CN108043414B - 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用 - Google Patents

苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用 Download PDF

Info

Publication number
CN108043414B
CN108043414B CN201711277978.2A CN201711277978A CN108043414B CN 108043414 B CN108043414 B CN 108043414B CN 201711277978 A CN201711277978 A CN 201711277978A CN 108043414 B CN108043414 B CN 108043414B
Authority
CN
China
Prior art keywords
catalyst
preparation
alkaline
reaction
forming agents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711277978.2A
Other languages
English (en)
Other versions
CN108043414A (zh
Inventor
李作金
于海波
詹吉山
沙宇
初乃波
黎源
华卫琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wanhua Chemical Group Co Ltd
Original Assignee
Wanhua Chemical Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wanhua Chemical Group Co Ltd filed Critical Wanhua Chemical Group Co Ltd
Priority to CN201711277978.2A priority Critical patent/CN108043414B/zh
Publication of CN108043414A publication Critical patent/CN108043414A/zh
Priority to JP2020530304A priority patent/JP7019813B2/ja
Priority to EP18886984.6A priority patent/EP3721991A4/en
Priority to PCT/CN2018/093616 priority patent/WO2019109629A1/zh
Priority to US16/763,865 priority patent/US11167280B2/en
Application granted granted Critical
Publication of CN108043414B publication Critical patent/CN108043414B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种苯乙酮液相加氢制备α‑苯乙醇的催化剂的制备方法,包括:向反应釜中加入水、小分子醇、Gemini表面活性剂和有机造孔剂,然后加入硅溶胶,并搅拌均匀,配成硅溶胶水分散液;配置含铜、锌、稀土金属、碱土金属的化合物盐的混合盐溶液和碱性沉淀剂,并将两者共同加入到硅溶胶水分散液中,经沉淀反应、老化、过滤、洗涤、干燥、焙烧和成型得到催化剂;本发明还公开了制备得到的催化剂及其应用。本发明采用硅溶胶和硅酸盐作为复合硅源,沉淀过程之前加入有机造孔剂,并采用Zn、稀土及碱土金属对催化剂进行改性,用于苯乙酮液相加氢制备α‑苯乙醇时不仅活性高、选择性好,而且有效提高了催化剂的抗液性,强度高、稳定性好。

