CN109072261A - 制造l-草胺膦的方法 - Google Patents

制造l-草胺膦的方法 Download PDF

Info

Publication number
CN109072261A
CN109072261A CN201780022992.XA CN201780022992A CN109072261A CN 109072261 A CN109072261 A CN 109072261A CN 201780022992 A CN201780022992 A CN 201780022992A CN 109072261 A CN109072261 A CN 109072261A
Authority
CN
China
Prior art keywords
preparation
amount
weight
phosphine oxamate
phosphine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780022992.XA
Other languages
English (en)
Other versions
CN109072261B (zh
Inventor
B·M·格林
M·L·格拉德利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Agre Maddie J LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agre Maddie J LLC filed Critical Agre Maddie J LLC
Priority to CN202310162318.9A priority Critical patent/CN116121315A/zh
Priority to CN202310162319.3A priority patent/CN116121316A/zh
Publication of CN109072261A publication Critical patent/CN109072261A/zh
Application granted granted Critical
Publication of CN109072261B publication Critical patent/CN109072261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/18Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds
    • A01N57/20Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing acyclic or cycloaliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12N9/0024D-Amino acid oxidase (1.4.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P9/00Preparation of organic compounds containing a metal or atom other than H, N, C, O, S or halogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03003D-Amino-acid oxidase (1.4.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/010194-Aminobutyrate—2-oxoglutarate transaminase (2.6.1.19)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Catching Or Destruction (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Peptides Or Proteins (AREA)

Abstract

提供了用于生产L‑草胺膦(也称为草丁膦或(S)‑2‑氨基‑4‑(羟基(甲基)膦酰基)丁酸)的方法。该方法包括两步过程。第一步骤涉及将D‑草胺膦氧化脱胺为PPO(2‑氧代‑4‑(羟基(甲基)膦酰基)丁酸)。第二步骤涉及使用来自一个或多个胺供体的胺基将PPO特异性胺化成L‑草胺膦。通过组合这两个反应,可以显著增加L‑草胺膦和D‑草胺膦的混合物中L‑草胺膦的比例。

