CN107315034A - 气体检测装置以及氢检测方法 - Google Patents

气体检测装置以及氢检测方法 Download PDF

Info

Publication number
CN107315034A
CN107315034A CN201710117419.9A CN201710117419A CN107315034A CN 107315034 A CN107315034 A CN 107315034A CN 201710117419 A CN201710117419 A CN 201710117419A CN 107315034 A CN107315034 A CN 107315034A
Authority
CN
China
Prior art keywords
electrode
gas
metal oxide
oxide layer
mentioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710117419.9A
Other languages
English (en)
Other versions
CN107315034B (zh
Inventor
村冈俊作
本间运也
魏志强
片山幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuvoton Technology Corp Japan
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of CN107315034A publication Critical patent/CN107315034A/zh
Application granted granted Critical
Publication of CN107315034B publication Critical patent/CN107315034B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/005Specially adapted to detect a particular component for H2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本申请提供节电性优异并且能够高灵敏度地检测含氢气体的气体检测装置。本申请的气体检测装置具备气体传感器和电源电路。气体传感器具备第一电极、第二电极、金属氧化物层和绝缘膜,该金属氧化物层配置在第一电极与第二电极之间,该绝缘膜覆盖第一电极、第二电极和金属氧化物层,并且具有使第二电极的主面的一部分露出的开口。金属氧化物层的电阻值在含有氢原子的气体与第二电极接触时减少。电源电路在金属氧化物层的电阻值减少之前和/或之后向第一电极与第二电极之间施加规定电压,由此使金属氧化物层的电阻值增大。