Description

苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用
技术领域
本发明属于催化加氢技术领域,具体涉及一种苯乙酮液相加氢制备α-苯乙醇的催化剂、其制备方法以及应用。
背景技术
α-苯乙醇是一种重要的化工中间体,广泛应用于医药、香料制造业、化妆品、食品和精细化工等工业中。现有的α-苯乙醇合成方法主要有微生物发酵法和苯乙酮还原/催化加氢法等。
微生物发酵法一般以苯丙氨酸、氟苯丙氨酸为原料,通过微生物发酵转化制取α-苯乙醇。微生物法所采用的原料价格昂贵,生产成本高。目前工业上生产α-苯乙醇通常采用苯乙酮加氢法,该方法具有生产成本低、副产物少、产品收率高、产品纯度高等优点,适于大规模生成α-苯乙醇。
苯乙酮加氢催化剂主要有铂钯贵金属催化剂、镍基催化剂和铜基催化剂等,贵金属催化剂和镍基催化剂成本高、易造成芳环饱和及苯乙醇氢解,α-苯乙醇选择性较差。与贵金属催化剂、镍系催化剂相比,铜系催化剂用于苯乙酮加氢反应具有活性和选择性高、成本低等优势。
苯乙酮加氢制α-苯乙醇的催化剂在许多专利中都有报道。CN1557545A采用浸渍法制备了Ni-Sn-B/SiO2催化剂,低温焙烧后采用KBH4为还原剂进行还原,其催化反应时,苯乙醇最高选择性达97.5%,但其活性组分Ni与载体SiO2相互作用力弱、易流失。
US4996374公开了一种Pd-C催化剂,但其催化剂稳定性较差,套用时需不断提高反应温度。CN1315226A公开了一种还原处理的铜基催化剂及用其制备α-苯乙醇的方法,但其需要采用液相还原的方法以提高催化剂的稳定性,工艺复杂、成本高。CN1911883A公开了一种以雷尼镍为催化剂制备α-苯乙醇的方法,但其苯乙酮加氢产物中出现了较多的芳环加氢产物α-环己基乙醇,α-苯乙醇选择性较低。
EP0714877B1采用碱金属和/或碱土金属碳酸盐对铜硅催化剂改性显著抑制了副产物乙苯的生成,但其硅源以气相二氧化硅或硅藻土的形式加入不利于增强活性组分和载体的相互作用,对催化剂强度不利。
WO2016198379催化剂中部分硅源以硅溶胶的形式在挤条成型时加入,不能有效起到对活性组分铜的分散作用。上述公开报道均未提及助剂对活性组分的分散、稳定作用,以及成型催化剂使用时的机械稳定性和使用后的强度。
由于苯乙酮加氢过程极易发生α-苯乙醇氢解/脱水副反应生成乙苯/苯乙烯,氢解和脱水反应速率均随反应温度升高迅速增长。为提高苯乙酮加氢过程选择性通常选择在较低的温度下进行液相加氢反应。因此要求苯乙酮加氢催化剂具有良好的抗液性能、较弱的酸性和良好的低温活性。
现有技术中,用于液相加氢反应的铜系催化剂不仅受到储存/装填/还原/反应等过程各种内部或外部力的作用,还会由于液体浸泡、溶胀等原因使催化剂的实际使用强度大幅下降,导致催化剂在液相加氢体系容易破碎、粉化,威胁工业装置稳定运行,影响催化剂寿命。
目前,采用沉淀法制备的苯乙酮加氢制备α-苯乙醇铜系催化剂通常存在活性组分铜分散度低、催化剂酸性强、载体和活性组分相互作用力弱等问题,导致苯乙酮转化率低、乙苯等副产物生成量大苯乙醇选择性差、催化剂强度差。因此改善活性组分铜的分散度及催化剂的传质性能、抑制催化剂酸性、提高催化剂抗液性能对于制备高活性、高选择性及高抗液性能的苯乙酮加氢催化剂意义重大。
发明内容
本发明的目的在于提供一种苯乙酮液相加氢制备α-苯乙醇的催化剂的制备方法以及制得的催化剂,采用该方法制备的催化剂显著抑制了氢解等副反应,催化剂活性高、选择性好;同时催化剂具有优异的抗液能力,历经还原、液相加氢反应后强度高。
为实现上述目的的一个方面,本发明采用如下技术方案:
一种加氢催化剂的制备方法,包括以下步骤:
(1)向反应釜中加入去离子水、小分子醇、Gemini表面活性剂和有机造孔剂,然后加入硅溶胶,并搅拌均匀,配成含小分子醇、Gemini表面活性剂和有机造孔剂的硅溶胶水分散液;
(2)将含铜化合物盐、含锌化合物盐、含稀土金属化合物盐和含碱土金属化合物盐溶解于水中,配置成混合盐溶液;将含硅碱性沉淀剂和不含硅碱性沉淀剂溶于水配置成碱性沉淀剂水溶液;将混合盐溶液与碱性沉淀剂水溶液共同加入所述硅溶胶水分散液中进行反应,控制反应过程中反应体系pH为5.0-9.0,然后老化,得到浆料;
(3)将所述浆料进行过滤、洗涤,得到滤饼;
(4)将所述滤饼进行干燥、焙烧、成型,得到催化剂。
本发明中,步骤(1)为将去离子水、小分子醇、Gemini表面活性剂和有机造孔剂和硅溶胶混合均匀,配成含小分子醇、Gemini表面活性剂和有机造孔剂的硅溶胶水分散液。其中,所述有机造孔剂优选选自PMMA、微晶纤维素、甲基纤维素中的一种或多种;在制备过程中加入有机造孔剂,减小了原料和产物内扩散阻力,有效提高了活性和选择性。
根据本发明的制备方法,优选地,所述有机造孔剂的粒径<100μmm,更优选1-80μm,进一步优选3-30μm,比如5、10、15、20或25μm;将有机造孔剂的粒径保持在合适的范围内,有助于进一步改善原料和产物扩散传质效果;粒径太大,不利于起到有效改善传质性能的作用,粒径太小,不利于改善传质作用。
根据本发明的制备方法,优选地,所述有机造孔剂的用量占所述催化剂总重的0.5~20wt%,更优选1-10wt%,进一步优选2-5wt%。将有机造孔剂添加量保持在合适的范围内,有助于在取得较好的传质性能的前提下尽量减少对催化剂强度的影响;有机造孔剂添加量太少,不利于起到改善催化剂传质性能的作用;造孔剂的添加量太多则会较多的影响催化剂机械强度。