Description

制造L-草胺膦的方法
在先申请的交叉引用
本申请要求2016年3月2日提交的美国临时申请第62/302,421号、2016年5月16日提交的美国临时申请第62/336,989号、2016年10月26日提交的美国临时申请第62/413,240号的优先权,所述申请通过引用整体并入本文。
领域
本文描述了用于生产草胺膦(glufosinate)的单一立体异构体,特别是用于生产L-草胺膦的方法。
背景
除草剂草胺膦是一种非选择性的叶面施用的除草剂,从毒理学或环境角度来看,被认为是最安全的除草剂之一。目前用于草胺膦的商业化学合成方法产生L-和D-草胺膦的外消旋混合物(Duke等,2010 Toxins 2:1943-1962)。然而,L-草胺膦(也称为草丁膦或(S)-2-氨基-4-(羟基(甲基)膦酰基)丁酸)比D-草胺膦更加有效得多(Ruhland等(2002)Environ.Biosafety Res.1:29–37)。
因此,需要只生产或主要生产活性L-草胺膦形式的方法。以前,尚无法获得生产纯L-草胺膦或富含L-草胺膦的D-和L-草胺膦混合物的具有成本效益的方法。本文描述了用于生产L-草胺膦的新的且具有成本效益的方法。
概述
提供了用于制备L-草胺膦的组合物和方法。该方法的第一步涉及将D-草胺膦氧化脱胺为PPO(2-氧代-4-(羟基(甲基)膦酰基)丁酸)。第二步涉及使用来自一个或多个胺供体的胺基将PPO特异性胺化成L-草胺膦。在一些实施方案中,该方法包括使D-草胺膦与D-氨基酸氧化酶(DAAO)酶反应以形成PPO(2-氧代-4-(羟基(甲基)膦酰基)丁酸);然后使用来自一个或多个胺供体的胺基,通过转氨酶(TA)将PPO胺化为L-草胺膦,其中至少70%的D-草胺膦被消除和/或L-草胺膦的产率为输入外消旋草胺膦的至少85%或至少70-85%的D-草胺膦被转化为L-草胺膦。在一些实施方案中,来自一个反应的未反应的胺供体可在进一步的反应轮次中重复使用。任选地,D-草胺膦最初存在于(即,在反应步骤中)D-和L-草胺膦的外消旋混合物中。
DAAO酶必须具有约3μmol/min*mg或更高的增强的活性以驱动反应。DAAO酶可在本领域中获得,并且可被修饰或突变以具有驱动该过程所需的必要的增强活性。以这种方式,可使用来自圆红冬孢酵母菌(Rhodosporidium toruloides)(UniProt P80324)、变异三角酵母菌(Trigonopsis variabilis)(UniProt Q99042)、Neolentinus lepideus(GenBankKZT28066.1)、里氏木霉(Trichoderma reesei)(GenBank XP_006968548.1)或产油丝孢酵母(Trichosporon oleaginosus)(KLT40252.1)的突变体或经修饰的酶。在一些实施方案中,DAAO酶是基于来自圆红冬孢酵母菌的序列的突变型DAAO。虽然可制备许多突变并测试其对活性的影响,但在一些实施方案中突变型DAAO可在位置54、56、58、213和/或238处包含突变。例如,突变型DAAO可在位置54处包含一个或多个下列突变:N54C、N54L、N54T或N54V。突变型DAAO可任选地在位置56处包含以下突变:T56M。突变型DAAO可任选地在位置58处包含一个或多个下列突变:F58A、F58G、F58H、F58K、F58N、F58Q、F58R、F58S或F58T。任选地,突变型DAAO可以在位置213处包含以下突变:M213S。在一些实施方案中,突变型DAAO可包含一种或多种以下突变组合:F58K和M213S;N54T和T56M;N54V和F58Q;和/或N54V、F58Q和M213S。在每种情况下,酶需要具有等于或大于约3μmol/min*mg、大于约4μmol/min*mg或更高的活性。野生型酶可用于本发明的方法,只要该酶具有如上所述的活性水平即可。
TA酶可以是来自大肠杆菌的gabT转氨酶(UniProt P22256)。或者,TA酶可以是序列被鉴定为SEQ ID NO:1的转氨酶。还可基于与SEQ ID NO:1的序列相似性选择TA酶和/或对其进行突变以提高其在所需反应中的活性。因此,基于BLASTP比对方法,与SEQ ID NO:1具有80%、85%、90%、95%或更高序列同一性并且保留转氨酶活性的序列包括在本发明中。编码SEQ ID NO:1的酶序列或其变体的任何DNA序列也包括在本文中。
反应步骤和胺化步骤可以在单个容器中或在分开的容器中进行。在一个实施方案中,在反应开始时基本上加入所有试剂。或者,将用于反应步骤的试剂和用于胺化步骤的试剂在不同时间添加到单个容器中。
本文还描述了用于选择性控制含有可任选地抗草胺膦的作物的种植的种子或作物的田间的杂草的方法,所述方法包括向田间施用有效量的组合物,所述组合物以相对于D-草胺膦大于90%的对映体过量包含L-草胺膦。本文还描述了用于选择性控制田间杂草,控制非田区域内杂草,使植物或作物脱叶,和/或收获前干燥作物的方法,所述方法包括向田间施用有效量的组合物,所述组合物以相对于D-草胺膦大于90%的对映体过量包含L-草胺膦并且包含超过0.01%但低于15%的PPO。
在附图和以下描述中阐述了一个或多个实施方案的细节。根据说明书和附图以及权利要求书,其他特征、目的和有利方面将是显而易见的。
本发明的一些组合物包含D-草胺膦、PPO和L-草胺膦。在此类组合物中,L-草胺膦以组合物的等于或大于80重量%、大于90重量%、大于95重量%、大于96重量%、大于97重量%、大于98重量%或大于99重量%(基于D-草胺膦、PPO和L-草胺膦的组合重量)的浓度存在。在从本反应混合物中分离L-草胺膦后,其他组合物包含浓度等于80%或更高的L-草胺膦。
附图简述
图1是D-草胺膦至L-草胺膦的示例性转化的示意图。胺供体和酮酸产物是实例,并不旨在是限制性的。
图2是显示在圆红冬孢酵母菌DAAO和大肠杆菌gabT转氨酶的N54T、T56M、F58K和M213S突变体变体的一步去外消旋化过程中L-草胺膦(圆形)、D-草胺膦(三角形)和PPO(正方形)的浓度的图。
详述
提供了用于生产L-草胺膦(也称为膦丝菌素或(S)-2-氨基-4-(羟基(甲基)膦酰基)丁酸)的组合物和方法。该方法包括两步法,其可任选地在单个容器中并且几乎同时发生。第一步涉及将D-草胺膦氧化性脱胺为PPO(2-氧代-4-(羟基(甲基)膦酰基)丁酸)。第二步涉及使用来自一个或多个胺供体的胺基将PPO特异性胺化成L-草胺膦。通过组合这两个反应,L-草胺膦的比例可在外消旋的草胺膦混合物中显著增加。因此,本文提供了获得基本上由L-草胺膦组成的组合物的方法。由于L-草胺膦比D-草胺膦更有效,因此要成为有效的除草剂只需要较少量的组合物。
在一个实施方案中,本文所述的是包含L-草胺膦、PPO和D-草胺膦的混合物的组合物,其中L-草胺膦是L-草胺膦、PPO和D-草胺膦的混合物当中占优势的化合物。可将这种组合物直接用作除草剂,因为PPO可促进除草剂活性(EP0030424)。在其他实施方案中,可纯化或基本上纯化L-草胺膦并将其用作除草剂。
L-草胺膦的组合物可包含D-草胺膦、PPO和L-草胺膦。任选地,基于D-草胺膦、PPO和L-草胺膦的组合重量,L-草胺膦的量为80%或更高、85%或更高、90%或更高、或约95%或更高、97%或更高、98%或更高。任选地,基于D-草胺膦、PPO和L-草胺膦的组合重量,D-草胺膦的量为10%或更少、5%或更少、2.5%或更少、或1%或更少。任选地,基于D-草胺膦、PPO和L-草胺膦的重量,PPO的量大于1%但小于20%、小于15%、小于10%或小于5%。这些组合物可任选地以干燥粉末形式存在或溶解在含水或非含水载体中,并且可任选存在另外的化学物质。任选地,制备组合物并在离体环境中使用。
还认识到可进一步分离L-草胺膦并将其在制剂中用作除草剂。
本文还描述了制剂。所述制剂包含按制剂的重量计10%-30%的量的L-草胺膦铵;选自按制剂的重量计10%-40%的量的选自烷基醚硫酸钠;按制剂的重量计0.5%-2%的量的1-甲氧基-2-丙醇;按制剂的重量计4%-18%的量的二丙二醇;和按制剂的重量计4%-20%的量的烷基多糖中的一种或多种附加组分;以及水(作为制剂的其余部分)。任选地,制剂包含按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计31.6%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计8.6%的量的二丙二醇;按制剂的重量计9.8%的量的烷基多糖;以及按制剂的重量计36.75%的量的水。任选地,制剂包含按制剂的重量计24.5%的量的L-草胺膦铵;按制剂的重量计31.6%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计8.6%的量的二丙二醇;按制剂的重量计9.8%的量的烷基多糖;以及按制剂的重量计24.5%的量的水。任选地,制剂包含按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计15.8%的量的烷基醚硫酸钠;按制剂的重量计0.5%的量的1-甲氧基-2-丙醇;按制剂的重量计4.3%的量的二丙二醇;按制剂的重量计4.9%的量的烷基多糖;以及按制剂的重量计62.25%的量的水。任选地,制剂包含按制剂的重量计24.5%的量的L-草胺膦铵;按制剂的重量计22.1%的量的烷基醚硫酸钠;按制剂的重量计1.0%的量的1-甲氧基-2-丙醇;按制剂的重量计6.2%的量的烷基多糖;以及按制剂的重量计46.2%的量的水。
尽管该方法可用于在分批反应(batch reaction)中生产基本上纯化的L-草胺膦,但应认识到可以使用连续方法。
I.合成方法
提供了将D-草胺膦转化为L-草胺膦的方法。本文所述的方法提供了将D-和L-草胺膦的外消旋混合物的低成本原料转化为富集L-草胺膦的更有价值的产物的方法。转换方法包括两个步骤,这两个步骤可以在一个容器或多个分开的容器中进行。第一步是将D-草胺膦(其可以存在于D-和L-草胺膦的外消旋混合物中)氧化脱氨基成PPO(2-氧代-4-(羟基(甲基)膦酰基)丁酸)。该步骤可通过D-氨基酸氧化酶(DAAO)、D-氨基酸脱氢酶(DAAD)或通过化学转化来催化。第二步骤是使用来自一个或多个胺供体的胺基将PPO特异性胺化成L-草胺膦。此类胺供体可选自谷氨酸、L-谷氨酸、赖氨酸、丙氨酸、异丙胺、仲丁胺、苯乙胺等。该步骤可通过转氨酶(TA)、L-氨基酸脱氢酶(LAAD)或通过化学转化来催化。使用本文所述的方法,可获得基本上纯化的L-草胺膦的组合物。
图1阐述了D-草胺膦转化为L-草胺膦的实例。如上所述,该方法涉及两步过程。如图所示,第一步骤是将D-草胺膦氧化脱氨基成PPO,第二步骤是将PPO胺化成L-草胺膦。
第一步骤,即D-草胺膦至PPO的氧化脱氨,可通过几类酶来催化或可非酶促地发生。此类酶包括DAAO、DAAD和D-氨基酸脱水酶。
在一个实施方案中,DAAO酶用于催化D-草胺膦至PPO的转化。这种反应具有以下化学计量:
D-草胺膦+O2+H2O=>H2O2+NH3+PPO。
由于氧气在含水反应缓冲液中的溶解度通常低于草胺膦的溶解度,因此对于高效的方法,必须在DAAO反应的整个时间段内引入氧气。这与例如美国专利第7,723,576号、第7,939,709号、第8,642,836号和第8,946,507号中所述的Hawkes反应(其中反应在密闭容器中进行)形成对比。最初,D-草胺膦以大于30g/L的量存在,最高达140g/L。初始氧气水平通常受反应温度影响,但通常最初以约8mg/L存在并且在整个反应过程中被加入以允许足够的氧气使反应继续快速进行。水通常但不是必须以大于5 00g/L的量存在。
几种DAAO酶是本领域已知的并且可用于本文所述的方法,只要它们能够接受D-草胺膦作为底物并提供足以达到驱动反应的水平的活性。可用于本发明方法的DAAO酶具有等于或大于约3μmol/min*mg,大于约4μmol/min*mg或更高的活性。野生型酶可用于本发明的方法,只要该酶具有如上所述的活性水平即可。可用于该方法的此类DAAO酶包括来自圆红冬孢酵母菌、变异三角酵母菌、镰刀菌属的某一种(Fusarium sp)、念珠菌属的某一种(Candida sp)、裂殖酵母属的某一种(Schizosasaccharomyces sp)、轮枝孢属的某一种(Verticillium sp)、Neolentinus lepideus、里氏木霉、产油丝孢酵母等的已被修饰以增加活性的酶。任何DAAO酶都可用作起始酶,包括具有对应于Swissprot登录号P80324、Q99042、P00371和P24552或SPTREMBL编号Q9HGY3和Q9Y7N4或GenBank编号KZT28066.1、XP_006968548.1和KLT40252.1的序列的那些酶。编码DAAO的DNA序列可以选自EMBL登录号A56901,RGU60066,Z50019,SSDA04,D00809,AB042032,RCDAAOX,A81420和SPCC1450中所示的序列,或者可从如上针对在所选表达宿主中获得最佳表达所示的蛋白质序列进行密码子优化。美国专利第8,227,228号描述了来自中间假丝酵母(Candida intermedia)的DAAO酶。此类序列通过引用并入本文。可以修饰这些酶以提高活性并用于本发明的方法中。
可以以多种方式(包括序列相似性和功能筛选)鉴定另外的DAAO酶。DAAO酶可以是突变型DAAO酶,其能够接受D-草胺膦作为底物。在Hawkes等(同上)中,已显示基于来自圆红冬孢酵母菌的序列的突变型DAAO(由F58K和M213S突变组成)接受D-草胺膦作为底物(Hawkes等(2011)Plant Biotechnol J.9(3):301-14)。其他DAAO酶可被类似地修饰来接受D-草胺膦并具有更高的活性,即驱动本发明方法所需的活性。可以以相同的方式,通过诱变改良已知的DAAO酶,和/或可鉴定新型DAAO酶。
在一些实施方案中,可在本文描述的方法中制备和测试突变型酶。突变型DAAO酶(例如,来自瘦弱红酵母(Rhodotorula gracilis))可相较于野生型序列在突变序列中的位置处包含一个突变、两个突变、三个突变或超过三个突变(例如,四个突变、五个突变、六个突变、七个突变、八个突变、九个突变或十个突变或更多突变)。突变型DAAO可任选地在位置54、56、58、213和/或238处包含突变。在一些实施方案中,当与野生型序列比较时,此类突变体可在位置54和56处包含氨基酸取代。在其他实施方案中,当与野生型序列比较时,此类突变体可在位置54和58处包含氨基酸取代。在其他实施方案中,当与野生型序列比较时,此类突变体可在位置54、213和238处包含氨基酸取代。
任选地,在位置54处,野生型天冬酰胺可以被Ala、Cys、Gly、Ile、Ser、Leu或更优选Thr或Val替代。例如,突变型DAAO可在位置54处包含以下突变之一:N54C、N54L、N54T或N54V。
任选地,在位置56处,野生型苏氨酸可被Ala、Cys、Gly、Ile、Asn、Arg、Ser、Thr、Met或Val替代。参见美国专利第7,939,709号,其通过引用并入本文。例如,突变型DAAO可包含T56M突变。
另外,在位置58处,野生型Phe可以被Lys,Arg,Gln,Thr,Gly,Ser,Ala,Arg,Asn或His代替。突变型DAAO可任选地在位置58处包含下列突变之一:F58A,F58G,F58H,F58K,F58N,F58Q,F58R,F58S或F58T。在一些实施方案中,突变型DAAO在位置58处不包含突变。
任选地,在位置213处,野生型甲硫氨酸被Arg,Lys,Ser,Cys,Asn或Ala替代。在一些实例中,突变型DAAO可包含突变M213S。
任选地,在位置238处,野生型酪氨酸被His,Ser,Gys,Asn或Ala替代。
在一些实施方案中,突变型DAAO可包含一种或多种以下突变组合:F58K和M213S;N54T和T56M;N54V和F58Q;N54C和F58H;N54T和F58T;N54T和F58G;N54T和F58Q;N54T和F58A;N54L和F58R;N54V和F58R;N54V和F58N;和/或N54V、F58Q和M213S。
在一个实施方案中,突变型DAAO在其他DAAO酶中在等同于圆红冬孢酵母菌DAAO或圆红冬孢酵母菌DAAO的位置54、56、58、213和/或238的位置处包含突变。
其他合适的D氨基酸氧化酶可优选从真菌来源获得。可以鉴定和测试此类DAAO酶以用于本发明的方法。为了确定酶是否会接受D-草胺膦作为底物,可使用产物形成的氧电极测定(Hawkes,2011,同上)、比色测定(Berneman A,Alves-Ferreira M,Coatnoan N,Chamond N,Minoprio P(2010)Medium/High Throughput D-Amino Acid OxidaseColorimetric Method for Determination of D-Amino Acids.Application for AminoAcid Racemases.J Microbial Biochem Technol 2:139-146)和/或直接测量(通过高效液相色谱(HPLC),液相色谱质谱(LC-MS),或类似的方法)。
DAAO酶催化的反应需要氧气。在一些实施方案中,将氧气、富氧空气、富氧气流或空气间歇或连续地在顶部空间中或通过将气体喷射通过反应容器而引入反应,以提高反应速率。另外,在其他实施方案中,任选地与将气体喷射通过反应容器组合,可使用加压反应器。也就是说,可密封反应器并使其消耗O2。使用密封室会限制蒸汽排放。
当DAAO酶催化D-草胺膦转化为PPO时,放出过氧化氢(H2O2)。这可能损害酶和生物转化的其他组分(例如,产物和/或底物)。因此,在一个实施方案中,除了DAAO酶以外,还可使用诸如过氧化氢酶的酶来催化过氧化氢的消除。过氧化氢酶以下列化学计量催化过氧化氢的分解:
2H2O2=>2H2O+O2
在一些实施方案中,可使用催化和非催化分解反应消除过氧化氢。例如,可使用增加的热量和/或pH通过非催化的分解反应消除过氧化氢。还可使用例如过渡金属和其他试剂诸如碘化钾通过催化分解反应除去过氧化氢。除了消除过氧化氢以外,过氧化氢酶的使用还产生氧气(O2)。过氧化氢酶产生氧气有助于使用DAAO酶促进D-草胺膦转化为PPO,因为DAAO需要氧气才能发挥作用。
其他酶可用于催化D-草胺膦转化为PPO。例如,可根据以下化学计量使用接受D-草胺膦作为底物的DAAD酶:
D-草胺膦+H2O+受体=>NH3+还原的受体+PPO。
已经认识到,在使用DAAD的方法中,DAAD催化的反应可以包括氧化还原辅因子再循环。这涉及对还原的受体进行氧化,使得其可以接受来自D-草胺膦的更多电子。
在一个实施方案中,化学氧化脱氨(其中从母体氨基酸产生中间体α-酮酸)可用于本文所述的方法中,以将D-草胺膦转化为L-草胺膦。化学氧化脱氨涉及通常在室温与溶液的沸点之间的温度下和在约4至约10的范围内的pH值下于水溶液中使用金属离子(诸如铜或钴的金属离子)将胺基转化为酮基,伴随氨的释放。参见,例如,Ikawa和Snell(1954)J.Am.Chem.Soc.76(19):4900–4902(通过引用并入本文)。
D-草胺膦至PPO的基本上完全(大于70%、大于75%、大于80%、大于85%、大于90%或大于95%)转化可在24小时内,在18小时内小时,在12小时内,在8小时或更短时间内发生。
本文所述的方法的第二步骤涉及使用转氨酶(TA)、L-氨基酸脱氢酶(LAAD)或通过化学转化将PPO转化为L-草胺膦。在一个实施方案中,该方法是由TA催化的反应。具有所需立体特异性、接受PPO作为底物的TA,按以下化学计量催化PPO胺化为L-草胺膦:
PPO+胺供体=>L-草胺膦+酮酸。
如果反应按其中在胺供体和/或转氨酶不存在的情况下D-草胺膦基本上转化为PPO的两步法进行,则第二阶段中PPO的起始量通常为10g/L至140g/L;20g/L至140g/L;或30g/L到140g/L。如果反应在单阶段工艺中进行,则PPO的起始量通常小于1g/L,并且反应期间PPO的最高水平通常低于25g/L。胺供体最初以相对于外消旋草胺膦的起始量1至50倍摩尔过量存在。
可用于本文所述方法的TA包括来自大肠杆菌的gabT转氨酶(UniProt P22256),其经显示催化以PPO作为底物的所需反应(Bartsch等(1990)Appl Environ Microbiol.56(1):7-12)。已经演化出另一种酶使用异丙胺作为胺供体,以更高的速率催化所需反应(Bhatia等(2004)Peptide Revolution:Genomics,Proteomics&Therapeutics,Proceedings of the Eighteenth American Peptide Symposium,Ed.Michael Chorevand Tomi K.Sawyer,2003年7月19日至23日,第47-48页)。具有SEQ ID NO:1的氨基酸序列的转氨酶也催化以PPO和异丙胺作为底物的所需反应(实施例11)。另外,来自许多微生物诸如吸水链霉菌(Streptomyces hygroscopicus)、产绿色链霉菌(Streptomycesviridochromogenes)、白色念珠菌(Candida albicans)等的TA酶可用于实施本文所述的方法。具体参见例如EP0249188和美国专利第5,162,212号,通过引用并入本文。如果需要,可通过诱变来对酶进行进化以增强其活性。可通过Schulz等Appl Environ Microbiol.(1990)Jan.56(1):1-6中概述的测定法和/或通过直接测量(通过HPLC、LC-MS)产物或类似产物来选择突变型TA酶的所需活性。
可通过筛选TA的集合诸如由Prozomix Limited(Northumberland,UnitedKingdom)、SyncoZymes(Shanghai,China)、Evocatal(Monheim am Rhein,Germany)、Codexis(Redwood City,CA)或Abcam(Cambridge,United Kingdom)销售的TA集合来鉴定用于该方法的其他TA酶的所需活性。或者,序列相似性可用于鉴定新型TA酶。最后,还可从能够催化所需反应的生物中鉴定TA酶。
选择合适的胺供体对于经济地将D-草胺膦转化为L-草胺膦来说是重要的。可以考虑各种问题,包括供体的成本、平衡热力学、供体的潜在回收、酮酸产物与期望的L-草胺膦的分离等。因此,可使用接受几种不同胺供体的TA酶,包括低成本胺供体诸如L-天冬氨酸或外消旋天冬氨酸、L-谷氨酸或外消旋谷氨酸、L-丙氨酸或外消旋丙氨酸、L-苯乙胺或外消旋苯丙氨酸、L-甘氨酸或外消旋甘氨酸、L-赖氨酸或外消旋赖氨酸、L-缬氨酸或外消旋缬氨酸、L-丝氨酸或外消旋丝氨酸、L-谷氨酰胺或外消旋谷氨酰胺、异丙胺、仲丁胺、乙醇胺、2-氨基丁酸和二氨基丙酸。在一些实施方案中,胺供体不是天冬氨酸盐或天冬氨酸(例如L-天冬氨酸、D-天冬氨酸或外消旋D、L-天冬氨酸)。
在其中氨基供体是谷氨酸的实施方案中,由转氨反应产生的酮酸副产物是α-酮戊二酸(其也称为α-酮戊二酸或α-KG)。可使用本领域技术人员已知的方法(诸如EP专利第0073711号、CN专利第10519873号、CN专利第105177065号、CN专利第104529755号和Zhan等,Shipin Yu Shengwu Jishu Xuebao,32(10):1043-1048(2013)(其每一篇通过引用整体并入本文)中的方法)分离和/或纯化α-酮戊二酸。所产生和分离的α-酮戊二酸可用于多种应用,包括合成药剂、食品添加剂和生物材料。任选地,可将α-酮戊二酸化学转化为外消旋谷氨酸或L-谷氨酸,任选地在反应中重复使用。
化学还原胺化涉及通过亚胺化合物将酮基转化为胺基,通常通过在有机溶液中用合适的胺处理酮化合物。合适的胺包括例如甲胺或氨。适用于有机溶液的有机溶剂包括四氢呋喃、乙醇或二氯甲烷(DCM)。还原胺化可在室温至溶液沸点之间的温度下进行。然后可使用还原剂在有机溶液中还原所产生的亚胺。合适的还原剂包括例如NaBH4、NaHB(OAc)3或Na(CN)BH3。适用于有机溶液的有机溶剂包括四氢呋喃、乙醇或DCM。还原反应可在0℃至溶液沸点之间的温度下进行。本领域技术人员将知道该方法可以在“一锅”或多个容器中进行,即在分开的转化中进行。另外,本领域技术人员将认识到,所描述的方法将在可能的情况下提供外消旋氨基材料。在手性配体诸如(S)-或(R)-VAPOL以1:1至1:0.05的比率存在的情况下,使用手性还原剂诸如RuCl2[(S)-BINAP]和氢气或潜在氢气源或基于非手性氢化物的还原剂可产生对映体纯的和/或富集的氨基材料。参见,例如,Mignonac(1921)Compt.Rend.172:223和G.Li,Y.Liang,J.C.Antilla(2007)J.Am.Chem.Soc.,129:5830-5831。
可以鉴定接受所需胺供体的野生型TA,或者可进化通常不接受所需胺供体的TA以接受所需底物。任选地,转氨酶不是天冬氨酸转氨酶。任选地,转氨酶不是4-氨基-丁酸:2-酮戊二酸转氨酶。在一些实施方案中,转氨酶不是包括PPT特异性转氨酶和谷氨酸:草酰乙酸转氨酶的组合酶系统。
用于催化PPO转化为L-草胺膦的其他酶包括接受PPO作为底物的LAAD酶或亚胺还原酶。此类LAAD酶使用以下化学计量:
NH3+还原的受体+PPO=>L-草胺膦+H2O+受体。
LAAD催化反应可包括氧化还原辅因子再循环,其涉及对氧化的受体进行还原以使其可以向PPO提供更多电子。
其中从母体酮化合物产生氨基的化学还原胺化也可用于生产草胺膦(在没有使用手性还原剂或配体的情况下),或L-草胺膦(在使用手性还原剂或配体的情况下)。可如上所述实现化学还原胺化。
PPO基本上完全转化为L-草胺膦可在24小时内、18小时内、12小时内、8小时内或4小时内发生。在该情况下,基本上完全意指PPO至L-草胺膦的转化大于约70%、大于约75%、大于约80%、大于约85%、大于约90%、大于约95%、大于约98%或大于约99%。
如果反应在单个容器或器皿中发生,则TA酶可以与DAAO酶一起加入或在稍后时间加入,例如在使DAAO酶催化一些或基本上所有的氧化脱氨之后。
可通过许多方法将酶添加到反应中。一种方法是在微生物诸如大肠杆菌、酿酒酵母、巴斯德毕赤酵母等中表达酶,并将全细胞作为全细胞生物催化剂添加到反应中。另一种方法是表达酶,裂解微生物,并添加细胞裂解物。还有另一种方法是从裂解物中纯化或部分纯化酶,并向反应中加入纯的或部分纯的酶。如果反应需要多种酶,则可以在一种或几种微生物中表达酶,包括在单一微生物中表达所有酶。