Description

气体检测装置以及氢检测方法
技术领域
本申请涉及具备气体传感器的气体检测装置。
背景技术
专利文献1公开了一种气体传感器,其将氢气的存在作为电阻值的变化来进行探测。该气体传感器具备向五氧化钽(Ta2O5)添加钯(Pd)和玻璃而成的材料以及夹着该材料的铂(Pt)电极。
非专利文献1公开了一种用于感应氢的Pt/Ta2O5肖特基二极管。就该肖特基二极管来说,氢分子在催化剂Pt的表面离解为氢原子。
现有技术文献
专利文献
专利文献1:日本特开昭59-58348号公报
非专利文献
非专利文献1:Sensors and Actuators A 172(2011)9-14
发明内容
发明所要解决的问题
本申请提供节电性优异并且能够高灵敏度地检测含氢气体的气体检测装置。
用于解决问题的手段
本申请的一个方案的气体检测装置具备气体传感器和向上述气体传感器施加规定电压的电源电路。上述气体传感器具备第一电极、第二电极、金属氧化物层和绝缘膜,该金属氧化物层配置在上述第一电极与上述第二电极之间,并且包含主体区域(bulkregion)和被上述主体区域包围且具有比上述主体区域大的氧不足度的局部区域,该绝缘膜覆盖上述第一电极、上述第二电极和上述金属氧化物层,并且具有使上述第二电极的主面的一部分露出的开口。上述金属氧化物层的电阻值在含有氢原子的气体与上述第二电极接触时减少。上述电源电路在上述金属氧化物层的上述电阻值减少之前或之后中的至少一个时机向上述第一电极与上述第二电极之间施加上述规定电压,由此使上述电阻值增大。
发明效果
本申请的一个方案的气体检测装置的节电性优异,并且能够高灵敏度地检测含氢气体。
附图说明
图1A是表示实施方式的气体传感器的一个例子的剖视图。
图1B是表示实施方式的气体传感器的一个例子的俯视图。
图2是表示实施方式的气体传感器的状态转换的一个例子的图。
图3是表示实施方式的气体传感器的电流-电压特性的一个例子的图。
图4A是表示实施方式的气体传感器的制造方法的一个例子的剖视图。
图4B是表示实施方式的气体传感器的制造方法的一个例子的剖视图。
图4C是表示实施方式的气体传感器的制造方法的一个例子的剖视图。
图4D是表示实施方式的气体传感器的制造方法的一个例子的剖视图。
图4E是表示实施方式的气体传感器的制造方法的一个例子的剖视图。
图4F是表示实施方式的气体传感器的制造方法的一个例子的剖视图。
图4G是表示实施方式的气体传感器的制造方法的一个例子的剖视图。
图5是实施方式的变形例的气体传感器的剖视图。
图6是表示实施方式的变形例的气体传感器的评价系统的图。
图7是表示实施方式的变形例的气体传感器的评价结果的图。
图8A是表示实施方式的气体检测电路的一个例子的电路图。
图8B是表示实施方式的气体检测电路的一个例子的电路图。
符号说明
100、200 气体传感器
101 基板
102 绝缘膜
103 第一电极
104、204 电阻膜
105 局部区域
106 第二电极
107 绝缘膜
107a 开口
107b 通孔
108 导通孔
108’ 导体膜
109 配线
204a 第一金属氧化物层
204b 第二金属氧化物层
300 掩模
900 评价系统
910 密闭容器
911 氢气瓶
912 氮气瓶
913、914 导入阀
915 排气阀
920 探测电源
930 电流测定器
940 复位电源
950 切换开关
1010、1020 气体检测电路
1011 测定电路
1012、1022 电源电路
具体实施方式
(作为本申请的基础的见解)
本申请的发明者们进行了深入研究,结果发现对于现有的气体传感器来说存在如下的问题。
为了提高探测含氢气体的灵敏度,现有的气体传感器将检测气体的器件加热到100℃以上。由此,现有的气体传感器的消耗功率最小也在100mW左右。因此,在以常开状态使用气体传感器的情况下,存在消耗功率变大这样的问题。
本申请的一个方案的气体检测装置能够高灵敏度地检测含氢气体,并且节电性优异。
以下,参照附图对本申请的实施方式进行说明。
此外,附图对于实质上表示相同构成、工作和效果的要素标注相同符号,省略说明。另外,以下所述的数值、材料、组成、形状、成膜方法、构成要素之间的连接关系等全部仅仅是用于对本申请的实施方式进行具体说明的例示,本申请并不限于此。此外,对于以下实施方式中的构成要素之中未记载于表示最上位概念的独立权利要求的构成要素,说明是任意的构成要素。
(第一实施方式)
[气体传感器的构成]
第一实施方式的气体传感器是电阻膜(金属氧化物层)与金属膜层叠而成的金属-绝缘膜-金属(MIM)结构的气体传感器。对于该气体传感器来说,通过利用形成在电阻膜内的局部区域中的自发热和气体感应性,能够在不以加热器进行加热的情况下检测含氢气体。这里,含氢气体是指由具有氢原子的分子形成的气体的总称,作为一个例子可以包含氢、甲烷、醇等。
图1A是表示第一实施方式的气体传感器100的一个构成例子的剖视图。
图1B是表示第一实施方式的气体传感器100的一个构成例子的俯视图。图1A的截面与沿图1B的1A-1A的剖切线向箭头方向观察到的截面相对应。
气体传感器100具备基板101、形成在基板101上的绝缘膜102、形成在绝缘膜102的上方的第一电极103、第二电极106、被第一电极103和第二电极106夹着的电阻膜104、绝缘膜107、导通孔108以及配线109。第一电极103的主面与第二电极106的主面以相对的方式配置,以与第一电极103的主面和第二电极106的主面接触的方式配置有电阻膜104。
绝缘膜107中设置有用于使第二电极106与作为检查对象的气体接触的开口107a。换言之,绝缘膜107覆盖第一电极103、第二电极106和电阻膜104,但第二电极106的上表面(与上述主面相对的其他面)的至少一部分不被绝缘膜107覆盖而露出。
电阻膜104介于第一电极103与第二电极106之间。电阻膜104的电阻值根据被施加到第一电极103与第二电极106之间的电信号而可逆地变化。例如,电阻膜104的电阻状态根据被施加到第一电极103与第二电极106之间的电压(电位差)而可逆地转换高电阻状态和低电阻状态。另外,电阻膜104的电阻状态根据与第二电极106接触的含氢气体而例如从高电阻状态转换到低电阻状态。
这里,在电阻膜104的内部具备以与第二电极106接触的方式配置、不与第一电极103接触的局部区域105。局部区域105的氧不足度比其周围(即电阻膜104的主体区域)的氧不足度大。局部区域105的氧不足度根据向第一电极103与第二电极106之间施加电信号以及在第二电极106所接触的气体中有无含氢气体而可逆地变化。局部区域105为包含由氧缺陷位点构成的丝(导电通路)的微小区域。
对于绝缘膜107来说,在覆盖第二电极106的上表面的部分,导通孔108贯通绝缘膜107而与第二电极106连接。在导通孔108之上配置有配线109。
此外,本申请中,金属氧化物的“氧不足度”是指:该金属氧化物中的氧不足量相对于由与该金属氧化物相同的元素构成的化学计量学组成的氧化物中的氧量的比例(其中,氧不足量是指由化学计量学组成的金属氧化物中的氧量减去该金属氧化物中的氧量而得到的值)。在可能存在多个由与该金属氧化物相同的元素构成的化学计量学组成的金属氧化物的情况下,该金属氧化物的氧不足度根据这些化学计量学组成的金属氧化物之中具有最高电阻值的一个来定义。化学计量学组成的金属氧化物与其他组成的金属氧化物相比,更稳定且具有更高的电阻值。
例如,在金属为钽(Ta)的情况下,根据上述定义的化学计量学组成的氧化物为Ta2O5,因此能够表示为TaO2.5。TaO2.5的氧不足度为0%,TaO1.5的氧不足度为氧不足度=(2.5-1.5)/2.5=40%。另外,氧过剩的金属氧化物的氧不足度为负值。此外,本申请中只要没有特别说明,氧不足度可以为正值、0或负值。
由于氧不足度小的氧化物更接近化学计量学组成的氧化物,因此电阻值高;由于氧不足度大的氧化物更接近构成氧化物的金属,因此电阻值低。
“含氧率”是指氧原子在总原子数中所占的比率。例如,Ta2O5的含氧率是氧原子在总原子数中所占的比率(O/(Ta+O)),为71.4原子%。因此,氧不足型钽氧化物的含氧率大于0且小于71.4原子%。
局部区域105通过向第一电极103与第二电极106之间施加初始击穿电压(initialbreak voltage)而形成在电阻膜104内。换言之,初始击穿电压是为了形成局部区域105而被施加到第一电极103与第二电极106之间的电压。初始击穿电压可以是绝对值比写入电压大的电压。写入电压是指为了使电阻膜104可逆地转换为高电阻状态和低电阻状态而被施加到第一电极103与第二电极106之间的电压。或者,初始击穿电压也可以是绝对值比写入电压小的电压。此时,可以反复施加初始击穿电压,或者可以以规定时间连续来施加。通过施加初始击穿电压,如图1A所示,形成与第二电极106接触、不与第一电极103接触的局部区域105。
对于局部区域105来说,可以认为其包含由氧缺陷位点构成的丝(导电通路)。局部区域105的大小为与用于流通电流所需的丝相匹配的微小大小。局部区域105中的丝的形成使用渗流模型来进行说明。
渗流模型是指假定局部区域105中的氧缺陷位点的随机分布并基于当氧缺陷位点的密度超过某一阈值时形成氧缺陷位点的连接的概率会增加这一理论的模型。
根据渗流模型,丝是通过局部区域105中的多个氧缺陷位点连接来构成的,电阻膜104中的电阻变化是通过局部区域105中的氧缺陷位点的产生和消失来表现的。
这里,“氧缺陷”是指金属氧化物中比化学计量学组成欠缺氧;“氧缺陷位点的密度”也与氧不足度相对应。即,当氧不足度变大时,氧缺陷位点的密度也变大。
局部区域105可以在气体传感器100中的一个电阻膜104仅形成一处。形成在电阻膜104的局部区域105的数目例如可以通过EBAC(电子束吸收电流,Electron BeamAbsorbed Current)分析来进行确认。
在电阻膜104内存在局部区域105的情况下,当向第一电极103与第二电极106之间施加了电压时,电阻膜104内的电流集中流向局部区域105。