在本发明中,所述催化剂中的总硅量由所述硅溶胶和含硅碱性沉淀剂共同引入,优选地,由所述硅溶胶引入的硅量占催化剂中总硅量的30-70%,更优选35-65%,进一步优选40-60%,比如50%;研究发现,将高分散的硅溶胶与含硅碱性沉淀剂作复合硅源,与使用单一硅源相比,制备的催化剂不仅活性高,而且强度好。优选地,所述硅溶胶为碱性硅溶胶,pH值为8.0-10.0。
在本发明中,所述小分子醇是指分子量不大于400的醇,比如分子量不大于400的小分子饱和一元醇。根据本发明的制备方法,优选地,所述小分子醇与去离子水质量比为1:20至1:10,比如1:18、1:15或1:12;进一步优选地,所述步骤(1)的小分子醇为甲醇、乙醇、丙醇和丁醇中的一种或多种。
在本发明中,所用Gemini表面活性剂为本领域所熟知,它是通过联接基将2个或2个以上的传统表面活性剂分子在亲水基或接近亲水基处连接在一起的新型表面活性剂。Gemini表面活性剂至少有两个疏水碳氢链、两个极性头基和一个联接基团;联接基团可长、可短、可刚性、可柔性、可极性、可非极性;根据极性头基为阳离子、阴离子或非离子可分为阴离子型、阳离子型、非离子型和两性离子Gemini表面活性剂;根据两极性头基和疏水链结构可分为对称Gemini表面活性剂和不对称Gemini表面活性剂。根据本发明的制备方法,优选地,所述步骤(1)的Gemini表面活性剂,添加量为去离子水和小分子有机醇总质量的0.1%-1%;进一步优选地,所述Gemini表面活性剂是结构为Cm-n-m的溴化物;其中m为12、14或16,n为6、8或10。
研究发现,本发明中,加入Gemini表面活性剂和小分子醇对硅溶胶进行改性,提高了硅溶胶的分散性,使得活性组分铜具有更高的分散性,提高了催化剂活性;同时,Gemini表面活性剂的添加还可以进一步与有机造孔剂配合促进介孔结构的形成,改善催化剂的传质性能。
本发明中,沉淀剂是指可以与混合盐溶液中的金属阳离子反应形成相应沉淀的物质。步骤(2)为配置混合盐溶液和碱性沉淀剂水溶液,并将两者共同加入所述硅溶胶水分散液中,以便在含有机造孔剂的硅溶胶水分散液使混合盐形成相应的沉淀。研究发现,将造孔剂预先分散在硅溶胶中,然后再在里面形成沉淀,有利于造孔剂在沉淀中的更优分散。
根据本发明的制备方法,优选地,所述含硅碱性沉淀剂为水溶性硅酸盐,优选为硅酸钠、硅酸钾中的一种或两种;所述不含硅碱性沉淀剂为碳酸钾、碳酸氢钠、碳酸氢钾、氢氧化钠、氢氧化钾、碳酸铵、碳酸氢铵、尿素和氨水中的一种或多种。
本领域技术人员理解,在本发明中,形成混合盐溶液的各金属盐均为相应金属的可溶性盐。根据本发明的制备方法,优选地,所述含铜化合物盐为硝酸铜、氯化铜和乙酸铜的一种或多种;所述含锌化合物盐为硝酸锌、氯化锌和乙酸锌的一种或多种;所述稀土金属化合物盐为硝酸盐、氯化物和乙酸盐的一种或多种;所述碱土金属化合物盐为硝酸盐、氯化物和乙酸盐的一种或多种。
在本发明中,制备过程中Zn与Cu可形成“固溶体”,可有效促进催化剂中活性组分铜的分散;稀土金属的加入也起到了提高催化剂中铜的分散度和催化剂稳定性的作用,优选地,所述稀土金属为镧和/或铈;碱土金属的加入显著抑制了催化剂酸性,可有效抑制乙苯的生成,提高反应选择性,优选地,所述碱土金属为镁、钙和钡的一种或两种或多种。本领域技术人员理解,各金属组分的加入量为使制得的催化剂中各金属组分对应的氧化物含量达到目标含量所对应的量即可。
步骤(2)中,控制反应过程中反应体系pH为5.0-9.0,比如5.5-8.0,然后老化,得到浆料;优选地,所述反应过程和老化过程的温度控制为60-90℃,比如70或80℃。具体的反应形成沉淀的过程以及沉淀老化过程为本领域熟知,例如可以在1-3h内完成形成沉淀的反应过程,然后可以再老化1-3h。
在本发明中,步骤(3)为将所述浆料进行过滤、洗涤,得到滤饼;该过滤、洗涤过程均可采用本领域常用的过滤、洗涤过程,均为本领域常用的催化剂处理过程。在一种实施方式中,焙烧温度为300-700℃,比如400、500或600℃;焙烧时间为4-12h,比如6、8或10h;所述成型可以是压片成型等。
为实现上述目的的一个方面,本发明还提供了根据上述制备方法制得的催化剂。
根据本发明的制备方法,优选地,按催化剂总重计,所述催化剂组成包括:氧化铜20-65wt%,氧化硅15-50wt%,氧化锌2-25wt%,稀土金属氧化物0.1-5wt%,和碱土金属氧化物0.5-15wt%;更优选地,包括氧化铜40-63wt%,氧化硅20-45wt%,氧化锌5-20wt%,稀土金属氧化物0.2-3wt%,和碱土金属氧化物0.5-10wt%;进一步优选地,包括氧化铜42-60wt%,比如50wt%,氧化硅22-40wt%,比如30wt%,氧化锌10-18wt%,比如15wt%,稀土金属氧化物0.5-2wt%,比如1wt%或1.5wt%,和碱土金属氧化物1-5wt%,比如2wt%或3wt%。
本发明还提供了上述催化剂在苯乙酮液相加氢制备α-苯乙醇中的应用。
本领域技术人员理解,所述的催化剂需要进行还原活化后才具备相应的催化活性,用于苯乙酮加氢制备α-苯乙醇。