可与上述方法组合的另一种方法是将酶固定在载体上(示例性策略概述于Datta等(2013)3 Biotech.Feb;3(1):1–9中)。如Datta等所述,并且无意是限制性的,可将单独或组合的酶例如吸附于天然或合成聚合物或无机载体,或者共价或非共价连接于所述聚合物或无机载体,或捕获在所述聚合物或无机载体中,所述聚合物或无机载体包括酶本身的聚集体。一旦固定化,可将酶和载体分散到本体溶液(bulk solution)中或填充到床、柱中,或许多类似的方法使反应溶液与酶相互作用。由于充气对于此处设想的DAAO反应是重要的,因此可将泡罩塔或类似物用于酶固定。例如,可使反应混合物流过固定化酶柱(流动反应),加入到固定床或固定化酶柱中,使其反应,并从反应容器的底部或顶部除去(活塞流(plugflow))或者加入分散的固定化酶中并使其反应,然后通过过滤、离心或类似方法(分批)除去固定化酶。因此,任何固定酶的方法都可用于本发明的方法中。
DAAO、TA和/或其他反应物可存在于缓冲液中。通常用于生物转化反应的示例性缓冲液包括Tris、磷酸盐或任何Good缓冲液,诸如2-(N-吗啉代)乙磺酸(MES);N-(2-乙酰氨基)亚氨基二乙酸(ADA);哌嗪-N,N'-双(2-乙磺酸)(PIPES);N-(2-乙酰氨基)-2-氨基乙磺酸(ACES);β-羟基-4-吗啉丙磺酸(MOPSO);氯化胆碱;3-(N-吗啉代)丙磺酸(MOPS);N,N-双(2-羟乙基)-2-氨基乙磺酸(BES);2-[[1,3-二羟基-2-(羟甲基)丙烷-2-基]氨基]乙磺酸(TES);4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES);3-(双(2-羟乙基)氨基)-2-羟基丙烷-1-磺酸(DIPSO);乙酰氨基甘氨酸,3-(N-三(羟甲基)甲氨基(-2-羟基丙磺酸(TAPSO);哌嗪-N,N'-双(2-羟基丙磺酸)(POPSO);4-(2-羟乙基)哌嗪-1-(2-羟基丙磺酸)(HEPPSO);3-[4-(2-羟乙基)-1-哌嗪基]丙磺酸(HEPPS);三羟甲基甲基甘氨酸;甘氨酰胺;双(2-羟乙基)甘氨酸(bicine);或3-[[1,3-二羟基-2]-2-(羟甲基)丙-2-基]氨基]丙烷-1-磺酸(TAPS)。另外的示例性缓冲液配方可见于Whittall,J.和Sutton,P.W.(eds)(2012)Front Matter,inPractical Methods for Biocatalysis and Biotransformations 2,John Wiley&Sons,Ltd,Chichester,UK。在一些实施方案中,铵可以充当缓冲剂。还可以将一种或多种有机溶剂加入到反应中。
令人惊讶的是,DAAO、TA和/或其他反应物可以在未添加缓冲液(除了由于添加外消旋草胺膦铵而可任选地存在的铵除外)或添加了低水平的所述缓冲液的情况下存在。特别地,固定化DAAO和TA在低于1mM的磷酸盐缓冲液存在并且除由于添加外消旋草胺膦铵而存在的任何铵外不存在其它缓冲剂的情况下可以是稳定且有活性的。
外消旋的草胺膦起始原料可以以多种形式提供。可使用外消旋草胺膦的各种盐,诸如铵盐和盐酸盐,或两性离子。外消旋的草胺膦可呈固体粉末(诸如大于80%、85%、90%或95%纯度的粉末)或水溶液(诸如约50%的外消旋草胺膦溶液)的形式。
在一些实施方案中,反应在限定的pH范围内发生,所述pH范围可在pH 4与pH 10之间(例如在pH 6与pH 9之间,诸如约pH 7.5至pH 8)。
在一些实施方案中,反应在限定的温度下发生。温度可以保持在室温与溶剂的沸点之间的点,最常见地在室温与50℃之间。
如所指出的,本文所述的方法提供了基本上纯的L-草胺膦的组合物(而不是L-草胺膦和D-草胺膦的外消旋混合物)。基本上纯的L-草胺膦意指大于约70%、大于约75%、大于约80%、大于约85%、大于约90%、大于约95%、大于约96%、大于约97%、大于约98%或大于约99%的D-草胺膦已转化为L-草胺膦,导致组合物具有与存在于组合物中的D-草胺膦和L-草胺膦的总和相比大于约80%、大于约85%、大于约90%、大于约95%、大于约96%、大于约97%、大于约98%或大于约99%的L-草胺膦。
在一个实施方案中,不从生物转化混合物中分离L-草胺膦,并且获得包含D-草胺膦、PPO和L-草胺膦的组合物。该组合物含有按L-草胺膦、D-草胺膦和PPO的总重量计至少80%的L-草胺膦,按组分的总重量计至少90%的L-草胺膦。该组合物可直接用作除草组合物或用作配制的除草产品中的成分。
或者,可从生物转化混合物中除去除L-草胺膦外的一些或所有组分,任选地浓缩混合物,然后可将该混合物直接(和/或添加各种佐剂)用于预防或控制杂草。在一些情况下,可将生物转化混合物直接(和/或添加各种佐剂)用于预防或控制杂草。
可以添加进一步纯化L-草胺膦的额外步骤。这种进一步的纯化和分离方法包括离子交换、萃取、成盐、结晶和过滤;每种方法可以多次使用或以合适的组合使用。可通过简单过滤除去酶(如果其被固定的话),或者通过使用超滤、使用吸收剂如硅藻土、纤维素或碳或通过本领域技术人员已知的各种技术进行的变性除去酶(如果其游离于溶液中的话)。
离子交换过程通过将溶质选择性吸附至为此目的而选择的树脂上来实现分离。因为产品和杂质必须在吸附之前溶解在单一溶液中,所以通常需要在分离之前通过蒸发或蒸馏浓缩纯化的产物流。Schultz等和EP0249188(A2)描述了使用离子交换进行纯化的实例。
可通过加入合适的酸(包括盐酸、硫酸、磷酸、硝酸、乙酸等)形成L-草胺膦的不溶性盐来实现纯化。类似地,可通过添加合适的碱以形成不溶性盐来实现纯化。有用的碱包括碱金属的氢氧化物、碳酸盐、硫酸盐和磷酸盐、碱土金属的氢氧化物、碳酸盐、硫酸盐和磷酸盐。可使用含有氮的其他碱,包括氨、羟胺、异丙胺、三乙胺、三丁胺、吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶、2,4-二甲基吡啶、2,6-二甲基吡啶、吗啉、N-甲基吗啉、1,8-二氮杂双环[5.4.0]十一碳-7-烯和二甲基乙醇胺。浓缩混合物或添加溶剂(或两者)以使产率最大化并优化所需盐的纯度可能是有利的。适用于此目的的溶剂包括所需盐在其中的溶解度非常低的溶剂(此类溶剂通常称为“抗溶剂”)。可将L-草胺膦的盐转化成适合于可通过本领域技术人员已知的标准方法配制的草胺膦形式。或者,可将L-草胺膦作为两性离子分离。
US 9,255,115 B2描述了用碱诸如氢氧化钠或甲醇钠将L-草胺膦的盐酸盐转化为两性离子形式,然后从含水醇溶剂中结晶,得到相对高纯度的L-草胺膦的方法。该方法具有产生晶体L-草胺膦的有利方面,该晶体L-草胺膦不具有吸湿性,因此与无定形L-草胺膦相比,当暴露于湿气中时,随着时间的推移保持更高的纯度。
L-草胺膦的其他盐在本领域中是已知的。US 5,767,309和US 5,869,668教导了手性生物碱与外消旋草胺膦形成非对映体盐的用途。实现纯化是因为L-草胺膦的盐以比相应的D-草胺膦盐大得多的量从溶液中沉淀出来。因此,如果需要,该方法可与本发明一起使用以获得具有高对映体过量的L-草胺膦。
任选地,可通过首先结晶一种或多种杂质,通过过滤除去杂质,然后通过形成如前所述的盐从所得滤液中进一步纯化L-草胺膦来实现纯化。如果未反应的胺供体可以部分或完全分离并用于后续反应,则这是有利的。类似地,可将部分或完全分离的未反应的PPO再循环用于后续反应。
提取可用于纯化产物。DE 3920570 C2描述了一种方法,其中通过用硫酸将溶液pH调节至3.7至4.2来沉淀过量的谷氨酸(用作胺供体)。过滤谷氨酸后,将滤液的pH降至1-2,然后将其它杂质萃取到溶剂中。萃取和浓缩后,将氨加入到水溶液中至pH为5-7,随后进行硫酸铵沉淀。通过过滤除去硫酸铵,浓缩所得滤液,得到L-草胺膦的铵盐。
可能需要分离L-草胺膦或其盐,例如,为了将固体运输到配制或使用的地方。可使用典型的工业分离方法,例如过滤、离心等。分离的产品通常需要除去水、挥发性杂质和溶剂(如果存在的话),并且典型的工业干燥设备可以用于此目的。此类设备的实例包括烘箱、转鼓式干燥器、搅拌式干燥器等。在某些情况下,使用喷雾干燥器可以是有利的。
纯化后不必产生固体产物。如果L-草胺膦的配制将在用于生产L-草胺膦的同一地点进行,这可以是有利的。L-草胺膦及其许多盐易溶于水,水是用于配制产品的方便液体。例如,通过过滤分离胺供体,并通过蒸馏浓缩所得滤液。可将滤液的pH调节至所需值,并且可将所得溶液原样使用或与制剂成分混合。在另一个实例中,可如上所述制备L-草胺膦或其一种盐的浆料并通过过滤分离。通过加入水或合适的溶剂将固体直接溶解在过滤器上,得到L-草胺膦溶液。
II.组合物
本文还描述了包含上述反应产物的组合物。在一些实施方案中,组合物基本上包含L-草胺膦和可接受的阳离子或阴离子盐形式,诸如盐酸盐、铵盐或异丙基铵盐。在一些实施方案中,组合物包含L-草胺膦、PPO和D-草胺膦的混合物。
任选地,L-草胺膦是L-草胺膦、PPO和D-草胺膦中的优势化合物。例如,L-草胺膦在组合物中的存在量可以是按L-草胺膦、PPO和D-草胺膦的总重量计至少80%、按L-草胺膦、PPO和D-草胺膦的总重量计至少85%、按L-草胺膦、PPO和D-草胺膦的总重量计至少90%、按L-草胺膦、PPO和D-草胺膦的总重量计至少95%、按L-草胺膦、PPO和D-草胺膦的总重量计至少96%、按L-草胺膦、PPO和D-草胺膦的总重量计至少97%、按L-草胺膦、PPO和D-草胺膦的总重量计至少98%、或者按L-草胺膦、PPO和D-草胺膦的总重量计至少99%的量存在于组合物中。
该组合物可以以按L-草胺膦、PPO和D-草胺膦的总重量计高达20%的量包含PPO。任选地,该组合物包含0.001%至20%的PPO(例如,0.05%至15%或大于0.01%至少于5%的PPO)。例如,组合物可以以按L-草胺膦、PPO和D-草胺膦的总质量的重量计少于20%、少于19%,少于18%,少于17%,少于16%,少于15%,少于14%,少于13%、少12%、少于11%、少于10%、少于9%、少于8%、少于7%、少于6%、少于5%、少于4%、少于3%、少于2%、少于1%、少于0.5%、少于0.1%或少于0.01%的量包含PPO。
D-草胺膦可以以按L-草胺膦、PPO和D-草胺膦的总重量计15%或更少的量存在于组合物中。例如,D-草胺膦可以以按L-草胺膦、PPO和D-草胺膦的总重量计14%或更少、13%或更少、12%或更少、11%或更少、10%或更少、9%或更少、8%或更少、7%或更少、6%或更少、5%或更少、4%或更少、3%或更少、2%或更少、1%或更少或0.5%或更少的量存在。
在一些实施方案中,组合物可含有少量(例如,按组合物的重量计约10%或更少,约8%或更少,约5%或更少,约2%或更少,或约1%或更少)的D-草胺膦。在一些实施方案中,组合物可含有少量(例如,按组合物的重量计约15%或更少,约10%或更少,约8%或更少,约5%或更少,约2%或更少,或约1%或更少)PPO。
本文所述的组合物可施用于作物植物田间以预防或控制杂草。可将该组合物配制成用于喷洒在田地上的液体。将L-草胺膦以有效量提供于组合物中。如本文中所用,有效量是指每公顷约10克活性成分至每公顷约1,500克活性成分,例如约50克至约400克或约100克至约350克。在一些实施方案中,活性成分是L-草胺膦。例如,组合物中L-草胺膦的量可为每公顷约10克、约50克、约100克、约150克、约200克、约250克、约300克、约350克、约400克、约500克、约550克、约600克、约650克、约700克、约750克、约800克、约850克、约900克、约950克、约1,000克、约1,050克、约1,100克、约1,150克、约1,200克、约1,250克、约1,300克、约1,350克、约1,400克、约1,450克或约1,500克L-草胺膦。
本文所述的除草组合物(包括在施用于植物之前需要稀释的浓缩物)含有L-草胺膦(即活性成分),任选地一些残留的D-草胺膦和/或PPO,以及一种或多种呈液体或固体形式的佐剂组分。
通过将活性成分与一种或多种佐剂(诸如稀释剂、增量剂、载体、表面活性剂、有机溶剂、保湿剂或调理剂(conditioning agents))混合,制备组合物,以提供呈细碎颗粒状固体、小丸、溶液、分散体或乳液形式的组合物。因此,可将活性成分与佐剂(诸如细碎的固体、有机来源的液体、水、润湿剂、分散剂、乳化剂或这些试剂的任何合适组合)一起使用。从经济和方便的角度来看,水是优选的稀释剂。然而,并非所有化合物都耐水解,并且在某些情况下,这可能决定使用非水溶剂介质,如本领域技术人员所理解的。
任选地,可将一种或多种另外的组分添加到组合物中以产生配制的除草组合物。此类配制的组合物可包含L-草胺膦、载体(例如,稀释剂和/或溶剂)和其他组分。配制的组合物包含有效量的L-草胺膦。任选地,L-草胺膦可以以L-草胺膦铵的形式存在。L-草胺膦铵可以以在按配制的组合物的重量计10%至30%的范围内的量存在。例如,L-草胺膦铵可以以按配制的组合物的重量计10%、12%、14%、16%、18%、20%、22%、24%、26%、28%或30%的量存在。任选地,L-草胺膦铵以12.25%或24.5%的量存在。
在一些实例中,配制的组合物可包含一种或多种表面活性剂。适用于配制的组合物的表面活性剂包括烷基醚硫酸钠。表面活性剂可以以按配制的组合物的重量计10%至40%的量存在。例如,表面活性剂可以以按配制的组合物的重量计10%、12%、14%、16%、18%、20%、22%、24%、26%、28%、30%、32%、34%、36%、38%或40%的量存在。任选地,烷基醚硫酸钠以11.05%、15.8%、22.1%或31.6%的量存在。
配制的组合物可任选地包含一种或多种溶剂(例如,有机溶剂)。任选地,溶剂可以是1-甲氧基-2-丙醇、二丙二醇、乙二醇及其混合物。一种或多种溶剂可以以按配制的组合物的重量计0.5%至20%的量存在。例如,组合物中溶剂的总量可以以按配制的组合物的重量计0.5%至18%、5%至15%或7.5%至10%的量存在。
任选地,溶剂包括两种溶剂的组合。例如,制剂中的溶剂可包括1-甲氧基-2-丙醇和二丙二醇。1-甲氧基-2-丙醇可以例如以按配制的组合物的重量计0.5%至2%的量存在。例如,1-甲氧基-2-丙醇可以以按配制的组合物的重量计0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%或2.0%的量存在。任选地,1-甲氧基-2-丙醇以按配制的组合物重量计0.5%或1.0%的量存在。二丙二醇可以以按配制的组合物的重量计4%至18%的量存在。例如,二丙二醇可以以按配制的组合物的重量计4%、6%、8%、10%、12%、14%、16%或18%%的量存在。任选地,二丙二醇可以以按配制的组合物的重量计4.3%或8.6%的量存在。
配制的组合物还可包含一种或多种多糖保湿剂。合适的多糖保湿剂的实例包括,例如,烷基多糖、戊糖、高果糖玉米糖浆、山梨糖醇和糖蜜。多糖保湿剂,诸如烷基多糖,可以以在按配制的组合物的重量计4%至20%的范围内的量存在于配制的组合物中。例如,组合物中多糖保湿剂的总量可以以按配制的组合物的重量计4%至18%、4.5%至15%或5%至10%的量存在。在一些实例中,配制的组合物中存在的多糖保湿剂(诸如烷基多糖)的总量可以是4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%或18%。任选地,烷基多糖可以以3.2%、4.9%、6.2%或9.8%的量存在。
稀释剂也可包含在配制的组合物中。合适的稀释剂包括水和其他含水组分。任选地,稀释剂以产生准备包装或使用的组合物所必需的量存在。
在一个实例中,配制的组合物包含按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计31.6%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计8.6%的量的二丙二醇;按制剂的重量计9.8%的量的烷基多糖;以及按制剂的重量计36.75%的量的水。
在另一个实例中,配制的组合物包含按制剂的重量计24.5%的量的L-草胺膦铵;按制剂的重量计31.6%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计8.6%的量的二丙二醇;按制剂的重量计9.8%的量的烷基多糖;以及按制剂的重量计36.75%的量的水。
在另一个实例中,配制的组合物包含按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计15.8%的量的烷基醚硫酸钠;按制剂的重量计0.5%的量的1-甲氧基-2-丙醇;按制剂的重量计4.3%的量的二丙二醇;按制剂的重量计4.9%的量的烷基多糖;以及按制剂的重量计62.25%的量的水。
在另一个实例中,配制的组合物包含按制剂的重量计24.5%的量的L-草胺膦铵;按制剂的重量计22.1%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计6.2%的量的烷基多糖;以及按制剂的重量计46.2%的量的水。
在另一个实例中,配制的组合物包含按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计22.1%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计6.2%的量的烷基多糖;以及按制剂的重量计58.45%的量的水。
在另一个实例中,配制的组合物包含按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计11.05%的量的烷基醚硫酸钠;按制剂的重量计0.5%的量的1-甲氧基-2-丙醇;按制剂的重量计3.1%的量的烷基多糖;以及按制剂的重量计73.1%的量的水。
适用于本文提供的配制的组合物的其它组分描述于美国专利第4,692,181号和第5,258,358号中,这两篇专利均通过引用整体并入本文。
本文所述的除草组合物,特别是液体和可溶性粉末,可含有一种或多种表面活性剂作为另外的佐剂组分,其量足以使给定的组合物易于分散在水或油中。将表面活性剂掺入组合物中大大提高了它们的功效。如本文中所用,表面活性剂包括润湿剂、分散剂、悬浮剂,乳化剂也包括在其中。可用相同设备使用阴离子、阳离子和非离子型试剂。
合适的润湿剂包括烷基苯和烷基萘磺酸盐、硫酸化脂肪醇、胺或酰胺、异硫氰酸钠的长链酸酯、磺基琥珀酸钠的酯、硫酸化或磺酸化脂肪酸酯、石油磺酸盐、磺化植物油、二叔炔类二醇、烷基酚(特别是异辛基酚和壬基酚)的聚氧乙烯衍生物,和己糖醇酐(例如脱水山梨糖醇)的单-高级脂肪酸酯的聚氧乙烯衍生物。示例性分散剂包括甲基纤维素、聚乙烯醇、木质素磺酸钠、聚合烷基萘磺酸盐、萘磺酸钠、聚亚甲基双萘磺酸盐和N-甲基-N-(长链酸)月桂酸钠。
可以制备水分散性粉末组合物,其含有一种或多种活性成分、惰性固体增量剂和一种或多种润湿和分散剂。惰性固体增量剂通常是矿物来源的,诸如天然粘土、硅藻土和衍生自二氧化硅的合成矿物等。此类增量剂的实例包括高岭土、绿坡缕石粘土和合成硅酸镁。本文所述的水分散性粉末可任选地含有约5至约95重量份的活性成分(例如,约15至30重量份的活性成分)、约0.25至25重量份的润湿剂、约0.25至25重量份的分散剂,和4.5至约94.5重量份的惰性固体增量剂,所有份数均按总组合物的重量计。需要时,可以用腐蚀抑制剂或消泡剂或两者替代约0.1-2.0重量份的固体惰性增量剂。
含水悬浮液可通过溶解不溶于水的活性成分,或通过将不溶于水的活性成分混合在一起并在分散剂存在下研磨不溶于水的活性成分的含水浆料(以获得非常细碎的颗粒的浓缩浆料)来制备。所得浓缩水悬浮液的特征在于其极小的粒径,这使得当稀释和喷雾时,覆盖率非常均匀。
可乳化的油通常是与水不混溶或部分与水不混溶的溶剂中的活性成分与表面活性剂的溶液。用于本文所述活性成分的合适溶剂包括烃类和与水不混溶的醚、酯或酮。可乳化的油组合物通常含有约5-95份活性成分,约1-50份表面活性剂和约4-94份溶剂,所有份数均按可乳化油的总重量计。
本文所述的组合物还可含有其他添加剂,例如肥料、植物毒素和植物生长调节剂、杀虫剂等,其用作佐剂或与任何上述佐剂组合。还可将本文所述的组合物与所述其他材料例如肥料、其他植物毒剂等混合,并在单一应用中施用。
在本文所述的每种制剂类型(例如液体和固体制剂)中,活性成分的浓度是相同的。
在一些实施方案中,组合物可包含α-酮戊二酸作为主要组分。α-酮戊二酸是重要的二羧酸,是三羧酸循环和氨基酸代谢中的关键中间体之一。α-酮戊二酸可通过方法(诸如法国专利第07199号(通过引用并入本文)中所述的方法)从反应混合物中分离。可用药物赋形剂和载体、食品添加剂或用于形成生物材料的组分一起配制α-酮戊二酸组合物。α-酮戊二酸组合物可用于多种应用,包括合成药剂、食品添加剂和生物材料,如Li等,BioprocessBiosyst Eng,39:967-976(2016)中所述。
已经认识到除草组合物可以与其他除草剂组合使用。本发明的除草组合物通常与一种或多种其它除草剂结合使用,以控制更多种不希望的植物。当与其它除草剂结合使用时,可将本发明要求保护的化合物与另外的一种或多种除草剂一起配制,将其在桶中与另外的一种或多种除草剂混合,或将其与另外的一种或多种除草剂顺序施用。可与本发明化合物一起使用的一些除草剂包括:酰胺类除草剂,如二丙烯草胺(allidochlor)、氟丁酰草胺(beflubutamid)、胺酸杀(benzadox)、苄草胺(benzipram)、溴丁酰草胺(bromobutide)、唑草胺(cafenstrole)、CDEA、氯硫酰草胺(chlorthiamid)、三环赛草胺(cyprazole)、二甲吩草胺(dimethenamid)、高效二甲噻草胺(dimethenamid-p)、双苯酰草胺(diphenamid)、横唑草(epronaz)、乙胺草醚(etnipromid)、四唑酰草胺(fentrazamide)、氟胺草唑(flupoxam)、氟磺胺草醚(fomesafen)、氟硝磺酰胺(halosafen)、丁咪酰胺(isocarbamid)、异噁草胺(isoxaben)、萘氧丙草胺(napropamide)、萘草胺(naptalam)、烯草胺(pethoxamid)、炔苯酰草胺(propyzamide)、醌萍胺(quinonamid)和牧草胺(tebutam);苯胺除草剂诸如丁酰草胺(chloranocryl)、咯草隆(cisanilide)、氯甲酰草胺(clomeprop)、环酰草胺(cypromid)、吡氟草胺(diflufenican)、乙氧苯草胺(etobenzanid)、酰苯磺威(fenasulam)、氟噻草胺(flufenacet)、氟苯咬草(flufenican)、苯噻酰草胺(mefenacet)、氟磺酰草胺(mefluidide)、噁唑酰草胺(metamifop)、庚酰草胺(monalide)、萘丙胺(naproanilide)、甲氯酰草胺(pentanochlor)、氟吡草胺(picolinafen)和敌稗(propanil);芳基丙氨酸除草剂诸如新燕灵(benzoylprop)、麦草氟(flamprop)和麦草氟(flamprop)-M;氯乙酰苯胺除草剂诸如乙草胺(acetochlor)、甲草胺(alachlor)、丁草胺(butachlor)、丁烯草胺(butenachlor)、异丁草胺(delachlor)、乙酰甲草胺(diethatyl)、二甲草胺(dimethachlor)、吡草胺(metazachlor)、异丙甲草胺(metolachlor)、高效异丙甲草胺(s-metolachlor)、丙草胺(pretilachlor)、毒草胺(propachlor)、异丙草胺(propisochlor)、丙炔草胺(prynachlor)、特丁草胺(terbuchlor)、甲氧噻草胺(thenylchlor)和二甲苯草胺(xylachlor);磺酰类除草剂诸如氟草黄(benzofluor)、黄草伏(perfluidone)、pyrimisulfan和氟唑草胺(profluazol);磺胺类除草剂诸如磺草灵(asulam)、卡巴草灵(carbasulam)、酰苯磺威(fenasulam)和安磺灵(oryzalin);抗生素类除草剂诸如双丙氨酰膦(bilanafos);苯甲酸除草剂诸如草灭畏(chloramben)、麦草畏(dicamba)、2,3,6-TBA和杀草畏(tricamba);嘧啶氧基苯甲酸类除草剂诸如双草醚(bispyribac)和pyriminobac;嘧啶基硫代苯甲酸类除草剂诸如嘧草硫醚(pyrithiobac);苯二甲酸除草剂诸如敌草索(chlorthal);吡啶甲酸除草剂诸如氯氨吡啶酸(aminopyralid)、二氯吡啶酸(clopyralid)和氨氯吡啶酸(picloram);喹啉羧酸类除草剂诸如二氯喹啉酸(quinclorac)和喹草酸(quinmerac);含砷除草剂诸如二甲胂酸、CMA、DSMA、六氟盐(hexaflurate)、MAA、MAMA、MSMA、亚砷酸钾和亚砷酸钠;苯甲酰基环己二酮类除草剂诸如甲基磺草酮(mesotrione)、磺草酮(sulcotrione)、tefuryltrione和氟磺草酮(tembotrione);苯并呋喃基烷基磺酸盐类除草剂诸如呋草黄(benfuresate)和乙氧呋草黄(ethofumesate);氨基甲酸酯类除草剂诸如磺草灵(asulam)、咔波唑(carboxazole)、氯丙卡必(chlorprocarb)、苄胺灵(dichlormate)、酰苯磺威(fenasulam)、特胺灵(karbutilate)和特草灵(terbucarb);苯氨基甲酸酯(Carbanilate)类除草剂诸如燕麦灵(barban)、BCPC、carbasulam、双酰草胺(carbetamide)、CEPC、氯炔灵(chlorbufam)、氯苯胺灵(chlorpropham)、CPPC、甜菜安(desmedipham)、棉胺宁(phenisopham)、甜菜宁(phenmedipham)、甜菜宁(phenmedipham-ethyl)、苯胺灵(propham)和灭草灵(swep);环己烯肟除草剂诸如禾草灭(alloxydim)、丁苯草酮(butroxydim)、烯草酮(clethodim)、环己烯草酮(cloproxydim)、噻草酮(cycloxydim)、环苯草酮(profoxydim)、稀禾定(sethoxydim)、吡喃草酮(tepraloxydim)和三甲苯草酮(tralkoxydim);环丙基异恶唑类(cyclopropylisoxazole)除草剂诸如异噁氯草酮(isoxachlortole)和异噁唑草酮(isoxaflutole);甲酰亚胺类除草剂诸如双苯嘧草酮(benzfendizone)、吲哚酮草酯(cinidon-ethyl)、氟奋乃静(flumezin)、氟烯草酸(flumiclorac)、丙炔氟草胺(flumioxazin)和炔草胺(flumipropyn);二硝基苯胺类除草剂诸如乙丁氟灵(benfluralin)、双丁乐灵(butralin)、氨氟灵(dinitramine)、乙丁烯氟灵(ethalfluralin)、氯乙氟灵(fluchloralin)、异丙乐灵(isopropalin)、氟烯硝草(methalpropalin)、甲磺乐灵(nitralin)、安磺灵(oryzalin)、二甲戊灵(pendimethalin)、氨氟乐灵(prodiamine)、环丙氟灵(profluralin)和氟乐灵(trifluralin);二硝基苯酚类除草剂诸如消草酯(dinofenate)、硝丙酚(dinoprop)、戊硝酚(dinosam)、地乐酚(dinoseb)、特乐酚(dinoterb)、DNOC、硝草酚(etinofen)和丁硝酚(medinoterb);二苯基醚除草剂诸如氯氟草醚(ethoxyfen);硝基苯醚类除草剂诸如三氟羧草醚(acifluorfen)、苯草醚(aclonifen)、甲羧除草醚(bifenox)、甲氧除草醚(chlomethoxyfen)、草枯醚(chlornitrofen)、乙胺草醚(etnipromid)、三氟硝草醚(fluorodifen)、乙羧氟草醚(fluoroglycofen)、氟除草醚(fluoronitrofen)、氟磺胺草醚(fomesafen)、氟氧草醚(furyloxyfen)、氟硝磺酰胺(halosafen)、乳氟禾草灵(lactofen),除草醚(nitrofen)、硝氟草醚(nitrofluorfen)和乙氧氟草醚(oxyfluorfen);二硫代氨基甲酸盐类除草剂诸如棉隆(dazomet)和威百亩(metam);卤代脂肪族除草剂诸如五氯戊酮酸(alorac)、三氯丙酸(chloropon)、茅草枯(dalapon)、四氟丙酸(flupropanate)、六氯丙酮、碘代甲烷、溴甲烷(methyl bromide)、一氯乙酸、SMA和TCA;咪唑啉酮类除草剂诸如咪草酸(imazamethabenz)、甲氧咪草烟(imazamox)、甲咪唑烟酸(imazapic)、咪唑烟酸(imazapyr)、咪唑喹啉酸(imazaquin)和咪唑乙烟酸(imazethapyr);无机除草剂诸如氨基磺酸铵(ammonium sulfamate)、硼砂、氯酸钙、硫酸铜、硫酸亚铁、叠氮化钾、氰酸钾、叠氮化钠、氯酸钠和硫酸;腈类除草剂诸如溴虫脲(bromobonil)、溴苯腈(bromoxynil)、羟敌草腈(chloroxynil)、敌草腈(dichlobenil)、碘草腈(iodobonil)、碘苯腈(ioxynil)和双唑草腈(pyraclonil);有机磷类除草剂诸如甲基胺草磷(amiprofos-methyl)、莎稗磷(anilofos)、地散磷(bensulide)、双丙氨酰膦(bilanafos)、抑草磷(butamifos)、2,4-DEP、DMPA、EBEP、蔓草磷(fosamine)、草甘膦(glyphosate)和哌草磷(piperophos);苯氧基类除草剂诸如溴酚肟(bromofenoxim)、氯甲酰草胺(clomeprop)、2,4-DEB、2,4-DEP、氟苯戊烯酸(difenopenten)、disul、抑草蓬(erbon)、乙胺草醚、氯苯氧乙醇(fenteracol)和三氟禾草肟(trifopsime);苯氧乙酸类除草剂诸如4-CPA、2,4-D、3,4-DA、MCPA、2甲4氯硫代乙酯(mcpa-thioethyl)和2,4,5-T;苯氧基丁酰类除草剂诸如4-CPB、2,4-DB、3,4-DB、MCPB和2,4,5-TB;苯氧基丙酸类除草剂诸如调果酸(cloprop)、4-CPP、2,4-滴丙酸(dichlorprop)、高2-4-滴丙酸(dichlorprop-p)、3,4-DP、2,4,5-涕丙酸(fenoprop)、2甲4氯丙酸(mecoprop)和高2甲4氯丙酸(mecoprop-p);芳氧基苯氧基丙酸类除草剂诸如氯噻嗪(chlorazifop)、炔草酸(clodinafop)、clofop、氰氟草酯(cyhalofop)、禾草灵(diclofop)、噁唑禾草灵(fenoxaprop)、精噁唑禾草灵(fenoxaprop-p)、噻唑禾草灵(fenthiaprop)、吡氟禾草灵(fluazifop)、精吡氟禾草灵(fluazifop-p)、氟吡禾灵(haloxyfop)、氟吡禾灵(haloxyfop)-P、异噁草醚(isoxapyrifop)、噁唑酰草胺(metamifop)、喔草酯(propaquizafop)、喹禾灵(quizalofop)、精喹禾灵(quizalofop-p)和trifop;苯二胺类除草剂诸如氨氟灵(dinitramine)和氨氟乐灵(prodiamine);吡唑基类除草剂诸如吡草酮(benzofenap)、吡唑特(pyrazolynate)、磺酰草吡唑、苄草唑(pyrazoxyfen)、派罗克杀草砜(pyroxasulfone)和苯唑草酮(topramezone);吡唑基苯基类除草剂诸如异丙吡草酯(fluazolate)和吡草醚(pyraflufen);哒嗪类除草剂诸如醚草敏(credazine)、pyridafol和达草特(pyridate);哒嗪酮类除草剂诸如溴草敏(brompyrazon)、氯草敏(chloridazon)、敌米达松dimidazon)、氟哒嗪草酯(flufenpyr)、氟钛草(metflurazon)、氟草敏(norflurazon)、草哒松(oxapyrazon)和比达农(pydanon);吡啶类除草剂诸如氯氨吡啶酸(aminopyralid)、cliodinate、二氯吡啶酸(clopyralid)、氟硫草定(dithiopyr)、氟草烟(fluroxypyr)、氟氯草啶(haloxydine)、氨氯吡啶酸(picloram)、氟吡草胺(picolinafen)、三氯吡啶酚(pyriclor)、噻草啶(thiazopyr)和三氯吡氧乙酸(triclopyr);嘧啶二胺除草剂诸如丙草定(iprymidam)和嘧草胺(tioclorim);季铵盐类除草剂诸如牧草快(cyperquat)、二乙除草双(diethamquat)、野燕枯(difenzoquat)(difenzoquat)、敌草快(diquat)、伐草快(morfamquat)和百草枯(paraquat);硫代氨基甲酸酯类除草剂诸如丁草敌(butylate)、环草敌(cycloate)、燕麦敌(di-allate)、茵草敌(EPTC)、禾草畏(esprocarb)、硫草敌(ethiolate)、氮萆草(isopolinate)、曱疏苯威(methiobencarb)、禾草敌(molinate)、坪草丹(orbencarb)、克草敌(pebulate)、苄草丹(prosulfocarb)、稗草畏(pyributicarb)、菜草畏(sulfallate)、杀草丹(thiobencarb)、仲草丹(tiocarbazil)、野燕畏(tri-allate)和vemolate;硫代碳酸酯类除草剂诸如敌灭生(dimexano)、EXD和黄原酸异丙酯(proxan);硫脲类除草剂诸如灭草恒(methiuron);三嗪类除草剂诸如异丙净(dipropetryn)、三嗪氟草胺(triaziflam)和三羟基三嗪(trihydroxytriazine);氯三嗪类除草剂诸如莠去津(atrazine)、可乐津(chlorazine)、氰草津(cyanazine)、环丙津(cyprazine)、草止津(Eglinazine)、抑草津(ipazine)、麦苏百津(mesoprazine)、环丙氰津(procyazine)、甘扑津(proglinazine)、扑灭津(propazine)、另丁津(sebuthylazine)、西玛津(simazine)、特丁津(terbuthylazine)和草达津(trietazine);甲氧基三嗪类除草剂诸如atraton、醚草通(methometon)、扑灭通(prometon)、仲丁通(secbumeton)、西玛通(simeton)和特丁通(terbumeton);甲基硫代三嗪类除草剂诸如莠灭净(ametryn)、叠氮津(aziprotryne)、氰草净(cyanatryn)、敌草净(desmetryn)、异戊净(dimethametryn)、盖草津(methoprotryne)、扑草净(prometryn)、西草净(simetryn)和特丁净(terbutryn);三嗪酮类除草剂诸如特津酮(ametridione)、特草嗪酮(amibuzin)、环嗪酮(hexazinone)、丁嗪草酮(isomethiozin)、苯嗪草酮(metamitron)和嗪草酮(metribuzin);三唑类除草剂诸如杀草强(amitrole)、唑草胺(cafenstrole)、横唑草(epronaz)和氟胺草唑(flupoxam);三唑酮类除草剂诸如氨唑草酮(amicarbazone)、苯唑横隆(bencarbazone)、唑酮草酯(carfentrazone)、氟唑磺隆(flucarbazone)、丙苯磺隆(propoxycarbazone)、甲磺草胺(sulfentrazone)和噻酮磺隆(thiencarbazone-methyl);三唑并嘧啶类除草剂诸如氯酯磺草胺(cloransulam)、双氯磺草胺(diclosulam)、双氟磺草胺(florasulam)、唑嘧磺草胺(flumetsulam)、磺草唑胺(metosulam)、五氟磺草胺(penoxsulam)和甲氧磺草胺(pyroxsulam);尿嘧啶类除草剂诸如氟丙嘧草酯(butafenacil)、除草定(bromacil)、flupropacil、异草定(isocil)、环草定(lenacil)和特草定(terbacil);3-苯基尿嘧啶;尿素除草剂诸如苯噻隆(benzthiazuron)、苄草隆(cumyluron)、环莠隆(cycluron)、氯全隆(dichloralurea)、氟吡草腙(diflufenzopyr)、异草完隆(isonoruron)、异噁隆(isouron)、甲基苯噻隆(methabenzthiazuron)、特噁唑隆(monisouron)和草完隆(noruron);苯脲类除草剂诸如疏草隆(anisuron)、炔草隆(buturon)、氯溴隆(chlorbromuron)、乙氧苯隆(chloreturon)、绿麦隆(chlorotoluron)、枯草隆(chloroxuron)、杀草隆(daimuron)、枯莠隆(difenoxuron)、噁唑隆(dimefuron)、敌草隆(diuron)、非草隆(fenuron)、伏草隆(fluometuron)、氟苯隆(fluothiuron)、异丙隆(isoproturon)、利谷隆(linuron)、灭草恒(methiuron)、甲基杀草隆(methyldymron)、吡喃隆(metobenzuron)、溴谷隆(metobromuron)、甲氧隆(metoxuron)、绿谷隆(monolinuron)、灭草隆(monuron)、草不隆(neburon)、对氟隆(parafluron)、酰草隆(phenobenzuron)、环草隆(siduron)、氟氧隆(tetrafluron)和噻苯隆(thidiazuron);嘧啶基磺酰脲类除草剂诸如酰嘧磺隆(amidosulfuron)、四唑嘧磺隆(azimsulfuron)、苄嘧磺隆(bensulfuron)、氯嘧磺隆(chlorimuron)、环丙嘧磺隆(cyclosulfamuron)、乙氧磺隆(ethoxysulfuron)、啶嘧磺隆(flazasulfuron)、氟吡磺隆(flucetosulfuron)、氟啶嘧磺隆(flupyrsulfuron)、甲酰氨基嘧磺隆(foramsulfuron)、氯吡嘧磺隆(halosulfuron)、唑吡嘧磺隆(imazosulfuron)、甲磺胺磺窿(mesosulfuron)、烟嘧磺隆(nicosulfuron)、嘧苯胺磺隆(orthosulfamuron)、环氧嘧磺隆(oxasulfuron)、氟嘧磺隆(primisulfuron)、吡嘧磺隆(pyrazosulfuron)、砜嘧磺隆(rimsulfuron)、甲嘧磺隆(sulfometuron)、磺酰磺隆(sulfosulfuron)和三氟啶磺隆(trifloxysulfuron);三嗪基磺酰脲类除草剂诸如氯磺隆(chlorsulfuron)、醚磺隆(cinosulfuron)、胺苯磺隆(ethametsulfuron)、碘磺隆(iodosulfuron)、甲磺隆(metsulfuron)、氟磺隆(prosulfuron)、噻吩磺隆(thifensulfuron)、醚苯磺隆(triasulfuron)、苯磺隆(tribenuron)、氟胺磺隆(triflusulfuron)和三氟甲磺隆(tritosulfuron);噻二唑基脲类除草剂诸如丁噻隆(buthiuron)、磺噻隆(ethidimuron)、丁噻隆(tebuthiuron)、噻氟隆(thiazafluron)和噻苯隆(thidiazuron);以及未分类的除草剂诸如丙烯醛、烯丙醇、aminocyclopyrachlor、唑啶草酮(azafenidin)、草除灵(benazolin)、灭草松(bentazone)、双环磺草酮(benzobicyclon)、丁噻咪草酮(buthidazole)、氰氨基化钙、克草胺酯(cambendichlor)、伐草克(chlorfenac)、燕麦酯(chlorfenprop)、氟咪杀(chlorflurazole)、氯甲丹(chlorflurenol)、环庚草醚(cinmethylin)、异噁草酮(clomazone)、CPMF、甲酚、邻二氯苯(ortho-dichlorobenzene)、哌草丹(dimepiperate)、茵多杀(endothal)、唑啶草(fluoromidine)、氟啶草酮(fluridone)、氟咯草酮(flurochloridone)、呋草酮(flurtamone)、嗪草酸(fluthiacet)、茚草酮(indanofan)、灭草唑(methazole)、异硫氰酸甲酯(methyl isothiocyanate)、氟氯草胺(nipyraclofen)、OCH、丙炔噁草酮(oxadiargyl)、噁草酮(oxadiazon)、噁嗪草酮(oxaziclomefone)、五氯苯酚(pentachlorophenol)、环戊噁草酮(pentoxazone)、乙酸苯汞、唑啉草酯(pinoxaden)、甲硫磺乐灵(prosulfalin)、嘧啶肟草醚(pyribenzoxim)、环酯草醚(pyriftalid)、灭藻醌(quinoclamine)、:硫氰苯胺(rhodethanil)、吖庚磺酯(sulglycapin)、噻二唑草胺(thidiazimin)、灭草环(tridiphane)、三甲异脲(trimeturon)、茚草酮(tripropindan)和草达克(tritac)。本发明的除草组合物还可以与草甘膦或2,4-D结合用于耐草甘膦或耐2,4-D的作物上。通常优选将本发明的组合物与除草剂组合使用,所述除草剂对所处理的作物具有选择性,并且在所应用的施用率下补充由这些组合物控制的杂草谱。通常还优选地将本发明的组合物和其它互补除草剂作为组合制剂或作为桶混物同时施用。
II.L-草胺膦组合物的使用方法
本文所述的组合物可用于选择性地控制田间或任何其他区域(包括例如铁路、草坪、高尔夫球场以及需要控制杂草的其他区域)中的杂草的方法。任选地,田间或其他区域可包含对草胺膦具有抗性的作物的种植的种子或作物。该方法可包括将有效量的包含如本文所述的L-草胺膦的组合物施用于田间。
本文所述的组合物可用于作物植物领域以预防或控制杂草。可将该组合物配制成用于喷洒在田间上的液体。将L-草胺膦以有效量提供于组合物中。如本文中所用,有效量是指每公顷约10克活性成分至每公顷约1,500克活性成分,例如约50克至约400克或约100克至约350克。在一些实施方案中,活性成分是L-草胺膦。例如,组合物中L-草胺膦的量可为每公顷约10克、约50克、约100克、约150克、约200克、约250克、约300克、约350克、约400克、约500克、约550克、约600克、约650克、约700克、约750克、约800克、约850克、约900克、约950克、约1,000克、约1,050克、约1,100克、约1,150克、约1,200克、约1,250克、约1,300克、约1,350克、约1,400克、约1,450克或约1,500克L-草胺膦。
IV.示例性实施方案
非限制性实施方案包括:
1.一种制备L-草胺膦的方法,其包括:
使D-草胺膦与D-氨基酸氧化酶(DAAO)反应以形成PPO(2-氧代-4-(羟基(甲基)膦酰基)丁酸);和
使用来自一个或多个胺供体的胺基,通过转氨酶(TA)将PPO胺化为L-草胺膦,
其中至少70%的D-草胺膦被转化为L-草胺膦。
2.实施方案1的方法,其中所述胺供体选自谷氨酸、L-谷氨酸、丙氨酸、仲丁胺、苯乙胺、甘氨酸、赖氨酸、缬氨酸、丝氨酸、谷氨酰胺、异丙胺、乙醇胺、2-氨基丁酸和二氨基丙酸或任何仲胺或氨基酸。
3.实施方案1的方法,其中所述D-草胺膦最初存在于D-和L-草胺膦或其盐的外消旋混合物中。
4.实施方案1的方法,其中所述DAAO酶选自来自圆红冬孢酵母菌或三角酵母菌、Neolentinus lepideus、里氏木霉或产油丝孢酵母的酶。在一个实施方案中,所述圆红冬孢酵母菌DAAO酶是UniProt P80324。在一个实施方案中,三角酵母菌DAAO酶是UniProtQ99042。在一个实施方案中,Neolentinus lepideus DAAO酶是KZT28066.1。在一个实施方案中,里氏木霉DAAO酶是XP_006968548.1。在一个实施方案中,产油丝孢酵母DAAO酶是KLT40252.1。
5.实施方案1的方法,其中所述DAAO酶是突变型DAAO。
6.实施方案5的方法,其中所述突变型DAAO是基于来自圆红冬孢酵母菌的序列的突变型DAAO。
7.实施方案5的方法,其中所述突变型DAAO在位置54、56、58、213和238处包含一个或多个突变。
8.实施方案7的方法,其中所述位置54处的突变选自N54C、N54L、N54T和N54V。
9.实施方案7的方法,其中位置56处的突变是T56M。
10.实施方案7的方法,其中所述位置58处的突变选自F58A、F58G、F58H、F58K、F58N、F58Q、F58R、F58S和F58T。
11.实施方案7的方法,其中所述位置213处的突变是M213S。
12.实施方案5的方法,其中所述突变型DAAO包含突变F58K和M213S。
13.实施方案5的方法,其中所述突变型DAAO包含位置54和56处的突变。
14.实施方案5的方法,其中所述突变型DAAO包含突变N54T和T56M。
15.实施方案5的方法,其中所述突变型DAAO包含突变F58Q或F58H。
16.实施方案5的方法,其中所述突变型DAAO包含突变N54V和F58Q。
17.实施方案5的方法,其中所述突变型DAAO包含突变N54V、F58Q和M213S。
18.实施方案1的方法,其中所述TA酶是来自大肠杆菌的gabT转氨酶。在一个实施方案中,所述大肠杆菌gabT转氨酶是UniProt P22256。
19.实施方案1的方法,其中所述TA酶由SEQ ID NO:1编码。
20.实施方案1的方法,其中所述反应步骤和胺化步骤在单个容器中进行。
21.实施方案20的方法,其中在反应开始时基本上加入所有试剂。
22.实施方案20的方法,其中将用于反应步骤的试剂和用于胺化步骤的试剂在不同时间添加到单个容器中。
23.实施方案1的方法,其中所述反应步骤和胺化步骤在分开的容器中进行。
24.一种包含D-草胺膦、PPO和L-草胺膦的组合物。
25.实施方案24的组合物,其中基于D-草胺膦、PPO和L-草胺膦的总量,L-草胺膦的量为90%或更多。
26.实施方案1的方法,其中获得具有实施方案25的组成的固体。
27.实施方案1的方法,其中获得L-草胺膦溶液以用于具有除草剂活性的制剂中。
28.一种制剂,其包含按制剂的重量计10-30%的量的L-草胺膦铵;以及选自按制剂的重量计10-40%的量的烷基醚硫酸钠;按制剂的重量计0.5-2%的量的1-甲氧基-2-丙醇;按制剂的重量计4-18%的量的二丙二醇;和按制剂的重量计4-20%的量的烷基多糖中的一种或多种附加组分;以及水作为制剂的其余部分。
29.实施方案28的组合物,其中所述制剂包含:按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计31.6%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计8.6%的量的二丙二醇;和按制剂的重量计9.8%的量的烷基多糖;以及按制剂的重量计36.75%的量的水。
30.实施方案28的组合物,其中所述制剂包含:按制剂的重量计24.5%的量的L-草胺膦铵;按制剂的重量计31.6%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计8.6%的量的二丙二醇;和按制剂的重量计9.8%的量的烷基多糖;以及按制剂的重量计24.5%的量的水。
31.实施方案28的组合物,其中所述制剂包含:按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计15.8%的量的烷基醚硫酸钠;按制剂的重量计0.5%的量的1-甲氧基-2-丙醇;按制剂的重量计4.3%的量的二丙二醇;和按制剂的重量计4.9%的量的烷基多糖;以及按制剂的重量计62.25%的量的水。
32.一种制剂,其包含按制剂的重量计10-30%的量的L-草胺膦铵;选自按制剂的重量计10-40%的量的烷基醚硫酸钠;按制剂的重量计0.5-2%的量的1-甲氧基-2-丙醇;和按制剂的重量计3-10%的量的烷基多糖中的一种或多种附加组分;以及水作为制剂的其余部分。
33.实施方案32的组合物,其中所述制剂包含:按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计22.1%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计6.2%的量的烷基多糖;以及按制剂的重量计58.45%的量的水。
34.实施方案32的组合物,其中所述制剂包含:按制剂的重量计24.5%的量的L-草胺膦铵;按制剂的重量计22.1%的量的烷基醚硫酸钠;按制剂的重量计1%的量的1-甲氧基-2-丙醇;按制剂的重量计6.2%的量的烷基多糖;以及按制剂的重量计46.2%的量的水。
35.实施方案32的组合物,其中所述制剂包含:按制剂的重量计12.25%的量的L-草胺膦铵;按制剂的重量计11.05%的量的烷基醚硫酸钠;按制剂的重量计0.5%的量的1-甲氧基-2-丙醇;按制剂的重量计3.1%的量的烷基多糖;以及按制剂的重量计73.1%的量的水。
36.一种选择性控制区域中的杂草的方法,其包括:
向所述区域施用有效量的组合物,所述组合物以相对于D-草胺膦大于90%的对映体过量包含L-草胺膦。
37.实施方案36的方法,其中所述组合物的施用量为每公顷少于400克的L-草胺膦和D-草胺膦的总和。
38.一种选择性控制区域中的杂草的方法,其包括:
向所述区域施用有效量的组合物以及向所述区域施用超过0.01%但少于10%的PPO,所述组合物以相对于D-草胺膦大于90%的对映体过量包含L-草胺膦。
39.实施方案38的方法,其中所述组合物的施用量为每公顷少于400克的L-草胺膦、D-草胺膦和PPO的总和。
40.一种选择性控制区域中的杂草的方法,所述区域含有对草胺膦具有抗性的种植种子或作物的作物,所述方法包括:
向田间施用有效量的组合物,所述组合物以相对于D-草胺膦大于90%的对映体过量包含L-草胺膦和超过0.01%但少于10%的PPO。
以说明的方式而非限制的方式提供以下实施例。
实施例
实施例1:DAAO酶纯化
将来自圆红冬孢酵母菌的突变型DAAO的编码序列(例如,由MMARIRL前导序列和F58K和M213S突变组成)克隆入pET14b载体中以允许N末端6xHis标记的蛋白质表达。将该pET14b-RgDAAO质粒转化到BL21(BE3)trxB pLysS细胞中。此处描述的所有编号所对应的来自圆红冬孢酵母菌的野生型DAAO的序列是:
MHSQKRVVVLGSGVIGLSSALILARKGYSVHILARDLPEDVSSQTFASPWAGANWTPFMTLTDGPRQAKWEESTFKKWVELVPTGHAMWLKGTRRFAQNEDGLLGHWYKDITPNYRPLPSSECPPGAIGVTYDTLSVHAPKYCQYLARELQKLGATFERRTVTSLEQAFDGADLVVNATGLGAKSIAGIDDQAAEPIRGQTVLVKSPCKRCTMDSSDPASPAYIIPRPGGEVICGGTYGVGDWDLSVNPETVQRILKHCLRLDPTISSDGTIEGIEVLRHNVGLRPARRGGPRVEAERIVLPLDRTKSPLSLGRGSARAAKEKEVTLVHAYGFSSAGYQQSWGAAEDVAQLVDEAFQRYHGAARESKL(SEQ ID NO:2)。
为了纯化DAAO酶,将细胞在400mL自诱导培养基(含有微量元素的LB肉汤基质,Formedium)中于30℃生长20至24小时。在预冷的离心机和桶中收获细胞,用冷水洗涤,再次离心,并于-80℃下储存直至纯化。
然后将细胞沉淀在裂解缓冲液(50mM磷酸钾,pH 8.0,20mM咪唑和1%Sigma蛋白酶抑制剂混合物(PIC)w/o EDTA)中以每1g细胞沉淀5mL裂解缓冲液的体积解冻。在冰上时,将细胞以10的振幅超声处理4次,持续30秒。通过离心澄清细胞裂解物,然后以4倍床体积加入到钴树脂(HisPur Cobalt,ThermoScientific)中。将细胞裂解物在室温下温和振荡温育1小时。将树脂加入柱中,用5个床体积的洗涤缓冲液(50mM Kpi,pH8.0,20mM咪唑)洗涤两次。用1个床体积的洗脱缓冲液(50mM Kpi,200mM咪唑)进行4次洗脱。
实施例2:DAAO活性的比色测定
与Berneman等类似地测定DAAO活性。简言之,将100uL底物和HRP(0.1mg/mL HRP,Sigma P8375和50mM磷酸钾(pH 8)中的所需量D-草胺膦或外消旋D/L-草胺膦)加入到BrandUV micro比色杯中。为此,加入50uL染料(50mM磷酸钾(pH 8)中的60ug/mL TBHBA,Sigma439533和1mg/mL 4-氨基安替比林,Sigma A4382),然后加入50uL酶混合物(100mM磷酸钾(pH 8)中的所需DAAO浓度)。在分光光度计上在510nm处在适当的时间内监测反应以确定酶动力学。尽管在DAAO的纯化或反应中没有加入黄素腺嘌呤二核苷酸(FAD),但可以任选地包括该试剂。使用该测定法测试如实施例1中纯化的圆红冬孢酵母菌DAAO的两种示例性突变型变体AC201(含有F58K和M213S)和AC263(含有N54T、T56M、F58K和M213S),所述突变型变体经显示产生过氧化氢,证明它们在氧化D-草胺膦中的活性。AC201和AC263具有相似的Vmax,但AC263具有较低的KM