局部区域105的尺寸小。因此,局部区域105例如会由在读取电阻值时流动的数十μA左右的电流而发热,该发热引起显著的温度上升。在流动数十μA左右的电流时,其消耗功率低于0.1mW。
因此,使第二电极106由具有催化作用的金属(例如Pt)构成,并且局部区域105与第二电极106接触。根据这些构成,第二电极106被局部区域105中的发热加热,氢原子从含氢气体高效地离解。
当在作为检查对象的气体中存在含氢气体时,氢原子在第二电极106从含氢气体离解,离解后的氢原子与局部区域105内的氧原子键合,从而局部区域105的电阻值降低。
这样,气体传感器100具有在第二电极106与含氢气体接触时第一电极103与第二电极106之间的电阻值降低的特性。通过该特性,在作为检查对象的气体与第二电极106接触时,通过对第一电极103与第二电极106之间的电阻值的降低进行检测,能够检测出气体所含的含氢气体。
此外,就算局部区域105为高电阻状态和低电阻状态中的任意状态,通过使含氢气体与第二电极106接触都会产生电阻值的降低。因此,含氢气体的检测可以通过局部区域105处于高电阻状态和低电阻状态中的任意状态的气体传感器100来进行。其中,为了能够更明确地检测到电阻值的降低,也可以使用预先将局部区域105在导电上设定高电阻状态的气体传感器100。
以下,对用于得到稳定的电阻变化特性的气体传感器100的详细信息进行说明。
电阻膜104由氧不足型金属氧化物构成。该金属氧化物的母体金属可以从钽(Ta)、铪(Hf)、钛(Ti)、锆(Zr)、铌(Nb)、钨(W)、镍(Ni)、铁(Fe)等过渡金属和铝(Al)中选择至少一种。过渡金属由于能够呈现多种氧化状态,因此能够通过氧化还原反应来实现不同的电阻状态。
这里,氧不足型金属氧化物是指氧不足度比与含有相同金属元素的化学计量学组成的金属氧化物大的金属氧化物。化学计量学组成的金属氧化物典型地为绝缘体,而氧不足型金属氧化物典型地具有半导体特性。通过将氧不足型金属氧化物用于电阻膜104,气体传感器100的可重复性好并且能够实现稳定的电阻变化工作。
例如,在使用铪氧化物作为构成电阻膜104的金属氧化物的情况下,当在将其组成记为HfOx的情况下x为1.6以上时,能够使电阻膜104的电阻值稳定地变化。此时,铪氧化物的膜厚可以为3~4nm。
另外,在使用锆氧化物作为构成电阻膜104的金属氧化物的情况下,当在将其组成记为ZrOx的情况下x为1.4以上时,能够使电阻膜104的电阻值稳定地变化。此时,锆氧化物的膜厚可以为1~5nm。
此外,在使用钽氧化物作为构成电阻膜104的金属氧化物的情况下,当在将其组成记为TaOx的情况下x为2.1以上时,能够使电阻膜104的电阻值稳定地变化。
就以上的各金属氧化物层的组成来说,可以使用卢瑟福背散射法来进行测定。
作为第一电极103和第二电极106的材料,例如可以从Pt(铂)、Ir(铱)、Pd(钯)、Ag(银)、Ni(镍)、W(钨)、Cu(铜)、Al(铝)、Ta(钽)、Ti(钛)、TiN(氮化钛)、TaN(氮化钽)和TiAlN(氮化铝钛)等中进行选择。
具体来说,第二电极106例如由铂(Pt)、铱(Ir)或钯(Pd)或者包含它们之中的至少一种的合金等具有从含有氢原子的气体分子中离解氢原子的催化作用的材料构成。另外,第一电极103例如由钨(W)、镍(Ni)、钽(Ta)、钛(Ti)、铝(Al)、氮化钽(TaN)、氮化钛(TiN)等标准电极电位比构成金属氧化物的金属低的材料构成。对于标准电极电位来说,其值越高则显示越难以氧化的特性。
另外,基板101例如可以使用硅单晶基板或半导体基板,但不限于这些。电阻膜104能够以较低的基板温度形成,因此例如也能够在树脂材料等之上形成电阻膜104。
此外,气体传感器100例如还可以进一步具有固定电阻、晶体管或二极管作为与电阻膜104电连接的负载器件。
这里,对于气体传感器100的由施加电压所带来的电阻变化特性,根据基于样品器件的实测结果来进行说明。此外,对于气体传感器100的由含氢气体所带来的的电阻变化特性,将在后面叙述。
图2是表示由样品器件实测得到的电阻变化特性的图表。
作为得到了图2的测定结果的样品器件的气体传感器100是将第一电极103和第二电极106以及电阻膜104的大小设定为0.5μm×0.5μm(面积为0.25μm2)的器件。另外,当将作为电阻膜104的钽氧化物的组成记作TaOy时,设定为y=2.47。此外,将电阻膜104的厚度设定为5nm。对于这样的气体传感器100来说,当向第一电极103与第二电极106之间施加了读取用电压(例如为0.4V)时,初始电阻值RI约为107~108Ω。
如图2所示,在气体传感器100的电阻值为初始电阻值RI(比高电阻状态中的电阻值HR高的值)的情况下,通过向第一电极103与第二电极106之间施加初始击穿电压,电阻状态发生变化。之后,当向气体传感器100的第一电极103与第二电极106之间交替地施加例如脉冲宽度为100ns并且极性不同的两种电压脉冲(正电压脉冲和负电压脉冲)作为写入用电压时,第一电极103与第二电极106之间的电阻值如图2所示会变化。
即,在向电极之间施加了正电压脉冲(脉冲宽度为100ns)作为写入用电压的情况下,第一电极103与第二电极106之间的电阻值从低电阻值LR增加到高电阻值HR。而在向电极之间施加了负电压脉冲(脉冲宽度为100ns)作为写入用电压的情况下,第一电极103与第二电极106之间的电阻值从高电阻值HR减少到低电阻值LR。此外,对于电压脉冲的极性来说,以第一电极103的电位为基准而第二电极106的电位高的情况为“正”,以第一电极103的电位为基准而第二电极106的电位低的情况为“负”。
图3是表示气体传感器100的电流-电压特性的一个例子的图。图3示出了一边向气体传感器100的第一电极103与第二电极106之间施加变动电压一边测定在气体传感器中流通的电流而得到的电流-电压特性。具体来说,预先将气体传感器100设定为高电阻状态,使施加电压如下变化:(1)首先,从0变化到负的写入用电压;(2)接下来,从负的写入用电压变化到正的写入用电压;(3)最后,从正的写入用电压变化到0。这里,电压的正和负的定义如上所述。
在施加电压到达了规定大小的负电压时,第一电极103与第二电极106之间的电阻值从高电阻值HR减少到低电阻值LR(电流的绝对值增加)。而在施加电压到达了规定大小的正电压时,第一电极103与第二电极106之间的电阻值从低电阻值LR增加到高电阻值HR(电流的绝对值减少)。
[气体传感器的制造方法和工作]
接着,参照图4A~图4G,对气体传感器100的制造方法的一个例子进行说明。
首先,如图4A所示,例如在作为单晶硅的基板101上通过热氧化法形成厚度为200nm的绝缘膜102。然后,作为第一电极103,例如将厚度为100nm的Pt薄膜通过溅射法形成在绝缘膜102上。此外,也可以通过溅射法在第一电极103与绝缘膜102之间形成Ti、TiN等的密合层。然后,在第一电极103之上,例如通过使用了Ta靶的反应性溅射法形成作为电阻膜104的氧不足型金属氧化物层。通过以上方式来形成电阻膜104。
这里,对于电阻膜104的厚度来说,当过厚时存在初始电阻值变得过高等不良情况,而当过薄时存在得不到稳定的电阻变化这样的不良情况。基于以上理由,可以为1nm以上且8nm以下左右。
接下来,在电阻膜104之上,作为第二电极106例如通过溅射法形成厚度为150nm的Pt薄膜。
接下来,如图4B所示,通过光刻工序来形成基于光致抗蚀剂的掩模300。之后,如图4C所示,通过使用了掩模300的干蚀刻,将第一电极103、电阻膜104和第二电极106形成为器件的形状。
之后,如图4D所示,以覆盖绝缘膜102、第一电极103、电阻膜104和第二电极106的方式形成绝缘膜107。然后,通过蚀刻在绝缘膜107设置到达第二电极106的上表面的一部分的通孔107b。
接下来,如图4E所示,以填充绝缘膜107的上表面和通孔107b的内部的方式形成导体膜108’。然后,如图4F所示,通过CMP(化学机械抛光,Chemical Mechanical Polishing)将绝缘膜107上的导体膜108’除去,由此在通孔107b内形成导通孔108。进而,通过将新的导体膜配置在绝缘膜107上来进行布图,由此形成与导通孔108连接的配线109。
接下来,如图4G所示,通过蚀刻在绝缘膜107设置第二电极106的上表面的一部分露出的开口107a。
之后,通过向第一电极103与第二电极106之间施加初始击穿电压,在电阻膜104内形成图1A所示的局部区域105,完成气体传感器100。
[气体传感器的变形例]
图5是表示第一实施方式的变形例的气体传感器的一个构成例子的剖视图。以下,仅对与第一实施方式的气体传感器100的不同点进行说明。
本变形例的气体传感器200与第一实施方式的气体传感器100的不同点在于:电阻膜204由与第一电极103接触的第一金属氧化物层204a和与第二电极106接触的第二金属氧化物层204b这两层层叠来构成。此外,电阻膜204不限于两层,也可以层叠三层以上的金属氧化物层。
在第一金属氧化物层204a和第二金属氧化物层204b内具备氧不足度会根据施加电脉冲和含氢气体而可逆地变化的局部区域105。局部区域105至少贯通第二金属氧化物层204b并以与第二电极106接触的方式形成。
换言之,电阻膜204包含第一金属氧化物层204a与第二金属氧化物层204b的层叠结构,该第一金属氧化物层204a至少包含第一金属氧化物,该第二金属氧化物层204b包含第二金属氧化物。而且,第一金属氧化物层204a配置在第一电极103与第二金属氧化物层204b之间,第二金属氧化物层204b配置在第一金属氧化物层204a与第二电极106之间。
第二金属氧化物层204b的厚度可以比第一金属氧化物层204a的厚度薄。此时,能够容易地形成局部区域105不与第一电极103接触的结构。第二金属氧化物层204b的氧不足度可以比第一金属氧化物层204a的氧不足度小。此时,第二金属氧化物层204b的电阻值比第一金属氧化物层204a的电阻值高,因此施加到电阻膜204的电压的大部分被施加到第二金属氧化物层204b。该构成例如有助于使初始击穿电压向第二金属氧化物层204b集中、降低形成局部区域105所需的初始击穿电压。