在一种优选实施方式中,本发明所述的催化剂的还原活化的方法包括:保持氢气和氮气的混合气体体积空速300-1000h-1,优选首先将反应器温度升至160-180℃,恒温1-2h脱除催化剂吸附的物理水,然后通入含体积分数不超过10v%H2,比如(5v%±2v%)H2的所述氢气和氮气的混合气对所述催化剂进行预还原至少0.5h,比如1h、1.5h或2h之后逐步提高氢气和氮气混合气中氢气的比例,例如逐步提升至10v%、20v%、50v%、100%,控制该过程催化剂床层热点温度不超过220℃,最后升温至200-220℃在纯氢气氛下还原2-5h,比如3或4h,得到活化的催化剂。
在一种优选实施方式中,得到的还原态的催化剂用于苯乙酮加氢制备α-苯乙醇时,反应压力为3-5MPa(相对压力),反应温度为120-140℃,H2/HPA(苯乙酮)摩尔比2-20:1,比如5:1、10:1或15:1,催化剂用量为0.2-0.6gHPA·gcat -1·h-1
与现有技术相比,本发明制备得到的催化剂用于苯乙酮液相加氢制备α-苯乙醇的过程中,催化剂活性组分分布均匀、铜分散度高、催化剂孔道通畅、酸性弱、具有优异的活性、选择性及机械强度。
另外,本发明所述方法制备的催化剂,造孔剂的添加可有效改善催化剂传质性能,有利于提高催化剂活性;采用复合硅源可得到具有高活性和良好机械强度的液相加氢催化剂;催化剂组成中Zn、稀土、碱土金属的添加有利于提高活性组分Cu的分散度、抑制催化剂酸性,提高催化剂活性和选择性。
具体实施方式
下面结合实施例对本发明方法加以详细描述,但不局限于实施例。
催化剂的侧压强度采用颗粒强度测试仪测定,使用后的催化剂用乙苯浸泡保护,以防催化剂被氧化,测定40粒反应后催化剂侧压强度,取其平均值。
加氢液中铜离子含量采用电感耦合等离子发射光谱仪(ICP)测定。
如未特别说明,以下所用试剂均为分析纯。
实施例1
反应釜内加入200g水、10g甲醇、4.0g粒径在10-30μm的PMMA、2.0g结构为C16-6-16的Gemini表面活性剂(购自河南道纯化工公司)混合均匀,然后加入120.0g 30%浓度的硅溶胶并搅拌均匀。将332.2g硝酸铜、73.1g硝酸锌、21.3g硝酸镧、12.7g硝酸镁溶于1.5kg水中配成混合盐水溶液,将113.5g硅酸钠和142.5g碳酸钠溶于水中配成沉淀剂溶液,分别将两种溶液加热至70℃。采用共沉淀的方法,将两种溶液同时滴入反应釜内,控制沉淀过程釜内温度70℃、体系pH为7.0、反应时间为1h。两种溶液滴加完毕后使用10wt%碳酸钠溶液将体系pH值调至>7.5,在75℃下老化3h,然后过滤、洗涤并将滤饼在110℃干燥12h,并于350℃焙烧8h,之后混入一定量的石墨并压成3*3mm圆柱体(直径3mm、高度3mm)催化剂,即得催化剂A。
催化剂还原:将催化剂A装于固定床加氢反应器中,催化剂装填量100ml。催化剂使用前在氮气和氢气混合气下进行还原,还原过程中保持混合气体体积空速300h-1,首先将反应器温度升至160℃恒温2h脱除催化剂吸附的物理水,然后通入含体积分数5v%H2的氢气和氮气的混合气进行预还原1h,之后逐步提高氢气和氮气混合气中氢气的比例至10v%、20v%、50v%、100%,控制该过程催化剂床层热点温度不超过220℃,最后升温至220℃在纯氢气氛下还原3h。
加氢原料组成为15wt%苯乙酮的乙苯溶液,在压力2.5Mpa,温度70℃,H2/酮摩尔比5:1,催化剂处理量为0.3gHPA/gcat/h的条件下进行反应。每间隔24h取加氢液并测定加氢液中铜离子含量。反应100h后将催化剂从反应器拆卸出并用孔径2mm的不锈钢分样筛对催化剂进行筛分,并计算粒径<1mm的催化剂颗粒质量占催化剂总质量的比例,以此作为催化剂破损率。采用颗粒强度测试仪测定反应后催化剂侧压强度。加氢反应结果及加氢液中平均铜离子含量见表1。反应前后催化剂对比见表2。
实施例2
反应釜内加入200g水、15g乙醇、6.0g粒径在5-30μm的微晶纤维素、0.5g结构为C12-10-12的Gemini表面活性剂(购自河南道纯化工公司),然后加入61.3g 30%浓度的硅溶胶,搅拌均匀。将362.4g硝酸铜、87.7g硝酸锌、22.7g硝酸铈、4.21g硝酸钙溶于1.45kg水中配成混合盐水溶液,将130.5g硅酸钠和149.0g碳酸钠溶于水中配成沉淀剂溶液,分别将两种溶液加热至75℃。采用共沉淀的方法,将两种溶液同时滴入反应釜内,控制沉淀过程釜内温度75℃、体系pH为7.2、反应时间为1h。两种溶液滴加完毕后使用10wt%碳酸钠溶液将体系pH值调至>7.5,在80℃下老化3h,然后过滤、洗涤并将滤饼在100℃干燥24h,并于400℃焙烧12h,之后混入一定量的石墨并压成3*3mm圆柱体(直径3mm、高度3mm)催化剂,即得催化剂B。
其余条件参照实施例1。
实施例3
反应釜内加入200g水、10g丙醇、10.0g粒径在5-20μm的甲基纤维素、1.0g结构为C14-8-14的Gemini表面活性剂(购自河南道纯化工公司)混合均匀,然后加入116.7g 30%浓度的硅溶胶并搅拌均匀。将302g硝酸铜、87.7g硝酸锌、5.0g硝酸铈、6.8g硝酸钡溶于1.37kg水中配成混合盐水溶液,将198.7g硅酸钠和93.6g碳酸钠溶于水中配成沉淀剂溶液,分别将两种溶液加热至80℃。采用共沉淀的方法,将两种溶液同时滴入反应釜内,控制沉淀过程釜内温度80℃、体系pH为8.0、反应时间为1h。两种溶液滴加完毕后使用10wt%碳酸钠溶液将体系pH值调至>7.3,在85℃下老化3h,然后过滤、洗涤并将滤饼在120℃干燥12h,并于550℃焙烧8h,之后混入一定量的石墨并压成3*3mm圆柱体(直径3mm、高度3mm)催化剂,即得催化剂C。