实施例3:转氨酶的纯化
为了纯化例如大肠杆菌gabT转氨酶(http://www.uniprot.org/uniprot/P22256),从大肠杆菌K12菌株ER2925扩增该基因并克隆到pET-14b中以产生N末端6xHis标记的形式。然后将该质粒转化到BL21(DE3)细胞中进行诱导。在自诱导培养基中诱导后,通过超声处理裂解细胞,并如实施例1中所述纯化6xHis标记的酶。
实施例4:转氨酶活性的证明
在一个非限制性实例中,用于转氨作用测定的PPO来源可以是已通过DAAO转化为PPO的D-草胺膦或外消旋D/L-草胺膦。在第一步骤中,将39mM外消旋D/L-草胺膦与0.5mg/ml纯化的圆红冬孢酵母菌DAAO F58K M213S和10ug/mL过氧化氢酶(于50mM磷酸钾缓冲液(pH8)中)于30℃温育20小时。这导致大多数D-草胺膦向PPO转化。随后,以20ug/mL加入纯化的大肠杆菌gabT,并以50mM加入L-谷氨酸作为胺供体。在相关点,通过煮沸10分钟停止样品,然后用等体积的乙腈沉淀。在具有Chirobiotic T2柱的HPLC上分离各个化学物质,并通过与真实标准物比较进行定量。
DAAO的突变型变体和转氨酶的组合导致对映体富集的提高:从L-草胺膦超过D-草胺膦为0%(即,D-草胺膦和L-草胺膦的含量相等)开始至92%的对映体富集。这些结果证明大肠杆菌gabT具有转氨酶活性,并且该测定可用于测定多种野生型和/或突变型潜在转氨酶的活性。
实施例5:外消旋D/L-草胺膦在单个容器中的去外消旋化
与实施例4类似地设定反应。将系统(5.45mL,30℃)在pH 7.3的磷酸盐缓冲液中运行。注意到pH为8.0的50mM磷酸盐缓冲液不足以缓冲氨基酸添加,在添加氨基酸后该系统的未调节的pH为pH 6.4。使用1M的碱性盐K2HPO4将pH调节至5.45mL的体积,意味着通过添加产生的实际初始底物浓度为275mM。在反应开始时基本上同时加入以下试剂:271mg D,L-草胺膦、420mg谷氨酸、15mg AC263 DAAO、50μg过氧化氢酶和1.0mg大肠杆菌gab T转氨酶。图2显示,当加入所有试剂时,D-PPT(D-草胺膦)的量随着PPO的适度积累而减少。该结果表明RgDAAO/EcgabT酶对高效地将D/L草胺膦去外消旋化为L-草胺膦。
实施例6:改良的DAAO酶的证明
使用如上概述的蛋白质诱变策略,鉴定了改良和变异的DAAO酶。根据下述方法测定酶。
原液:
制备以下染料原液:2,4,6-三溴-3-羟基苯甲酸(TBHBA)在DMSO中的20mg/mL原液;和4-氨基安替比林(4-AAP)在水中的100mg/mL原液。制备以下酶原液:辣根过氧化物(HRP)6型在pH 8.0磷酸钾缓冲液中的1mg/mL原液。制备以下底物原液:在pH 8.0磷酸钾缓冲液中的不同浓度的D或DL氨基酸。
反应混合物:
制备以下反应混合物:
混合物A是底物和HRP酶的组合。使用反应缓冲液制备待测定的每种底物浓度的溶液。溶液是最终底物浓度的两倍,HRP溶液为0.2mg/mL。
混合物B是染料混合物。向5mL反应缓冲液中加入120μL的TBHBA溶液和400μL的4-AAP溶液。
混合物C是酶混合物。制备DAAO在反应缓冲液中的0.1mg/mL溶液。最终反应物浓度为25μg/mL。
方案:
在510nm的波长下使用分光光度计,所述波长对应于4-AAP/TBHBA的最大吸光度,并且是消光系数为29400M-1cm-1时所处的点。进行测定的温度为30℃。通过每分钟测量(持续15分钟)获得反应动力学。在测量之间,以正常强度进行20秒的轨道振动,然后进行10秒的沉降时间。
使用96孔板,使用多通道以下列顺序添加以下混合物(具有重复):100μl混合物A,50μl混合物B和50μl混合物C。在添加酶后立即开始测量。
如上所述测量酶动力学,绘制在Michaelis Menten图上,并用于计算Vmax和KM。对于变体Ac302(54V,58Q,213S),Vmax为4.2μmol/min*mg。
除混合物C原液是0.2mg/mL DAAO溶液,并且DAAO的该最终反应浓度为50ug/mL外,如上所述,对许多变体DAAO酶完成了该分析。
如下表1所示,变体突变型DAAO酶显示出一系列活性:
表1:
变体 突变 Vmax.(Ac302的%).
Ac263 54T,56M,58K,213S 33
Ac302 54V,58Q,213S 100
Ac305 54C,58H,213S 88
Ac309 54T,58T,213S 71
Ac312 54T,58G,213S 74
Ac314 54T,58Q,213S 99
Ac316 54T,58S,213S 75
Ac318 54T,58A,213S 71
Ac319 54L,58R,213S 64
Ac320 54V,58R,213S 76
Ac322 54V,58N,213S 79
实施例7:在5L反应体积下对外消旋D/L-草胺膦进行去外消旋化
使用本领域技术人员熟悉的方法增加去外消旋化的规模。试剂和其相对比例基本上类似于实施例5,但是量显著更大。不是在振荡器中的管中,而是在搅拌式夹套反应器中进行反应,包括任选地对发酵液或顶部空间进行空气或氧气喷射。这些反应器的大小各不相同,从少于10毫升的反应至数万或数十万升。选择搅拌速率以增加反应混合和速率,同时最小化功率消耗和剪切。
在一个实例中,反应以5L规模运行。将系统(5L,30℃)在pH 8.0的200mM磷酸盐缓冲液中在搅拌的夹套反应器中进行。在反应开始时基本上同时加入以下试剂:300mM D,L-草胺膦、900mM谷氨酸、7.5g AC302DAAO、0.2g过氧化氢酶和1.0g大肠杆菌gab T转氨酶。另外,加入500mL异丙醇以控制发泡。在反应过程中,以0.3VVM(每分钟每体积反应混合物的空气体积)引入空气。
反应的HPLC分析表明在8小时内达到平衡,L-草胺膦相对于D-草胺膦的对映体过量大于99%并且L-草胺膦对PPO的比率为90%对10%。该结果表明RgDAAO/EcgabT酶对以较大规模高效地将D/L-草胺膦去外消旋化成L-草胺膦。
实施例8:氧气对反应速率的影响
尽管搅拌的夹套反应器或固定化柱通常允许一些氧气转移,但被动通气所提供的氧气吸收速率对于高效过程是不充足的。在一个实施例中,反应在与实施例7相同的容器中在基本上相同的条件下进行,但在还原的(0.01VVM)下,利用2倍(按体积计)AC302 DAAO(3g/L对比1.5g/L)并且不使用异丙醇。在这种情况下,反应需要超过60小时才能达到平衡,这证明了充气对于高效反应的至关重要性。
实施例9:DAAO和TA的共固定化
将DAAO和TA酶共固定在EziG控制的有孔玻璃珠粒(EnginZyme)上。将100mg EziG3型珠粒在室温下与3ml含有16mg纯化的AC302 DAAO和1.6mg纯化的gabT的50mM磷酸钾缓冲液pH 7.5,0.5M NaCl,20mM咪唑在50ml Falcon管中的溶液一起摇动。30分钟后,将珠粒旋转沉淀,除去固定溶液,用10ml 100mM磷酸钾缓冲液pH 7.5洗涤珠粒3次。
通过向洗涤的珠粒中加入所有其他组分开始反应。反应混合物在2.5mL中含有300mM D/L-草胺膦、900mM L-谷氨酸、50μg过氧化氢酶、198mM磷酸钾。将反应物在30℃下于覆盖有石蜡封口膜的50mL管中振荡(250rpm)温育,石蜡膜上具有戳穿孔以进行气体交换。
1小时后,通过HPLC测定D-草胺膦的消耗和L-草胺膦的形成,并计算这些速率。6小时后,将珠粒旋转沉淀,除去反应混合物,用10ml 100mM磷酸钾缓冲液pH 7.5洗涤珠粒3次。然后将珠粒在4℃下储存18至72小时,然后重复反应,总共进行15次,之后保留的活性大于初始活性的50%。
实施例10:缓冲液对反应的影响
当使用可溶性AC302 DAAO和大肠杆菌gabT TA酶时,需要>50mM的磷酸盐缓冲液才能获得完全活性。将100mL反应物在30℃下于覆盖有石蜡封口膜的500mL烧瓶中振荡(250rpm)温育。使用空气泵将空气鼓泡通过反应物,持续最初5小时。取出空气泵以进行过夜温育,使反应不会起泡,并使用带气孔的新型封口膜以便气体交换。反应混合物含有300mM D/L-草胺膦、905mM L-谷氨酸、80mg AC302 DAAO(0.8mg/mL)、14.5mg gabT(0.145mg/mL)、2mg过氧化氢酶和异丙醇(作为消泡剂)(10%的初始浓度,在2小时(2mL)、3小时(1mL)、3.5小时(1mL)和4小时(2mL)时另外加入异丙醇)。将500μL的1N NaOH(在酶之前加入)用于将pH从约6调节至约7。对于整个反应,将pH保持在约7而无需进一步调节。由于原液酶缓冲液中的磷酸钾,最终混合物是45mM磷酸盐缓冲液。与用200mM磷酸盐缓冲液的类似反应相比,反应速率是利用200mM缓冲液的反应的反应速率的50-60%。
当使用固定化AC302DOOA和大肠杆菌gatT TA酶时,小于1mM的磷酸盐缓冲液对完全活性是充足的。制备固定化蛋白质并如实施例9中针对“缓冲”反应那样进行反应。另外,制备固定化蛋白质并如实施例9针对“pH 7”反应那样进行反应,除了使用氢氧化钠将反应的pH调节至pH 7并且不添加磷酸盐缓冲液(来自酶缓冲液原液的残留磷酸盐缓冲液少于1mM)。该工作表明,当使用固定化酶时,DAAO和组合的DAAO和gabT反应的初始反应速率在添加和不添加磷酸盐缓冲液的情况下非常相似。
实施例11:异丙胺作为胺供体
异丙胺可以用作胺供体,以用于使用适当的TA进行的PPO至L-草胺膦的转化。PPO在与下列组分的反应中转化为L-草胺膦:
·0.25mg/mL由SEQ ID NO:1编码的TA
·25mM PPO
·0.2mM磷酸吡哆醛
·250mM异丙胺(pH调节至8w/H3PO4)
·100mM Kphos缓冲液pH 8.0
将反应物在25至30℃温育30小时,同时轻轻摇动(250rpm)。在0小时时,通过HPLC测量的L-草胺膦的量为0mM,20小时时其为14mM,并且在30小时时其为18mM。这表明由SEQID NO:1编码的酶可以将PPO转化为L-草胺膦。
实施例12:赖氨酸作为胺供体
赖氨酸可用作胺供体,用于使用适当的TA将PPO转化为L-草胺膦。PPO在具有以下组分的反应中被转化为L-草胺膦:
··0.4mg/mL gabT(如实施例3中纯化的)
·25mM PPO(pH调节至8w/NaOH)
·0.2mM磷酸吡哆醛
·75mM L-赖氨酸二盐酸盐(pH调节至8w/NaOH)
·100mM Kphos缓冲液pH 8.0
将反应在30℃下振荡(250rpm)温育20小时。在20小时内以0.4mM/hr的速率形成L-草胺膦。这表明L-赖氨酸可用于将PPO转化为L-草胺膦。
实施例13:L-草胺膦的纯化和分离
产生了按照实施例9中描述的方法制备的但规模更大的几个批料。取出珠粒后,将每批加热至90℃持续至少10分钟,冷却至20-25℃后,过滤除去少量固体。向每批个体中逐滴加入37%HCl,以实现谷氨酸的沉淀。加入的37%HCl的量约为批料体积的10%。通过过滤除去所得白色固体。合并各批料,真空浓缩成油;油含有约153克L-草胺膦。用5倍体积的水稀释油,加入37%HCl将溶液调至pH1。依次用两份(每份约3.0kg)预洗涤的DOWEX50WX8阳离子交换树脂处理该溶液。在每次处理中,使溶液与树脂混合30分钟,然后在过滤器上分离树脂。将两部分树脂组合,先用水洗涤,然后用4M NH4OH洗脱。将洗脱物在真空下浓缩成油;油中不存在PPO和2-氧代戊二酸。用水稀释约100克油,加入氢氧化铵水溶液直至pH约为9。向该批料中加入1.0kg预洗涤的DOWEX Monosphere(氢氧化物形式)阴离子交换树脂,搅拌混合物约40分钟。将等量的预先洗涤的DOWEX Monosphere树脂装入玻璃柱中。将DOWEX树脂在水中的浆料加入到柱中预洗涤树脂的顶部。向柱中加入800mL水,然后加入0.1N乙酸,使其保持流过柱,直至所有谷氨酸都被洗脱,如通过HPLC测定的。将4N乙酸加入到柱中,直至所有L-草胺膦从柱中洗脱,如通过HPLC测定的。在真空下浓缩L-草胺膦的溶液。将所得的油用水稀释并在真空下浓缩至最小体积两次。加入甲醇直至获得澄清溶液并加入等体积的庚烷。将混合物真空浓缩至最小体积并重复该过程。从阳离子交换处理回收的剩余的168克油以类似的方式处理,得到总共108克粗品L-草胺膦。如通过NMR测定的,L-草胺膦与谷氨酸的比率大于99:1。将所得固体与氢氧化铵水溶液混合并浓缩至干,得到111克L-草胺膦铵。通过产物的NMR分析未检测到甲醇和乙酸。
应理解,本文使用的术语仅用于描述特定实施方案的目的,并且术语不旨在是限制性的。本发明的范围仅受所附权利要求的限制。除非另外定义,否则本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。当提供数值范围时,要理解的是,该范围的上限和下限之间的每个居间数值(至下限单位的十分之一,除非本文另外清楚地规定)以及所述范围内的任意其它所述或居间的数值都包括在本发明中。这些较小范围的上限和下限可独立地包括在该较小的范围内,并且也包括在本发明中,服从于所述范围内的任何特别排除的限值。当所述范围包括上下限值之一或两者时,排除那些所包括的界限之一或两者的范围也包括在本发明中。本文中提供了某些在数值之前加有术语“约”的范围。术语“约”在本文中用于为其之后的确切数字以及与所述术语之后的数字接近或近似的数字提供文字支持。在确定数字是否与明确引用的数字接近或近似中,接近或近似的未引用的数字可以是在其出现的上下文中提供明确引用的数字的基本等同物的数字。
本说明书中引用的所有出版物、专利和专利申请通过引用并入本文,其程度就如同每个单独的出版物、专利或专利申请被具体和单独地指出通过引用并入。此外,每篇引用的出版物、专利或专利申请通过引用并入本文,以公开和描述与所引用的出版物相关的主题。任何出版物的引用是针对申请日之前其公开内容,并且不应当解释为对本文所述的发明无权先于因先前发明所作的此类披露的承认。另外,提供的公布的日期可与可能需要独立确认的实际公布日期不同。
还应指出,可撰写权利要求来排除任何可选元素。这样,该陈述意图用作与权利要求要素的描述联合使用此类排他性术语“单独地”、“仅仅”等或使用“否定(negative)”限制的在先基础。如在阅读本公开内容后对于本领域技术人员是很显然的,本文中描述的和举例说明的单个实施方案的每一个具有可容易地与其它几个实施方案的任一个的特征分开或组合的分立的组分和特征而不背离本发明的范围或精神。可以以所引用事件的顺序或以逻辑上可能的任何其它顺序进行任何引用的方法。尽管与本文描述的那些类似或等同的任何方法和材料也可用于本发明的实践或测试,但现在描述代表性的说明性方法和材料。
序列
SEQ ID NO.1:
MNIAAQSWERREATSFFHTFTDLPSLKTDGPVIIDHGEGPYIIDTVGRRYFEGNSGLWNMTLGFSERRLSDAALKQYQEFPGYHTFFGRNSKPTVELAERMLKLAPAPMSRVFFTNSGSEANESIVKLLWMMWAAEGRPERRKLLTRKNAYHGATVMASALTGKDYVKAFGLPGPEIVTLDCPHAWRFALPGEGDDEFAARLAANLETRILQEGPETIAGMFAEPVMGAGGVIVPPATYFAKIQPVLQRYGIPLIADEVICGFGRTGSLWGTLAVGQQPDIIVASKSMSAGYFPMGAVMLSADIDKRATAASEVWEEFPHGFTTGGHPVGCAISLEAIRIITEEGVFENVKSVSETFQSGLRALADHPMIGEARGMGLMGALETVADKKTKQSFSGDLRIGERISKEARDRGFIIRPLGSSVVLAPPFISTHGQIEELLAVLKEVLDVVYGTVKGEVA
SEQ ID NO.2:
MHSQKRVVVLGSGVIGLSSALILARKGYSVHILARDLPEDVSSQTFASPWAGANWTPFMTLTDGPRQAKWEESTFKKWVELVPTGHAMWLKGTRRFAQNEDGLLGHWYKDITPNYRPLPSSECPPGAIGVTYDTLSVHAPKYCQYLARELQKLGATFERRTVTSLEQAFDGADLVVNATGLGAKSIAGIDDQAAEPIRGQTVLVKSPCKRCTMDSSDPASPAYIIPRPGGEVICGGTYGVGDWDLSVNPETVQRILKHCLRLDPTISSDGTIEGIEVLRHNVGLRPARRGGPRVEAERIVLPLDRTKSPLSLGRGSARAAKEKEVTLVHAYGFSSAGYQQSWGAAEDVAQLVDEAFQRYHGAARESKL
序列表
<110> AgriMetis, LLC
Green, Brian Michael
Gradley, Michelle Lorraine
<120> 制造L-草胺膦的方法
<130> 098816-1039429 (ASP-006)
<150> US 62/302,421
<151> 2016-03-02
<150> US 62/336,989
<151> 2016-05-16
<150> US 62/413,240
<151> 2016-10-26
<160> 2
<170> PatentIn version 3.5
<210> 1
<211> 458
<212> PRT
<213> Sinorhizobium arboris
<400> 1
Met Asn Ile Ala Ala Gln Ser Trp Glu Arg Arg Glu Ala Thr Ser Phe
1 5 10 15
Phe His Thr Phe Thr Asp Leu Pro Ser Leu Lys Thr Asp Gly Pro Val
20 25 30
Ile Ile Asp His Gly Glu Gly Pro Tyr Ile Ile Asp Thr Val Gly Arg
35 40 45
Arg Tyr Phe Glu Gly Asn Ser Gly Leu Trp Asn Met Thr Leu Gly Phe
50 55 60
Ser Glu Arg Arg Leu Ser Asp Ala Ala Leu Lys Gln Tyr Gln Glu Phe
65 70 75 80
Pro Gly Tyr His Thr Phe Phe Gly Arg Asn Ser Lys Pro Thr Val Glu
85 90 95
Leu Ala Glu Arg Met Leu Lys Leu Ala Pro Ala Pro Met Ser Arg Val
100 105 110
Phe Phe Thr Asn Ser Gly Ser Glu Ala Asn Glu Ser Ile Val Lys Leu
115 120 125
Leu Trp Met Met Trp Ala Ala Glu Gly Arg Pro Glu Arg Arg Lys Leu
130 135 140
Leu Thr Arg Lys Asn Ala Tyr His Gly Ala Thr Val Met Ala Ser Ala
145 150 155 160
Leu Thr Gly Lys Asp Tyr Val Lys Ala Phe Gly Leu Pro Gly Pro Glu
165 170 175
Ile Val Thr Leu Asp Cys Pro His Ala Trp Arg Phe Ala Leu Pro Gly
180 185 190
Glu Gly Asp Asp Glu Phe Ala Ala Arg Leu Ala Ala Asn Leu Glu Thr
195 200 205
Arg Ile Leu Gln Glu Gly Pro Glu Thr Ile Ala Gly Met Phe Ala Glu
210 215 220
Pro Val Met Gly Ala Gly Gly Val Ile Val Pro Pro Ala Thr Tyr Phe
225 230 235 240
Ala Lys Ile Gln Pro Val Leu Gln Arg Tyr Gly Ile Pro Leu Ile Ala
245 250 255
Asp Glu Val Ile Cys Gly Phe Gly Arg Thr Gly Ser Leu Trp Gly Thr
260 265 270
Leu Ala Val Gly Gln Gln Pro Asp Ile Ile Val Ala Ser Lys Ser Met
275 280 285
Ser Ala Gly Tyr Phe Pro Met Gly Ala Val Met Leu Ser Ala Asp Ile
290 295 300
Asp Lys Arg Ala Thr Ala Ala Ser Glu Val Trp Glu Glu Phe Pro His
305 310 315 320
Gly Phe Thr Thr Gly Gly His Pro Val Gly Cys Ala Ile Ser Leu Glu
325 330 335
Ala Ile Arg Ile Ile Thr Glu Glu Gly Val Phe Glu Asn Val Lys Ser
340 345 350
Val Ser Glu Thr Phe Gln Ser Gly Leu Arg Ala Leu Ala Asp His Pro
355 360 365
Met Ile Gly Glu Ala Arg Gly Met Gly Leu Met Gly Ala Leu Glu Thr
370 375 380
Val Ala Asp Lys Lys Thr Lys Gln Ser Phe Ser Gly Asp Leu Arg Ile
385 390 395 400
Gly Glu Arg Ile Ser Lys Glu Ala Arg Asp Arg Gly Phe Ile Ile Arg
405 410 415
Pro Leu Gly Ser Ser Val Val Leu Ala Pro Pro Phe Ile Ser Thr His
420 425 430
Gly Gln Ile Glu Glu Leu Leu Ala Val Leu Lys Glu Val Leu Asp Val
435 440 445
Val Tyr Gly Thr Val Lys Gly Glu Val Ala
450 455
<210> 2
<211> 368
<212> PRT
<213> 圆红冬孢酵母菌(Rhodosporidium toruloides)
<400> 2
Met His Ser Gln Lys Arg Val Val Val Leu Gly Ser Gly Val Ile Gly
1 5 10 15
Leu Ser Ser Ala Leu Ile Leu Ala Arg Lys Gly Tyr Ser Val His Ile
20 25 30
Leu Ala Arg Asp Leu Pro Glu Asp Val Ser Ser Gln Thr Phe Ala Ser
35 40 45
Pro Trp Ala Gly Ala Asn Trp Thr Pro Phe Met Thr Leu Thr Asp Gly
50 55 60
Pro Arg Gln Ala Lys Trp Glu Glu Ser Thr Phe Lys Lys Trp Val Glu
65 70 75 80
Leu Val Pro Thr Gly His Ala Met Trp Leu Lys Gly Thr Arg Arg Phe
85 90 95
Ala Gln Asn Glu Asp Gly Leu Leu Gly His Trp Tyr Lys Asp Ile Thr
100 105 110
Pro Asn Tyr Arg Pro Leu Pro Ser Ser Glu Cys Pro Pro Gly Ala Ile
115 120 125
Gly Val Thr Tyr Asp Thr Leu Ser Val His Ala Pro Lys Tyr Cys Gln
130 135 140
Tyr Leu Ala Arg Glu Leu Gln Lys Leu Gly Ala Thr Phe Glu Arg Arg
145 150 155 160
Thr Val Thr Ser Leu Glu Gln Ala Phe Asp Gly Ala Asp Leu Val Val
165 170 175
Asn Ala Thr Gly Leu Gly Ala Lys Ser Ile Ala Gly Ile Asp Asp Gln
180 185 190
Ala Ala Glu Pro Ile Arg Gly Gln Thr Val Leu Val Lys Ser Pro Cys
195 200 205
Lys Arg Cys Thr Met Asp Ser Ser Asp Pro Ala Ser Pro Ala Tyr Ile
210 215 220
Ile Pro Arg Pro Gly Gly Glu Val Ile Cys Gly Gly Thr Tyr Gly Val
225 230 235 240
Gly Asp Trp Asp Leu Ser Val Asn Pro Glu Thr Val Gln Arg Ile Leu
245 250 255
Lys His Cys Leu Arg Leu Asp Pro Thr Ile Ser Ser Asp Gly Thr Ile
260 265 270
Glu Gly Ile Glu Val Leu Arg His Asn Val Gly Leu Arg Pro Ala Arg
275 280 285
Arg Gly Gly Pro Arg Val Glu Ala Glu Arg Ile Val Leu Pro Leu Asp
290 295 300
Arg Thr Lys Ser Pro Leu Ser Leu Gly Arg Gly Ser Ala Arg Ala Ala
305 310 315 320
Lys Glu Lys Glu Val Thr Leu Val His Ala Tyr Gly Phe Ser Ser Ala
325 330 335
Gly Tyr Gln Gln Ser Trp Gly Ala Ala Glu Asp Val Ala Gln Leu Val
340 345 350
Asp Glu Ala Phe Gln Arg Tyr His Gly Ala Ala Arg Glu Ser Lys Leu
355 360 365

Claims (40)

1.一种制备L-草胺膦的方法,其包括:
使D-草胺膦与D-氨基酸氧化酶(DAAO)反应以形成PPO(2-氧代-4-(羟基(甲基)膦酰基)丁酸);和
使用来自一个或多个胺供体的胺基,通过转氨酶(TA)将所述PPO胺化为L-草胺膦,
其中至少70%的所述D-草胺膦被转化为L-草胺膦。
2.权利要求1的方法,其中所述胺供体选自谷氨酸、L-谷氨酸、丙氨酸、仲丁胺、苯乙胺、甘氨酸、赖氨酸、缬氨酸、丝氨酸、谷氨酰胺、异丙胺、乙醇胺、2-氨基丁酸、二氨基丙酸或任何仲胺或氨基酸。
3.权利要求1的方法,其中所述D-草胺膦最初存在于D-和L-草胺膦或其盐的外消旋混合物中。
4.权利要求1的方法,其中所述DAAO酶选自来自来自圆红冬孢酵母菌(Rhodosporidiumtoruloides)(UniProt P80324)、变异三角酵母菌(Trigonopsis variabilis)(UniProtQ99042)、Neolentinus lepideus(KZT28066.1)、里氏木霉(Trichoderma reesei)(XP_006968548.1)或产油丝孢酵母(Trichosporon oleaginosus)(KLT40252.1)的酶。
5.权利要求1的方法,其中所述DAAO酶是突变型DAAO。
6.权利要求5的方法,其中所述突变型DAAO是基于来自圆红冬孢酵母菌的序列的突变型DAAO。
7.权利要求5的方法,其中所述突变型DAAO在位置54、56、58、213和238处包含一个或多个突变。
8.权利要求7的方法,其中所述位置54处的突变选自N54C、N54L、N54T和N54V。
9.权利要求7的方法,其中所述位置56处的突变是T56M。
10.权利要求7的方法,其中所述位置58处的突变选自F58A、F58G、F58H、F58K、F58N、F58Q、F58R、F58S和F58T。
11.权利要求7的方法,其中所述位置213处的突变是M213S。
12.权利要求5的方法,其中所述突变型DAAO包含突变F58K和M213S。
13.权利要求5的方法,其中所述突变型DAAO包含位置54和56处的突变。
14.权利要求5的方法,其中所述突变型DAAO包含突变N54T和T56M。
15.权利要求5的方法,其中所述突变型DAAO包含突变F58Q或F58H。
16.权利要求5的方法,其中所述突变型DAAO包含突变N54V和F58Q。
17.权利要求5的方法,其中所述突变型DAAO包含突变N54V、F58Q和M213S。
18.权利要求1的方法,其中所述TA酶是来自大肠杆菌的gabT转氨酶(UniProtP22256)。
19.权利要求1的方法,其中所述TA酶是由SEQ ID NO:1编码的酶。
20.权利要求1的方法,其中所述反应步骤和胺化步骤在单个容器中进行。
21.权利要求20的方法,其中在反应开始时基本上加入所有试剂。
22.权利要求20的方法,其中将用于反应步骤的试剂和用于胺化步骤的试剂在不同时间添加到单个容器中。
23.权利要求1的方法,其中所述反应步骤和胺化步骤在分开的容器中进行。
24.一种包含D-草胺膦、PPO和L-草胺膦的组合物。
25.权利要求24的组合物,其中基于D-草胺膦、PPO和L-草胺膦的总量,L-草胺膦的量为90%或更多。
26.权利要求1的方法,其中获得具有权利要求25的组成的固体。
27.权利要求1的方法,其中获得L-草胺膦溶液以用于具有除草剂活性的制剂中。
28.一种制剂,其包含:
按所述制剂的重量计10-30%的量的L-草胺膦铵;
一种或多种选自下述的附加组分:按所述制剂的重量计10-40%的量的烷基醚硫酸钠;按所述制剂的重量计0.5-2%的量的1-甲氧基-2-丙醇;按所述制剂的重量计4-18%的量的二丙二醇;和按所述制剂的重量计4-20%的量的烷基多糖;以及
水作为所述制剂的其余部分。
29.权利要求28的制剂,其中所述制剂包含:
按所述制剂的重量计12.25%的量的L-草胺膦铵;
按所述制剂的重量计31.6%的量的烷基醚硫酸钠;
按所述制剂的重量计1%的量的1-甲氧基-2-丙醇;
按所述制剂的重量计8.6%的量的二丙二醇;
按所述制剂的重量计9.8%的量的烷基多糖;以及
按所述制剂的重量计36.75%的量的水。
30.权利要求28的制剂,其中所述制剂包含:
按所述制剂的重量计24.5%的量的L-草胺膦铵;
按所述制剂的重量计31.6%的量的烷基醚硫酸钠;
按所述制剂的重量计1%的量的1-甲氧基-2-丙醇;
按所述制剂的重量计8.6%的量的二丙二醇;
按所述制剂的重量计9.8%的量的烷基多糖;以及
按所述制剂的重量计24.5%的量的水。
31.权利要求28的制剂,其中所述制剂包含:
按所述制剂的重量计12.25%的量的L-草胺膦铵;
按所述制剂的重量计15.8%的量的烷基醚硫酸钠;
按所述制剂的重量计0.5%的量的1-甲氧基-2-丙醇;
按所述制剂的重量计4.3%的量的二丙二醇;
按所述制剂的重量计4.9%的量的烷基多糖;以及
按所述制剂的重量计62.25%的量的水。
32.一种制剂,其包含:
按所述制剂的重量计10-30%的量的L-草胺膦铵;
一种或多种选自下述的附加组分:按所述制剂的重量计10-40%的量的烷基醚硫酸钠;按所述制剂的重量计0.5-2%的量的1-甲氧基-2-丙醇;和按所述制剂的重量计3-10%的量的烷基多糖;以及
水作为所述制剂的其余部分。
33.权利要求32的制剂,其中所述制剂包含:
按所述制剂的重量计12.25%的量的L-草胺膦铵;
按所述制剂的重量计22.1%的量的烷基醚硫酸钠;
按所述制剂的重量计1%的量的1-甲氧基-2-丙醇;
按所述制剂的重量计6.2%的量的烷基多糖;以及
按所述制剂的重量计58.45%的量的水。
34.权利要求32的制剂,其中所述制剂包含:
按所述制剂的重量计24.5%的量的L-草胺膦铵;
按所述制剂的重量计22.1%的量的烷基醚硫酸钠;
按所述制剂的重量计1%的量的1-甲氧基-2-丙醇;
按所述制剂的重量计6.2%的量的烷基多糖;以及
按所述制剂的重量计46.2%的量的水。
35.权利要求32的制剂,其中所述制剂包含:
按所述制剂的重量计12.25%的量的L-草胺膦铵;
按所述制剂的重量计11.05%的量的烷基醚硫酸钠;
按所述制剂的重量计0.5%的量的1-甲氧基-2-丙醇;
按所述制剂的重量计3.1%的量的烷基多糖;以及
按所述制剂的重量计73.1%的量的水。
36.一种选择性控制区域中的杂草的方法,其包括:
向所述区域施用有效量的组合物,所述组合物以相对于D-草胺膦大于90%的对映体过量包含L-草胺膦。
37.权利要求36所述的方法,其中所述组合物的施用量为每公顷少于400克的L-草胺膦和D-草胺膦的总和。
38.一种选择性控制区域中的杂草的方法,其包括:
向所述区域施用有效量的组合物以及向所述区域施用超过0.01%但少于10%的PPO,所述组合物以相对于D-草胺膦大于90%的对映体过量包含L-草胺膦。
39.权利要求38的方法,其中所述组合物的施用量为每公顷少于400克的L-草胺膦,D-草胺膦和PPO的总和。
40.一种选择性控制区域中的杂草的方法,所述区域含有对草胺膦具有抗性的种植的种子或作物的作物,所述方法包括:
向田间施用有效量的组合物,所述组合物以相对于D-草胺膦大于90%的对映体过量包含L-草胺膦,以及包含超过0.01%但少于10%的PPO。
CN201780022992.XA 2016-03-02 2017-02-28 制造l-草胺膦的方法 Active CN109072261B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310162318.9A CN116121315A (zh) 2016-03-02 2017-02-28 制造l-草胺膦的方法
CN202310162319.3A CN116121316A (zh) 2016-03-02 2017-02-28 制造l-草胺膦的方法