另外,本申请在构成第一金属氧化物层204a和第二金属氧化物层204b的金属相同的情况下,有时使用“含氧率”这一用语来代替“氧不足度”。“含氧率高”与“氧不足度小”相对应,“含氧率低”与“氧不足度大”相对应。
但是,如后所述,本实施方式的电阻膜204不限于构成第一金属氧化物层204a和第二金属氧化物层204b的金属相同的情况,也可以为不同金属。即,第一金属氧化物层204a和第二金属氧化物层204b也可以为不同金属的氧化物。
在构成第一金属氧化物层204a的第一金属和构成第二金属氧化物层204b的第二金属相同的情况下,含氧率与氧不足度存在对应关系。即,在第二金属氧化物的含氧率比第一金属氧化物的含氧率大时,第二金属氧化物的氧不足度比第一金属氧化物的氧不足度小。
电阻膜204在第一金属氧化物层204a与第二金属氧化物层204b的界面附近具备局部区域105。局部区域105的氧不足度比第二金属氧化物层204b的氧不足度大,并与第一金属氧化物层204a的氧不足度不同。
通过向第一电极103与第二电极106之间施加初始击穿电压,使局部区域105形成在电阻膜204内。通过初始击穿电压,形成与第二电极106接触、贯通第二金属氧化物层204b并且在第一金属氧化物层204a侵入一部分、不与第一电极103接触的局部区域105。
对于这样构成得到的气体传感器200的由含氢气体所带来的电阻变化特性的一个评价例子进行说明。
图6是表示用于评价气体传感器200的评价系统的一个例子的框图。图6所示的评价系统900具备存储气体传感器200的密闭容器910、生成探测电压的探测电源920以及电流测定器930。密闭容器910经由导入阀913、914分别与氢气瓶911、氮气瓶912连接,并且被构成为能够经由排气阀915将内部气体排出。
图7是表示气体传感器200的一个评价例子的图表。横轴表示时间(a.u.),纵轴表示在气体传感器200中流动的电流值(a.u.)。实验是首先在导入密闭容器910内的氮气中放置气体传感器200,施加探测电压并开始测定电流。之后,向密闭容器910内导入氢气,再在一定时间之后将导入气体从氢气切换成氮气。
图7示出此时的结果,横轴表示氮中、导入氢和导入氮这三个期间。电流值从开始导入氢气开始增加,由电流值到达规定阈值电流来检测氢气。将从开始导入氢气至电流值增加并到达规定阈值电流的时间表示为氢检测时间t。在氢检测之后,电流值进一步增加并饱和。
另外,在检测氢气之后,就算将导入气体从氢气切换成氮气,电流值也是饱和状态,不会再次降低。即,可知气体传感器200具有如下特性:当第二电极106与包含具有氢原子的氢分子的气体(这里为氢气)接触时,第一电极103与第二电极106之间的电阻值降低,而在该降低之后就算第二电极106与不具有氢原子的气体(这里为氮气)接触也会维持电阻值降低了的状态。
本评价例子是使用了通过预先向第一电极103与第二电极106之间施加规定电压(复位电压)而将局部区域105设定为高电阻状态的气体传感器200。
在含氢气体的监测工作中,向第一电极103与第二电极106之间施加0.6V的探测电压,检测氢气,以电流值饱和了的状态向第一电极103与第二电极106之间流动约20μA的电流。
因此,发现通过气体传感器200能够以最多不过0.012mW的非常小的消耗功率来监测含氢气体。该0.6V的电压可以始终施加到第一电极103与第二电极106之间。
此外,在向第一电极103与第二电极106之间施加了0.4V的探测电压的情况下,不会发生由氢气所带来的电阻变化,无法检测氢气。这可以认为是因为,当施加0.4V的探测电压时,局部区域105中的发热对于促进第二电极106的催化作用不充分,为了能够检测氢气,需要施加0.6V的探测电压。此时的0.6V的探测电压是在第二电极106与包含具有氢原子的气体分子的气体接触时使得第一电极103与第二电极106之间的电阻值降低的特性活化的探测电压的一个例子。
这里的探测电压是图3所示的读取用电压。除了由于氢原子引起的情况以外,还需要防止气体传感器200的电阻值变化。如图3所示,当向气体传感器200施加规定大小的正电压时,气体传感器200的电阻值从低电阻变化成高电阻;当施加规定大小的负电压时,气体传感器200的电阻值从高电阻变化成低电阻。因此,为了不产生电阻值的变化,探测电压(读取用电压)的绝对值需要设定为比规定大小更小的值。
气体传感器200检测到氢气而电流值增加并饱和,然后就算使氢气的浓度减少,电流值也不会再次降低。因此,为了使气体传感器200返回到氢气检测前的高电阻状态,需要再次向第一电极103与第二电极106之间施加规定大小的正电压(复位电压)。
由以上结果,发明人推测通过气体传感器200检测含氢气体的检测机理如下。
在含氢气体与第二电极106接触时,通过第二电极106的催化作用,氢原子从含氢气体离解。离解后的氢原子为了保持平衡状态而在第二电极106中扩散,并到达局部区域105。
通过到达局部区域105后的氢原子,在微小的局部区域105中发生还原反应,局部区域105内的氧与上述氢原子发生反应。在局部区域105中新产生氧缺陷,局部区域105中的氧不足度增加。通过在局部区域105中产生大量的氧缺陷,由氧缺陷形成的丝容易相连,局部区域105的电阻值减少。其结果是,可以认为在第一电极103与第二电极106之间流动的电流增加。
此外,上述工作不限于气体传感器200,可以认为在主要部分的结构与气体传感器200实质上相同的气体传感器100、后述的其他气体传感器也会出现。另外,上述工作能够检测的气体不限于氢气,例如可以认为对于甲烷、醇等各种含氢气体也会出现。
如以上的说明那样,通过本实施方式的气体传感器,仅由用于探测电阻状态的电流发热,可以得到能够在不以另外的加热器进行加热的情况下检测含氢气体的节电性优异的优异气体传感器。
另外,当第二电极与包含具有氢原子的气体分子的气体接触时,第一电极与第二电极之间的电阻值降低,在该降低之后就算第二电极与不具有氢原子的气体接触也能够维持电阻值降低了的状态。
[气体检测电路]
图8A是表示包含第一实施方式的变形例的气体传感器200的气体检测电路1010的一个例子的电路图。
气体检测电路1010具备测定电路1011和电源电路1012,该测定电路1011是将气体传感器200和电流测定器930串联而成的,该电源电路1012包含探测电源920。
更详细来说,气体传感器200的第二电极106经由图5所示的导通孔108和配线109与探测电源920的正电位端子连接。另外,气体传感器200的第一电极103例如经由配线(未图示)等与电流测定器930的一端连接。电流测定器930的其他端与探测电源920的负电位端子连接。通过以上构成,规定电压由探测电源920被施加到气体传感器200的第一电极103与第二电极106之间。
对于气体检测电路1010来说,在与气体传感器200连接的电流测定器930中,将开始导入氢气到最初超过了图7所示的规定阈值电流的时刻设定为氢检测的判定点。即,气体检测电路1010利用在气体传感器200中超过了规定阈值电流的时刻来判定检测到了氢。
如上所述,通过本实施方式的气体传感器,能够节电地进行氢检测。此外,本实施方式对氢气时的实验结果进行了说明,但对含有氢的气体(例如氨气等)也可以获得同样的效果。
另外,上述示出了检测氢的例子,但本实施方式的气体传感器具有不仅检测出氢而且还会保持检测出氢的状态(就算氢浓度减少也维持高电阻状态)这样的特性。因此,通过预先将本实施方式的气体传感器多个设置在制氢站等,其作为用于调查过去是否存在氢泄露的氢泄露存储器件也是有效的。
[具有复位功能的气体检测电路]
图8B是表示能够将气体传感器200从低电阻状态复位到高电阻状态的气体检测电路的一个例子的电路图。图8B的气体检测电路1020是通过将图8A所示的气体检测电路1010的电源电路1012变更成追加了切换开关950和复位电源940的电源电路1022来构成的。
气体检测电路1020是在使用气体传感器200和电流测定器930来检测含氢气体之后将切换开关950与复位电源940连接。通过以复位电源940向气体传感器200施加复位电压(例如为1.5V),将由于含氢气体而成为了低电阻状态的气体传感器200在导电上复位为高电阻状态。
由此,通过将检测含氢气体之后成为了低电阻状态的气体传感器200复位为高电阻状态,能够反复检测含氢气体。
此外,上述的气体检测电路1010、1020的效果不限于使用气体传感器200所构成的气体检测电路1010、1020。就算是使用了主要部分的结构与气体传感器200实质上相同的气体传感器100、其他气体传感器代替气体传感器200时也可以得到同样的效果。
另外,通过向第一电极与第二电极之间施加复位电压而将气体传感器复位为高电阻状态的时机不仅限于检测含氢气体之后。例如,也可以在检测含氢气体之前(特别是初次检测之前)复位。由此,通过使用高电阻状态的气体传感器来检测含氢气体,能够更明确地检测到电阻值的降低,因此含氢气体的检测特性提高。
[补充]
如图8A所示,气体检测电路1010包含测定电路1011和电源电路1012,该测定电路1011包含气体传感器200和电流测定器930。此外,气体检测电路1010是本申请中的“气体检测装置”的一个例子。
如图5所示,气体传感器200具备第一电极103、配置在第一电极103上的电阻膜204和配置在电阻膜204之上的第二电极106。电阻膜204为本申请的“金属氧化物层”的一个例子。电阻膜204包含第一金属氧化物层204a和第二金属氧化物层204b。电阻膜204包含局部区域105和包围局部区域105的主体区域。这里,“包围局部区域105”不限于将局部区域105的外周面全部围住。图5中,主体区域是指第二金属氧化物层204b之中除了局部区域105以外的区域。局部区域105的氧不足度比主体区域的氧不足度大。第一金属氧化物层204a的氧不足度比主体区域的氧不足度大。图5中,局部区域105与第二电极106接触,贯通第二金属氧化物层204b,并且不与第一电极103接触。
图5中,绝缘膜107具有开口107a。在开口107a中,第二电极106的上表面的一部分从绝缘膜107露出。第二电极106的露出面能够与气体接触。