其余条件参照实施例1。
实施例4
反应釜内加入200g水、20g丁醇、6.0g粒径在3-20μm的微晶纤维素、0.2g结构式为C12-8-12的Gemini表面活性剂(购自河南道纯化工公司)混合均匀,然后加入105g 30%浓度的硅溶胶并搅拌均匀。将271.8g硝酸铜、109.7g硝酸锌、10.6g硝酸镧、25.3g硝酸钙溶于1.39kg水中配成混合盐水溶液,将182.1g硅酸钠和105.6g碳酸钠溶于水中配成沉淀剂溶液,分别将两种溶液加热至60℃。采用共沉淀的方法,将两种溶液同时滴入反应釜内,控制沉淀过程釜内温度60℃、体系pH为6.5、反应时间为1h。两种溶液滴加完毕后使用10wt%碳酸钠溶液将体系pH值调至>7.2,在70℃下老化3h,然后过滤、洗涤并将滤饼在100℃干燥12h,并于450℃焙烧6h,之后混入一定量的石墨并压成3*3mm圆柱体(直径3mm、高度3mm)催化剂,即得催化剂D。
其余条件参照实施例1。
实施例5
反应釜内加入200g水、20g乙醇、10.0g粒径在10-30μm的PMMA、1.5g结构式为C14-10-14的Gemini表面活性剂(购自河南道纯化工公司)混合均匀,然后加入177.3g 30%浓度的硅溶胶,搅拌均匀。将24.6g硝酸铜、131.6g硝酸锌、7.97g硝酸镧、31.8g硝酸镁溶于1.65kg水中配成混合盐水溶液,将107.8g硅酸钠和128.7g碳酸钠溶于水中配成沉淀剂溶液,分别将两种溶液加热至85℃。采用共沉淀的方法,将两种溶液同时滴入反应釜内,控制沉淀过程釜内温度85℃、体系pH为7.0、反应时间为1h。两种溶液滴加完毕后使用10wt%碳酸钠溶液将体系pH值调至>7.5,在90℃下老化3h,然后过滤、洗涤并将滤饼在110℃干燥12h,并于650℃焙烧4h,之后混入一定量的石墨并压成3*3mm圆柱体(直径3mm、高度3mm)催化剂,即得催化剂E。
其余条件参照实施例1。
实施例6
反应釜内加入200g水、15g甲醇、4.0g粒径在10-30μm的PMMA、2.0g结构为C16-6-16的Gemini表面活性剂(购自河南道纯化工公司)混合均匀,然后加入120.0g 30%浓度的硅溶胶并搅拌均匀。
反应釜内加入200g水、15g甲醇、4.0g粒径在3-30μm的甲基纤维素、0.8g结构式为C12-8-12的Gemini表面活性剂混合均匀,然后加入117.3g30%浓度的硅溶胶,搅拌均匀。将314.1g硝酸铜、73.1g硝酸锌、5.0g硝酸铈、17.0g硝酸钡溶于1.5kg水中配成混合盐水溶液,将136.2g硅酸钠和121.2g碳酸钠溶于水中配成沉淀剂溶液,分别将两种溶液加热至65℃。采用共沉淀的方法,将两种溶液同时滴入反应釜内,控制沉淀过程釜内温度65℃、体系pH为6.8、反应时间为1h。两种溶液滴加完毕后使用10wt%碳酸钠溶液将体系pH值调至>7.5,在70℃下老化3h,然后过滤、洗涤并将滤饼在110℃干燥24h,并于450℃焙烧8h,之后混入一定量的石墨并压成3*3mm圆柱体(直径3mm、高度3mm)催化剂,即得催化剂F。
其余条件参照实施例1中。
对比例1
反应釜内加入200g水,并加入60g气相二氧化硅,搅拌均匀。将332.2g硝酸铜溶于1.5kg水中配成混合盐水溶液,配置10wt%碳酸钠水溶液为沉淀剂,分别将两种溶液加热至65℃。采用共沉淀的方法,将两种溶液同时滴入反应釜内,控制沉淀过程釜内温度65℃、体系pH为7.0、反应时间为1h。溶液滴加完毕后在70℃下老化3h,然后过滤、洗涤并将滤饼在110℃干燥24h,并于450℃焙烧8h,之后混入一定量的石墨并压成3*3mm圆柱体(直径3mm、高度3mm)催化剂,即得催化剂G。
其余条件参照实施例1。
对比例2
将322.2g硝酸铜、292.4g硝酸锌溶于1.65kg水中配成混合盐水溶液,将碳酸钠溶于水中配成10wt%的碳酸钠溶液,分别将两种溶液加热至65℃。采用共沉淀的方法,将两种溶液同时滴入反应釜内,控制沉淀过程釜内温度65℃、沉淀pH为7.0,沉淀结束后在70℃下老化3h,向过滤、洗涤后的滤饼中加入10.0g氧化铝并在110℃干燥12h、350℃焙烧4h,之后压片成型得到3*3mm圆柱体(直径3mm、高度3mm)催化剂,即得催化剂H。
其余条件参照实施例1。
对比例3
催化剂制备过程不加入小分子醇和Gemini表面活性剂,其余同实施例1,制备得到催化剂I。
其余条件参照实施例1。
对比例4
催化剂制备过程不加入有机造孔剂PMMA,其余同实施例1,制备得到催化剂J。
其余条件参照实施例1。
表1加氢反应结果及加氢液中平均铜离子含量
注:“未检出”表示加氢液中平均铜离子含量<0.1μg/g
表2反应前后催化剂对比
*N/颗是催化剂强度单位即使1颗催化剂破碎所施加的力
由表1、表2可知,使用催化剂A至催化剂F,以及催化剂I和催化剂J时,加氢液中未检测到铜,反应后催化剂完整且侧压强度在30N/粒以上;而对比例1和对比例2所述催化剂,反应后催化剂破碎严重、侧压强度低,催化剂H出现粉化以致无法测其侧压强度,ICP分析显示加氢液中铜含量较高,说明催化剂有明显流失。并且,催化剂A至催化剂F活性高且能够有效抑制氢解生成乙苯和脱水生成苯乙烯等副反应,而对比例1至对比例4所述催化剂不仅活性低而且选择性差。