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662302421P 2016-03-02 2016-03-02
US62/302,421 2016-03-02
US201662336989P 2016-05-16 2016-05-16
US62/336,989 2016-05-16
US201662413240P 2016-10-26 2016-10-26
US62/413,240 2016-10-26
PCT/US2017/019871 WO2017151573A1 (en) 2016-03-02 2017-02-28 Methods for making l-glufosinate

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202310162318.9A Division CN116121315A (zh) 2016-03-02 2017-02-28 制造l-草胺膦的方法
CN202310162319.3A Division CN116121316A (zh) 2016-03-02 2017-02-28 制造l-草胺膦的方法

Publications (2)

Publication Number Publication Date
CN109072261A true CN109072261A (zh) 2018-12-21
CN109072261B CN109072261B (zh) 2023-03-17

Family

ID=58267184

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202310162319.3A Pending CN116121316A (zh) 2016-03-02 2017-02-28 制造l-草胺膦的方法
CN201780022992.XA Active CN109072261B (zh) 2016-03-02 2017-02-28 制造l-草胺膦的方法
CN202310162318.9A Pending CN116121315A (zh) 2016-03-02 2017-02-28 制造l-草胺膦的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310162319.3A Pending CN116121316A (zh) 2016-03-02 2017-02-28 制造l-草胺膦的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310162318.9A Pending CN116121315A (zh) 2016-03-02 2017-02-28 制造l-草胺膦的方法

Country Status (14)

Country Link
US (7) US9834802B2 (zh)
EP (1) EP3423585A1 (zh)
JP (3) JP7041066B2 (zh)
KR (1) KR20180117154A (zh)
CN (3) CN116121316A (zh)
AU (2) AU2017227553B2 (zh)
BR (1) BR112018067523A8 (zh)
CA (1) CA3015081A1 (zh)
CL (1) CL2018002454A1 (zh)
IL (1) IL261271A (zh)
MA (1) MA43711A (zh)
MX (2) MX2018010425A (zh)
WO (1) WO2017151573A1 (zh)
ZA (1) ZA201805680B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109576236A (zh) * 2018-12-28 2019-04-05 浙江工业大学 一种d-氨基酸氧化酶突变体及其应用
CN111172125A (zh) * 2019-03-05 2020-05-19 上海弈柯莱生物医药科技有限公司 一种固定化d-氨基酸氧化酶及其制备方法和应用
CN111321193A (zh) * 2020-03-18 2020-06-23 浙江工业大学 一种生物多酶偶联法氧化还原不对称制备l-草铵膦的方法
CN112553285A (zh) * 2020-12-25 2021-03-26 浙江大学杭州国际科创中心 一种ω-转氨酶的应用及生物酶法去消旋化制备L-草铵膦的方法
WO2021115256A1 (zh) * 2019-12-09 2021-06-17 四川利尔生物科技有限公司 经修饰的daao酶及其应用
CN113969269A (zh) * 2021-04-29 2022-01-25 永农生物科学有限公司 D-氨基酸氧化酶突变体及其在制备l-草铵膦中的应用
CN114540440A (zh) * 2022-03-01 2022-05-27 浙江工业大学 一种加压催化制备2-羰基-4-(羟基甲基膦酰基)丁酸的方法
CN116041387A (zh) * 2022-11-17 2023-05-02 永农生物科学有限公司 一种草铵膦的制备方法

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116121316A (zh) 2016-03-02 2023-05-16 巴斯夫欧洲公司 制造l-草胺膦的方法
CN111065270A (zh) 2017-07-18 2020-04-24 阿格里麦蒂斯有限责任公司 L-草胺膦的生产方法
MX2020000971A (es) * 2017-07-27 2020-07-13 Basf Se Uso de composiciones herbicidas a base de l-glufosinato en cultivos de campo tolerantes.
US11350631B2 (en) * 2017-08-09 2022-06-07 Basf Se Herbicidal mixtures comprising l-glufosinate or its salt and at least one VLCFA inhibitor
BR112020002666A2 (pt) * 2017-08-09 2020-07-28 Basf Se uso de mistura de herbicidas, mistura de pesticidas, composição pesticida e método de controle da vegetação
EP3440937A1 (en) * 2017-08-09 2019-02-13 Basf Se Herbicidal mixtures comprising l-glufosinate or its salt and a second herbicide
BR122024002212A2 (pt) * 2017-08-09 2024-03-12 Basf Se Mistura pesticida sinergística
BR122023021519A2 (pt) * 2017-08-09 2024-01-09 Basf Se Mistura de herbicidas, composição pesticida e método de controle de vegetação
EP3440939A1 (en) * 2017-08-09 2019-02-13 Basf Se Herbicidal mixtures comprising l-glufosinate
CN107502647B (zh) * 2017-09-15 2020-12-15 浙江大学 一种生物酶法去消旋化制备l-草铵膦的方法
CN110055289B (zh) * 2018-01-19 2020-05-29 上海弈柯莱生物医药科技有限公司 一种l-草铵膦的制备方法
CN110343676B (zh) 2018-04-03 2020-06-23 上海弈柯莱生物医药科技有限公司 一种l-谷氨酸脱氢酶突变体及其应用
TW202020148A (zh) 2018-07-31 2020-06-01 德商拜耳廠股份有限公司 編碼改良之轉胺酶蛋白質之核酸
CN108912167B (zh) * 2018-08-08 2020-07-07 河北威远生物化工有限公司 一种从水解反应液中分离纯化草铵膦的方法
US20210214754A1 (en) * 2018-09-05 2021-07-15 Basf Se Methods for improving yields of l-glufosinate
CN111019916B (zh) * 2018-11-23 2020-12-08 弈柯莱生物科技(上海)股份有限公司 一种d-氨基酸氧化酶突变体及其应用
CN109609474B (zh) * 2018-12-28 2020-07-28 浙江工业大学 一种氨基酸脱氢酶突变体及其在合成l-草铵膦中的应用
CN109609475B (zh) * 2018-12-28 2020-10-09 浙江工业大学 草铵膦脱氢酶突变体及其合成l-草铵膦的应用
KR102582675B1 (ko) * 2019-01-11 2023-09-25 씨제이제일제당 주식회사 글루포시네이트 제조 방법
AU2019421447B2 (en) * 2019-01-11 2022-12-15 Cj Cheiljedang Corporation Method of producing L-glufosinate
CN109609477B (zh) * 2019-01-14 2022-02-18 浙江工业大学 一种α-转氨酶突变体及其在不对称合成L-草铵膦中的应用
KR20210151952A (ko) * 2019-04-16 2021-12-14 바스프 에스이 결정질 l-글루포시네이트 암모늄 1수화물의 제조 방법
CN111979208B (zh) 2019-05-23 2023-01-10 弈柯莱生物科技(上海)股份有限公司 一种l-谷氨酸脱氢酶突变体及其应用
CN112391438B (zh) * 2019-08-13 2023-01-13 四川利尔生物科技有限公司 一种l-草铵膦或其盐的生产方法
US20230054333A1 (en) 2020-01-31 2023-02-23 Basf Se Herbicide Combinations Comprising Glufosinate and Saflufenacil
US20230080819A1 (en) * 2020-01-31 2023-03-16 Basf Se Herbicide combinations comprising glufosinate and tiafenacil
WO2021151738A1 (en) 2020-01-31 2021-08-05 Basf Se Herbicide combinations comprising glufosinate and epyrifenacil
US20230075365A1 (en) 2020-01-31 2023-03-09 Basf Se Herbicide combinations comprising glufosinate and selected ppo inhibitors
BR112022014960A2 (pt) * 2020-01-31 2022-09-20 Basf Se Combinação de herbicidas, composição, métodos de produção de uma combinação de herbicidas, para controlar o crescimento de plantas indesejadas, para tratar ou proteger culturas em linha e culturas de especialidades e uso
BR112022014758A2 (pt) 2020-01-31 2022-10-11 Basf Se Combinação de herbicidas, composição, métodos para produzir uma combinação de herbicidas, para controlar o crescimento indesejado das plantas e para tratar ou proteger culturas e uso da combinação de herbicidas
BR112022014831A2 (pt) 2020-01-31 2022-09-27 Basf Se Combinação de herbicidas, composição, métodos para produzir uma combinação de herbicidas, para controlar o crescimento de plantas indesejadas e para tratar ou proteger culturas e uso de uma combinação de herbicidas
US20230060640A1 (en) 2020-01-31 2023-03-02 Basf Se Herbicide combinations comprising glufosinate and pyraflufen-ethyl
BR112022014879A2 (pt) 2020-01-31 2022-09-20 Basf Se Combinação de herbicidas, composição, métodos de produção de combinações de herbicidas, de tratamento ou proteção de plantas produtoras em fileiras e de tratamento ou proteção de plantas especializadas e uso da combinação de herbicidas
WO2021151734A1 (en) * 2020-01-31 2021-08-05 Basf Se Herbicide combinations comprising glufosinate and flumiclorac-pentyl
US20230089506A1 (en) 2020-01-31 2023-03-23 Basf Se Herbicide Combinations Comprising Glufosinate and Fluthiacet-Methyl
WO2021151745A1 (en) 2020-01-31 2021-08-05 Basf Se Herbicide combinations comprising glufosinate and oxadiazon
US20230091888A1 (en) 2020-01-31 2023-03-23 Basf Se Herbicide combinations comprising glufosinate and selected ppo inhibitors
US20230076646A1 (en) 2020-01-31 2023-03-09 Basf Se Herbicide combinations comprising glufosinate and sulfentrazone
CN111574559A (zh) * 2020-04-30 2020-08-25 河北威远生物化工有限公司 L-草铵膦酶水解液的后处理方法
IL299379A (en) 2020-07-09 2023-02-01 Hunan Lier Biotech Co Ltd Modified glutamate dehydrogenase and its use
MX2023011615A (es) 2021-04-01 2023-10-11 Basf Se Metodos para preparar l-glufosinato.
CA3213902A1 (en) * 2021-04-01 2022-10-06 Markus Potter Enzymatic method for producing l-glufosinate and its phosphoesters
CN113295783A (zh) * 2021-05-08 2021-08-24 青岛谱尼测试有限公司 一种精草铵膦衍生转化的检测方法
CN113234767B (zh) * 2021-05-13 2022-05-17 永农生物科学有限公司 制备不含结晶水的l-草铵膦铵盐的固体粉末的方法
EP4105335A1 (en) 2021-06-16 2022-12-21 Evonik Operations GmbH Enzymatic method for the production of l-glufosinate p-alkyl esters
EP4151643A1 (en) 2021-09-16 2023-03-22 Evonik Operations GmbH Improved process for production of phosphoesters of glufosinate precursors
CN116555206A (zh) * 2022-01-30 2023-08-08 弈柯莱生物科技(上海)股份有限公司 一种d-氨基酸氧化酶及其在制备l-草铵膦或其中间体中的应用
WO2023174511A1 (en) 2022-03-14 2023-09-21 Evonik Operations Gmbh Enzymatic method for the production of l-glufosinate p-esters
WO2023222226A1 (en) 2022-05-19 2023-11-23 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate
WO2023222227A1 (en) 2022-05-19 2023-11-23 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate
WO2023232225A1 (en) 2022-05-31 2023-12-07 Evonik Operations Gmbh Enzymatic method for the diastereoselective production of l-glufosinate p-esters
WO2024002741A1 (en) * 2022-06-29 2024-01-04 Basf Se Herbicidal mixtures comprising l-glufosinate or its salt and a second herbicide
WO2024061832A1 (en) * 2022-09-20 2024-03-28 Basf Se Storage stable glufosinate formulation
WO2024061455A1 (en) 2022-09-21 2024-03-28 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
WO2024061456A1 (en) 2022-09-21 2024-03-28 Evonik Operations Gmbh Enzymatic method for producing l-glufosinate and its phosphoesters
CN115896195A (zh) * 2022-12-27 2023-04-04 河北威远生物化工有限公司 一种l-草铵膦的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477902A2 (de) * 1990-09-27 1992-04-01 Hoechst Schering AgrEvo GmbH Verfahren zur Herstellung von L-Phosphinothricin durch eine gekoppelte enzymatische Reaktion
US5587319A (en) * 1988-12-14 1996-12-24 Hoechst Aktiengesellschaft Process for the preparation of L-phosphinothricin using transaminases of different specificities in a linked process
US5877013A (en) * 1997-07-31 1999-03-02 Food Industry Research And Development Institute Rhodosporidium D-amino acid oxidase
WO2000066760A1 (de) * 1999-04-30 2000-11-09 Aventis Cropscience Gmbh Verfahren zur herstellung von l-phosphinothricin durch enzymatische transaminierung mit aspartat
CN1312683A (zh) * 1998-08-13 2001-09-12 阿温提斯作物科学有限公司 用于耐性或抗性谷类作物的除草组合物
CN101405394A (zh) * 2006-03-17 2009-04-08 巴斯福植物科学有限公司 对大豆的d-氨基酸选择
US7939709B2 (en) * 2002-02-26 2011-05-10 Syngenta Limited Method for selectively producing male or female sterile plants

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2839087A1 (de) 1978-09-08 1980-03-20 Hoechst Ag Herbizide mittel
ATE11918T1 (de) 1979-12-08 1985-03-15 Fbc Ltd 4-(methylphosphinyl)-2-oxobuttersaeure-derivate, sie enthaltende herbizide zusammensetzungen und zwischenprodukte und verfahren zu ihrer herstellung.
FR2512015A1 (fr) 1981-08-26 1983-03-04 Dautreville & Lebas Sa Sels de l'acide 2-oxo-1,5-pentane dioique, leur procede de fabrication et medicaments renfermant ces sels
EP0248357B1 (de) 1986-06-04 1993-07-28 Hoechst Aktiengesellschaft Verfahren zur Herstellung von L-Phosphinothricin durch Transaminierung
AU599985B2 (en) 1986-06-09 1990-08-02 Meiji Seika Kaisha Ltd. New process for the production of L-2-amino-4- (hydroxymethyl-phosphinyl)-butyric acid
DE3818851A1 (de) 1988-06-03 1989-12-14 Hoechst Ag Neue transaminase, ihre herstellung und ihre verwendung
EP0364275B1 (en) * 1988-10-13 1995-05-31 Fujisawa Pharmaceutical Co., Ltd. D-amino acid oxidase
DE3842174A1 (de) 1988-12-15 1990-06-21 Hoechst Ag Gen und genstruktur, codierend fuer eine aminotransferase, und mikroorganismen, die dieses gen exprimieren
DE3932015A1 (de) 1988-12-15 1991-04-04 Hoechst Ag Gen und genstruktur, codierend fuer eine aminotransferase, mikroorganismen, die dieses gen exprimieren, und transaminierungsverfahren unter verwendung des expressionsprodukts
DE3920570A1 (de) 1989-06-23 1991-01-03 Hoechst Ag Verfahren zur isolierung von l-2-amino-4-methylphosphinobuttersaeure-ammoniumsalz aus einer enzymatischen transaminierungsloesung
CA2067060C (en) 1991-04-27 2002-11-26 Jean Kocur Liquid herbicidal compositions
JPH06245780A (ja) 1993-02-25 1994-09-06 Meiji Seika Kaisha Ltd L−2−アミノ−4−(ヒドロキシメチルホスフィニル)−酪酸の製造法
DE4407197A1 (de) 1994-03-04 1995-09-07 Hoechst Schering Agrevo Gmbh Verfahren zur Herstellung von /L/-Homoalanin-4-yl-(methyl)phosphinsäure und deren Salze durch Racematspaltung
DE19836726A1 (de) 1998-08-13 2000-02-17 Hoechst Schering Agrevo Gmbh Herbizide Mittel für tolerante und resistente Rapskulturen
US7202070B2 (en) 2000-10-31 2007-04-10 Biocatalytics, Inc. Method for reductive amination of a ketone using a mutated enzyme
GB0316190D0 (en) 2003-07-10 2003-08-13 Syngenta Ltd Improvements in or relating to organic compounds
JP4248987B2 (ja) 2003-10-01 2009-04-02 奇美電子股▲ふん▼有限公司 アレイ基板の製造方法
DE102004008445A1 (de) 2004-02-19 2005-09-08 Degussa Ag Verfahren zur Herstellung von L-Aminosäuren aus D-Aminosäuren
AU2005224325A1 (en) * 2004-03-17 2005-09-29 Basf Plant Science Gmbh Post harvest control of genetically modified crop growth employing D-amino acid compounds
RU2395202C2 (ru) * 2005-05-17 2010-07-27 Родиа Инк. Композиция для сельского хозяйства, гербицидная композиция и способ применения таких композиций
JP5291934B2 (ja) 2005-08-02 2013-09-18 株式会社カネカ D−アミノ酸オキシダーゼ、およびl−アミノ酸、2−オキソ酸、又は環状イミンの製造方法。
KR100632571B1 (ko) 2005-10-07 2006-10-09 에스케이 주식회사 탄화수소 원료 혼합물로부터 접촉분해공정을 통해서 경질올레핀계 탄화수소 화합물을 증산하는 방법
US7842647B2 (en) * 2006-02-03 2010-11-30 Bayer Cropscience Lp Stable, concentrated herbicidal compositions
EP1818411A1 (en) 2006-02-13 2007-08-15 Lonza AG Process for the preparation of optically active chiral amines
EP1869978A1 (de) 2006-06-21 2007-12-26 Bayer CropScience AG Schaumarme Zubereitungen für den Pflanzenschutz
WO2011104213A2 (de) * 2010-02-26 2011-09-01 Bayer Cropscience Ag Herbizide zusammensetzung enthaltend die hydrate von saflufenacil und glyphosate oder glufosinate
WO2011129820A1 (en) * 2010-04-14 2011-10-20 Strategic Enzyme Applications, Inc. Process for producing phosphinothricin employing nitrilases
KR101931843B1 (ko) 2011-09-30 2018-12-21 메이지 세이카 파루마 가부시키가이샤 글루포시네이트 p 유리산의 제조 방법
CN104529755B (zh) 2014-12-29 2016-01-06 精晶药业股份有限公司 一种从转化液中分离α-酮戊二酸的方法
EP3277822B1 (en) * 2015-04-03 2020-05-06 Temasek Life Sciences Laboratory Limited D-amino acid-inducible gene expression system for rhodosporidium and rhodotorula
US10912301B2 (en) 2015-05-11 2021-02-09 Basf Se Herbicide combinations comprising L-glufosinate and indaziflam
CN105198732A (zh) 2015-07-06 2015-12-30 山东阳成生物科技有限公司 一种从发酵液中提取α-酮戊二酸的方法
CN105177065B (zh) 2015-09-11 2019-07-23 浙江树人大学 一种生物转化法合成α-酮戊二酸的方法
CN105218579B (zh) 2015-09-28 2017-11-07 江苏七洲绿色化工股份有限公司 一种l‑型草铵膦铵盐的合成方法
CN105567780A (zh) 2016-01-14 2016-05-11 重庆惠健生物科技有限公司 一种l-草铵膦的酶-化学催化去消旋化制备方法
CN105603015B (zh) 2016-01-22 2018-12-11 浙江大学 一种l-草铵膦的生产方法
CN116121316A (zh) 2016-03-02 2023-05-16 巴斯夫欧洲公司 制造l-草胺膦的方法
WO2018108797A1 (de) 2016-12-15 2018-06-21 Bayer Cropscience Aktiengesellschaft Verfahren zur herstellung von l-glufosinat oder dessen salzen unter verwendung von ephedrin
CN108342423A (zh) 2017-01-24 2018-07-31 武汉茵茂特生物技术有限公司 L-草铵膦的生物合成制备方法
CN106916857B (zh) 2017-03-09 2019-08-27 浙江大学 一种生产l-草铵膦的方法
CN107119084B (zh) 2017-03-23 2019-12-17 浙江大学 一种利用转氨酶和乙烯合成酶生产l-草铵膦的方法
CN108660167A (zh) 2017-03-29 2018-10-16 武汉茵茂特生物技术有限公司 L-草铵膦的生物合成方法
CN106978368B (zh) 2017-03-31 2020-04-21 浙江工业大学 解鸟氨酸拉乌尔菌及其应用
CN107445986B (zh) 2017-07-13 2019-05-31 浙江大学 一种l-草铵膦盐酸盐的分离提纯方法
CN107467061A (zh) 2017-09-26 2017-12-15 安徽国星生物化学有限公司 一种l‑草铵膦水剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587319A (en) * 1988-12-14 1996-12-24 Hoechst Aktiengesellschaft Process for the preparation of L-phosphinothricin using transaminases of different specificities in a linked process
EP0477902A2 (de) * 1990-09-27 1992-04-01 Hoechst Schering AgrEvo GmbH Verfahren zur Herstellung von L-Phosphinothricin durch eine gekoppelte enzymatische Reaktion
US6335186B1 (en) * 1990-09-27 2002-01-01 Hoechst Aktiengesellschaft Process for the preparation of L-phosphinothricin by a coupled enzymatic reaction
US5877013A (en) * 1997-07-31 1999-03-02 Food Industry Research And Development Institute Rhodosporidium D-amino acid oxidase
CN1312683A (zh) * 1998-08-13 2001-09-12 阿温提斯作物科学有限公司 用于耐性或抗性谷类作物的除草组合物
WO2000066760A1 (de) * 1999-04-30 2000-11-09 Aventis Cropscience Gmbh Verfahren zur herstellung von l-phosphinothricin durch enzymatische transaminierung mit aspartat
CN1349561A (zh) * 1999-04-30 2002-05-15 阿温提斯作物科学有限公司 用天冬氨酸通过酶促的转氨基作用生产l-膦丝菌素的方法
US7939709B2 (en) * 2002-02-26 2011-05-10 Syngenta Limited Method for selectively producing male or female sterile plants
CN101405394A (zh) * 2006-03-17 2009-04-08 巴斯福植物科学有限公司 对大豆的d-氨基酸选择

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A SCHULZ等: "Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination- isolation and characterization of a phosphinothricin-specific transaminase from Escherichia coli", 《APPL ENVIRON MICROBIOL.》 *
GENBANK: "《GenBank DataBase》", 12 June 2014, GENBANK DATABASE *
K BARTSCH等: "Stereospecific production of the herbicide phosphinothricin (glufosinate): purification of aspartate transaminase from Bacillus stearothermophilus, cloning of the corresponding gene, aspC, and application in a coupled transaminase process", 《APPL ENVIRON MICROBIOL.》 *
TIM HAWKES等: "D-glufosinate as a male sterility agent for hybrid seed production", 《PLANT BIOTECHNOLOGY JOURNAL》 *
苏少泉: "抗除草剂作物的发展", 《农药研究与应用》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109576236B (zh) * 2018-12-28 2019-12-17 浙江工业大学 一种d-氨基酸氧化酶突变体及其应用
CN109576236A (zh) * 2018-12-28 2019-04-05 浙江工业大学 一种d-氨基酸氧化酶突变体及其应用
CN111172125A (zh) * 2019-03-05 2020-05-19 上海弈柯莱生物医药科技有限公司 一种固定化d-氨基酸氧化酶及其制备方法和应用
CN111172125B (zh) * 2019-03-05 2023-08-08 上海七洲紫岳生物科技有限公司 一种固定化d-氨基酸氧化酶及其制备方法和应用
CN113825841A (zh) * 2019-12-09 2021-12-21 四川利尔生物科技有限公司 经修饰的daao酶及其应用
US11667896B2 (en) 2019-12-09 2023-06-06 Hunan Lier Biotech Co., Ltd Modified DAAO enzyme and application thereof
WO2021115256A1 (zh) * 2019-12-09 2021-06-17 四川利尔生物科技有限公司 经修饰的daao酶及其应用
TWI777324B (zh) * 2019-12-09 2022-09-11 大陸商湖南利爾生物科技有限公司 經修飾的daao酶及其應用
CN111321193B (zh) * 2020-03-18 2020-11-10 浙江工业大学 一种生物多酶偶联法氧化还原不对称制备l-草铵膦的方法
WO2021184557A1 (zh) * 2020-03-18 2021-09-23 浙江工业大学 一种生物多酶偶联法氧化还原不对称制备l-草铵膦的方法
CN111321193A (zh) * 2020-03-18 2020-06-23 浙江工业大学 一种生物多酶偶联法氧化还原不对称制备l-草铵膦的方法
CN112553285A (zh) * 2020-12-25 2021-03-26 浙江大学杭州国际科创中心 一种ω-转氨酶的应用及生物酶法去消旋化制备L-草铵膦的方法
CN113969269A (zh) * 2021-04-29 2022-01-25 永农生物科学有限公司 D-氨基酸氧化酶突变体及其在制备l-草铵膦中的应用
CN113969269B (zh) * 2021-04-29 2024-05-03 永农生物科学有限公司 D-氨基酸氧化酶突变体及其在制备l-草铵膦中的应用
CN114540440A (zh) * 2022-03-01 2022-05-27 浙江工业大学 一种加压催化制备2-羰基-4-(羟基甲基膦酰基)丁酸的方法
CN116041387A (zh) * 2022-11-17 2023-05-02 永农生物科学有限公司 一种草铵膦的制备方法

Also Published As

Publication number Publication date
IL261271A (en) 2018-10-31
CN116121315A (zh) 2023-05-16
US11560577B2 (en) 2023-01-24
AU2017227553B2 (en) 2021-03-25
MA43711A (fr) 2018-11-28
US9834802B2 (en) 2017-12-05
MX2021013232A (es) 2022-01-18
MX2018010425A (es) 2018-11-29
ZA201805680B (en) 2019-11-27
JP2021078506A (ja) 2021-05-27
BR112018067523A2 (pt) 2019-02-05
WO2017151573A1 (en) 2017-09-08
JP2019509734A (ja) 2019-04-11
KR20180117154A (ko) 2018-10-26
US10260078B2 (en) 2019-04-16
US11913048B2 (en) 2024-02-27
CN116121316A (zh) 2023-05-16
CA3015081A1 (en) 2017-09-08
AU2017227553A1 (en) 2018-09-20
BR112018067523A8 (pt) 2023-01-31
CN109072261B (zh) 2023-03-17
US20190185889A1 (en) 2019-06-20
US20220064680A1 (en) 2022-03-03
JP7041066B2 (ja) 2022-03-23
CL2018002454A1 (es) 2019-03-15
US10781465B2 (en) 2020-09-22
US11732281B2 (en) 2023-08-22
US20200385767A1 (en) 2020-12-10
EP3423585A1 (en) 2019-01-09
JP2023061954A (ja) 2023-05-02
US11905538B2 (en) 2024-02-20
US20210395790A1 (en) 2021-12-23
US20180030487A1 (en) 2018-02-01
US20170253897A1 (en) 2017-09-07
US20230265472A1 (en) 2023-08-24
AU2021201498B2 (en) 2023-01-12
AU2021201498A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
CN109072261A (zh) 制造l-草胺膦的方法
US20210214754A1 (en) Methods for improving yields of l-glufosinate
US20220177499A1 (en) Methods for producing crystalline l-glufosinate ammonium monohydrate
CN103333118A (zh) 2-(2-氟-取代的苯基)-6-氨基-5-氯-4-嘧啶羧酸衍生物及其作为除草剂的用途
EP2744347B1 (en) Complexes of herbicidal carboxylic acids and amine-containing polymers or oligomers
AU2022405733A1 (en) Synthesis of glufosinate using a hydantoinase-based process
WO2023105080A1 (en) Synthesis of glufosinate using a hydantoinase-based process
CA3240064A1 (en) Enzymatic decarbamoylation of glufosinate derivatives
AU2022407771A1 (en) Enzymatic decarbamoylation of glufosinate derivatives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: B.M. Green

Inventor after: M.L. Gradley

Inventor after: A. Alkasabas

Inventor before: B.M. Green

Inventor before: M.L. Gradley

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201130

Address after: Rhine, Ludwigshafen, Germany

Applicant after: BASF SE

Address before: Maryland USA

Applicant before: AGRIMETIS, LLC

GR01 Patent grant
GR01 Patent grant