在含有氢原子的气体与第二电极106接触时,局部区域105的电阻值降低,电阻膜204的电阻值降低,气体传感器200的电阻值降低。
电源电路1012例如在电阻膜204的电阻值降低之前向第一电极103与第二电极106之间施加规定电压,由此使电阻膜204的电阻值增大。例如,电阻膜204通过电压被设定为高电阻状态,之后通过含氢气体被转换到低电阻状态。或者,电源电路1012例如在电阻膜204的电阻值降低之后向第一电极103与第二电极106之间施加规定电压,由此使电阻膜204的电阻值增大。例如,电阻膜204通过含氢气体被转换到低电阻状态,之后通过电压被设定为高电阻状态。或者,电阻膜204可以是通过电压被设定为高电阻状态,之后通过含氢气体被转换到低电阻状态,然后进一步通过电压再被设定为高电阻状态。
图8B中,复位电源940是本申请中“第一电源电路”的一个例子,探测电源920是本申请中“第二电源电路”的一个例子。本申请中的“电源电路”例如既可以为电源其本身,也可以为将外部电源的电压变换成所希望的电压的变换电路。
(实施方式的概要)
一个方案的气体传感器具备:第一电极和第二电极,该第一电极和第二电极以主面彼此相对的方式配置而成;金属氧化物层,该金属氧化物层以上述第一电极的上述主面与上述第二电极的上述主面接触的方式配置而成;局部区域,该局部区域在上述金属氧化物层的内部以与上述第二电极接触的方式配置,并且氧不足度比上述金属氧化物层大;以及绝缘膜,该绝缘膜覆盖上述第一电极、上述第二电极和上述金属氧化物层,上述第二电极的与上述主面相对的其他面的至少一部分不被上述绝缘膜覆盖而露出,并且具有在上述第二电极与包含具有氢原子的气体分子的气体接触时上述第一电极与上述第二电极之间的电阻值降低、在该降低之后就算上述第二电极与不具有氢原子的气体接触也维持上述电阻值降低了的状态的特性。
根据这样的构成,在第一电极与第二电极流通之间的电流向氧不足度大的局部区域集中。其结果是,能够以少的电流使上述局部区域的温度上升。
上述局部区域由在上述第一电极与上述第二电极之间流通的电流而发热,由此氢原子在上述第二电极的与上述局部区域接触的部分从上述氢分子离解,离解后的氢原子与上述金属氧化物层的上述局部区域内的氧原子键合,上述第一电极与上述第二电极之间的电阻值降低。
更详细来说,当局部区域的温度上升时,第二电极的表面的温度也上升。随着温度上升,通过第二电极的催化作用使得氢原子在第二电极从氢分子离解的效率提高。
在从上述绝缘膜通过了的氢分子与第二电极接触时,氢原子从上述氢分子离解,离解后的氢原子在上述第二电极中扩散,并到达上述局部区域。然后,通过与存在于上述局部区域的金属氧化物的氧键合来形成水(H2O),上述局部区域的氧不足度进一步增大。由此,局部区域容易流动电流,第一电极与第二电极之间的电阻值降低。
由此,利用形成在金属氧化物层内部的局部区域处的自发热和气体感应性,从而能够在不以加热器进行加热的情况下检测含氢气体,能够得到节电性优异的气体传感器。
此外,通过维持由检测出含氢气体而降低了的上述电阻值的特性,能够得到存储检测结果的气体传感器。
另外,上述金属氧化物层可以是由第一金属氧化物构成的第一金属氧化物层与由氧不足度比上述第一金属氧化物小的第二金属氧化物构成的第二金属氧化物层层叠而成,上述第一金属氧化物层与上述第一电极接触,上述第二金属氧化物层与上述第二电极接触,上述局部区域至少贯通上述第二金属氧化物层并以与上述第二电极接触的方式形成,并且氧不足度比上述第二金属氧化物层大。
根据这样的构成,通过在上述金属氧化物层采用电阻变化特性优异的层叠结构,能够得到含氢气体的检测特性优异的气体传感器。
此外,上述第二电极可以是由具有使上述氢原子从上述气体分子离解的催化作用的材料构成。
根据这样的构成,氢原子在上述第二电极的与上述局部区域接触的部分从上述氢分子离解,离解后的氢原子与上述金属氧化物层的上述局部区域内的氧原子键合,由此上述第一电极与上述第二电极之间的电阻值降低。
另外,上述第二电极可以是由铂、钯或铱或者包含铂、钯和铱中的至少一种的合金构成。
根据这样的构成,上述第二电极能够通过铂或钯的催化作用使氢原子从上述氢分子离解。
另外,上述气体传感器可以具备测定电路,该测定电路可以在探测电压被施加到上述第一电极与上述第二电极之间时对在上述第一电极与上述第二电极之间流通的电流进行测定。
根据这样的构成,利用由上述电流测定器测定的电流增加,能够检测上述含氢气体。
此外,上述金属氧化物层可以是根据被施加到上述第一电极与上述第二电极之间的电压而可逆地转换为高电阻状态和电阻值比上述高电阻状态低的低电阻状态。
根据这样的构成,能够使上述金属氧化物层的电阻状态与基于含氢气体的转换分开进行电转换。例如,可以在将上述金属氧化物层在导电上设定为高电阻状态之后使检查对象的气体与上述金属氧化物层接触,由此能够明确地检测电阻值的降低,含氢气体的检测特性提高。
另外,上述金属氧化物层可以是在包含具有氢原子的气体分子的气体与上述第二电极接触之前使复位电压被施加到上述第一电极与上述第二电极之间来设定为高电阻状态。
根据这样的构成,由于是检测电阻值在导电上被设定为高电阻状态的上述气体传感器中的降低,因此能够明确地检测电阻值的降低,含氢气体的检测特性提高。
此外,上述金属氧化物层可以是在上述第二电极与包含具有氢原子的气体分子的气体接触而在上述第一电极与上述第二电极之间的电阻值降低之后再次使上述复位电压被施加到上述第一电极与上述第二电极之间来设定为高电阻状态。
根据这样的构成,就算是上述气体传感器在检测含氢气体之后被保持为低电阻状态的情况下,也能够通过在导电上复位为高电阻状态来再次检测含氢气体。
另外,上述气体传感器可以具有电源电路,该电源电路具有:探测电源,该探测电源生成用于对在上述第一电极与上述第二电极之间流通的电流进行测定的探测电压;复位电源,该复位电源生成用于将上述金属氧化物层设定为高电阻状态的复位电压;以及切换开关,该切换开关对上述探测电源与上述复位电源进行切换,由此向上述第一电极与上述第二电极之间选择性地施加上述探测电压和上述复位电压中的任一个。
根据这样的构成,作为具备用于测定电流和高电阻化(复位)的各电源的模块部件,能够得到便利性高的气体传感器。
此外,上述探测电压的绝对值可以比上述复位电压的绝对值小。
根据这样的构成,通过向上述第一电极与上述第二电极之间施加适合用于测定电流和高电阻化(复位)的最小限度的电压,能够得到节电性优异的气体传感器。
另外,可以具备电源电路,该电源电路向上述第一电极与上述第二电极之间始终施加使在上述第二电极与包含具有氢原子的气体分子的气体接触时上述第一电极与上述第二电极之间的电阻值降低的上述特性活化的电压。
根据这样的构成,利用上述气体传感器的节电性,能够以微少功耗持续监测含氢气体的泄露。
此外,上述金属氧化物层可以是由过渡金属氧化物或铝氧化物构成。
根据这样的构成,通过使上述金属氧化物层由电阻变化特性优异的过渡金属氧化物或铝氧化物构成,能够得到含氢气体的检测特性优异的气体传感器。
另外,上述过渡金属氧化物可以是钽氧化物、铪氧化物或锆氧化物中的任一种。
根据这样的构成,通过使用电阻变化特性优异的钽氧化物、铪氧化物和锆氧化物作为上述过渡金属氧化物,能够得到含氢气体的检测特性优异的气体传感器。
此外,上述局部区域可以是由在上述第一电极与上述第二电极之间流通的电流而发热,由此氢原子在上述第二电极的与上述局部区域接触的部分从上述气体分子离解,离解后的氢原子与上述金属氧化物层的上述局部区域内的氧原子键合,从而使上述第一电极与上述第二电极之间的电阻值降低。
根据这样的构成,在第一电极与第二电极之间流通的电流向氧不足度大的局部区域集中。其结果是,能够以少的电流使上述局部区域的温度上升。
上述局部区域由在上述第一电极与上述第二电极之间流通的电流而发热,由此氢原子在上述第二电极的与上述局部区域接触的部分从上述氢分子离解,离解后的氢原子与上述金属氧化物层的上述局部区域内的氧原子键合,从而使上述第一电极与上述第二电极之间的电阻值降低。
更详细来说,当局部区域的温度上升时,第二电极的表面的温度也上升。随着温度上升,通过第二电极的催化作用使氢原子在第二电极从具有氢原子的气体分子离解的效率提高。
在从上述绝缘膜通过后的具有氢原子的气体分子与第二电极接触时,氢原子从上述氢分子离解,离解后的氢原子在上述第二电极中扩散并到达上述局部区域。然后,通过与存在于上述局部区域的金属氧化物的氧键合而形成水,从而上述局部区域的氧不足度进一步增大。由此,局部区域容易流通电流,第一电极与第二电极之间的电阻值降低。
由此,利用形成在金属氧化物层内部的局部区域中的自发热和气体感应性,能够在不以加热器进行加热的情况下检测含氢气体,能够得到节电性优异的气体传感器。
一个方案的氢检测方法是使用了气体传感器的氢检测方法,上述气体传感器具备:第一电极和第二电极,该第一电极和第二电极以主面彼此相对的方式配置而成;以及金属氧化物层,该金属氧化物层以与上述第一电极的上述主面和上述第二电极的上述主面接触的方式配置而成,并且具有在上述第二电极与包含具有氢原子的气体分子的气体接触时上述第一电极与上述第二电极之间的电阻值降低、在该降低之后就算上述第二电极与不具有氢原子的气体接触也维持上述电阻值降低了的状态的特性,其中,使包含具有氢原子的气体分子的气体与上述第二电极接触,通过上述第一电极与上述第二电极之间的电阻值降低来检测上述具有氢原子的气体分子,在由于上述具有氢原子的气体分子而上述第一电极与上述第二电极之间的电阻值降低了之后,向上述第一电极与上述第二电极之间施加复位电压,由此将上述第一电极与上述第二电极之间的电阻值复位到降低之前的高电阻状态。
根据这样的方法,能够通过仅由用于探测电阻状态的电流发热、在不以另外的加热器进行加热的情况下检测含氢气体的上述气体传感器来实现节电性优异的氢检测。
另外,就算是上述金属氧化物层在检测到含氢气体之后被维持为低电阻状态的情况下,通过在导电上复位为高电阻状态,也能够再次检测含氢气体。
产业上的可利用性
本申请的气体检测装置例如在燃料电池汽车、加氢站、制氢站等中是有用的。

Claims (17)

1.一种气体检测装置,其具备气体传感器和向所述气体传感器施加规定电压的电源电路,
其中,所述气体传感器具备第一电极、第二电极、金属氧化物层和绝缘膜,
该金属氧化物层配置在所述第一电极与所述第二电极之间,并且包含主体区域和被所述主体区域包围且具有比所述主体区域大的氧不足度的局部区域,
该绝缘膜覆盖所述第一电极、所述第二电极和所述金属氧化物层,并且具有使所述第二电极的主面的一部分露出的开口,
所述金属氧化物层的电阻值在含有氢原子的气体与所述第二电极接触时减少,
所述电源电路在所述金属氧化物层的所述电阻值减少之前或之后中的至少一个时机向所述第一电极与所述第二电极之间施加所述规定电压,由此使所述电阻值增大。
2.根据权利要求1所述的气体检测装置,其中,所述金属氧化物层具有可逆的电阻变化特性,该可逆的电阻变化特性是通过施加第一电压从低电阻状态转换到高电阻状态,并且通过施加与所述第一电压不同的第二电压从所述高电阻状态转换到所述低电阻状态,
所述规定电压为所述第一电压。
3.根据权利要求2所述的气体检测装置,其中,所述电源电路向所述第一电极与所述第二电极之间施加所述第一电压,由此将所述金属氧化物层设定为所述高电阻状态,
所述金属氧化物层在规定量的所述气体与所述第二电极接触时从所述高电阻状态转换到所述低电阻状态。
4.根据权利要求3所述的气体检测装置,其中,所述电源电路在所述金属氧化物层转换到所述低电阻状态之后向所述第一电极与所述第二电极之间施加所述第一电压,由此将所述金属氧化物层再次设定为所述高电阻状态。
5.根据权利要求4所述的气体检测装置,其中,所述金属氧化物层在从转换到所述低电阻状态到被施加所述第一电压的期间维持所述低电阻状态。
6.根据权利要求1~5中任一项所述的气体检测装置,其中,所述电源电路具备:
第一电源电路,该第一电源电路生成所述规定电压;以及
第二电源电路,该第二电源电路生成用于测定所述金属氧化物层的所述电阻值的探测电压。
7.根据权利要求6所述的气体检测装置,其中,所述探测电压的绝对值比所述规定电压的绝对值小。
8.根据权利要求6所述的气体检测装置,其中,所述探测电压使所述局部区域发热。
9.根据权利要求6所述的气体检测装置,其还具备电流测定器,
所述电流测定器在所述第二电源电路向所述第一电极与所述第二电极之间施加所述探测电压时对在所述第一电极与所述第二电极之间流通的电流值进行测定。
10.根据权利要求6所述的气体检测装置,其中,所述电源电路还具备开关,该开关对使所述气体传感器与所述第一电源电路和所述第二电源电路中的哪一个连接进行切换。
11.根据权利要求1~10中任一项所述的气体检测装置,其中,所述第二电极的所述主面的所述一部分以所述气体能够接触的方式构成。
12.根据权利要求1~5中任一项所述的气体检测装置,其中,所述金属氧化物层具备第一金属氧化物层和第二金属氧化物层,该第一金属氧化物层与第一电极接触,并且具有比所述主体区域大的氧不足度,该第二金属氧化物层与第二电极接触,并且包含所述主体区域,
所述局部区域与所述第二电极接触,并且贯通所述第二金属氧化物层。
13.根据权利要求1~5中任一项所述的气体检测装置,其中,所述第二电极使所述氢原子从所述气体所含的分子中离解。
14.根据权利要求1~5中任一项所述的气体检测装置,其中,所述第二电极含有选自铂、钯和铱中的至少一种。
15.根据权利要求1~5中任一项所述的气体检测装置,其中,所述金属氧化物层含有过渡金属氧化物和铝氧化物中的至少一个。
16.根据权利要求15所述的气体检测装置,其中,所述过渡金属氧化物为钽氧化物、铪氧化物或锆氧化物。
17.一种气体检测方法,其是使用了气体传感器的气体检测方法,所述气体传感器具备第一电极、第二电极、金属氧化物层和绝缘膜,
该金属氧化物层配置在所述第一电极与所述第二电极之间,并且包含主体区域和被所述主体区域包围且具有比所述主体区域大的氧不足度的局部区域,
该绝缘膜覆盖所述第一电极、所述第二电极和所述金属氧化物层,并且具有使所述第二电极的主面的一部分露出的开口,
其中,所述气体检测方法包括下述步骤:
探测步骤,该步骤是通过探测所述金属氧化物层的电阻值的减少来探测含有氢原子的气体;以及
增大步骤,该步骤是在探测所述气体之前或之后中的至少一时机向所述第一电极与所述第二电极之间施加规定电压,由此使所述金属氧化物层的所述电阻值增大。
CN201710117419.9A 2016-04-26 2017-03-01 气体检测装置以及氢检测方法 Active CN107315034B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-088143 2016-04-26
JP2016088143 2016-04-26

