂层与导体层的粘附性而进行的化学处理。借助导体层2的表面粗糙化处理,可提高按所需形状去除导体层2的铜箔时对激光束的吸收率,能进行高效且较稳定的钻孔加工。
如上所述,预先用蚀刻稍许去除光束照射部的铜箔,或先进行表面粗糙化处理,该预处理部为吸收二氧化碳激光器的激光束27提供机会,即使不象实施形态9那样提高首次照射光束的能量密度,也能去除表面的铜箔。
此外,也可将实施形态10的预先用蚀刻稍许去除光束照射部铜箔的方法和表面粗糙化处理的方法合起来使用。还可将这两个方法的任一个和上述实施形态9合用。其中任一情况下,不象实施形态9那样提高最初照射光束的能量密度,都能去除表面的铜箔。
实施形态11
图26为本发明实施形态11的电路底板激光加光方法和加工装置的图解,图中,32为激光振振器,33为汇聚激光束用的fθ透镜,34为使用电流计式扫描器的光束扫描装置(光学手段),35为输出对光束扫描装置34的驱动指令和对激光振荡器32的振荡信触发信号的扫描驱动/激光触发装置(控制手段)。
下面说明其动作。
扫描驱动/激光触发装置35按规定的脉冲频率输出对激光振荡器32的激光振荡触发信号,同时也发出对2个光束扫描装置34的驱动指令,从而可与激光振荡器32发射的激光束27的脉冲频率同步地将激光束27的光点高速定位在具有多个开孔位置的印刷电路板1F的任意开孔位置上。
脉冲频率越高,每单位时间的加工速度越快。然而在一个位置的开孔加工需要照射多个脉冲时,若以高脉冲频率连续照射,则碳化层变厚,得不到良好的孔。例如,根据图6所示的关系,若光束照射休止时间未满15毫秒,即以高于67Hz的频率重复照射光束,则碳化层变厚。
因此,每一脉冲都将激光束27的光点依次移动到别的开孔位置,在扫描范围包含的多个开孔位置全部分别照射一个脉冲后(实际上是经过15毫秒以上后),或者从第一个开孔位置照射光束27开始经过15毫秒以上后,回到第一个开孔位置,再次按顺序移动光点。通过多次重复上述动作,可对一个开孔位置进行多次激光束扫描,并确保光束照射休止时间大于15毫秒。于是,例如采用图26所示的电流计式扫描器的光束扫描装置34,并在200Hz的频率使其同步时,每一个孔需要的时间为5毫秒,所以如果扫描范围内有3个以上开孔位置,并使光点依次在这些位置上移动,则各开孔位置上可确保光束照射休止时间在15毫秒以上。
如上所述,采用实施形态11,即使采用高脉冲频率的激光束27时,各被加工位置上照射光束,也能确保光束照射休止时间在15毫秒以上,因此,能加工高质量的孔而几乎不形成碳化层,而且无玻璃纤维布伸出,适于镀层。激光束27的光点扫描频率又可提高到其极限,因而能进行高速开孔,短时间完成多孔加工,所以可大幅度提高含玻璃纤维布的印刷电路板的生产率。
实施形态12
图27为本发明实施形态12的电路底板激光加工方法和加工装置的图解,图中,36为放在激光束27的光轴上的反射镜,37为载放3块印刷电路板,并使这些电路板在水平面内移动的X-Y工作台,即X-Y工作台37有3个加工位置。再者,38为X-Y工作台37的控制装置,39为旋转遮光器,40为触发信号发生装置,41为触发信号计数部,ST1~ST3分别为激光束27的1个脉冲。本实施形态12的电路底板激光加工方法是同时加工多块印刷电路权1F的,这里作为一个例子,讲述同时加工3块印刷电路板1F的方法。又,本实施形态中,光学手段由旋转遮光器39和反射镜36组成,同步控制手段由触发信号发生装置40和触发信号计数部41组成。
下面说明其动作。
如图28所示,各旋转遮光器39的结构为将安装成垂直于旋转轴的圆盘进行(3×n)等分(n=1、2、3……),各等分区沿旋转方向按反射面39a、通过部39b、通过部39b的顺序重复配置。图28所示的例中,旋转遮光器39为(3×4)等分,并具有4个反射面39a的十字形反射盘。
如图27所示,设置在激光振荡器32和反射镜36之间的2个旋转遮光器39设定成等分区错开一个,且同步、同速旋转。上述任一旋转遮光器39上设有触发信号发生装置40,(3×n)个等分区分别与激光束27的光轴相交时,该装置40对触发信号计数部41输出触发信号。即触发信号发生装置40将其发生的触发信号送到触发信号计数部41。该计数部41对接收到的触发信号计数,同时若该计数有效(即没有达到规定的计数值),就将此触发信号送往激光振荡器32。该振荡器32经触发信号计数部41,收到触发信号发生装置40发出的触发信号时,立即以200微秒以下的脉冲宽度输出1个脉冲的激光束27。这样输出的任意3个连续脉冲激光束27分别由2个旋转遮光器39和反射器36中的任一个,依次进行的反射,将光束导至3个加工位置,再通过ZnSe透镜9分别照射在3块印刷电路板1F上。触发信号计数部41若计数到规定的触发信号数,则其后输往激光振荡器32的触发信号无效,并对X-Y工作台37的控制装置38发送工作台移动触发信号,X-Y工作台37定位完毕,则接收X-Y工作台37的控制装置38发来的定位完毕信号,又使触发信号有效。