Claims (27)

1.一种加氢催化剂的制备方法,包括以下步骤:
(1)向反应釜中加入去离子水、小分子醇、Gemini表面活性剂、有机造孔剂,然后加入硅溶胶,并搅拌均匀,配成含小分子醇、Gemini表面活性剂和有机造孔剂的硅溶胶水分散液;所述小分子醇为分子量不大于400的醇;所述Gemini表面活性剂是结构为Cm-n-m的溴化物,其中m为12、14或16,n为6、8或10;
(2)将含铜化合物盐、含锌化合物盐、含稀土金属化合物盐和含碱土金属化合物盐溶解于水中,配置成混合盐溶液;将含硅碱性沉淀剂和不含硅碱性沉淀剂溶于水配置成碱性沉淀剂水溶液;将混合盐溶液与碱性沉淀剂水溶液共同加入所述硅溶胶水分散液中进行反应,控制反应过程中反应体系pH为5.0-9.0,然后老化,得到浆料;所述稀土金属为镧和/或铈;
(3)将所述浆料进行过滤、洗涤,得到滤饼;
(4)将所述滤饼进行干燥、焙烧、成型,得到催化剂。
2.根据权利要求1所述的制备方法,其特征在于,所述催化剂中的总硅量由所述硅溶胶和含硅碱性沉淀剂共同引入,由所述硅溶胶引入的硅量占催化剂中总硅量的30-70%。
3.根据权利要求2所述的制备方法,其特征在于,由所述硅溶胶引入的硅量占催化剂中总硅量的35-65%。
4.根据权利要求3所述的制备方法,其特征在于,由所述硅溶胶引入的硅量占催化剂中总硅量的40-60%。
5.根据权利要求2所述的制备方法,其特征在于,所述硅溶胶为碱性硅溶胶,pH值为8.0-10.0。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于,所述含硅碱性沉淀剂为水溶性硅酸盐;
所述不含硅碱性沉淀剂为碳酸钾、碳酸氢钠、碳酸氢钾、氢氧化钠、氢氧化钾、碳酸铵、碳酸氢铵、尿素和氨水中的一种或多种。
7.根据权利要求6所述的制备方法,其特征在于,所述含硅碱性沉淀剂为硅酸钠、硅酸钾中的一种或两种。
8.根据权利要求1-5、7中任一项所述的制备方法,其特征在于,所述有机造孔剂的粒径<100μmm。
9.根据权利要求8所述的制备方法,其特征在于,所述有机造孔剂的粒径为1-80μm。
10.根据权利要求9所述的制备方法,其特征在于,所述有机造孔剂的粒径为3-30μm。
11.根据权利要求8所述的制备方法,其特征在于,所述有机造孔剂选自PMMA、微晶纤维素、甲基纤维素中的一种或多种。
12.根据权利要求1-5、7、9-11中任一项所述的制备方法,其特征在于,所述有机造孔剂的用量占所述催化剂总重的0.5~20wt%。
13.根据权利要求12所述的制备方法,其特征在于,所述有机造孔剂的用量占所述催化剂总重的1-10wt%。
14.根据权利要求13所述的制备方法,其特征在于,所述有机造孔剂的用量占所述催化剂总重的2-5wt%。
15.根据权利要求1-5、7、9-11、13-14中任一项所述的制备方法,其特征在于,所述小分子醇与去离子水质量比为1:20至1:10。
16.根据权利要求15所述的制备方法,其特征在于,所述步骤(1)的小分子醇为甲醇、乙醇、丙醇和丁醇中的一种或多种。
17.根据权利要求1-5、7、9-11、13-14、16中任一项所述的制备方法,其特征在于,所述步骤(1)的Gemini表面活性剂,添加量为去离子水和小分子醇总质量的0.1%-1%。
18.根据权利要求1-5、7、9-11、13-14、16中任一项所述的制备方法,其特征在于,所述碱土金属为镁、钙和钡的一种或两种或多种。
19.根据权利要求18所述的制备方法,其特征在于,所述含铜化合物盐为硝酸铜、氯化铜和乙酸铜的一种或多种;所述含锌化合物盐为硝酸锌、氯化锌和乙酸锌的一种或多种;所述稀土金属化合物盐为硝酸盐、氯化物和乙酸盐的一种或多种;所述碱土金属化合物盐为硝酸盐、氯化物和乙酸盐的一种或多种。
20.根据权利要求1-5、7、9-11、13-14、16、19中任一项所述的制备方法,其特征在于,步骤(2)的反应过程和老化过程的温度为60-90℃;
步骤(4)的焙烧温度为300-700℃,焙烧时间为4-12h。
21.根据权利要求1-20中任一项所述的制备方法制得的催化剂。
22.根据权利要求21所述的催化剂,其特征在于,按催化剂总重计,所述催化剂组成包括:氧化铜20-65wt%,氧化硅15-50wt%,氧化锌2-25wt%,稀土金属氧化物0.1-5wt%,和碱土金属氧化物0.5-15wt%。
23.根据权利要求22所述的催化剂,其特征在于,按催化剂总重计,所述催化剂组成包括氧化铜40-63wt%,氧化硅20-45wt%,氧化锌5-20wt%,稀土金属氧化物0.2-3wt%,和碱土金属氧化物0.5-10wt%。
24.根据权利要求23所述的催化剂,其特征在于,按催化剂总重计,所述催化剂组成包括氧化铜42-60wt%,氧化硅22-40wt%,氧化锌10-18wt%,稀土金属氧化物0.5-2wt%,和碱土金属氧化物1-5wt%。
25.根据权利要求1-20中任一项所述的制备方法制得的催化剂,或根据权利要求21-24中任一项所述的催化剂在苯乙酮液相加氢制备α-苯乙醇中的应用。
26.根据权利要求25所述的应用,其特征在于,在催化苯乙酮加氢制备α-苯乙醇前,对所述催化剂进行还原活化;
所述催化剂的还原活化的方法包括:保持氢气和氮气的混合气体体积空速300-1000h-1,通入含体积分数不超过10v%H2的所述氢气和氮气的混合气对所述催化剂进行预还原至少0.5h,之后逐步提高氢气和氮气混合气中氢气的比例,控制该过程催化剂床层热点温度不超过220℃,最后升温至200-220℃在纯氢气氛下还原2-5h,得到活化的催化剂;
将得到的活化催化剂用于苯乙酮加氢制备α-苯乙醇反应。
27.根据权利要求26所述的应用,其特征在于,该加氢反应的反应压力为3-5MPa,反应温度为120-140℃,H2/HPA摩尔比2-20:1,催化剂用量为0.2-0.6gHPA·gcat -1·h-1
CN201711277978.2A 2017-12-06 2017-12-06 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用 Active CN108043414B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201711277978.2A CN108043414B (zh) 2017-12-06 2017-12-06 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用
JP2020530304A JP7019813B2 (ja) 2017-12-06 2018-06-29 アセトフェノンの水素化によってα-フェニルエタノールを製造するための触媒、その製造方法および応用
EP18886984.6A EP3721991A4 (en) 2017-12-06 2018-06-29 CATALYST FOR THE PRODUCTION OF PHENYLTHANOL BY HYDROGENATION OF ACETOPHENONE, THE PROCESS FOR ITS PRODUCTION AND ITS USE
PCT/CN2018/093616 WO2019109629A1 (zh) 2017-12-06 2018-06-29 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用
US16/763,865 US11167280B2 (en) 2017-12-06 2018-06-29 Catalyst for preparing α-phenylethanol by hydrogenation of acetophenone, preparation method thereof and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711277978.2A CN108043414B (zh) 2017-12-06 2017-12-06 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用

Publications (2)

Publication Number Publication Date
CN108043414A CN108043414A (zh) 2018-05-18
CN108043414B true CN108043414B (zh) 2019-07-30

Family

ID=62122391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711277978.2A Active CN108043414B (zh) 2017-12-06 2017-12-06 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用

Country Status (5)

Country Link
US (1) US11167280B2 (zh)
EP (1) EP3721991A4 (zh)
JP (1) JP7019813B2 (zh)
CN (1) CN108043414B (zh)
WO (1) WO2019109629A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043414B (zh) * 2017-12-06 2019-07-30 万华化学集团股份有限公司 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用
CN109482192B (zh) * 2018-11-30 2021-09-07 万华化学集团股份有限公司 一种苯乙酮加氢制备α-苯乙醇的催化剂的制备方法及应用
CN109529870B (zh) * 2018-12-12 2021-07-23 万华化学集团股份有限公司 一种苯乙酮加氢催化剂及其制备方法
CN111346638B (zh) * 2018-12-20 2022-11-04 万华化学集团股份有限公司 一种苯乙酮加氢制备α-苯乙醇的催化剂
CN110947382B (zh) * 2019-08-27 2023-03-17 天津大学 一种用于碳酸乙烯酯加氢制甲醇联产乙二醇的催化剂及其制备方法
CN113042060A (zh) * 2019-12-27 2021-06-29 中国石油天然气股份有限公司 一种醛加氢催化剂及其制备方法
CN113058608B (zh) * 2020-01-02 2023-01-13 万华化学集团股份有限公司 一种用于αα-二甲基苄醇氢解制异丙苯的催化剂及其制备方法
CN113617362B (zh) * 2020-05-06 2023-10-10 中国石油化工股份有限公司 一种co2加氢催化剂及其制备方法与应用
CN114450086A (zh) * 2020-08-31 2022-05-06 高化学株式会社 铜基催化剂及制备方法
CN113121368A (zh) * 2021-03-29 2021-07-16 安徽华恒生物科技股份有限公司 一种一步催化加氢制备γ-氨基丙醇的方法及其应用
CN116408057A (zh) * 2021-12-29 2023-07-11 中国石油天然气股份有限公司 气相醛加氢催化剂及其制备方法和应用
CN114289058B (zh) * 2022-01-13 2023-05-30 万华化学集团股份有限公司 一种氮化铝负载的金属氧化物催化剂的再生方法
CN114768885A (zh) * 2022-05-18 2022-07-22 常州瑞华化工工程技术股份有限公司 一种铜基苯乙酮加氢催化剂的挤条成型方法及其用途
CN114917891A (zh) * 2022-05-26 2022-08-19 山东海科新源材料科技股份有限公司 一种非贵金属负载催化剂的合成方法及应用
CN115445629B (zh) * 2022-08-23 2024-02-27 万华化学集团股份有限公司 一种苯乙酮加氢制α-苯乙醇的催化剂及其制备方法与应用
CN115532287B (zh) * 2022-09-23 2023-10-31 南京美思德新材料有限公司 一种固体酸催化剂及低分子量含氢聚硅氧烷与其制备方法
CN116943662B (zh) * 2023-06-13 2024-02-20 北京海望氢能科技有限公司 一种非均相催化剂及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977711A (ja) * 1995-09-14 1997-03-25 Sumitomo Chem Co Ltd α−フェニルエチルアルコールの製造方法
CN1315226A (zh) * 2000-01-19 2001-10-03 住友化学工业株式会社 还原处理的铜基催化剂及用其制备α-苯乙醇的方法
JP2011005388A (ja) * 2009-06-24 2011-01-13 Sumitomo Chemical Co Ltd 酸化銅含有触媒の還元方法
CN106699507A (zh) * 2017-01-19 2017-05-24 浙江医药高等专科学校 α‑苯乙醇的制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927121A (en) 1974-08-05 1975-12-16 Atlantic Richfield Co Phenyl methyl carbinol manufacture by hydrogenation of acetophenone
DE3933661A1 (de) 1989-10-09 1991-04-18 Huels Chemische Werke Ag Kupfer und chrom enthaltender traegerkatalysator zur hydrierung von acetophenon zu methylbenzylalkohol
US4996374A (en) 1989-12-15 1991-02-26 Arco Chemical Technology, Inc. Hydrogenation of acetophenone
JPH05192588A (ja) * 1991-09-17 1993-08-03 Mitsubishi Rayon Co Ltd アクリル酸製造用触媒の調製法
JP3159010B2 (ja) * 1994-12-02 2001-04-23 住友化学工業株式会社 α−フェニルエチルアルコールの製造方法
US5663458A (en) 1994-12-02 1997-09-02 Sumitomo Chemical Company, Limited. Process for producing α-phenylethyl alcohol
US6528034B1 (en) * 1999-11-09 2003-03-04 Board Of Trustees Of Michigan State University Ultra-stable lamellar mesoporous silica compositions and process for the prepration thereof
CN1557545A (zh) 2004-01-16 2004-12-29 复旦大学 苯乙酮加氢非晶态镍硼催化剂及其制备方法
CN100369876C (zh) 2006-08-14 2008-02-20 浙江工业大学 一种α-苯乙醇的合成方法
CN102327774B (zh) 2011-07-06 2014-05-28 山东华鲁恒升化工股份有限公司 醋酸酯加氢制备乙醇的催化剂及其制备和应用
GB201418475D0 (en) 2014-10-17 2014-12-03 Johnson Matthey Plc Catalyst and process
EP3307699A1 (en) 2015-06-09 2018-04-18 Shell International Research Maatschappij B.V. Preparation and use of copper containing hydrogenation catalyst
CN105013501B (zh) 2015-06-26 2017-06-16 万华化学集团股份有限公司 一种醛气相加氢催化剂的制备方法
CN107115895B (zh) 2016-02-25 2019-09-17 中国石油化工股份有限公司 一种铜锌基催化剂的制备方法
CN108043414B (zh) 2017-12-06 2019-07-30 万华化学集团股份有限公司 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977711A (ja) * 1995-09-14 1997-03-25 Sumitomo Chem Co Ltd α−フェニルエチルアルコールの製造方法
CN1315226A (zh) * 2000-01-19 2001-10-03 住友化学工业株式会社 还原处理的铜基催化剂及用其制备α-苯乙醇的方法
JP2011005388A (ja) * 2009-06-24 2011-01-13 Sumitomo Chemical Co Ltd 酸化銅含有触媒の還元方法
CN106699507A (zh) * 2017-01-19 2017-05-24 浙江医药高等专科学校 α‑苯乙醇的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Liquid-phase hydrogenation of acetophenone over silica-supported Ni,Co and Cu catalysts: Influence of metal and solvent";A.F. Trasarti et al.;《Applied Catalysis A: General》;20140127;第475卷;第282-291页
Nicola's M. Bertero et al.."Catalytic and kinetic study of the liquid-phase hydrogenation of acetophenone over Cu/SiO2 catalyst".《Applied Catalysis A: General》.2008,第349卷100-109.

Also Published As

Publication number Publication date
US20200282388A1 (en) 2020-09-10
JP7019813B2 (ja) 2022-02-15
JP2021505365A (ja) 2021-02-18
CN108043414A (zh) 2018-05-18
EP3721991A4 (en) 2021-09-22
US11167280B2 (en) 2021-11-09
WO2019109629A1 (zh) 2019-06-13
EP3721991A1 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
CN108043414B (zh) 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用
CN106946894B (zh) 钯基双金属催化剂在hbiw催化氢解反应中的应用
EP2219782B1 (en) Method of preparing 1,3-butadiene using a mixed manganese ferrite catalyst prepared by coprecipitation
CN109482192B (zh) 一种苯乙酮加氢制备α-苯乙醇的催化剂的制备方法及应用
CN102423710B (zh) 一种用醋酸酯加氢制备乙醇的催化剂及其制备方法
CN104193615B (zh) 一种1,2‑丙二醇催化氧化的方法
TWI586430B (zh) 烯烴之氧化脫氫用觸媒及其製造方法與使用方法
CN108290139A (zh) 卤代硝基芳香族化合物的催化氢化方法
CN107999082A (zh) 一种铜系苯乙酮加氢催化剂的制备方法及其应用
CN109529870A (zh) 一种苯乙酮加氢催化剂及其制备方法
JP4972314B2 (ja) 含窒素化合物の製造方法
CN108409541B (zh) 用于间甲酚合成2,3,6-三甲基苯酚的催化剂及其制备方法
CN105344365A (zh) 一种均相沉淀法制备氟化催化剂的方法
US8247611B2 (en) Process for producing nitrogen-containing compounds
MXPA03008201A (es) Catalizador para la deshidrogenacion de ciclohexanol y metodo para la preparacion del mismo.
CN108114729A (zh) 一种蒽醌加氢催化剂及其制备方法和应用
CN104028267B (zh) 一种苯选择性加氢制环己烯贵金属Ru催化剂的制法
JP5038700B2 (ja) 脂含窒素化合物の製造方法
CN112827496A (zh) 负载型复合氧化物催化剂及其制备和应用
CN102000612A (zh) 流化床用硝基苯加氢制苯胺催化剂载体和催化剂的制备方法
CN103566930A (zh) 一种Pd/SiO2催化剂及其制备方法和应用
CN108097243B (zh) 碱改性活性炭负载钯催化剂及其制备方法
CN112569949B (zh) 环己烷二甲醇催化剂、环己烷二甲醇催化剂的制备方法及其应用
CN106268794A (zh) 一种用于苯部分加氢制备环己烯的催化剂的制备方法及该方法制备得到的催化剂
CN109453767A (zh) 一种Pd-Au/C双金属催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant