CN1286608C - 层叠材料的激光加工方法和装置 - Google Patents

层叠材料的激光加工方法和装置 Download PDF

Info

Publication number
CN1286608C
CN1286608C CNB028116860A CN02811686A CN1286608C CN 1286608 C CN1286608 C CN 1286608C CN B028116860 A CNB028116860 A CN B028116860A CN 02811686 A CN02811686 A CN 02811686A CN 1286608 C CN1286608 C CN 1286608C
Authority
CN
China
Prior art keywords
mentioned
laser
processing
laser beam
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028116860A
Other languages
English (en)
Other versions
CN1531471A (zh
Inventor
小林信高
竹野祥瑞
伊藤健治
森安雅治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN1531471A publication Critical patent/CN1531471A/zh
Application granted granted Critical
Publication of CN1286608C publication Critical patent/CN1286608C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0038Etching of the substrate by chemical or physical means by laser ablation of organic insulating material combined with laser drilling through a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0112Absorbing light, e.g. dielectric layer with carbon filler for laser processing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/111Preheating, e.g. before soldering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laser Beam Processing (AREA)

Abstract

提供一种层叠材料的激光加工方法和装置,利用激光束加工层叠了1个以上的导体层和绝缘层的层叠材料。在激光加工方法中,通过对导体层照射激光束以形成加工孔。接着,对该加工孔照射加工点中的光束直径比对导体层照射的激光束光束直径小的激光束以加工层叠在导体层上的绝缘层,或者,使形成加工孔时的加工点中的光束直径为恒定,对加工孔照射峰值输出更低的激光束来加工与半导体层层叠的绝缘层。在激光加工装置中,控制成使开口与成像透镜之间的光路可变且使成像透镜与成像点之间的光路可变,或者控制成使开口、反射镜和成像透镜的位置固定且使反射镜的反射面形状可变,或者控制成通过改变组合透镜中多个透镜间的间隔来使成像透镜的焦点距离可变。

Description

层叠材料的激光加工方法和装置
技术领域
本发明涉及层叠材料的激光加工方法和装置,更详细地说,涉及在被称为印刷基板的层叠布线基板中利用激光进行开孔加工和槽加工的方法和装置。
背景技术
例如,如图19中所示,印刷基板1由绝缘材料2和被固定在绝缘材料2的两表面上的铜箔4和铜箔6构成。绝缘材料2是将环氧树脂浸在将纤维束(玻璃布)10编织成网格状的材料中并使之硬化而形成的。上述纤维束是将40条至60条的直径为几μm的玻璃纤维8捆在一起成为一束而形成的。
在这样的印刷基板1中,在导电性地连接被固定在绝缘材料2的两表面上的铜箔4与铜箔6时,以往利用钻头形成贯通印刷基板1的被称为通孔的贯通孔,在该贯通孔的内壁上进行铜电镀而形成了导体层。但是,在以这种方式利用钻头进行开孔的情况下,如果孔径为φ200μm以下,则存在钻头的损耗激增、开孔中容易发生钻头折断和加工速度显著地变慢等的问题。此外,在利用钻头进行开孔的情况下,在被加工的贯通孔的剖面中表面粗糙度非常大,为几十μm,故难以利用电镀处理在其剖面上形成均匀的导体层。
为了解决这样的问题,在American Society of MechanicalEngineers 90-WA/EFP-36中提出了利用激光来代替钻头形成贯通孔的方法。如图20中所示,该方法是通过对印刷基板1照射激光20来除去铜箔4及铜箔6和玻璃纤维8及环氧树脂来形成贯通孔14的方法。
此外,在特开平3-27885号公报中公开了在使激光成为脉冲化的激光来加工铜箔的情况和加工绝缘材料的情况下使激光的峰值输出变化的激光加工方法。如果使用图19来说明,则在该激光加工方法中在加工铜箔4的情况和加工铜箔6的情况下,使用相同的高峰值输出的激光束,在加工绝缘材料2的情况下,使用低峰值输出的激光束,由此来减小上述的孔剖面的表面粗糙度。
发明内容
(本发明要解决的技术问题)
但是,在使用激光进行加工的情况下,如图21中所示,存在被加工的贯通孔14内产生约20μm的铜箔4、铜箔6和玻璃布10的朝向孔内的突出的问题。此外,存在贯通孔14的形状成为中间膨胀的形状的问题。再者,存在铜箔4及铜箔6中的孔径的离散性大的问题。如果铜箔4、铜箔6和玻璃布10的朝向贯通孔14内的突出为10μm以上、或贯通孔14的形状成为中间膨胀的形状、或铜箔4及铜箔6中的孔径的离散性变大,则难以在贯通孔14的内壁上形成均匀的导体层,铜箔4与铜箔6之间的导电性的连接的可靠性下降了。
此外,以上的问题也存在于在印刷基板1中形成盲孔(封闭孔)或进行槽加工的情况。如果朝向封闭孔内或槽内产生了约20μm的铜箔4或玻璃布10的突出,则存在在该封闭孔或槽的内壁上不能形成通用的金属膜等的均匀的膜的问题。
再者,希望缩短激光加工中的加工时间。
本发明的目的在于提供在层叠布线基板中在进行开孔加工或槽加工等的激光加工的情况下实现层叠材料的一部分不在孔或槽的内部突出、孔形状成为所希望的形状那样的可靠性高的加工的激光加工方法和装置。
(其解决方法)
根据本发明的第1层叠材料的激光加工方法,是利用激光束加工层叠了1个以上的导体层和绝缘层的层叠材料的方法。该方法包括:导体层加工步骤,对上述的导体层照射激光束以形成加工孔;以及绝缘层加工步骤,在上述的导体层加工步骤之后对上述的加工孔照射加工点中的光束直径比对上述的导体层照射的激光束光束直径小的激光束以加工层叠在上述的导体层上的绝缘层。
根据本发明的第2层叠材料的激光加工方法,是对层叠了1个以上的导体层和绝缘层的层叠材料照射激光束以形成贯通所述层叠材料的贯通孔的方法。在此,上述的层叠材料的激光束射出一侧的表面层是导体层。该方法由在上述的表面层上形成激光束吸收材料的步骤和形成贯通上述的层叠材料的贯通孔的步骤构成。
优选地,在上述的第2层叠材料的激光加工方法中,上述的激光束吸收材料是高分子材料。
再有,上述的第2层叠材料的激光加工方法可与上述的第1层叠材料的激光加工方法合并使用。
根据本发明的第3层叠材料的激光加工方法,是对层叠了1个以上的导体层和绝缘层的层叠材料照射激光束来进行开孔加工的方法。该方法包含:加热步骤,预先加热上述的导体层中由开孔加工除去的部分;以及加工步骤,对上述的加热步骤中被加热的部分照射激光束以进行开孔加工。
优选地,在上述的第3层叠材料的激光加工方法中,通过照射激光束来进行上述的加热步骤。
再有,上述的第3层叠材料的激光加工方法可与上述的第1层叠材料的激光加工方法合并使用。此时,优选地,上述的第1层叠材料的激光加工方法包含在上述的导体层加工步骤之前预先加热在上述的导体层中由加工除去的部分的加热步骤,在导体层加工步骤中对由上述的加热步骤加热了的部分照射激光束以形成加工孔。
再有,上述的第3层叠材料的激光加工方法可与上述的第2层叠材料的激光加工方法合并使用。此时,也可在层叠材料的激光束射出一侧的表面层(导体层)上形成激光束吸收材料,另一方面,在激光束入射的导体层中进行开孔加工的情况下,在预先加热由开孔加工除去的部分之后,对该已被加热的部分照射激光束。
再有,上述的第3层叠材料的激光加工方法可与上述的第1层叠材料的激光加工方法和上述的第2激光加工方法合并使用。
根据本发明的第4层叠材料的激光加工方法,是在包含由绝缘层和夹住该绝缘层的2个导体层构成的层叠部的、层叠了导体层和绝缘层的层叠材料中,照射激光束以形成贯通上述的层叠部的贯通孔的方法。该方法由下述步骤构成:第1加工步骤,对上述的层叠部的第1导体层照射第1激光束以形成加工孔;第2加工步骤,在上述的第1加工步骤之后使上述的第1加工步骤的加工点中的光束直径为恒定,对由上述的第1加工步骤形成的加工孔照射其峰值输出比上述的第1激光束的峰值输出低的第2激光束,进行上述的层叠部的绝缘层的加工;以及第3加工步骤,在上述的第2加工步骤之后使上述的第2加工步骤的加工点中的光束直径为恒定,对由上述的第2加工步骤形成的加工孔照射其峰值输出比上述的第1激光束的峰值输出低且比上述的第2激光束的峰值输出高的第3激光束,进行上述的层叠部的第2导体层的加工。
再有,上述的第4层叠材料的激光加工方法可与上述的第1层叠材料的激光加工方法合并使用。此时,在由绝缘层和夹住该绝缘层的2个导体层构成的层叠部中对上述的第1导体层照射上述的第1激光束以形成加工孔,其次,对上述的加工孔照射其峰值输出比上述的第1激光束的峰值输出低的、加工点中的光束直径小的第2激光束以加工上述的层叠部的绝缘层。
再有,上述的第4层叠材料的激光加工方法可与上述的第2层叠材料的激光加工方法合并使用。例如,在上述的层叠部的第2导体层是上述的层叠材料的表面层的情况下,优选地,在上述的第1加工步骤之前包含在上述的第2导体层上形成激光束吸收材料的步骤。
再有,上述的第4层叠材料的激光加工方法可与上述的第3层叠材料的激光加工方法合并使用。此时,在利用上述的第4层叠材料的激光加工方法进行层叠材料的导体层的激光加工的情况下,也可在预先加热该层叠材料的导体层中由加工除去的部分之后对该已被加热的部分照射激光束。
再有,上述的第4层叠材料的激光加工方法可与上述的第1层叠材料的激光加工方法、上述的第2层叠材料的激光加工方法和上述的第3层叠材料的激光加工方法中任意的2种方法或全部的加工方法合并使用。
根据本发明的第5层叠材料的激光加工方法,是在包含由绝缘层和夹住该绝缘层的2个导体层构成的层叠部的、层叠了导体层和绝缘层的层叠材料中,照射激光束以形成贯通上述的层叠部的贯通孔的方法。该方法包括下列步骤:第1加工步骤,对上述的层叠部的第1导体层照射第1激光束以形成加工孔;第2加工步骤,在上述的第1加工步骤之后与上述的第1加工步骤相比减小了功率密度来照射第2激光束,进行上述的层叠部的绝缘层的加工;以及第3加工步骤,在上述的第2加工步骤之后与上述的第1加工步骤相比降低了功率密度而且与上述的第2加工步骤相比提高了功率密度,对由上述的第2加工步骤形成的加工孔照射第3激光束,进行上述的层叠部的第2导体层的加工。
根据本发明的第6层叠材料的激光加工方法,是在包含由绝缘层和夹住该绝缘层的2个导体层构成的层叠部的、层叠了导体层和绝缘层的层叠材料中照射激光束以形成贯通上述的层叠部的贯通孔的方法。该方法包括下列步骤:第1加工步骤,对上述的层叠部的第1导体层照射第1激光束以形成加工孔;第2加工步骤,在上述的第1加工步骤之后使上述的第1加工步骤的加工点中的光束直径为恒定,对由上述的第1加工步骤形成的加工孔照射其峰值输出比上述的第1激光束的峰值输出低且其脉冲宽度比上述的第1激光束的脉冲宽度宽的第2激光束,进行上述的层叠部的绝缘层的加工;以及第3加工步骤,在上述的第2加工步骤之后使上述的第2加工步骤的加工点中的光束直径为恒定,对由上述的第2加工步骤形成的加工孔照射其峰值输出比上述的第1激光束的峰值输出低且其脉冲宽度比上述的第1激光束的脉冲宽度宽的第3激光束,其中,上述的第3激光束的峰值输出比上述的第2激光束的峰值输出高,上述的第3激光束的脉冲宽度比上述的第2激光束的脉冲宽度窄,进行上述的层叠部的第2导体层的加工。
根据本发明的层叠材料的激光加工装置,是对层叠了1个以上的导体层和绝缘层的层叠材料照射激光束以进行加工的装置。该装置包括:激光振荡器,能射出峰值输出不同的多个脉冲化了的激光束;开口,使从上述的激光振荡器射出的激光束的一部分通过;光路变更光学系统,使通过了上述的开口的激光束的光路发生变更;成像透镜,对上述的开口的像进行成像;以及控制部,控制上述的激光振荡器、上述的开口、上述的光路变更光学系统和上述的成像透镜的位置和动作。此外,上述的控制部使被成像的像的大小可变。
优选地,上述的层叠材料的激光加工装置在上述的开口与上述的光路变更光学系统之间的光路中还具备使光路长度可变的光路长度可变光学系统。此外,上述的控制部控制上述的光路长度可变光学系统,使上述的开口与上述的成像透镜之间的距离可变。
优选地,在上述的开口与上述的光路变更光学系统之间的光路中还具备反射镜。此外,上述的控制部使上述的反射镜的反射面形状可变。
优选地,在上述的层叠材料的激光加工装置中,上述的控制部使上述的反射镜的反射面形状成为旋转双曲面的一部分。
优选地,在上述的层叠材料的激光加工装置中,上述的控制部通过控制安装在上述的反射镜上的压电元件来使上述的反射镜的反射面形状可变。
优选地,在上述的层叠材料的激光加工装置中,上述的控制部使上述的开口的开口直径可变。
优选地,在上述的层叠材料的激光加工装置中,上述的控制部使上述的成像透镜的焦点距离可变。
(相对于现有技术的效果)
利用本发明的层叠材料的激光加工方法,可防止产生贯通孔的中间膨胀的现象。
利用本发明的层叠材料的激光加工方法,可减少作为层叠材料的激光入射侧的表面层的铜箔的孔径的离散性。
利用本发明的层叠材料的激光加工方法,可防止贯通孔内的铜箔或玻璃布的突出。
利用本发明的层叠材料的激光加工方法,可减少作为层叠材料的激光射出侧的表面层的铜箔的孔径的离散性。
利用本发明的层叠材料的激光加工装置,可简便地实现激光束的光束直径的变化,可简便地防止产生贯通孔的中间膨胀的现象。
附图说明
图1是示意性地示出本发明的实施方式1的层叠材料的激光加工方法的工序的图。
图2是说明在对铜箔的均匀的表面照射1个脉冲的脉冲宽度或1个脉冲的能量的能量不同的激光束的情况下该激光束的铜箔加工能力的曲线图。
图3是示意性地示出本发明的实施方式2的层叠材料的激光加工方法的工序的图。
图4是示意性地示出本发明的实施方式2的层叠材料的激光加工装置的图。
图5是示意性地示出开口直径连续可变光束光圈的图。
图6是示意性地示出本发明的实施方式3的层叠材料的激光加工装置的图。
图7是示意性地示出成像光学系统的基本结构的图。
图8是示意性地示出本发明的实施方式4的层叠材料的激光加工装置的图。
图9是示意性地示出使用了凸面镜和凹面镜的成像光学系统的基本结构的图。
图10是示意性地示出由反射镜的反射面的形状引起的反射的方式的差别的图。
图11是示意性地示出在图8的激光加工装置中使用的反射面形状可变反射镜的结构的图。
图12是示意性地示出本发明的实施方式5的层叠材料的激光加工装置的图。
图13是示意性地示出开口和透镜的聚光状态的图。
图14是示意性地示出本发明的实施方式6的层叠材料的激光加工装置的图。
图15是示意性地示出焦点距离可变转印透镜的结构的图。
图16是示意性地示出本发明的实施方式7的层叠材料的激光加工方法的工序的图。
图17是示意性地示出本发明的实施方式8的层叠材料的激光加工方法的工序的图。
图18是示出铜中的二氧化碳气体激光器吸收率的温度依存性的曲线图。
图19是示意性地示出印刷基板的剖面的图。
图20是示意性地示出由现有的激光加工进行的通孔形成工序的图。
图21是示意性地示出由现有的激光加工形成的通孔的剖面的图。
具体实施方式
以下,使用附图说明本发明的实施方式。
<实施方式1>
在图1中示意性地示出本发明的实施方式1的层叠材料的激光加工方法的工序。在本实施方式中,所谓层叠材料,是层叠布线基板,被称为印刷基板。如图1中所示,印刷基板1由绝缘材料(绝缘层)2、在绝缘材料2的两个表面上被固定的铜箔(导体层)4和铜箔(导体层)6构成。绝缘材料2是玻璃环氧树脂,是将环氧树脂浸在将玻璃布10编织成网格状的材料中并使之硬化而形成的。上述玻璃布10是将40条至60条的直径为几μm的玻璃纤维捆在一起成为一束而形成的。在图1中示出的工序中,对铜箔4和铜箔6的厚度为12μm的、厚度为0.4mm的两面敷铜印刷基板(玻璃环氧树脂基板)1照射二氧化碳气体激光器的脉冲化的激光束以形成贯通孔14。
首先,对铜箔4照射以φ120μm进行了聚光的激光束20,在铜箔4的表面上形成加工孔22。此时,将激光束的脉冲导通(ON)时间(脉冲宽度)设定为3μs,将1个脉冲的激光能量设定为24mJ,通过照射该1个脉冲的激光束,在铜箔4的表面上形成φ100μm的加工孔22。再有,在以后的工序中,将激光束的聚光直径(加工点中的激光束直径)固定为φ120μm。
其次,在与加工孔22为相同的位置上,将激光束的脉冲导通时间设定为100μs,将1个脉冲的激光能量设定为10mJ,通过照射该4个脉冲的激光束,来加工绝缘材料2。再者,在相同的位置上,将激光束的脉冲导通时间设定为40μs,将1个脉冲的激光能量设定为8mJ,照射该1个脉冲的激光束,来加工铜箔6。由此,在印刷基板1上形成φ100μm的贯通孔14。
如果用显微镜来观察该贯通孔14的剖面,则孔径几乎不变化,其孔的中心轴线的方向与激光束的光轴方向一致。此外,可知在贯通孔14中,激光入射侧的铜箔4和激光射出侧的铜箔6的朝向孔内的突出为5μm以下,几乎不存在玻璃布10的朝向孔内的突出。
另一方面,为了与图1的工序的开孔加工相比,使用相同的印刷基板且相同的种类的激光,利用其它的不同的工序进行开孔加工。以下详细地说明这些比较试验。再有,在以下的比较试验中,将对铜箔4、绝缘材料2和铜箔6照射的激光束的聚光直径固定为φ120μm。作为第1比较试验,将激光束设定为在图1中加工铜箔4的条件(激光束的脉冲导通时间为3μs,将1个脉冲的激光能量为24mJ),对印刷基板1照射1个脉冲的激光。然后,在该相同的位置上,将激光束的脉冲导通时间设定为100μs,将1个脉冲的激光能量设定为10mJ,照射该5个脉冲的激光束。利用该工序,在印刷基板1上形成贯通孔14。但是,如果用显微镜来观察该贯通孔14的剖面,则激光射出侧的铜箔6在贯通孔14内约突出了约20μm。
此外,作为第2比较试验,将激光束设定为在图1中加工铜箔4的条件(激光束的脉冲导通时间为3μs,1个脉冲的激光能量为24mJ),对印刷基板1连续地照射5个脉冲的激光。利用该工序,在印刷基板1上形成贯通孔14。但是,如果用显微镜来观察该贯通孔14的剖面,则贯通孔14的形状为中间膨胀的形状,再者,激光入射侧的铜箔4、激光射出侧的铜箔6和玻璃布10在贯通孔14内约突出了约20μm。
再者,作为第3比较试验,将激光束设定为在图1中加工铜箔4的条件(激光束的脉冲导通时间为3μs,1个脉冲的激光能量为24mJ),对印刷基板1照射1个脉冲的激光。然后,在该相同的位置上,将激光束的脉冲导通时间设定为100μs,将1个脉冲的激光能量设定为10mJ,照射该4个脉冲的激光束。再者,在该相同的位置上,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为24mJ,照射该1个脉冲的激光束。利用该工序,在印刷基板1上形成贯通孔14。但是,如果用显微镜来观察该贯通孔14的剖面,则、激光射出侧的铜箔6在贯通孔14内约突出了约20μm。再有,该第3比较试验的方法是与在上述的特开平3-27885号公报中记载的方法同样的方法,在加工铜箔4的情况和加工铜箔6的情况下,使用相同的高峰值输出的激光束,在加工绝缘材料2的情况下,使用低峰值输出的激光束。
再者,作为第4比较试验,将激光束设定为在图1中加工铜箔4的条件(激光束的脉冲导通时间为3μs,1个脉冲的激光能量为24mJ),照射10个脉冲的激光。然后,在该相同的位置上,将激光束的脉冲导通时间设定为1μs,将1个脉冲的激光能量设定为10mJ,照射该10个脉冲的激光束。但是,如果用显微镜来观察该贯通孔14的剖面,则贯通孔14的形状为中间膨胀的形状,再者,激光入射侧的铜箔4、激光射出侧的铜箔6和玻璃布10在贯通孔14内约突出了约20μm。
在本实施方式的激光加工方法中,加工铜箔4时的激光束条件(激光束的脉冲导通时间为3μs,1个脉冲的激光能量为24mJ)、加工绝缘材料2时的激光束条件(激光束的脉冲导通时间为100μs,1个脉冲的激光能量为10mJ)和加工铜箔6时的激光束条件(激光束的脉冲导通时间为40μs,1个脉冲的激光能量为8mJ)是不同的。在此,使用以下的式(1)来计算加工各自的材料时的激光束的峰值输出。
峰值输出=1个脉冲的能量/脉冲导通时间(脉冲宽度)   (1)
据此,加工铜箔4时的激光束的峰值输出(8kW)比加工绝缘材料2时的激光束的峰值输出(100W)或加工铜箔6时的激光束的峰值输出(200W)高,加工铜箔6时的激光束的峰值输出(200W)比加工绝缘材料2时的激光束的峰值输出(100W)高。
此外,加工铜箔4时的激光束的脉冲宽度(3μs)比加工绝缘材料2时的激光束的脉冲宽度(100μs)或加工铜箔6时的激光束的脉冲宽度(40μs)短,加工铜箔6时的激光束的脉冲宽度(40μs)比加工绝缘材料2时的激光束的脉冲宽度(100μs)短。以下,详细地说明激光束的峰值输出或脉冲宽度的值的设定。
说明最初激光束的峰值输出的值的设定。再有,在激光加工中决定被加工物的加工状态的最重要的参数是激光束的功率密度,由下述的式(2)来表示。
功率密度=激光束的峰值输出/激光束的聚光直径     (2)
虽然本来应考虑该功率密度的值,但在本实施方式的激光加工方法和比较试验的激光加工方法中,由于将所照射的激光束的聚光直径保持为恒定(φ120μm),故使用峰值输出的值来考察。
首先,说明加工铜箔4和铜箔6时的激光束条件。由于一般来说铜的激光的反射率高、热传导良好,故铜是难以进行激光加工的材料。特别是,对铜箔4或铜箔6等的在印刷基板的表面上均匀地形成的铜箔来说,即使对其均匀的表面照射二氧化碳气体激光器的激光,该铜箔也反射所照射的二氧化碳气体激光器的激光的接近于99%,因而,加工是非常困难的。图2是说明在以相等的聚光直径对铜箔的均匀的表面照射1个脉冲的脉冲宽度或1个脉冲的能量的能量不同的激光束的情况下该激光束的铜箔加工能力的曲线图。曲线图的横轴表示激光束的脉冲宽度,纵轴表示激光束的1个脉冲的能量。在该曲线图中,照射具有某个脉冲宽度和某个每1脉冲的激光束,在能贯通厚度为18μm的铜箔的情况下,在该脉冲宽度的值与该1个脉冲的能量的值的交点上加上“◎”标记。同样,照射具有某个脉冲宽度和某个每1脉冲的激光束,在虽然能贯通厚度为12μm的铜箔但不能贯通厚度为18μm的铜箔的情况下,在该脉冲宽度的值与该1个脉冲的能量的值的交点上加上“○”标记。同样,照射具有某个脉冲宽度和某个每1脉冲的激光束,在都不能贯通厚度为12μm的铜箔和厚度为18μm的铜箔的情况下,在该脉冲宽度的值与该1个脉冲的能量的值的交点上加上“×”标记。如果根据图2中示出的激光束的脉冲宽度和1个脉冲的能量,使用式(1)来计算峰值输出,则在聚光直径为恒定的情况下,可知激光束的峰值输出越高,铜箔的贯通能力越高。
如果参照图2的曲线图,则在本实施方式的激光加工方法中加工铜箔4的激光束(激光束的脉冲导通时间为3μs,1个脉冲的激光能量为24mJ)具有能贯通厚度为18μm的铜箔的高的峰值输出(8kW),也能充分地加工在本实施方式的激光加工方法中使用的厚度为12μm的铜箔。即,在加工铜箔4的情况下,在图2的曲线图中被加上了“◎”的标记的激光束条件(激光束的峰值输出约为1kW以上)是必要的。
另一方面,在本实施方式的激光加工方法中加工铜箔6的激光束(激光束的脉冲导通时间为40μs,1个脉冲的激光能量为8mJ)的峰值输出(200W)比加工铜箔4的激光束的峰值输出低,在图2的曲线图中,不能充分地贯通厚度为12μm的铜箔。
在本实施方式的激光加工方法中,铜箔6的被照射激光束的表面与铜箔4的情况不同,是树脂侧的表面。为了提高与树脂的密接性,将该树脂侧的表面作成粗糙面,二氧化碳气体激光器的激光的反射率为60%至70%。该反射率比对铜箔6的均匀的表面照射二氧化碳气体激光器的激光时的反射率(约99%)低。因而,在本实施方式的激光加工方法中加工铜箔6的情况下,不需要为加工铜箔4所必要的高的峰值输出。
但是,对于铜箔6来说,根据铜这样的材料的特性,是热传导率和反射率比较高且是难以进行激光加工的材料,这一点是不变的。于是,为了加工铜箔6,某种程度的峰值输出是必要的。例如,在第1比较试验中,如果对铜箔6照射与绝缘材料2的加工时相同的低峰值输出(100W),则在贯通孔14内发生铜箔6的突出。
其次,说明加工绝缘材料2时的激光束条件。在加工绝缘材料2的情况下,必须使激光束的峰值输出比加工铜箔4和铜箔6时的激光束的峰值输出低。首先,与玻璃布10的朝向贯通孔14内的突出相关地说明加工绝缘材料2的激光束条件。
在激光加工时,由于因激光加工产生的除去物的缘故,激光被吸收、折射和散射。在此,所谓除去物,是通过照射激光束而熔融的树脂或玻璃和因树脂或玻璃的燃烧产生的残渣等。在开孔加工的情况下,由于加工中发生的除去物被封闭在孔的内部,故与表面附近的加工相比,更容易发生激光的吸收、折射和散射。激光束的功率密度越高,该吸收等的现象就越显著。
假如在绝缘材料2的加工中使用功率密度高的激光束,则由于所发生的除去物的缘故,非常容易引起激光的吸收、折射和散射。而且,进行加工的激光被折射和散射,其功率密度下降。功率密度下降了的激光只加工贯通孔14的内壁的环氧树脂。其结果,在贯通孔14内发生玻璃布10的突出。例如,在第2和第4比较试验中,在绝缘材料2的加工时,如果照射具有与铜箔4的加工时同样的(8kW)或在其以上的峰值输出(10kW)的激光束,则发生玻璃布10的突出。
在铜箔6的加工中使用高峰值输出的加工时的情况下,由于因吸收等引起的激光的功率密度的下降的缘故,铜箔6的加工也变得困难,在贯通孔14内也容易发生铜箔6的突出。例如,在第3和第4比较试验中,如果照射具有与铜箔4的加工时同样的(8kW)或在其以上的峰值输出(10kW)的激光束,则在贯通孔14内发生铜箔6的突出。
在本实施方式的激光加工方法中,在加工绝缘材料2和铜箔6的情况下,由于使激光束的峰值输出比加工铜箔4时的激光束的峰值输出低,故加工绝缘材料2和铜箔6时的功率密度比加工铜箔4时的功率密度低,可抑制因除去物引起的激光的吸收、折射和散射。于是,可防止玻璃布10或铜箔6在贯通孔14内突出。
其次,与贯通孔14的形状相关地说明加工绝缘材料2的激光束条件。如果在铜箔4上形成加工孔22,其后在其相同的位置上照射激光束,则在铜箔4的加工孔22中引起激光的衍射现象。由于该衍射现象的缘故,通过了铜箔4的激光在某个角度扩展。衍射角度与激光波长成比例,与加工孔22的直径成反比例。
一般来说,通过铜箔4的加工孔22的激光因衍射而扩展,功率密度下降。但是,能加工铜箔4的激光的最小功率密度比能加工树脂或玻璃布10的最小功率密度显著地大。如果在树脂或玻璃布10的加工中与铜箔4的加工时的激光束同样地使用高峰值输出的激光束,则由于通过铜箔4的加工孔22而扩展的激光具有在加工树脂或玻璃布10方面充分的功率密度,故所加工的贯通孔14呈中间膨胀的形状。例如,在第2和第4比较试验中,如果在树脂或玻璃布10的加工时照射具有与铜箔4的加工时同样的(8kW)或在其以上的峰值输出(10kW)的激光束,则所加工的贯通孔14呈中间膨胀的形状。
在本实施方式的激光加工方法中,在加工了铜箔4后加工绝缘材料2的情况下,通过照射峰值输出低的激光束,使衍射光的功率密度为能加工树脂或玻璃布10的最小功率密度以下。由此,可防止贯通孔14呈中间膨胀的形状。
再有,在本实施方式的激光加工方法中,加工点中的激光束直径为恒定的,通过使激光束的峰值输出变化,使功率密度变化。但是,按照式(2),即使使加工点中的激光束直径可变,也能使功率密度变化。在本实施方式的方法中,也改变加工点中的激光束直径,使功率密度变化。例如,为了在加工绝缘材料2的情况下使功率密度下降,也可对绝缘材料2照射与对铜箔4照射的激光束相比加工点中的光束直径大的激光束。即使对绝缘材料2照射与对铜箔4照射的激光束相比加工点中的光束直径大的激光束,对在铜箔4上形成的加工孔22的外侧照射的激光束也被铜箔4反射,对绝缘材料2照射的激光束的光束直径与加工铜箔4时的激光束直径相等。于是,即使使加工点中的激光束直径可变,也能形成剖面中的孔径为恒定的贯通孔14。
其次,说明激光束的脉冲宽度的值的设定。一般来说,在使用脉冲化的激光束的激光加工中,激光束的脉冲宽度与激光束的照射时间相等。于是,在被加工物中,激光束的脉冲宽度越短,每1脉冲的除去深度越浅,激光束的脉冲宽度越宽,每1脉冲的除去深度越深。因此,在本实施方式的方法中,在加工铜箔4的情况下,使激光束的脉冲宽度短至3μs,以免过深地加工铜箔4而到达绝缘材料2。此外,在加工绝缘材料2的情况下,为了使每1脉冲的除去深度较深而高效地加工,使激光束的脉冲宽度宽至100μs。
再者,在本实施方式的方法中,在加工铜箔6的情况下,将激光束的脉冲宽度设定为约30μs至50μs。这是因为,如果对铜箔6照射比该范围的脉冲宽度窄的脉冲宽度的激光束,则加工的效率下降,如果对铜箔6照射比该范围的脉冲宽度宽的脉冲宽度的激光束,则熔融了的铜增加,该熔融了的铜容易残留在贯通孔14的开口部附近(参照实施方式7)。
为了使激光束的峰值输出变化,也考虑了改变1个脉冲的激光能量,但在本实施方式的激光加工方法中,由于在激光加工中通过改变激光束的脉冲宽度,同时使激光束的峰值输出(功率密度)和激光束的照射时间变化,故可兼顾层叠材料的一部分朝向贯通孔14内突出的抑制和加工时间的缩短。
再有,在本实施方式的方法中,使用了最上层和最下层为导体层的印刷基板1,但也可在该最上层的导体层上和/或在该最下层的导体层下再形成绝缘层。即使在该情况下,也能应用本实施方式的激光加工方法,可得到同样的效果。
<实施方式2>
在图3中示意性地示出本发明的实施方式2的层叠材料的激光加工方法的工序。在本实施方式中,所谓层叠材料,与实施方式1同样,是厚度为0.4mm的两面敷铜(铜箔厚度为12μm)印刷基板(玻璃环氧树脂基板)1。在图3中,对与图1中的印刷基板1的结构相同的结构附以相同的符号。在图3中示出的工序中,对该印刷基板1照射二氧化碳气体激光器的脉冲化的激光束以形成贯通孔14。
在本实施方式的激光加工方法中,加工铜箔4时的加工点中的激光束直径与加工绝缘材料2和铜箔6时的加工点中的激光束直径不同。这一点是利用图4中示出的激光加工装置来实现的。图4是示意性地示出能变更加工点中的激光束直径的激光加工装置100的图。激光加工装置100具备二氧化碳气体激光振荡器102、转印掩模104、定位镜(检流镜)106、转印透镜108和加工台110。再者,激光加工装置100具备导电性地控制上述的构成要素的工作的控制装置112。例如,控制装置112使二氧化碳气体激光振荡器102产生具有所希望的脉冲宽度或1个脉冲的能量激的脉冲化的激光束。此外,控制装置112控制定位镜106的旋转,进行转印掩模104和转印透镜108的光路上的定位。再者,控制装置112使加工台110在被设置印刷基板1的平面上平行地移动。在图4中,为了简化起见,省略这些构成要素的每一个与控制装置112的连接。
以下,说明该激光加工装置100的动作。首先,使用φ1.8mm的转印掩模104和转印透镜108,使激光以约φ120μm在铜箔4上成像。如果详细地说明,则从二氧化碳气体激光振荡器102射出的激光束120的一部分通过转印掩模104,经过2片定位镜106到达转印透镜108。2片定位镜106决定激光束的朝向转印透镜108的入射角(入射位置)。转印透镜108对入射的激光进行聚光,在加工台110上设置的印刷基板1上对转印掩模104的像进行成像。印刷基板1的定位是通过被设置了印刷基板1的加工台110移动来进行的。最初,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为24mJ,照射该1个脉冲的激光束,在铜箔4上形成φ100μm的加工孔22(图3)。
其次,将转印掩模104改变成φ1.2mm,将激光束的脉冲导通时间设定为100μs,将1个脉冲的激光能量设定为10mJ,在与加工孔22相同的位置上照射4个脉冲,加工绝缘材料2。再者,在该相同的位置上,将激光束的脉冲导通时间设定为40μs,将1个脉冲的激光能量设定为8mJ,照射该1个脉冲的激光束,加工铜箔6。在此,加工点中的激光束的光束直径约为φ100μm。由此,在印刷基板1上形成贯通孔14。
如果用显微镜来观察该贯通孔14的剖面,则孔径几乎不变化,其孔的中心轴线的方向与激光束的光轴方向一致。此外,在贯通孔14中,几乎不存在激光入射侧的铜箔4和玻璃布10的朝向孔内的突出,激光射出侧的铜箔6的朝向孔内的突出为5μm以下。
在本实施方式的激光加工方法中,至少在对绝缘材料2和铜箔6照射激光束的情况下,照射其直径比在铜箔4上形成的加工孔22的直径小的激光束。由此,可抑制因加工孔22引起的激光束的衍射的发生,可防止贯通孔14呈中间膨胀的形状。
此外,在本实施方式的激光加工方法中,通过抑制因加工孔22引起的激光束的衍射的发生,可防止激光入射侧的铜箔4的朝向贯通孔14内的突出。
再有,在激光加工装置100中,在中途将转印掩模104的孔径从φ1.8mm变换成φ1.2mm,使加工点中的激光束的直径变化。但是,也可使用图5中示出的开口直径连续可变光束光圈来代替转印掩模104。将该开口直径连续可变光束光圈连接到控制装置112上,通过控制其开口直径,可简单地改变印刷基板1的加工点中的激光束直径,可容易地实现上述的激光加工方法。此外,可缩短激光加工的加工时间。
再有,对于在印刷基板1上形成贯通孔14的情况说明了本实施方式的激光加工方法,但即使在应用于在印刷基板1中形成封闭孔或进行槽加工的情况下,也能得到同样的效果。例如,在对铜箔4照射激光束形成了加工孔22后,通过对绝缘材料2照射其直径比对铜箔4照射的激光束的直径小的激光束来进行加工,可防止封闭孔或槽的形状成为与梯形等的所希望的形状不同的形状,可防止激光入射侧的铜箔4的朝向封闭孔内或槽内的突出。
再有,在本实施方式的激光加工方法中,使用了最上层和最下层为导体层的印刷基板1,但也可在该最上层的导体层上和/或在该最下层的导体层下再形成绝缘层。即使在该情况下,也能应用本实施方式的激光加工方法,可得到同样的效果。
再有,在本实施方式的激光加工方法中,使用了脉冲化的激光束来进行加工,但即使在使用连续振荡的激光束的情况下,通过改变激光加工中的功率密度或加工点中的激光束直径,也可得到同样的效果。此时,二氧化碳气体激光振荡器102使激光束连续地振荡。
<实施方式3>
在图6中示意性地示出本实施方式3的层叠材料的激光加工装置200的结构。激光加工装置200是在图4中示出的的激光加工装置100中附加了光路长度调整用凸V型镜(以下,称为「凸V型镜」)122和光路长度调整用凹V型镜(以下,称为「凹V型镜」)124的装置。在图6中,对与图4中的激光加工装置100相同的结构附以相同的符号,省略其说明。使用该激光加工装置200,以与实施方式2的激光加工方法相同的方法进行印刷基板1的激光加工(图3)。
在此,凸V型镜122是将2个反射面以V字型结合来形成凸型的反射面的光学元件,凹V型镜124是将2个反射面以V字型结合来形成凹型的反射面的光学元件。在激光加工装置200中,通过将凸V型镜122和凹V型镜124设置在转印掩模104与定位镜106之间的光路中,使光路长度变化。在本实施方式的激光加工装置200中,凸V型镜122的2个反射面构成的角度和凹V型镜124的2个反射面构成的角度为90度。而且,凸V型镜122的一个(第1)反射面被设置成与通过了转印掩模104的激光构成45度的角度。利用该凸V型镜122的第1反射面使通过了转印掩模104的激光朝向凹V型镜124反射。该凸V型镜122的反射面中的激光的入射方向与反射方向之间的角度为90度。由凸V型镜122反射的激光到达凹V型镜124的一个(第1)反射面。在此,将该凹V型镜124的第1反射面设置成与由凸V型镜122的第1反射面反射的反射光构成45度的角度。利用该凹V型镜124的第1反射面使激光再次反射。凹V型镜124的第1反射面中的激光的入射方向与反射方向之间的角度为90度。由凹V型镜124的第1反射面反射的激光到达凹V型镜124的另一个(第2)反射面。然后,到达了凹V型镜124的第2反射面的激光由于该反射面的缘故而朝向凸V型镜122反射。凹V型镜124的第2反射面中的激光的入射方向与反射方向之间的角度为90度。由凹V型镜124的第2反射面反射的激光到达凸V型镜122的第2反射面。凸V型镜122的第2反射面反射所接受的激光,引导到定位镜106上。凸V型镜122的第2反射面中的激光的入射方向与反射方向之间的角度为90度。利用以上的结构,通过固定凸V型镜122,使凹V型镜124与凸V型镜122和凹V型镜124之间的激光平行地移动,可使激光加工装置200中的光路长度变化。
以下,说明该激光加工装置200的动作。首先,使用φ1.8mm的转印掩模104和转印透镜108,使激光以约φ120μm在铜箔4上成像。以下详细地说明这一点。从二氧化碳气体激光振荡器102射出的激光束120的一部分通过转印掩模104,经过凸V型镜122、凹V型镜124和2片定位镜106到达转印透镜108。2片定位镜106决定激光束的朝向转印透镜108的入射角(入射位置)。转印透镜108对入射的激光进行聚光,在加工台110上设置的印刷基板1上对转印掩模104的像进行成像。最初,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为24mJ,照射该1个脉冲的激光束,在铜箔4上形成φ100μm的加工孔22。
其次,在转印掩模104的孔径为φ1.8mm的原有状态下,固定凸V型镜122,使凹V型镜124与凸V型镜122和凹V型镜124之间的激光平行地以从凸V型镜122离开的方式移动。而且,使转印透镜108与在加工台110上设置的印刷基板1之间的距离接近。利用控制装置112进行这些构成要素的定位。然后,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为11mJ,在与加工孔22相同的位置上照射4个脉冲,加工绝缘材料2。再者,在该相同的位置上,将激光束的脉冲导通时间设定为40μs,将1个脉冲的激光能量设定为8mJ,照射该1个脉冲的激光束,加工铜箔6。在此,加工点中的激光束的光束直径约为φ100μm。由此,在印刷基板1上形成贯通孔14。
以下叙述通过使转印掩模104与转印透镜108之间的光路长度变化来使加工点中的光束直径变化的原因。在图7中示意性地示出成像光学系统的基本结构。利用成像透镜34(转印透镜108)使通过了掩模30(转印掩模104)的激光束32聚光在成像点36(印刷基板1中的加工点)上。在该光学系统中,式(3)的关系成立。
1/a+1/b=1/f                (3)
a:掩模30与成像透镜34的主面之间的距离(以下,称为“掩模-透镜间距离”)
b:成像透镜34的主面与成像点36之间的距离(以下,称为透镜-成像点间距离”)
f:成像透镜34的焦点距离
根据式(3),掩模30的像以掩模的b/a的大小被成像(横倍率β=b/a)。在此,如果用掩模-透镜间距离a和焦点距离f来表示横倍率β,则式(4)的关系成立。
β=f/(a-f)            (4)
根据式(4),在焦点距离f为恒定的情况下,通过使掩模-透镜间距离a可变,可使横倍率β连续地变化。因而,通过使转印掩模104(掩模30)与转印透镜108(成像透镜34)之间的光路长度可变,在加工点上的光束直径变化。
此外,如果用掩模-透镜间距离a和焦点距离f来表示透镜-成像点间距离b,则式(5)的关系成立。
b=fa/(a-f)             (5)
根据式(5),在焦点距离f为恒定的情况下,如果打算使掩模-透镜间距离a可变,则必须也使透镜-成像点间距离b变化。因而,在使转印掩模104与转印透镜108之间的光路长度变化的同时,必须使转印透镜108与在加工台110上设置的印刷基板1之间的距离变化。在本实施方式的激光加工装置200中,通过使凸V型镜122与V型镜124之间的距离变化,可变更上述的掩模-透镜间距离a。此外,通过与该变化连动地使转印透镜108与在加工台110上设置的印刷基板1之间的距离变化,可变更上述的透镜-成像点间距离b。
在本实施方式的激光加工装置200中,使用凸V型镜122和凹V型镜124使转印掩模104与转印透镜108之间的光路长度变化,以使加工点的光束直径变化。作为最简单地改变上述的转印掩模104与转印透镜108之间的光路长度的方法,有在实施方式2中已说明的激光加工装置100中使用控制装置112等使转印掩模104的位置移动的方法。但是,如果打算能较大地移动转印掩模104,则激光加工装置200的外形变大。例如,如果打算使转移倍率为2/3,则必须使转印掩模104与转印透镜108之间的距离大致为原有的距离的1.5倍。如果象本实施方式的激光加工装置200那样能使用凸V型镜122和凹V型镜124使转印掩模104与转印透镜108之间的光路迂回来调节光路长度,则可减少装置的外形的扩大。
再有,即使在使用本实施方式的激光加工装置的情况下,也能得到在实施方式2中已说明的效果。
<实施方式4>
在图8中示意性地示出本实施方式4的层叠材料的激光加工装置300的结构。激光加工装置300是在图4中示出的的激光加工装置100中附加了倍率调整用反射面形状可变反射镜(以下,称为“反射面形状可变反射镜”)132和反射面形状可变反射镜134的装置。反射面形状可变反射镜是通过使其反射面的形状形状变化而能控制入射的激光束的光束扩展角的镜。该2个反射面形状可变反射镜(132、134)被设置在转印掩模104与定位镜106之间的光路中,利用控制装置112控制其反射面的形状。在图8中,对与图4中的激光加工装置100相同的结构附以相同的符号,省略其说明。使用该激光加工装置300,以与实施方式2的激光加工方法相同的方法进行印刷基板1的激光加工(图3)。
以下,说明该激光加工装置300的工作。首先,使用φ1.8mm的转印掩模104和转印透镜108,使激光以约φ120μm在铜箔4上成像。以下详细地说明这一点。从二氧化碳气体激光振荡器102射出的激光束120的一部分通过转印掩模104,经过反射面形状可变反射镜132、反射面形状可变反射镜134和2片定位镜106到达转印透镜108。最初,反射面形状可变反射镜132和反射面形状可变反射镜134的反射面都是平坦的,作为通常的反射镜来工作。2片定位镜106决定激光束的朝向转印透镜108的入射角(入射位置)。转印透镜108对入射的激光进行聚光,在加工台110上设置的印刷基板1上对转印掩模104的像进行成像。最初,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为24mJ,照射该1个脉冲的激光束,在铜箔4上形成φ100μm的加工孔22。
其次,在转印掩模104的孔径为φ1.8mm的原有状态下,使反射面形状可变反射镜132的反射面变成凸面,使反射面形状可变反射镜134的反射面变成凹面。由此,反射面形状可变反射镜132和反射面形状可变反射镜134分别控制光束扩展角136和光束扩展角138。然后,将扩展角被控制的激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为11mJ,在与加工孔22相同的位置上照射4个脉冲,加工绝缘材料2。再者,在该相同的位置上,将激光束的脉冲导通时间设定为40μs,将1个脉冲的激光能量设定为8mJ,照射该1个脉冲的激光束,加工铜箔6。在此,加工点中的激光束的光束直径约为φ100μm。由此,在印刷基板1上形成贯通孔14。
以下叙述通过使反射面形状可变反射镜132和反射面形状可变反射镜134的各自的反射面形状变化来使加工点中的光束直径变化的原因。图9中示意性地示出使用了凸面镜和凹面镜的情况的成像光学系统的基本结构。在图9中,通过了掩模40(转印掩模104)的激光束42的光束扩展角在朝向成像透镜48(转印透镜108)的入射前随使曲面形状变化的2片镜子(反射面形状可变反射镜132)44和镜子(反射面形状可变反射镜134)46而变化。这一点,从外观上讲,相当于成像透镜48的透镜位置移动。此时,以下的式(6)的关系成立。
a+b=a1+b1
β=b1/a1               (6)
a:掩模40与成像透镜48的主面之间的距离(掩模-透镜间距离)
b:成像透镜48的主面与成像点52(印刷基板1中的加工点)之间的距离(透镜-成像点间距离)
a1:掩模40与外观上的透镜50的主面之间的距离(以下,称为“外观上的掩模-透镜间距离”)
b1:外观上的透镜50的主面与成像点52之间的距离(以下,称为“外观上的透镜-成像点间距离”)
根据式(6),横倍率β由外观上的掩模-透镜间距离a1和外观上的透镜-成像点间距离b1来决定。因而,由于通过使反射面形状可变反射镜132和反射面形状可变反射镜134的反射面形状变化,可连续地使外观上的掩模-透镜间距离a1和外观上的透镜-成像点间距离b1变化,故作为结果,可连续地使横倍率β变化。
再有,反射面形状可变反射镜132和反射面形状可变反射镜134的反射面形状,如图10中所示,分别是旋转双曲面的一部分。如果使用旋转双曲面的反射面,则由于从反射面到掩模60的距离与从反射面到掩模的虚像62的距离不同,则作为结果,可改变激光束64的光束扩展角。在图11中示意性地示出在本实施方式的激光加工装置300中使用的反射面形状可变反射镜(132、133)的结构。在图11中,反射镜66在背面的一点上与压电元件68接合。如果利用控制装置112对该压电元件68施加电压,则压电元件68发生伸缩,对反射镜66的背面施加外力。在利用压电元件68对反射镜66施加外力的情况下,构成为其反射面形状成为所希望的形状(构成凸型或凹型的旋转双曲面的一部分的形状)。
在本实施方式的激光加工装置300中,由于使用了其反射面被压电元件68变形为凸型或凹型的反射镜66,故可高速地使转移倍率变化。因而,可使加工时间缩短。
再有,在本实施方式的激光加工装置300中,分别将反射面形状可变反射镜132和反射面形状可变反射镜134的反射面变成凸型和凹型,但即使使两者变成凹型,也可使加工点中的光束直径变化。
再有,在使用本实施方式的激光加工装置300在图3中示出的工序中进行激光加工的情况下,在进行了铜箔4的开孔加工后,使2片反射面形状可变反射镜(132、134)的反射面变形来加工绝缘材料2和铜箔6,但即使相反地使2片反射面形状可变反射镜(132、134)的反射面变形进行了铜箔4的开孔加工后,解除这些反射面的变形,使其反射面成为平坦的面来加工绝缘材料2和铜箔6,也能得到同样的效果。
再有,即使是使用了本实施方式的激光加工装置的情况,也能得到与在实施方式2中已说明的效果同样的效果。
<实施方式5>
在图12中示意性地示出本实施方式5的层叠材料的激光加工装置400的结构。激光加工装置400是在图4中示出的的激光加工装置100中附加了开口直径连续可变光束光圈142的装置。该开口直径连续可变光束光圈142被设置在转印掩模104与定位镜106之间的光路中,利用控制装置112控制其开口直径。在图12中,对与图4中的激光加工装置100相同的结构附以相同的符号,省略其说明。使用该激光加工装置400,以与实施方式2的激光加工方法相同的方法进行印刷基板1的激光加工(图3)。
以下,说明该激光加工装置400的工作。首先,使用φ1.2mm的转印掩模104、开口直径连续可变光束光圈142和转印透镜108,使激光以约φ120μm在铜箔4上成像。以下详细地说明这一点。从二氧化碳气体激光振荡器102射出的激光束120的一部分通过转印掩模104,被开口直径连续可变光束光圈142收缩。开口直径连续可变光束光圈142收缩被转印掩模104衍射而扩展了的激光束的光束直径。在此,将开口直径连续可变光束光圈142设置在例转印掩模104的距离为1200mm的位置上,其开口直径为φ18mm。被开口直径连续可变光束光圈142收缩的激光经过2片定位镜106到达转印透镜108。2片定位镜106决定激光束的朝向转印透镜108的入射角(入射位置)。转印透镜108对入射的激光进行聚光,在加工台110上设置的印刷基板1上对转印掩模104的像进行成像。最初,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为24mJ,照射该1个脉冲的激光束,在铜箔4上形成φ100μm的加工孔22(图3)。
其次,在转印掩模104的孔径为φ1.2mm的原有状态下,利用控制装置112使开口直径连续可变光束光圈142的开口直径扩展到φ36mm。然后,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为11mJ,在与加工孔22相同的位置上照射4个脉冲,加工绝缘材料2。再者,在该相同的位置上,将激光束的脉冲导通时间设定为40μs,将1个脉冲的激光能量设定为8mJ,照射该1个脉冲的激光束,加工铜箔6。在此,加工点中的激光束的光束直径约为φ100μm。由此,在印刷基板1上形成贯通孔14。
以下叙述加工点上的光束直径由于使开口直径连续可变光束光圈142的开口直径变化而变化的原因。在图13中示意性地示出因开口和透镜引起的聚光状态。在与开72(开口直径连续可变光束光圈142)平行地照射激光束70的情况下,通过了开72的激光束被透镜74(转印透镜108)收缩。利用下式(7)来表示被透镜74收缩的聚光点(印刷基板1中的加工点)上的光束直径d。
d=2.44×λ×f/D              (7)
λ:激光束70的波长
f:透镜74的焦点距离
D:开口直径
根据式(7)可知,开口直径D与在聚光点上的光束直径d呈反比例的关系。于是,如果增加开口直径D,则可减小聚光点上的光束直径d,如果减小开口直径D,则可增加聚光点上的光束直径d。
在本实施方式的激光加工装置400中,通过设置开口直径连续可变光束光圈142,可节省将图4的激光加工装置100中的转印掩模104更换为直径不同的其它转印掩模的动作。此外,可缩短激光加工的加工时间。再者,在本实施方式的激光加工装置400中,由于使用开口直径连续可变光束光圈142连续地收缩被转印掩模104衍射而扩展了的激光,故能以更高的精度使层叠材料的加工点中的光束直径变化。
再有,即使是使用了本实施方式的激光加工装置的情况,也能得到与在实施方式2中已说明的效果同样的效果。
<实施方式6>
在图14中示意性地示出本实施方式6的层叠材料的激光加工装置500的结构。激光加工装置500是将图4中的激光加工装置100的转印透镜108置换为焦点距离可变转印透镜150的装置。利用控制装置112控制焦点距离可变转印透镜150的焦点距离。在图14中,对与图4中的激光加工装置100相同的结构附以相同的符号,省略其说明。使用该激光加工装置500,以与实施方式2的激光加工方法相同的方法进行印刷基板1的激光加工。
以下,说明该激光加工装置500的工作。首先,使用φ1.8mm的转印掩模104和焦点距离可变转印透镜150,使激光以约φ120μm在铜箔4上成像。以下详细地说明这一点。从二氧化碳气体激光振荡器102射出的激光束120的一部分通过转印掩模104,经过2片定位镜106到达焦点距离可变转印透镜150。2片定位镜106决定激光束的朝向焦点距离可变转印透镜150的入射角(入射位置)。焦点距离可变转印透镜150对入射的激光进行聚光,在加工台110上设置的印刷基板1上对转印掩模104的像进行成像。在此,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为24mJ,照射该1个脉冲的激光束,在铜箔4上形成φ100μm的加工孔22。
其次,在转印掩模104的孔径为φ1.8mm的原有状态下,缩小焦点距离可变转印透镜150的焦点距离。将脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为11mJ,在与加工孔22相同的位置上照射4个脉冲,加工绝缘材料2。再者,在该相同的位置上,将激光束的脉冲导通时间设定为40μs,将1个脉冲的激光能量设定为8mJ,照射该1个脉冲的激光束,加工铜箔6。在此,加工点中的激光束的光束直径约为φ100μm。由此,在印刷基板1上形成贯通孔14。
以下叙述通过使焦点距离可变转印透镜150的焦点距离变化来使加工点上的光束直径变化的原因。如果假定使焦点距离可变转印透镜150的焦点距离从焦点距离f变成新的焦点距离f2,则参照图7和式(3),以下的式(8)成立。
1/a2+1/b2=1/f2               (8)
a2:新的掩模(转印掩模104)与成像透镜(转印透镜108)的主面之间的距离(以下,称为“新的掩模-透镜间距离”)
b2:新的成像透镜的主面与成像点(印刷基板1中的加工点)之间的距离(以下,称为“新的透镜-成像点间距离”)
再有,在激光加工装置500中,由于掩模-透镜间距离a+透镜-成像点间距离b=(恒定)的关系成立,故式(9)的关系成立。
a+b=a2+b2                    (9)
将新的掩模-透镜间距离a2和新的透镜-成像点间距离b2变更为满足式(8)和式(9)。如果通过使焦点距离f2变化来使新的掩模-透镜间距离a2和新的透镜-成像点间距离b2变化,则由于横倍率β(β=b2/a2)也变化,故可使加工点上的光束直径连续地变化。
焦点距离可变转印透镜150,如图15中所示,是由2片以上的透镜构成的组合透镜。利用控制装置112控制组合透镜各自的透镜间隔,通过使各自的透镜间隔变化,可改变焦点距离可变转印透镜150本身的焦点距离。
在本实施方式的激光加工装置500中,通过采用焦点距离可变转印透镜150,可节省将图4的激光加工装置100中的转印掩模104更换为直径不同的其它转印掩模的动作。此外,可缩短激光加工的加工时间。
再有,即使是使用了本实施方式的激光加工装置的情况,也能得到与在实施方式2中已说明的效果同样的效果。
<实施方式7>
在图16中示意性地示出本实施方式7的层叠材料的激光加工方法的工序。在本实施方式中,所谓层叠材料,与实施方式1中使用的印刷基板1同样,是厚度为0.4mm的两面敷铜(铜箔厚度为12μm)印刷基板(玻璃环氧树脂基板)1。在图16中,对与图1中的印刷基板1的结构相同的结构附以相同的符号。再者,在本实施方式的激光加工方法中,在印刷基板1的光束射出侧的铜箔6上粘贴厚度为80μm的PET片90作为吸收层。对该印刷基板1照射二氧化碳气体激光器的脉冲化了的激光束,形成φ100μm的贯通孔14。
首先,对铜箔4照射激光,在铜箔4的表面上形成加工孔22。此时,将激光束的脉冲导通时间定为3μs,将1个脉冲的激光能量定为24mJ,通过照射该1个脉冲的激光束,在铜箔4上形成φ100μm的加工孔22。
其次,在与加工孔22为相同的位置上,将激光束的脉冲导通时间设定为100μs,将1个脉冲的激光能量设定为10mJ,通过照射该4个脉冲的激光束,来加工绝缘材料2。再者,在相同的位置上,将激光束的脉冲导通时间设定为40μs,将1个脉冲的激光能量设定为8mJ,照射该1个脉冲的激光束,来加工铜箔6。
如果用显微镜来观察该贯通孔14的剖面,则孔径几乎不变化,其孔的中心轴线的方向与激光束的光轴方向一致。此外,可知在贯通孔14中,几乎不存在激光入射侧的铜箔4、激光射出侧的铜箔6和玻璃布10的突出。
此外,在带有PET90的印刷基板1中,测定了铜箔6的孔径最大为100μm,最小为90μm。另一方面,在用相同的激光束条件加工不粘贴PET90的通常的印刷基板1的情况下,所测定的孔径最大为100μm,最小为80μm。
在本实施方式的方法中,通过在铜箔6上粘贴PET片90来进行开孔加工,可减少铜箔6的孔径的离散性。这是由于,在贯通孔14的出口附近抑制了熔融且再凝固了的铜箔6的滞留。以下,详细地进行说明。铜箔6的温度因激光束的照射而上升,在铜箔6熔融时,在在铜箔6上粘贴的PET90已经开始气化(顺便说一下,由于绝缘材料2的沸点比铜箔6的沸点高,故没有变化)。熔融了的铜箔6在PET90气化的情况下,与PET90一起从其位置起或穿过贯通孔14飞溅到印刷基板1的外部。因而,熔融了的铜箔6不滞留在贯通孔14的出口附近。
再有,本实施方式的层叠材料的激光加工方法可得到与实施方式1的方法同样的效果。
再有,也可用实施方式2的激光加工方法加工在铜箔6上粘贴了PET90的印刷基板1。
再有,在本实施方式的激光加工方法中,使用了PET作为在铜箔6上粘贴的激光束吸收材料,但不限定于此。例如,即使是聚丁烯对苯二甲酸丁二酯(PBT)、聚酰胺(PA)、聚醚酰胺(PEI)、聚酰亚胺(PI)等的高分子材料,也能得到同样的效果。
再有,在本实施方式的激光加工方法中,使用了最上层为导体层的印刷基板1,但也可在该最上层的导体层上再形成绝缘层。即使在该情况下,也能应用本实施方式的激光加工方法,可得到同样的效果。
<实施方式8>
在图17中示意性地示出本实施方式8的层叠材料的激光加工方法的工序。在本实施方式中,所谓层叠材料,与实施方式1中使用的印刷基板1同样,是厚度为0.4mm的两面敷铜(铜箔厚度为12μm)印刷基板(玻璃环氧树脂基板)1。在图17中,对与图1中的印刷基板1的结构相同的结构附以相同的符号。再者,在本实施方式的激光加工方法中,预先加热所加工的铜箔4。对该印刷基板1照射二氧化碳气体激光器的脉冲化了的激光束,形成φ100μm的贯通孔14。
首先,对铜箔4照射激光,使铜箔4的表面温度上升。此时,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为24mJ,通过以4kHz照射该3个脉冲的激光束,使铜箔4的表面的温度上升到300℃(573K)。其次,将激光束的脉冲导通时间设定为3μs,将1个脉冲的激光能量设定为24mJ,在与铜箔4的相同的位置上照射该1个脉冲的激光束,在铜箔4上形成φ100μm的加工孔22。
其次,在与加工孔22为相同的位置上,将激光束的脉冲导通时间设定为100μs,将1个脉冲的激光能量设定为10mJ,通过照射该4个脉冲的激光束,来加工绝缘材料2。再者,在相同的位置上,将激光束的脉冲导通时间设定为40μs,将1个脉冲的激光能量设定为8mJ,照射该1个脉冲的激光束,来加工铜箔6。
如果用显微镜来观察该贯通孔14的剖面,则孔径几乎不变化,其孔的中心轴线的方向与激光束的光轴方向一致。此外,可知在贯通孔14中,几乎不存在激光入射侧的铜箔4、激光射出侧的铜箔6和玻璃布10的突出。此外,测定了铜箔4的孔径最大为110μm,最小为100μm。另一方面,在不预先被加热的通常的基板中,测定了铜箔4的孔径最大为110μm,最小为90μm。
在本实施方式的方法中,通过预先加热进行开孔加工的部分的铜箔,可减少孔径的离散性。这是因为,由于加热的缘故,铜对于激光的吸收率增加了,可进行铜的稳定的加工。以下详细地说明这一点。
如上所述,一般来说,由于对于铜来说,激光的反射率高、热传导良好,故激光加工是困难的。特别是,对铜箔4或铜箔6等的在印刷基板的表面上均匀地形成的铜箔来说,即使对其均匀的表面照射二氧化碳气体激光器的激光,该铜箔也反射所照射的二氧化碳气体激光器的激光的接近于99%,故加工是非常困难的。但是,如果铜的温度上升,则二氧化碳气体激光器的激光的吸收率增加。图18是示出铜中的二氧化碳气体激光器的激光的吸收率的温度依存性的曲线图。在此,横轴表示铜的温度,纵轴表示铜中的二氧化碳气体激光器的激光的吸收率。
根据图18的曲线图,如果铜的温度上升,则可知铜中的二氧化碳气体激光器的激光的吸收率增加。例如,在本实施方式的激光加工方法中,由于使铜箔4的温度从常温(约300K)上升到约573K,故铜中的二氧化碳气体激光器的激光的吸收率约增加0.8%。由此,由于在铜箔4中吸收不使温度上升时的约2倍的激光能量,故铜箔4的稳定的加工变得容易,减小了铜箔4的孔径的离散性。
再有,在本实施方式的激光加工方法中,为了加热铜箔4而使用了激光束,但也可用其它的任意的方法来加热铜箔4。
再有,在本实施方式的激光加工方法中,只对铜箔4实施了加热,但如果加热铜箔6,则即使在铜箔6中也能得到同样的效果。
再有,在本实施方式的层叠材料的激光加工方法中,可得到与实施方式1的方法同样的效果。
再有,在加热了铜箔4后,也可用实施方式2的方法加工印刷基板1。
再有,在本实施方式的激光加工方法中,使用了最上层和最下层为导体层的印刷基板1,但也可在该最上层的导体层上和/或在该最下层的导体层下再形成绝缘层。即使在该情况下,也能应用本实施方式的激光加工方法,可得到同样的效果。
再有,对于在印刷基板1上形成贯通孔14的情况说明了本实施方式的激光加工方法,但即使在应用于在印刷基板1中形成封闭孔或进行槽加工的情况下,也能得到同样的效果。
再有,在上述的实施方式1至实施方式8中,印刷基板1的导体层为铜箔,但也可以是其它的导电性材料。此外,在上述的实施方式1至实施方式8中,印刷基板1的绝缘材料2为玻璃环氧树脂,但不限于此。例如,也可以是芳香族聚酰胺或玻璃聚酰亚胺树脂等。
再有,虽然在具体的实施方式说明了本发明,但对于本领域技术人员来说,其它的多种变形例、修正和其它的应用是显而易见的。因此,本发明不限于这里具体公开的内容,应只由后附的权利要求的范围来限定。

Claims (11)

1.一种层叠材料的激光加工方法,该方法是利用激光束加工层叠了1个以上的导体层和绝缘层的层叠材料的方法,其特征在于,包括下列步骤:
对上述导体层照射激光束以形成加工孔的导体层加工步骤;以及
在上述导体层加工步骤之后,对上述加工孔照射激光束,加工层叠在上述导体层上的绝缘层的绝缘层加工步骤,在加工点中该激光束的光束直径比对上述导体层照射的激光束光束直径小。
2.一种层叠材料的激光加工方法,该方法是对层叠了1个以上的导体层和绝缘层的层叠材料照射激光束以进行开孔加工的方法,其特征在于,包括下列步骤:
预先加热上述导体层中由开孔加工除去的部分的加热步骤;以及
对上述加热步骤中被加热的部分照射激光束以进行开孔加工的加工步骤。
3.如权利要求2中所述的层叠材料的激光加工方法,其特征在于:
通过照射激光束来进行上述加热步骤。
4.一种层叠材料的激光加工方法,该方法是在包含由绝缘层和夹着该绝缘层的2个导体层构成的层叠部的、层叠了导体层和绝缘层的层叠材料中,照射激光束以形成贯通上述层叠部的贯通孔的方法,其特征在于,包括下列步骤:
第1加工步骤,对上述层叠部的第1导体层照射第1激光束以形成加工孔;
第2加工步骤,在上述第1加工步骤之后,使上述第1加工步骤的加工点中的光束直径为恒定,对由上述第1加工步骤形成的加工孔照射其峰值输出比上述第1激光束的峰值输出低的第2激光束,进行上述层叠部的绝缘层的加工;以及
第3加工步骤,在上述第2加工步骤之后,使上述第2加工步骤的加工点中的光束直径为恒定,对由上述第2加工步骤形成的加工孔照射其峰值输出比上述第1激光束的峰值输出低且比上述第2激光束的峰值输出高的第3激光束,进行上述层叠部的第2导体层的加工。
5.如权利要求4中所述的层叠材料的激光加工方法,其特征在于:
上述层叠部的第2导体层是上述层叠材料的表面层,且
在上述第1加工步骤之前包含在上述第2导体层上形成激光束吸收材料的步骤。
6.如权利要求5中所述的层叠材料的激光加工方法,其特征在于:
上述激光束吸收材料是高分子材料。
7.一种层叠材料的激光加工装置,该装置是对层叠了1个以上的导体层和绝缘层的层叠材料照射激光束以进行加工的层叠材料的激光加工装置,其特征在于包括:
能射出峰值输出不同的多个脉冲化了的激光束的激光振荡器;
使从上述激光振荡器射出的激光束的一部分通过的开口;
使通过了上述开口的激光束的光路发生变更的光路变更光学系统;
对上述开口的像进行成像的成像透镜;
设置在上述开口与上述成像透镜之间的光路中的光路长度可变光学系统;以及
控制部,其控制上述激光振荡器、上述开口、上述光路变更光学系统、上述光路长度可变光学系统和上述成像透镜的位置和动作,且
上述控制部控制上述光路长度可变光学系统,使上述开口与上述成像透镜之间的光路可变,而且控制上述成像透镜的位置,使上述成像透镜与成像点之间的光路可变。
8.一种层叠材料的激光加工装置,该装置是对层叠了1个以上的导体层和绝缘层的层叠材料照射激光束以进行加工的层叠材料的激光加工装置,其特征在于包括:
能射出峰值输出不同的多个脉冲化了的激光束的激光振荡器;
使从上述激光振荡器射出的激光束的一部分通过的开口;
使通过了上述开口的激光束的光路发生变更的光路变更光学系统;
对上述开口的像进行成像的成像透镜;
设置在上述开口与上述成像透镜之间的光路中的反射镜;以及
控制部,其控制上述激光振荡器、上述开口、上述光路变更光学系统、上述反射镜和上述成像透镜的位置和动作,且
上述控制部固定上述开口、上述反射镜和上述成像透镜的位置,而且,使上述反射镜的反射面形状可变。
9.如权利要求8中所述的激光加工装置,其特征在于:
上述控制部使上述反射镜的反射面形状成为旋转双曲面的一部分。
10.如权利要求8中所述的激光加工装置,其特征在于:
上述控制部通过控制安装在上述反射镜上的压电元件来使上述反射镜的反射面形状可变。
11.一种层叠材料的激光加工装置,该装置是对层叠了1个以上的导体层和绝缘层的层叠材料照射激光束以进行加工的层叠材料的激光加工装置,其特征在于包括:
能射出峰值输出不同的多个脉冲化了的激光束的激光振荡器;
使从上述激光振荡器射出的激光束的一部分通过的开口;
使通过了上述开口的激光束的光路发生变更的光路变更光学系统;
对上述开口的像进行成像的成像透镜;以及
控制部,其控制上述激光振荡器、上述开口、上述光路变更光学系统和上述成像透镜的位置和动作,且
上述成像透镜是由多个透镜构成的组合透镜,
上述控制部通过控制构成上述组合透镜的多个透镜间的间隔来使上述成像透镜的焦点距离可变。
CNB028116860A 2001-05-11 2002-03-29 层叠材料的激光加工方法和装置 Expired - Lifetime CN1286608C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP141451/2001 2001-05-11
JP2001141451 2001-05-11

Publications (2)

Publication Number Publication Date
CN1531471A CN1531471A (zh) 2004-09-22
CN1286608C true CN1286608C (zh) 2006-11-29

Family

ID=18987912

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028116860A Expired - Lifetime CN1286608C (zh) 2001-05-11 2002-03-29 层叠材料的激光加工方法和装置

Country Status (7)

Country Link
US (1) US20040173942A1 (zh)
EP (1) EP1386689A1 (zh)
JP (1) JP4278389B2 (zh)
KR (1) KR100530818B1 (zh)
CN (1) CN1286608C (zh)
TW (1) TW523436B (zh)
WO (1) WO2002092276A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044508A1 (de) * 2003-10-06 2005-05-19 Siemens Aktiengesellschaft Verfahren zur herstellung eines lochs und vorrichtung
EP3047935A1 (de) * 2003-10-06 2016-07-27 Siemens Aktiengesellschaft Verfahren zur herstellung eines lochs
US8237082B2 (en) * 2004-09-02 2012-08-07 Siemens Aktiengesellschaft Method for producing a hole
JP2006123004A (ja) * 2004-09-29 2006-05-18 Mitsubishi Materials Corp レーザ加工方法及びレーザ加工装置
EP1681128A1 (de) * 2005-01-14 2006-07-19 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Lochs und Vorrichtung
JP5266647B2 (ja) * 2006-03-23 2013-08-21 日産自動車株式会社 レーザ溶接装置およびその調整方法
US8446734B2 (en) * 2006-03-30 2013-05-21 Kyocera Corporation Circuit board and mounting structure
WO2007145702A2 (en) * 2006-04-10 2007-12-21 Board Of Trustees Of Michigan State University Laser material processing systems and methods with, in particular, use of a hollow waveguide for broadening the bandwidth of the pulse above 20 nm
KR100817820B1 (ko) * 2006-07-20 2008-03-31 주식회사 이오테크닉스 레이저 빔을 이용한 이미지 천공장치 및 그 사용방법
WO2008155749A1 (en) * 2007-06-18 2008-12-24 Pt. Alcan Packaging Flexipack Laminate packaging opening device
JP4288323B1 (ja) * 2008-09-13 2009-07-01 独立行政法人科学技術振興機構 顕微鏡装置及びそれを用いた蛍光観察方法
CN101733559B (zh) * 2009-12-28 2012-11-07 沈阳黎明航空发动机(集团)有限责任公司 带涂层钛合金激光打孔方法
US9078343B2 (en) * 2011-02-22 2015-07-07 Ibiden Co., Ltd. Method for manufacturing printed wiring board
TWI458413B (zh) * 2011-10-05 2014-10-21 Three - dimensional surface laser guided through filling line method
TR201200584A2 (tr) * 2012-01-17 2012-05-21 Asaş Ambalaj Baski Sanayi̇ Ve Ti̇caret A.Ş. Sıvı gıda ambalajlarında yenilik.
CN103921004A (zh) * 2014-04-18 2014-07-16 安捷利(番禺)电子实业有限公司 一种uv激光钻孔制备多层结构通孔的方法
DE102014116958B9 (de) 2014-11-19 2017-10-05 Trumpf Laser- Und Systemtechnik Gmbh Optisches System zur Strahlformung eines Laserstrahls, Laserbearbeitungsanlage, Verfahren zur Materialbearbeitung und Verwenden einer gemeinsamen langgezogenen Fokuszone zur Lasermaterialbearbeitung
KR102138964B1 (ko) 2014-11-19 2020-07-28 트룸프 레이저-운트 시스템테크닉 게엠베하 비대칭 광학 빔 정형을 위한 시스템
DE102014116957A1 (de) 2014-11-19 2016-05-19 Trumpf Laser- Und Systemtechnik Gmbh Optisches System zur Strahlformung
JP6451370B2 (ja) * 2015-02-09 2019-01-16 オムロン株式会社 接合構造体の製造方法
US20160279737A1 (en) 2015-03-26 2016-09-29 Pratt & Whitney Canada Corp. Laser drilling through multi-layer components
US10076800B2 (en) * 2015-11-30 2018-09-18 Cree Fayetteville, Inc. Method and device for a high temperature vacuum-safe solder stop utilizing laser processing of solderable surfaces for an electronic module assembly
US11123822B2 (en) * 2016-03-31 2021-09-21 AGC Inc. Manufacturing method for glass substrate, method for forming hole in glass substrate, and apparatus for forming hole in glass substrate
JP6934225B2 (ja) * 2017-04-27 2021-09-15 日亜化学工業株式会社 積層体
CN107717338A (zh) * 2017-09-07 2018-02-23 昆山世铭金属塑料制品有限公司 一种通过镭射加工微孔的方法
CN109890589A (zh) * 2017-09-26 2019-06-14 住友理工株式会社 复合部件的制造方法
KR102704013B1 (ko) 2019-04-11 2024-09-10 삼성디스플레이 주식회사 표시 모듈, 표시 모듈 제조 방법, 및 레이저 가공 방법
CN110340520A (zh) * 2019-06-27 2019-10-18 武汉铱科赛科技有限公司 一种脉冲错位激光加工方法、装置和系统
US11999014B2 (en) 2019-11-22 2024-06-04 Medtronic, Inc. Laser cutting system
JP7386073B2 (ja) * 2019-12-24 2023-11-24 ビアメカニクス株式会社 レーザ加工装置及びレーザ加工方法
CN111215754A (zh) * 2020-02-26 2020-06-02 武汉铱科赛科技有限公司 一种非均匀绝缘介质的刻蚀方法、系统、装置与设备
CN112188740B (zh) * 2020-10-13 2021-12-07 安捷利(番禺)电子实业有限公司 一种5g高频mpi材料钻孔方法
DE102020215397A1 (de) * 2020-12-07 2022-06-09 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Hochfrequenz-Laseroptik und Verfahren zum Betrieb einer Hochfrequenz-Laseroptik
JP7564537B2 (ja) 2020-12-18 2024-10-09 株式会社M―Sfc レーザ加工方法及びレーザ加工装置
CN114698250B (zh) * 2022-04-08 2024-03-22 安捷利电子科技(苏州)有限公司 一种电路板盲孔的开设方法及电路板
CN117464170B (zh) * 2023-12-27 2024-04-02 武汉铱科赛科技有限公司 一种层间电连激光加工方法、设备、装置及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240187A (ja) * 1986-04-11 1987-10-20 Fujitsu Ltd レ−ザ光を用いた穿孔方法
US4789770A (en) * 1987-07-15 1988-12-06 Westinghouse Electric Corp. Controlled depth laser drilling system
US5063280A (en) * 1989-07-24 1991-11-05 Canon Kabushiki Kaisha Method and apparatus for forming holes into printed circuit board
US5841099A (en) * 1994-07-18 1998-11-24 Electro Scientific Industries, Inc. Method employing UV laser pulses of varied energy density to form depthwise self-limiting blind vias in multilayered targets
JP3473268B2 (ja) * 1996-04-24 2003-12-02 三菱電機株式会社 レーザ加工装置
US6023041A (en) * 1996-11-08 2000-02-08 W.L. Gore & Associates, Inc. Method for using photoabsorptive coatings and consumable copper to control exit via redeposit as well as diameter variance
JP3395141B2 (ja) * 1998-03-02 2003-04-07 住友重機械工業株式会社 レーザ加工装置
JP4128649B2 (ja) * 1998-03-26 2008-07-30 富士通株式会社 薄膜多層回路基板の製造方法
JP2000071088A (ja) * 1998-08-27 2000-03-07 Nisshinbo Ind Inc レ−ザ加工機
JP2001068816A (ja) * 1999-08-24 2001-03-16 Mitsui Mining & Smelting Co Ltd 銅張積層板及びその銅張積層板を用いたレーザー加工方法
JP2001313471A (ja) * 2000-02-24 2001-11-09 Matsushita Electric Works Ltd 配線板のビアホール形成方法
JP4373596B2 (ja) * 2000-10-06 2009-11-25 日立ビアメカニクス株式会社 プリント基板の加工方法

Also Published As

Publication number Publication date
KR100530818B1 (ko) 2005-11-25
JP4278389B2 (ja) 2009-06-10
EP1386689A1 (en) 2004-02-04
KR20030096379A (ko) 2003-12-24
US20040173942A1 (en) 2004-09-09
WO2002092276A1 (fr) 2002-11-21
TW523436B (en) 2003-03-11
CN1531471A (zh) 2004-09-22
JPWO2002092276A1 (ja) 2004-08-26

Similar Documents

Publication Publication Date Title
CN1286608C (zh) 层叠材料的激光加工方法和装置
CN1249528C (zh) 复合波激光光源及曝光装置
CN1288947C (zh) 多层布线基片及其制造方法
CN1213478C (zh) 板式热管及其制造方法
CN1190844C (zh) 光照射装置的制造方法
CN1104302C (zh) 激光加工装置
CN1098022C (zh) 电路底板激光加工法及其加工装置和二氧化碳激光振荡器
CN101057317A (zh) 激光加工方法和半导体芯片
CN1627178A (zh) 光学装置和图像生成装置
CN1436374A (zh) 使用led的光源装置及其制造方法
CN1269276A (zh) 用于加工陶瓷胎片的方法和装置
CN1618259A (zh) 特别是用于平版印刷的远紫外光的发生方法和装置
CN101057318A (zh) 激光加工方法
CN1399375A (zh) 具有接受监视器用激光的受光元件的半导体激光装置
CN1691877A (zh) 叠层基板制造方法和用其的组件用半导体元件及制造设备
CN1943086A (zh) 半导体发光元件及其制造方法
CN1577907A (zh) 发光器件和发光器件的制造方法以及照明装置
CN1756654A (zh) 薄片材料及布线板
CN1956183A (zh) 电子部件内置式基板及其制造方法
CN1281629A (zh) 多层印刷电路板的制造方法
CN1662341A (zh) 激光加工装置、激光加工温度测定装置、激光加工方法及激光加工温度测定方法
CN1832163A (zh) 摄像模块及其制造方法
CN1309527A (zh) 可去除薄膜,带薄膜的衬底,该膜形成方法和电路板制造方法
CN1596490A (zh) 激光发生装置及其制造方法
CN1290169C (zh) 具有利用激光方法成型的接触电极的接触器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20061129