图29示出本实施形态12中触发信号和激光脉冲的时序图。如图29所示,在各加工位置上,对于触发信号发生装置40发生的3个触发信号,只有标号ST1、ST2和ST3中任一个所示的激光束27照射一次,所以转动旋转遮光器39,使触发信号发生装置40的触发周期例如在5毫秒以上时,则各加工位置以15毫秒以上的时间间隔受到脉冲光束照射,根据图6所示的关系,这样可进行碳化层出现少的良好开孔加工。一处开孔加工需要m次光束照射而依次加工别的孔时,将触发信号计数部41的规定触发信号数取为(3×m)次,因而可重复进行光束照射和工作台移动,加工3块印刷电路板1F的全部区域。
如上所述,采用实施形态12,将旋转遮光器39的旋转速度设定成各加工位置上激光束27的能量没有减少,而且以15毫秒以上的时间间隔收到该光束27,所以可同时对多块印刷电路板1F加工高质量的孔,无玻璃纤维布伸出、适于镀层,又能迅速加工包含玻璃纤维布的印刷电路板1F,大幅度提高生产率。若将本实施形态12与上述实施形态11的光束扫描装置34相结合,则可减少移动工作台所需要的时间,还能高速加工多块印刷电路板。
实施形态13
图30为表示本实施形态13的电路底板加工用二氧化碳激光振荡器的立体图,图中,42为一对放电电极,用来在其间隙形成放电空间43,44为谐振镜,45为用作激光介质的气流,46为激光束27的光轴,47为选择激光束27的模数的孔口。这样做成激光束27的光轴46、气流45和放电方向三者相互垂直的系统通常称为三轴正交型激光振荡器。
下面说明其动作。
由放电电极42投入放电电力而形成的放电空间43输入的气流45包含的分子受放电能量激励,具有光增益。若稳定地形成放电空间43,则形成图31(a)那样在放电空间43中气流的下流附近形成具有峰值的稳定增益分布。因此,为了高效获取稳定的激光振荡,即连续波输出(CW输出),如图31(b)所示,需要在纵向通过增益分布最大的放电空间43的气流下流处的线上,配置光轴46和孔口47。已有的一般三轴正交型二氧化碳激光振荡器具有上述结构。
反之,本发明实施形态13印刷的电路底板加工用二氧化碳激光振荡器与以往不同,如图32所示,孔口47配置在不超出放电空间43的范围内,使光轴46设在放电空间43的气流最上流处的纵向线上。
在图31(b)所示的已有结构中,可认为在放电空间43的气流上流处的A点,其激励分子的能量到达光轴46上的B点时变换成激光束27,设气流流速为V,A点到B点的距离为X,则放电结束瞬间在A点的激励分子经过时间(X/V)后,变换成激光束27。因此,如图31(b)所示,光轴46配置在放电空间46的气流下流处时,放电停止后到激光束27消失所需的时间,像示于图30的本实施形态13的结构那样,与光轴46配置在放电空间46上流处时相比,该时间较长,因而脉冲振荡时的激光脉冲下降时间变慢。例如,A、B间的距离(即放电电极42的宽度)为30mm,气流流速为80m/s的已有的激光振荡器,激光脉冲下降时间为375微秒,即使缩短放电电力本身的下降时间,也不能缩短激光脉冲的下降时间。
反之,采用图32所示的本实施形态13,孔口47配置在不超出放电空间46的范围内,而且光轴46配置在纵向通过放电空间43上流侧的线上,例如A、B间的距离设定为6.5mm,气流流速在80m/s的情况下,激光脉冲的下降时可做到81微秒。这时,若放电电力下降时间比脉冲下降时间长,则影响激光脉冲下降时间,所以要使放电电力下降时间足够短。图32所示本实施形态那样配置光轴46时,放电电力下降时间以50微秒以下为佳。图32所示本实施形态13那样配置光轴46时,放电电力的上升时间也影响激光脉冲的上升时间,所以为了取得200微秒以下的短脉冲宽度,放电电力的上升时间同样以50微秒以下为佳。
如上所述,采用本实施形态13,可实现具有以往二氧化碳激光器不能达到的陡峭上升沿和下降沿,且脉冲宽度为200微秒以下的激光脉冲。将此激光脉冲用于印刷电路板加工,可避免玻璃纤维布伸出和发生碳化层。
综上所述,采用权利要求1所述的发明,电路底板激光加工方法安排成将激光束以10微秒至200微秒范围的光束照射时间,能量密度取为20焦耳/厘米2以上,脉冲性地照射电路底板的被加工部,因而所具效果为可对由混入玻璃纤维布等的复材料组成的电路板进行通孔和盲辅助孔的钻削、槽缝加工、外形切割等方面的良好且微细的加工。
采用权利要求2所述的发明,电路底板激光加工方法安排成激光束隔开15毫秒以上的光束照射休止时间间隔,以20焦耳/厘米2以上的能量密度,对电路底板的同一被加部进行脉冲性照射,因而所具效果为,可获得单脉冲时得不到的高深宽比导通孔,还能减少玻璃纤维布伸出,即使作多脉冲照射时,也能快速且高精度地加工包含玻璃纤维布的电路底板。
采用权利要求3所述的发明,电路底板激光加工方法安排成将分别具有20焦耳/厘米2以上能量密度的多个脉冲分别组成的多个脉冲群的激光束,隔开比规定光束照射休止时间长的脉冲群间照射休止时间间隔,脉冲性照射电路底板的同一被加工部,因而所具效果为,能以比用单脉冲频率加工时短的时间取得导通孔,还能防止加工部温度升高,抑制对从加工部表面深入的距离的温度梯度平缓变化,减少玻璃纤维布伸出。
采用权利要求4所述的发明,电路底板激光加工方法安排成在激光束脉冲性照射电路底板被加工部,并一边扫描电路底板表面时,该扫描使不超过15毫秒的光束照射休止时间间隔中没有连续发生4个以上脉冲的激光束照射被加工部,因而其效果为可抑制加工孔碳化层的出现,而且在与对各加工部决定激光束位置后加工时的加工质量维持相同的状态下,可增大加工速度。
采用权利要求5所述的发明,电路底板激光加工方法安排成将电路底板被加工部表面上的光束直径取为1mm,以10微秒至200微秒范围的光束照射时间,隔开2.5毫秒的光束照射休止时间间隔,使激光束照射被加工部,并一边以8m/分至6m/分范围内的扫描速度扫描电路底板的表面,因而其效果为在维持与对各加工部给激光束分别定位后加工时的加工质量相同的状态下,可增加加工速度,对混入玻璃等的复合材料构成的电路板能进行开盲辅助孔等良好且微细的加工。
采用权利要求6所述的发明,电路底板激光加工方法安排成使对电路底板被加工部有效的激光束光点为方形,而且激光束脉冲性照射电路底板被加工部,并一边扫描电路底板的表面,因而其效果为保持良好的加工质量,同时可比圆形光束时加快加工速度。
采用权利要求7所述的发明,电路底板激光加工方法安排成预先去除电路底板被加工部对应的电路底板上的金属层部分,通过去除金属层的部分,对被加工部的基体材料照射激光束,从而加工成基体材料去除部,再对基体材料及其外围,或仅对其外围照射激光束,因而其效果为在去除的体积大的加工中,也不需要湿刻蚀等复杂的工序,能简便地去除加工时产生的坚固的再附着物。
采用权利要求8所述的发明,电路底板激光加工方法安排成在预先去除被加部对应的电路底板的金属层部分时,部分去除金属层,使激光束仅到达被加工部基体材料照射激光后要形成的基体材料去除部的外周,因而其效果为,在去除部对非去除部的比例大的加工中,不发生金属层剥落等不良现象,加工情况良好。
采用权利要求9所述的发明,电路底板激光加工方法安排成预先去除被加工部对应的电路底板上的金属层部分,在激光束通过金属层去除部分,对被加工部的基体材料边扫描激光束边照射进行加工时,使气体从被加工部的激光束扫描起始点向朝着激光束扫描终止点的方向流过,因而其效果为在去除的体积大的加工中,也可有效地排除残留再附着物对加工的不良影响,显著减少上述再附着物的残留区域。
采用权利要求10所述的发明,电路底板激光加工方法安排成,具有能熔化并去除金属层的强度的激光束进行脉冲照射,从而部分去除金层,形成具有所需形状的金属层,再通过去除金属层的部分,对电路底板的被加工部分照射具有不使金属层熔化的强度、10微秒至200微秒的光束照射时间、并以15毫秒以上的光束照射休止时间间隔连续发生的多个脉冲的激光束,因而其效果为无需预先用蚀刻等方法去除电路板表面的金属层,即使是表面贴铜箔并含有玻璃纤维布的电路底板,也能仅用激光加工工序快速且高精度地加工。
采用权利要求11所述的发明,电路底板激光加工方法安排成,将激光束光点与激光束脉冲频率同步地依次在电路底板各目标位置定位,并一边脉冲式照射激光束时,要求分别照射各目标位置的任意2个连续的脉冲状激光束之间的时间间隔不论脉冲频率高低,均为15毫秒以上,使在该期间输出的脉冲状激光光束照射别的目标位置,因而其效果为,在使用高脉冲频率的激光束时,也能确保各被加工处进行光束照射有15毫秒以上的光束照射休止时间,能加工出高质量的孔,几乎不形成碳化层,而且无玻璃纤维布伸出、适于镀层。再者,可将激光束光点扫描频率提高至极限值,因而可高速进行开孔,短时间完成多孔加工,具有能大幅度提高电路底板生产率的效果。
采用权利要求12所述的发明,电路底板激光加工方法安排成,设置分别载放各应加工电路底板的多个加工位置,激光振荡器脉冲输出的激光束按每一脉冲依次分配给多个加工位置的每一个,同时隔开15毫秒以上的时间间隔,将各脉冲状激光束分别引导到各加工位置,因而其效果为,能以多加工位置快速加工导通孔,而且加工孔质量不下降,可大幅度提高电路底板的生产率。
根据权利要求13所述的发明,电路底板激光加工装置做成,具备用于使激光束光点在电路底板各目标位置依次定位,并一边使激光束改变方向,在电路底板上移动的光学手段,还具备控制手段,用来对激光振荡器的脉冲振荡动作和光学手段的动作进行同步控制,并控制光学手段,使分别照射各目标位置的任意2个连续的脉冲状激光束之间的时间间隔,不论激光振荡器的脉冲频率高低,均为15毫秒以上,因而其效果为,即使在使用高脉冲频率激光束时,也能确保各被工加位置光束照射具有15毫秒以上的光束照射休止时间,所以能加工高质量的孔,几乎不形成碳化层,而且无玻璃纤维布伸出,适于镀层。再者,可将激光束光点扫描频率提高至极限值,所以能高速进行开孔,短时间完成多孔加工,具有可大幅度提高电路底板生产率的效果。
采用权利要求14所述的发明,电路底板激光加工装置做成,具备光学手段,用来将激光振荡器脉冲输出的激光束按每一脉冲依次分配给多个加工位置中的每一个,同时隔开15毫秒以上的时间间隔,使脉冲状激光束按每一脉冲分别向各加工位置导光,此外,还具备控制使光学手段的分配动作与激光振荡器的脉冲振荡动作同步的同步控制手段,因而其效果为,能以多加工位置快速加工孔,而且加工孔质量不下降。
采用权利要求15所述的发明,电路底板加工用的二氧化碳激光振荡器做成,放电空间在气流方向的长度至少大于孔口宽度,并将成为孔口中心的光轴设定为在孔口的整个区域不超出放电空间在气流方向的长度区域的范围内,对于气流位于最上侧,而且放电空间所投入的放电电力的上升时间和下降时间在50微秒以下,因而其效果为可缩短激光脉冲的上升和下降,取得适合电路底板加工的光束照射时间的激光束。

Claims (15)

1.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,将所述激光束以10微秒至200微秒范围的激光照射时间,能量密度取20焦耳/厘米2以上,脉冲性地照射所述电路底板的被加工部。
2.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,对所述电路底板的同一被加工部,所述激光束以10微秒至200微秒范围的激光照射时间、15毫秒以上的照射休止时间间隔,能量密度取20焦耳/厘米2以上,进行脉冲性照射。
3.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,将分别具有20焦耳/厘米2以上的能量密度,隔开规定的光束照射休止时间间隔发生的多脉冲激光束组合为一个脉冲群,对所述电路底板的同一被加工部,所述多个脉冲分别构成的多个脉冲群的激光束隔开比所述规定光束照射休止时间长的脉冲群间照射休止时间间隔,以10微秒至200微秒范围的激光照射时间进行脉冲性照射,所述规定的光束照射休止时间间隔为4毫秒或4毫秒以上。
4.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,在所述激光束以10微秒至200微秒范围的激光照射时间脉冲性照射所述电路底板被加工部,并同时扫描所述电路底板表面时,该扫描使在不超过15毫秒的光束照射休止时间间隔中连续4个以上脉冲的所述激光束不照射所述被加工部。
5.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,在一边使所述激光束脉冲式照射所述配线基板的被加工部,一边扫描所述配线基板表面时将所述被加工部表面上的光束直径定为1毫米,以10微秒至200微秒范围的光束照射时间,2.5毫秒的光束照射休止时间间隔,使所述激光束照射所述被加工部,并同时以8m/分至6m/分范围内的扫描速度扫描所述电路底板的表面。
6.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,使对所述电路底板被加工部的加工有效的所述激光束的光点形状采取方形,而且所述激光束一边以10微秒至200微秒范围的光束照射时间脉冲性照射所述电路底板的所述被加工部,一边扫描所述电路底板的表面。
7.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在基体材料表面形成金属层的电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,预先去除所述电路底板被加工部所对应的所述金属层部分,通过去除所述金属层的部分,对所述被加工部的基体材料以10微秒至200微秒范围的光束照射时间照射激光束,以实施加工、形成基体材料去除部,再对所述基本材料去除部及其周围,或仅对其周围再照射激光束。
8.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在基体材料表面形成金属层的电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,在预先去除所述电路底板被加工部所对应的所述金属层部分时,按照使激光束仅到达在所述被加工部基体材料以10微秒至200微秒范围的光束照射时间照射所述激光束后要形成的基体材料去除部的周围的要求,部分去除所述金属层。
9.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在基体材料表面形成金属层的电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,预先去除所述电路板被加工部所对应的所述金属层部分,在所述激光束通过所述金属层去除部分,对所述被加工部的基体材料边扫描激光束边以10微秒至200微秒范围的光束照射时间照射进行加工时,从所述被加工部的激光束扫描起始点朝向激光束扫描终点的方向通以气体。
10.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在基体材料表面形成金属层的电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,具有能熔化并去除所述金属层的强度的激光束进行脉冲照射,从而部分去除所述金属层,形成具有所需形状的所述金属层,再通过去除所述金属层的部分,对所述电路底板的被加工部照射具有不使所述金属层熔化的强度、10微秒至200微秒的光束照射时间,并以15毫秒以上的光束照射休止时间间隔连续发生的多个脉冲性激光束。
11.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,在将所述激光束光点与所述激光束脉冲频率同步地依次对所述电路底板各目标位置定位,并一边以10微秒至200微秒范围的光束照射时间脉冲性照射所述激光束时,要求分别照射所述各目标位置的任意2个连续脉冲状激光束之间的时间间隔不论脉冲频率高低,均为15毫秒以上,使在该期间输出的脉冲性激光束照射别的目标位置。
12.一种对含玻璃纤维布的电路底板进行激光加工的方法,其中,用激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,设置分别载放各应加工电路底板的多个加工工位,激光振荡器脉冲输出的激光束按每一脉冲依次分配给所述多个加工工位中的每一个,同时隔开15毫秒以上的时间间隔,以10微秒至200微秒范围的光束照射时间,将脉冲状的所述激光束分别引导到各加工工位。
13.一种对含玻璃纤维布的电路底板进行激光加工的电路底板激光加工装置,用激光振荡器发射的激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,具备用于使所述激光束光点在所述电路底板各目标位置依次定位,并一边使所述激光束改变方向,在所述电路底板上移动的光学手段,还具备控制手段,用来对所述激光振荡器的脉冲振荡动作和所述光学手段的动作进行同步控制,并控制所述光学手段,使分别以10微秒至200微秒范围的光束照射时间照射所述各目标位置的任意2个连续的激光束脉冲之间的时间间隔不论激光振荡器的脉冲频率高低,均为15毫秒以上。
14.一种对含玻璃纤维布的电路底板进行激光加工的电路底板激光加工装置,用激光振荡器发射的激光束在电路底板上进行开通孔和盲辅助孔的钻孔加工、槽缝加工、外形切割加工,其特征在于,具备光学手段,用来将所述激光振荡器脉冲输出的激光束按每一脉冲依次分配给多个加工工位中的每一个,而且隔开15毫秒以上的时间间隔,将以10微秒至200微秒范围的光束照射时间的脉冲状的所述激光束按每一脉冲分别向所述各加工工位引导,此外,还具备控制使所述光学手段的分配动作与所述激光振荡器的脉冲振荡动作同步的同步控制手段。
15.一种对含玻璃纤维布的电路底板进行激光加工的电路底板加工用的二氧化碳激光振荡器,具有在作为激光介质的高速气流中脉冲性投入放电电力而形成的放电空间,从所述放电空间提取激光束,并使该激光束的光轴与所述气流垂直的孔口,其特征在于,所述放电空间在气流方向的长度至少大于所述孔口宽度,并将构成所述孔口中心的所述光轴设定为在所述孔口的整个区域不超出所述放电空间在气流方向的长度区域的范围内,对于所述气流位于最上流侧,而且在所述放电空间投入的放电电力的上升时间和下降时间分别为50微秒以下;光束照射时间为10微秒至200微秒范围。
CN96111476A 1995-08-07 1996-08-07 电路底板激光加工法及其加工装置和二氧化碳激光振荡器 Expired - Lifetime CN1098022C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20119495 1995-08-07
JP201194/95 1995-08-07
JP059862/96 1996-03-15
JP8059862A JPH09107168A (ja) 1995-08-07 1996-03-15 配線基板のレーザ加工方法、配線基板のレーザ加工装置及び配線基板加工用の炭酸ガスレーザ発振器

Publications (2)

Publication Number Publication Date
CN1142743A CN1142743A (zh) 1997-02-12
CN1098022C true CN1098022C (zh) 2003-01-01

Family

ID=26400942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96111476A Expired - Lifetime CN1098022C (zh) 1995-08-07 1996-08-07 电路底板激光加工法及其加工装置和二氧化碳激光振荡器

Country Status (5)

Country Link
US (1) US20030146196A1 (zh)
JP (1) JPH09107168A (zh)
KR (1) KR100199955B1 (zh)
CN (1) CN1098022C (zh)
TW (1) TW312082B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857207A (zh) * 2012-11-30 2014-06-11 宏启胜精密电子(秦皇岛)有限公司 电路板及其制作方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861364B1 (en) * 1999-11-30 2005-03-01 Canon Kabushiki Kaisha Laser etching method and apparatus therefor
US6281471B1 (en) * 1999-12-28 2001-08-28 Gsi Lumonics, Inc. Energy-efficient, laser-based method and system for processing target material
US7671295B2 (en) 2000-01-10 2010-03-02 Electro Scientific Industries, Inc. Processing a memory link with a set of at least two laser pulses
US6705914B2 (en) 2000-04-18 2004-03-16 Matsushita Electric Industrial Co., Ltd. Method of forming spherical electrode surface for high intensity discharge lamp
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
JP4634692B2 (ja) * 2001-01-31 2011-02-16 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド レーザ処理方法
DE10296376T5 (de) 2001-04-05 2004-04-15 Mitsubishi Denki K.K. Kohlenstoffdioxidlaser-Bearbeitungsverfahren von Mehrschichtmaterial
JP5028722B2 (ja) * 2001-07-31 2012-09-19 三菱電機株式会社 レーザ加工方法及びレーザ加工機
DE10145184B4 (de) * 2001-09-13 2005-03-10 Siemens Ag Verfahren zum Laserbohren, insbesondere unter Verwendung einer Lochmaske
US20030155328A1 (en) * 2002-02-15 2003-08-21 Huth Mark C. Laser micromachining and methods and systems of same
ATE534142T1 (de) 2002-03-12 2011-12-15 Hamamatsu Photonics Kk Verfahren zum auftrennen eines substrats
WO2003084012A1 (fr) * 2002-04-02 2003-10-09 Mitsubishi Denki Kabushiki Kaisha Procede et systeme d'usinage laser
DE102004014277A1 (de) * 2004-03-22 2005-10-20 Fraunhofer Ges Forschung Verfahren zum laserthermischen Trennen von Flachgläsern
TW200617794A (en) * 2004-09-14 2006-06-01 Oji Paper Co Tape with built-in IC chip, production method thereof, and sheet with built-in IC chip
EP2772333B1 (en) * 2004-12-30 2016-05-18 Light Matter Interaction Inc. Apparatus for laser processing a biological material
JP5030512B2 (ja) * 2005-09-30 2012-09-19 日立ビアメカニクス株式会社 レーザ加工方法
CN1939644B (zh) * 2005-09-30 2012-10-17 日立比亚机械股份有限公司 激光加工方法以及激光加工装置
JP2008212999A (ja) 2007-03-06 2008-09-18 Disco Abrasive Syst Ltd レーザー加工装置
JP5553397B2 (ja) * 2007-07-19 2014-07-16 日東電工株式会社 レーザー加工方法
RU2526681C2 (ru) * 2009-01-28 2014-08-27 Олбани Интернешнл Корп. Ткань для бумагоделательной машины, предназначенная для производства бумажных салфеток и бумажных полотенец, и способ ее изготовления
EP2396138A4 (en) * 2009-02-13 2013-12-04 Videojet Technologies Inc ADJUSTING LASER PARAMETERS
US8529991B2 (en) * 2009-07-31 2013-09-10 Raytheon Canada Limited Method and apparatus for cutting a part without damaging a coating thereon
CN101969746B (zh) * 2010-11-04 2012-05-09 沪士电子股份有限公司 印刷电路板镂空区局部除电镀铜的方法
CN103282155B (zh) * 2011-01-05 2015-08-05 株式会社之技术综合 光加工装置
JP5839876B2 (ja) * 2011-07-27 2016-01-06 古河電気工業株式会社 レーザ加工用銅板および該レーザ加工用銅板を用いたプリント基板、並びに銅板のレーザ加工方法
JP2014120568A (ja) * 2012-12-14 2014-06-30 Showa Denko Packaging Co Ltd 配線基板の表裏導通方法
CN103909351A (zh) * 2013-01-04 2014-07-09 欣兴电子股份有限公司 线路板以及此线路板的激光钻孔方法
CN103286456B (zh) * 2013-05-07 2015-07-01 大族激光科技产业集团股份有限公司 激光切割装置及切割方法
JP6110225B2 (ja) * 2013-06-25 2017-04-05 ビアメカニクス株式会社 レーザ穴明け加工方法
CN103747636A (zh) * 2013-12-24 2014-04-23 广州兴森快捷电路科技有限公司 镀金线路板引线回蚀的方法
JP6134914B2 (ja) * 2014-09-08 2017-05-31 パナソニックIpマネジメント株式会社 コンフォーマルマスク材料のレーザ加工方法
CN106199830A (zh) * 2015-05-08 2016-12-07 中兴通讯股份有限公司 光波导的制备方法及装置
CN105578771A (zh) * 2015-12-31 2016-05-11 广州兴森快捷电路科技有限公司 电路板内槽的加工方法
JP2020109820A (ja) * 2019-01-01 2020-07-16 大船企業日本株式会社 プリント基板のレーザ加工方法およびプリント基板のレーザ加工機
CN112444162B (zh) * 2019-09-02 2023-10-13 西安尚道电子科技有限公司 一种导电布精度靶板制造方法
CN114365585A (zh) * 2019-09-13 2022-04-15 株式会社Zefa 电路成型部件以及电子设备
CN113099615B (zh) * 2021-04-01 2022-09-06 深圳市祺利电子有限公司 一种大尺寸线路板钻孔定位方法
CN112992880B (zh) * 2021-04-25 2023-08-15 江西沃格光电股份有限公司 一种Mini-LED背光板通孔的形成方法及电子设备
CN114152614A (zh) * 2021-12-24 2022-03-08 深圳技师学院(深圳高级技工学校) 一种覆盖膜激光切割碳化程度的测量方法
CN117464170B (zh) * 2023-12-27 2024-04-02 武汉铱科赛科技有限公司 一种层间电连激光加工方法、设备、装置及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857207A (zh) * 2012-11-30 2014-06-11 宏启胜精密电子(秦皇岛)有限公司 电路板及其制作方法
CN103857207B (zh) * 2012-11-30 2017-03-01 碁鼎科技秦皇岛有限公司 电路板及其制作方法

Also Published As

Publication number Publication date
KR970013540A (ko) 1997-03-29
JPH09107168A (ja) 1997-04-22
TW312082B (zh) 1997-08-01
KR100199955B1 (ko) 1999-06-15
CN1142743A (zh) 1997-02-12
US20030146196A1 (en) 2003-08-07

Similar Documents

Publication Publication Date Title
CN1098022C (zh) 电路底板激光加工法及其加工装置和二氧化碳激光振荡器
TWI668752B (zh) Wafer generation method
CN111070433B (zh) 一种多场辅助的金刚石切削设备
JP7166893B2 (ja) ウエーハの生成方法
CN1286608C (zh) 层叠材料的激光加工方法和装置
CN1728342A (zh) 基板的分割方法
JP2009269057A (ja) レーザ加工方法及びレーザ加工装置
TW201635363A (zh) 晶圓的生成方法
CN1642688A (zh) 激光加工方法
TW201639018A (zh) 晶圓的生成方法
JP2005135964A (ja) ウエーハの分割方法
CN101057317A (zh) 激光加工方法和半导体芯片
KR101409520B1 (ko) 레이저 절단방법 및 레이저 절단장치
CN101057318A (zh) 激光加工方法
JP2013089714A (ja) チップ形成方法
CN111215765B (zh) 一种紫外激光加工精密感光孔的加工方法及激光设备
TW200924894A (en) Laser processing apparatus
JP2018026470A (ja) ウエーハ生成方法
JP2011233641A (ja) 板状物のレーザー加工方法
CN111055028A (zh) 基于等离子体的扩展可控裂纹的激光切割装置及方法
JP2012195472A (ja) 非線形結晶基板のレーザー加工方法
CN1939644A (zh) 激光加工方法以及激光加工装置
CN106313338A (zh) 一种超声辅助的陶瓷激光钻孔方法及装置
JP2007021527A (ja) レーザ加工方法
JP5495048B2 (ja) レーザ加工方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20030101

EXPY Termination of patent right or utility model