Publications (2)

Publication Number Publication Date
CN107315034A true CN107315034A (zh) 2017-11-03
CN107315034B CN107315034B (zh) 2021-06-08

Family

ID=60089024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710117419.9A Active CN107315034B (zh) 2016-04-26 2017-03-01 气体检测装置以及氢检测方法

Country Status (3)

Country Link
US (1) US10281420B2 (zh)
JP (1) JP6740159B2 (zh)
CN (1) CN107315034B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642924B (zh) * 2017-12-27 2018-12-01 財團法人工業技術研究院 氧化性氣體濃度檢測方法及其裝置
CN109975362A (zh) * 2017-12-27 2019-07-05 财团法人工业技术研究院 氧化性气体浓度检测方法及其装置
CN110114663A (zh) * 2016-12-28 2019-08-09 松下知识产权经营株式会社 气体检测装置、气体传感器系统、燃料电池汽车及氢检测方法
CN110487853A (zh) * 2018-05-14 2019-11-22 佳能株式会社 还原性气体检测材料和还原性气体检测传感器
CN111351821A (zh) * 2018-12-20 2020-06-30 新唐科技股份有限公司 电阻整合式气体传感器
CN113488589A (zh) * 2021-06-28 2021-10-08 深圳市华星光电半导体显示技术有限公司 忆阻器件、忆阻器件制作方法及显示面板
CN113711023A (zh) * 2019-04-16 2021-11-26 新唐科技日本株式会社 气体传感器的驱动方法以及气体检测装置
CN113892021A (zh) * 2019-06-07 2022-01-04 Koa株式会社 硫化检测传感器
US11541737B2 (en) 2016-12-28 2023-01-03 Nuvoton Technology Corporation Japan Gas detection device, gas detection system, fuel cell vehicle, and gas detection method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738749B2 (ja) * 2016-03-25 2020-08-12 パナソニックセミコンダクターソリューションズ株式会社 気体センサ、水素検出方法、及び燃料電池自動車
JP7027340B2 (ja) * 2017-09-04 2022-03-01 ヌヴォトンテクノロジージャパン株式会社 気体センサ、気体検知装置、燃料電池自動車および気体センサの製造方法
US10768135B2 (en) 2017-12-27 2020-09-08 Industrial Technology Research Institute Oxidizing gas detection method and apparatus thereof
US11692958B2 (en) * 2020-07-02 2023-07-04 Panasonic Intellectual Property Management Co., Ltd. Gas sensor device
WO2023047759A1 (ja) * 2021-09-22 2023-03-30 ヌヴォトンテクノロジージャパン株式会社 水素検知装置及び水素検知装置の制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1293777A3 (en) * 2001-09-14 2004-02-11 NGK Spark Plug Company Limited Hydrogen sensor
CN101523200A (zh) * 2006-08-11 2009-09-02 株式会社渥美精机 氢气浓度传感器以及氢气浓度测定装置
CN102713585A (zh) * 2010-10-13 2012-10-03 松下电器产业株式会社 气体传感器及使用它检测流体中含有的气体的方法和测定流体中含有的气体的浓度的方法、气体检测器以及气体浓度测定器
CN104965009A (zh) * 2015-07-20 2015-10-07 湖北大学 一种氢气浓度检测仪

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958348A (ja) * 1982-09-29 1984-04-04 Hitachi Ltd 水素ガス検知素子
JPS61191954A (ja) 1985-02-20 1986-08-26 Osaka Gas Co Ltd スズ酸化物薄膜ガスセンサ素子
NL8602770A (nl) 1986-11-03 1988-06-01 Stamicarbon Werkwijze voor de bereiding van ureum.
US5362975A (en) * 1992-09-02 1994-11-08 Kobe Steel Usa Diamond-based chemical sensors
JPH11160267A (ja) 1997-11-27 1999-06-18 Hochiki Corp 感応膜アレイ型ガス検出器
JP2001215214A (ja) * 1999-11-24 2001-08-10 Ngk Spark Plug Co Ltd 水素ガスセンサ
JP2002310978A (ja) 2001-04-12 2002-10-23 Ngk Spark Plug Co Ltd 水素センサ
JP2003272660A (ja) * 2002-03-18 2003-09-26 Ngk Insulators Ltd 電気化学素子、電気化学装置、プロトン生成触媒の被毒を抑制する方法および複合触媒
JP2005265546A (ja) * 2004-03-17 2005-09-29 Tdk Corp 水素ガス検出材料及びこれを用いた水素ガスセンサ
EP2110661A1 (en) 2007-02-02 2009-10-21 Gunze Limited Hydrogen gas sensor
CN102067314A (zh) * 2009-04-14 2011-05-18 松下电器产业株式会社 电阻变化元件及其制造方法
US20130000280A1 (en) 2011-06-30 2013-01-03 Caterpillar, Inc. Gas monitoring method implementing soot concentration detection
US20130071986A1 (en) 2011-09-16 2013-03-21 Elpida Memory, Inc. Partial etch of dram electrode
JP5858706B2 (ja) * 2011-09-26 2016-02-10 グンゼ株式会社 水素ガスセンサの信号処理方法、及び信号処理装置
CN103250252B (zh) * 2011-10-06 2015-12-23 松下电器产业株式会社 非易失性存储元件及非易失性存储装置
JP5450911B2 (ja) * 2012-02-17 2014-03-26 パナソニック株式会社 不揮発性記憶素子のデータ読み出し方法及び不揮発性記憶装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1293777A3 (en) * 2001-09-14 2004-02-11 NGK Spark Plug Company Limited Hydrogen sensor
CN101523200A (zh) * 2006-08-11 2009-09-02 株式会社渥美精机 氢气浓度传感器以及氢气浓度测定装置
CN102713585A (zh) * 2010-10-13 2012-10-03 松下电器产业株式会社 气体传感器及使用它检测流体中含有的气体的方法和测定流体中含有的气体的浓度的方法、气体检测器以及气体浓度测定器
CN104965009A (zh) * 2015-07-20 2015-10-07 湖北大学 一种氢气浓度检测仪

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. YU ET 等: "Hydrogen gas sensing properties of Pt/Ta2O5 Schottky diodes based on Si and SiC substrates", 《PROCEDIA ENGINEERING》 *
JI WON BYON 等: "Electrothermally Induced Highly Responsive and Highly Selective Vanadium OxideHydrogen Sensor Based on Metal Insulator Transition", 《THE JOURNAL OF PHYSICS CHEMISTRY C》 *
JUNGHUI SONG 等: "AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals", 《SOLID-STATE ELECTRONICS》 *
欧阳跃军 等: "电阻型氢气传感器研究进展", 《化学传感器》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114663B (zh) * 2016-12-28 2022-03-22 新唐科技日本株式会社 气体检测装置、气体传感器系统、燃料电池汽车及氢检测方法
CN110114663A (zh) * 2016-12-28 2019-08-09 松下知识产权经营株式会社 气体检测装置、气体传感器系统、燃料电池汽车及氢检测方法
US11541737B2 (en) 2016-12-28 2023-01-03 Nuvoton Technology Corporation Japan Gas detection device, gas detection system, fuel cell vehicle, and gas detection method
US11536677B2 (en) 2016-12-28 2022-12-27 Nuvoton Technology Corporation Japan Gas detection device, gas sensor system, fuel cell vehicle, and hydrogen detection method
CN109975362A (zh) * 2017-12-27 2019-07-05 财团法人工业技术研究院 氧化性气体浓度检测方法及其装置
CN109975362B (zh) * 2017-12-27 2021-06-22 财团法人工业技术研究院 氧化性气体浓度检测方法及其装置
TWI642924B (zh) * 2017-12-27 2018-12-01 財團法人工業技術研究院 氧化性氣體濃度檢測方法及其裝置
CN110487853A (zh) * 2018-05-14 2019-11-22 佳能株式会社 还原性气体检测材料和还原性气体检测传感器
US11686698B2 (en) 2018-05-14 2023-06-27 Canon Kabushiki Kaisha Reducing gas detection material and reducing gas detection sensor
CN111351821B (zh) * 2018-12-20 2023-02-17 新唐科技股份有限公司 电阻整合式气体传感器
CN111351821A (zh) * 2018-12-20 2020-06-30 新唐科技股份有限公司 电阻整合式气体传感器
CN113711023A (zh) * 2019-04-16 2021-11-26 新唐科技日本株式会社 气体传感器的驱动方法以及气体检测装置
CN113892021A (zh) * 2019-06-07 2022-01-04 Koa株式会社 硫化检测传感器
CN113892021B (zh) * 2019-06-07 2024-04-02 Koa株式会社 硫化检测传感器
CN113488589A (zh) * 2021-06-28 2021-10-08 深圳市华星光电半导体显示技术有限公司 忆阻器件、忆阻器件制作方法及显示面板
CN113488589B (zh) * 2021-06-28 2023-11-28 深圳市华星光电半导体显示技术有限公司 忆阻器件、忆阻器件制作方法及显示面板

Also Published As

Publication number Publication date
US20170307557A1 (en) 2017-10-26
JP6740159B2 (ja) 2020-08-12
JP2017198661A (ja) 2017-11-02
CN107315034B (zh) 2021-06-08
US10281420B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
CN107315034A (zh) 气体检测装置以及氢检测方法
JP6145762B1 (ja) 気体センサ、及び燃料電池自動車
JP6738749B2 (ja) 気体センサ、水素検出方法、及び燃料電池自動車
CN107315033A (zh) 气体检测装置以及氢检测方法
JP6761764B2 (ja) 水素センサ及び燃料電池自動車、並びに水素検出方法
JP6782642B2 (ja) 気体センサ及び水素濃度判定方法
JP7433286B2 (ja) 気体センサとその製造方法、および燃料電池自動車
CN110114662A (zh) 气体检测装置、气体检测系统、燃料电池汽车及气体检测方法
CN110226088A (zh) 气体传感器
US20220026384A1 (en) Method for driving gas sensor, and gas detection device
CN109769394A (zh) 气体传感器、气体检测装置、燃料电池汽车及气体传感器的制造方法
JP6865234B2 (ja) 気体検出装置、気体センサシステム、燃料電池自動車、及び水素検出方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200603

Address after: Kyoto Japan

Applicant after: Panasonic semiconductor solutions Co.,Ltd.

Address before: Osaka Japan

Applicant before: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT Co.,Ltd.

TA01 Transfer of patent application right
CB02 Change of applicant information

Address after: Kyoto Japan

Applicant after: Nuvoton Technology Corporation Japan

Address before: Kyoto Japan

Applicant before: Panasonic semiconductor solutions Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant