CN106098281B - NdFeB烧结磁铁 - Google Patents

NdFeB烧结磁铁 Download PDF

Info

Publication number
CN106098281B
CN106098281B CN201610370890.4A CN201610370890A CN106098281B CN 106098281 B CN106098281 B CN 106098281B CN 201610370890 A CN201610370890 A CN 201610370890A CN 106098281 B CN106098281 B CN 106098281B
Authority
CN
China
Prior art keywords
substrate
terres rares
sintered magnet
ndfeb sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610370890.4A
Other languages
English (en)
Other versions
CN106098281A (zh
Inventor
佐川真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Inta Metal K K
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inta Metal K K filed Critical Inta Metal K K
Publication of CN106098281A publication Critical patent/CN106098281A/zh
Application granted granted Critical
Publication of CN106098281B publication Critical patent/CN106098281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • C23C12/02Diffusion in one step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Continuous Casting (AREA)

Abstract

本发明的目的在于提供一种即使厚度为5mm以上也具有较高的顽磁力HcJ且最大磁能积(BH)max及矩形比SQ的值较高的NdFeB烧结磁铁。本发明的NdFeB烧结磁铁是通过晶界扩散法使Dy或/及Tb沿NdFeB烧结磁铁的基材的晶界扩散而成的,所述基材中的金属状态的稀土类的量以原子比计为12.7%~16.0%,在所述基材的晶界,富稀土类相在该基材的表面与距离该表面2.5mm的深度之间连续,通过所述晶界扩散法扩散的RH所存在的晶界达到距离表面2.5mm的深度。

Description

NdFeB烧结磁铁
本申请是国际申请号:PCT/JP2010/061712、国际申请日:2010年7月9日、进入中国的国家申请号:201080030500.X、进入中国国家阶段日期:2012年1月6日、发明名称:NdFeB烧结磁铁及其制造方法的申请的分案申请。
技术领域
本发明涉及顽磁力和最大磁能积的特性高的NdFeB烧结磁铁。
背景技术
NdFeB烧结磁铁是1982年由佐川(本申请发明人)等人发现的,该磁铁所展示出的特性远远凌驾于之前的永久磁铁,其具有能够由钕(稀土类的一种)、铁及硼这种比较丰富且廉价的原料来制造的优点。因此,NdFeB烧结磁铁用于在硬盘等的音圈电机、混合动力机动车、电动机动车的驱动用电机、电动辅助型自行车用电机、工业用电机、风力发电等中使用的发电机、高级扬声器、头挂听筒、永久磁铁式磁共鸣诊断装置等各种制品。用于这些用途的NdFeB烧结磁铁要求具有较高的顽磁力HcJ、较高的最大磁能积(BH)max及较高的矩形比(squareness ratio)SQ。在此,矩形比SQ由Hk/HcJ来定义,该Hk/HcJ是指将磁化曲线中磁化从最大值下降10%时的磁场的绝对值Hk除以顽磁力HcJ所得的值。
作为用于提高NdFeB烧结磁铁的顽磁力的一个方法,已知有将原始合金中的Nd原子的一部分置换为Dy或/及Tb(以下,以“Dy或/及Tb”作为“RH”)的方法(一合金法)。另外,作为其他方法,已知有“二合金法”,该“二合金法”是指,分别制作主相系合金和晶界相系合金,使晶界相系合金中含有高浓度的RH,由此,使烧结体中的位于晶粒彼此之间的晶界及其附近的RH高浓度化。作为其他另外的方法,已知有“晶界扩散法”,该“晶界扩散法”是指,在制作NdFeB磁铁的烧结体之后,从烧结体的表面通过晶界向烧结体内部扩散RH,从而仅在烧结体中的晶界附近使RH高浓度化(专利文献1)。
在先技术文献
专利文献1:国际公开WO2006/043348号公报
专利文献2:日本特开2005-320628号公报
在一合金法中,由于在烧结体的晶粒内存在RH,所以,虽然顽磁力得到提高,但是存在如下问题,例如,最大磁能积(BH)max降低且比晶界扩散法或二合金法消耗更多的RH。另外,在二合金法中,虽然与一合金法的情况相比能够抑制RH的使用量,但是为了烧结而进行加热时,RH不仅在晶界扩散,而且还会扩散到晶粒内的相当大的区域,从而仍然产生最大磁能积(BH)max降低的问题。
相对于此,在晶界扩散法中,由于在比烧结温度低的温度下使RH沿晶界扩散,所以,能够使RH仅扩散到晶界附近,能够抑制最大磁能积(BH)max的降低,并且能够获得具有与一合金法的情况同等程度的较高的顽磁力的NdFeB烧结磁铁。另外,与一合金法的情况相比,能够抑制RH的使用量。然后,在以往的晶界扩散法中,能够使RH扩散的晶界至多为距离烧结体的表面不到1.5mm的深度。近年,在用于混合动力汽车的大型电机和用于风力发电机的大型发电机等中使用厚度为5mm以上的NdFeB烧结磁铁,在这种较厚的磁铁中无法使RH遍及晶界整体,从而无法充分提高顽磁力HcJ及矩形比SQ。
于是,在以往的厚度为5mm以上的NdFeB烧结磁铁中,不存在顽磁力HcJ、最大磁能积(BH)max及矩形比SQ这三种特性都高的NdFeB烧结磁铁。尤其是,以顽磁力HcJ为横轴、以最大磁能积(BH)max为纵轴的曲线图非常接近具有负倾角的1次函数,可以说这些顽磁力HcJ和最大磁能积(BH)max具有顾此失彼的折中关系。
发明内容
本发明要解决的问题在于提供一种即使厚度为5mm以上也具有较高的顽磁力HcJ且最大磁能积(BH)max及矩形比SQ的值较高的NdFeB烧结磁铁及其制造方法。
对于为了解决上述问题而完成的本发明的NdFeB烧结磁铁而言,其是通过晶界扩散法使Dy或/及Tb(RH)沿NdFeB烧结磁铁的基材的晶界扩散而成的,其特征在于,
所述基材中的金属状态的稀土类的量以原子比计为12.7%~16.0%,
在所述基材的晶界中,富稀土类相在该基材的表面与距离该表面2.5mm的深度之间连续,
通过所述晶界扩散法扩散的RH所存在的晶界达到距离表面2.5mm的深度。
本发明人发现,为了使NdFeB烧结磁铁的晶界扩散法有效发挥作用,需要在晶界存在足够量的金属状态的稀土类。若如此在晶界存在足够量的金属状态的稀土类,则晶界的熔点下降而低于晶粒的熔点,由此,当进行晶界扩散处理时,晶界发生熔融。于是,熔融的晶界成为RH的通路,RH能够扩散到距离NdFeB烧结磁铁的表面2.5mm(或其以上)的深部。此外,本发明人还发现,为了这样在晶界存在足够量的金属状态的稀土类,进行晶界扩散处理前的NdFeB烧结磁铁基材中的金属状态的稀土类量需要为超过由组成式Nd2Fe14B表示的NdFeB烧结磁铁的稀土类量即11.76原子%约1原子%的12.7原子%以上。
但是,若基材中的金属状态的稀土类的量超过16.0原子%,则具有Nd2Fe14B这种组成的主相粒子相对于基材整体的体积比变低,从而无法得到较高的(BH)max。因此,在本发明中,该稀土类量的上限为16.0原子%。
另外,即使基材的金属状态的稀土类的量为12.7原子%以上,若在基材的表面与距离该表面2.5mm的深度之间富稀土类相(具有比基材整体的平均值高的稀土类的含有率的相)不连续,当进行晶界扩散处理时,基于熔融的晶界产生的RH的通路不连续,RH无法达到距离基材表面2.5mm或其以上的深度。因此,在本发明中,在基材的晶界,富稀土类相需要在基材表面与距离该表面2.5mm的深度之间连续。
具有这种富稀土类相连续的晶界的基材能够通过对在NdFeB磁铁的主相的粒子上附着有富稀土类相的粉末的微粉进行烧结而制作。通过如此将富稀土类相附着于主相,能够使富稀土类相的晶界在烧结体中遍及各处地分布,其结果是,能够使晶界的富稀土类相不会发生不连续,从基材的表面连续到至少2.5mm深度的位置。
这种微粉能够例如以以下的方式制作。首先,如图1所示,制作在主相11内,以与要制作的微粉的目标平均粒径Ra大致相等的平均间隔L分散有板状(称为层片(lamella))的富稀土类相12的层片结构的原始合金块10(参见(a)),随后将该原始合金粉碎而使平均粒径成为Ra(参见(b))。根据该方法,在其大半的粒子13的表面附着有富稀土类相层片的一部分14的状态下获得微粉。
例如专利文献2所记载的那样,通过薄带连铸法,获得如下的NdFeB磁铁合金板,该NdFeB磁铁合金板具有富稀土类相层片以规定间隔大致均等分散的层片结构。该层片结构的富稀土类相层片的间隔能够通过调整薄带连铸法中使用的冷却辊的旋转速度来控制。微粉的平均粒径例如能够如以下所述那样通过组合使用氢破碎法和喷射式粉碎法来调整。首先,对原始合金进行基于氢破碎法的脆化处理。由此,原始合金的整体发生脆化,但是由于富稀土类相层片比主相更脆,所以,当继续以喷射式粉碎法进行粉碎处理时,合金板在富稀土类相层片的位置被破碎。其结果是,获得平均粒径Ra的微粉,在该微粉粒子的表面附着有位于破碎界的富稀土类相层片的一部分。但是,若通过喷射式粉碎法进行粉碎时为合金提供的能量过大,则造成富稀土类相的粉末从晶粒脱离。在这种情况下,为了获得图1(b)所示的良好的微粉粒子,降低使用的气体的压力或减少处理中滞留在装置内的合金的量即可。
对于本发明的NdFeB烧结磁铁而言,由于RH如此扩散到距离表面2.5mm或其以上的深部,所以能够获得较高的顽磁力HcJ,而且由于使用晶界扩散法,所以,一合金法或二合金法中所存在的最大磁能积(BH)max的值降低的问题能够得到抑制。
本发明的“金属状态的稀土类量”以如下方式定义,即,由从基材的NdFeB烧结磁铁所含的全部稀土类量减去因被氧化、碳化及氮化而变化为稀土类的氧化物、碳化物及氮化物或它们的复合化合物的稀土类量的量来定义。
该“金属状态的稀土类量”能够通过以如下方式对基材的NdFeB烧结磁铁进行分析而求得。NdFeB烧结磁铁中所含的全部稀土类原子、氧原子、碳原子及氮原子的量能够通过一般的化学分析来测定。这些氧原子、碳原子及氮原子分别在NdFeB烧结磁铁中形成R2O3、RC、RN(R为稀土类),通过从全部稀土类量减去因氧、碳、氮而不再为金属状态的稀土类量来求得金属状态的稀土类量。需要说明的是,实际上,不仅是R2O3、RC、RN这些单纯的化合物,还可以考虑形成原子比不同的化合物或复合化合物,本发明人以通过上述方式求出的基材中的稀土类量为目标,当该值为12.7原子%以上时,对于不含RH的基材,即使是具有较大磁极面积且厚度为5mm以上的比较厚的烧结体,通过基于RH的晶界扩散处理能够获得作为目标的高顽磁力,这一点通过实验得到了确认。
为了将RH送入到距离烧结体表面2.5mm以上的深度,当制造本发明的NdFeB烧结磁铁时,只要使RH从基材的表面每1cm2扩散10mg以上即可。若该扩散量小于10mg,则在RH到达距离基材表面2.5mm的深度之前,RH的供给可能不连续。关于从基材表面供给RH的方法,存在如下方法,即,通过溅射或粉体涂布而在基材表面上形成含有RH的皮膜,然后进行加热的方法,以及使升华的RH晒到基材表面的方法。在这些方法之中,从生产效率和处理费用的观点考虑,涂布含有RH的金属或合金的粉体的方法是最佳的。尤其是,作为涂布粉体,优选使用与含RH50原子%以上的Fe族迁移金属构成的合金粉末或仅由RH构成的纯金属的粉末、它们的合金或纯金属的氢化物的粉末、RH的氟化物粉末和Al粉末的混合粉末等。
发明效果
在本发明的NdFeB烧结磁铁中,RH所存在的晶界到达距离表面2.5mm的深度,由此,即使厚度为5mm以上,也能够获得顽磁力HcJ较高且最大磁能积(BH)max及矩形比SQ的值较高的NdFeB烧结磁铁。
附图说明
图1是表示具有富稀土类相的层片的原始合金块(a)和将原始合金块粉碎后的微粉(b)的简要图。
图2是在本实施例及比较例中测定的距离磁极面3mm的深度的位置的WDS映射图。
图3是表示对进行了晶界扩散处理的试料在切断面上的1方向测定了Dy的浓度分布的线分析的结果的图。
符号说明
10...原始合金块
11...主相
12...富稀土类相层片
13...微粉粒子
14...富稀土类相层片的一部分
具体实施方式
以下,说明本发明的NdFeB烧结磁铁及其制造方法的实施例。
实施例
对制造本实施例及比较例的NdFeB烧结磁铁的方法进行说明。
首先,使用薄带连铸法制作NdFeB磁铁的合金。接着,通过氢破碎法将该合金粗粉碎之后,向所得到的粗粉中混合润滑剂,利用ホソカワミケロン制100AFG型喷射式粉碎装置在氮气气流中将粗粉粉碎成微粉,从而获得NdFeB磁铁的粉末。此时,粉碎成微粉后的粉末的粒径被调整成通过激光衍射法测定到的粒度分布的中央值(D50)为5μm。接下来,向该粉末混合润滑剂,并以3.5~3.6g/cm3的密度将该粉末填充到填充容器中。随后,在磁场中将粉末取向,然后在真空中以1000~1020℃加热而将其烧结。随后进一步在惰性气体气氛中以800℃加热1小时后将其急剧冷却,然后以500~550℃将其加热2小时并将其急剧冷却。由此,获得RH扩散前的NdFeB烧结磁铁的块体(以下,称为“基材”)。
至此为止所述的操作是对组成不同的12种合金进行的操作。所获得的12种基材(S-1~S-9、C-1~C-3)的组成在表1中示出,磁特性在表2中示出。在此,表2中的Br为残留磁束密度。另外,MN为幻数(Magic Number)的简略语,是在HcJ以kOe单位表示、(BH)max由MGOe表示时由双方数值的和定义的值。以往,对于在相同条件下制造的NdFeB烧结磁铁彼此而言,由于如上述那样HcJ和(BH)max为近似于具有负倾角的1次函数的关系,因此MN大致取固定值。通过以往的一般方法制造的NdFeB烧结磁铁的MN为59~64左右,不会超过65。对于表2所示的基材而言,MN也处于该范围内。
[表1]
[表2]
在此所示的组成是对基材进行化学分析而得到的值。另外,MR值以原子%为单位表示金属状态的稀土类的量,其能够根据上述化学分析值而算出。即,MR值是从分析值的全部稀土类量减去由氧、碳、氮消耗的(非金属化)稀土类量之后的值。在该计算中,这些杂质元素和稀土类R分别制成R2O3、RC及RN的化合物。
基材C-1~C-3的MR值小于12.7%,其在本发明的范围外(比较例)。另一方面,基材S-1~S-9的MR值均为12.7%以上,该值为本发明的范围内。其中,基材S-1~S-5并未含有超过杂质水平的量的Dy,与此相对,基材S-6~S-9含有4原子%左右的Dy。另外,基材S-1~S-9根据以下的两种观点而分组。对于作为第一组的基材S-1~S-3、S-6及S-7而言,当向喷射式粉碎机投入合金时,初期投入量为约400g,每分供给量为约30g,氮气的压力为0.6MPa。与此相对,作为第二组的基材S-4、S-5、S-8及S-9,其投入量比第一组多,初期投入量为约700g,每分供给量为约40g,氮气的压力为0.6MPa。
接下来,将上述12种基材S-1~S-9、C-1~C-3切割成尺寸为纵7mm×横7mm×厚度5mm或6mm且厚度方向为磁化方向的长方体基材。
与到当前为止所述的长方体基材的制作并行地制作为了实施晶界扩散法而向长方体基材的表面涂布的粉末。表3示出本实施例中使用的粉末的组成。粉末A及B的平均粒径为6μm。在粉末C及D中使用的DyF3粉末的平均粒径为约3μm,在粉末C中使用的Al粉末的平均粒径为约5μm。
[表3]
(单位:重量%)
粉末的记号 Dy Ni Co DyF<sub>3</sub> Al
A 92 4.3 0 0 3.7
B 91.6 0 4.6 0 3.8
C 0 0 0 90 10
D 0 0 0 100 0
接下来,根据以下的方法将粉末A~D涂布到长方体基材的表面。首先,向容量200cm3的塑料制烧杯放入直径1mm的氧化锆制小球至100cm3,在其中加入0.1~0.5g的流动石蜡并加以搅拌。向其中投入长方体基材并使烧杯与振动机接触,从而对烧杯内的基材及小球施加振动,由此,在长方体基材的表面上涂布由石蜡构成的粘结层。接下来,向容量10cm3的玻璃瓶放入直径1mm的不锈钢制小球至8cm3,然后加入1~5g的表2所示的粉末,将涂布有粘结层的长方体基材投入其中。但是,基于后述的理由,此时对长方体基材的侧面(磁极面以外的表面)实施塑料板制的掩模,使粉末不附着到磁铁侧面。通过使该玻璃瓶与振动机接触,制作含有Dy的粉末仅涂布在磁极面上的NdFeB烧结磁铁。粉末涂布量根据在上述的工序中添加的流动石蜡及粉末的量来调整。
在此,将粉末涂布仅限定在磁极面的理由如下所述。由于本发明定位应用于比较大型的电机,所以该技术必须是对具有大到一定程度的磁极面积的磁铁有效的技术。但是,由于磁化曲线测定器(通过脉冲磁场施加进行的测定)的关系而存在磁极面积受到限制的情况。因此,使用7mm见方这种具有比较小的磁极面积的试料,但是通过不在侧面涂布粉末,从而成为与对磁极面积大的试料进行晶界扩散法的实验时的状态相同的状态。
接下来,对于涂布有粉末的长方体基材而言,将未涂布有粉末的侧面中的1面作为下侧,并将该涂布有粉末的长方体基材放在钼板上,在10-4Pa的真空中进行加热。在加热温度为900℃下加热3小时。然后急剧冷却至接近室温,在500~550℃下加热2小时,并再度急剧冷却至室温。
通过以上的方法制作出D-1~D-15的15种试料。对各试料的基材、粉末及粉末涂布量的组合、顽磁力HcJ、最大磁能积(BH)max、MN、矩形比SQ的测定值、以及厚度方向的中央(对于厚度为5mm的试料而言为距离表面2.5mm,对于厚度为6mm的试料而言为距离表面3mm)的位置的Dy的有无的测定结果在表4示出。
[表4]
在此,磁特性的测定通过脉冲磁化测定装置而进行。脉冲磁化测定装置是日本电磁测器株式会社制(商品名:パルスBH力一ブトレ一サPBH-1000)的装置,其最大施加磁场为10T。脉冲磁化测定装置适合评价作为本发明的对象的高HcJ磁铁。但是,脉冲磁化测定装置与通常的基于施加直流磁场的磁化测定装置(也称为直流B-H描绘器(tracer))相比,其磁化曲线的矩形比SQ存在较低的倾向,这种情况是已经为人所知。在本实施例中,矩形比SQ为90%以上是指,若利用直流磁化测定装置进行测定则相当于95%以上。
另外,针对厚度方向的中央位置的Dy的有无进行的测定是通过以下方式进行的。通过外周刃切断机切割成通过该中央位置而与试料的磁极平行的剖面,对切断面进行研磨之后,根据EPMA(日本电子株式会社制,JXA-8500F)的WDS(波长分散)分析来进行Dy的检测。在图2中,作为一例,是对于仅对基材S-1的磁极面中的一方涂布粉末A且进行上述的晶界扩散处理及随后的热处理的试料,示出距离该磁极面3mm深度的位置的WDS映射像(上图)。与图2的上图相对照,对未进行晶界扩散处理的基材S-1示出距离一方的磁极面3mm深度的位置的WDS映射像(下图)。在这些图中,在“COMPO像”中观察到的白色的部位是富稀土类相的结晶晶界。由于基材S-1只含有杂质水平的Dy,所以,对于未进行晶界扩散处理的试料而言在晶界中完全未检测到Dy,与此相对,对于进行了晶界扩散处理的试料检测到了Dy(在上图中为箭头所指的部分)。另外,在图3中,对于进行了晶界扩散处理的试料示出了在切断面上的一个方向上测定了Dy的浓度分布的线分析结果。根据线分析也确认出在晶界中存在Dy的凝聚。表4所示的Dy检测的判定结果是根据这种WDS分析而得到确认的。
根据表4所示的结果可知,仅NdFeB烧结磁铁的基材所含的金属状态的MR值为12.7原子%以上且在距离烧结体表面2.5mm以上的深度的结晶晶界检测到Dy浓缩的情况的NdFeB烧结磁铁具有较高的HcJ、较高的(BH)max及较高的SQ值。试料D-4、D-5、D-8及D-9使用MR值比较高的基材S-4、S-5、S-8及S-9(上述第二组的基材)制作而成,但是,因为后述的理由,在试料中央部的晶界不存在Dy。这种试料并非同时具有较高的HcJ、较高的(BH)max及较高的SQ值。只有满足MR值为12.7原子%以上且在距离烧结体表面2.5mm以上的深度的结晶晶界检测到Dy浓缩的情况这两个条件的试料的NdFeB烧结磁铁的MN超过66,且SQ值为90以上。这种试料均使用上述第一组的基材制作而成。
对由第一组的基材制作的试料和由第二组的基材制作的试料的区别点进行说明。对于第一组及第二组,利用电子显微镜观察制作基材(烧结体)之前的合金粉末,求出在表面附着有富稀土类相的粒子相对于全部粒子的比例。其结果是,在第一组中均为80%以上,与此相对,在第二组中均为70%以下。可以想到的是,这种差异是因为上述的微粉碎的条件的差异而产生的。在100AFG型喷射式粉碎装置中已知如下情况,即,在装置内滞留的被粉碎物的量越多,另外,气体的压力越高,则存在粉碎能量越变大的倾向。在粉碎前的薄带连铸合金内,板状的富稀土类相层片以固定间隔分散,粉碎能量越高越容易分离,即,第二组的富稀土类相比第一组容易分离。当富稀土类相从主相分离时,在烧结后的晶界中产生不存在富稀土类相的部位,即富稀土类相的裂纹。对于这种裂纹而言,当进行晶界扩散处理时即使对基材进行加热,晶界也不会熔融。由于RH在晶界扩散处理中以熔融的晶界作为通路在基材(烧结体)中扩散,所以,RH不会到达比富稀土类相的裂缝深的位置。因此,在距离烧结体表面2.5mm以上的深度的位置,在第二组中不存在Dy,与此相对,在第一组中存在Dy。
对于在混合动力汽车和电动机动车的大型电机等高科技制品中使用的NdFeB烧结磁铁而言,HcJ和(BH)max均高,因此不但MN大而且SQ值也必须高。并且,在针对这些大型电机的用途中,很多情况下使用厚度5mm以上的比较厚的磁铁。对于这种较厚的磁铁,以往不存在具有上述这种特性的磁铁。本发明的NdFeB烧结磁铁是能够用作完全满足这种特性的最高级的高性能磁铁的理想的磁铁。
需要说明的是,虽然本实施例中对使用Dy作为RH的情况进行了说明,但是,若替代Dy而使用(比Dy贵的)Tb,则能够进一步提高HcJ的值。

Claims (2)

1.一种NdFeB烧结磁铁,是通过晶界扩散法使Dy或/及Tb沿NdFeB烧结磁铁的基材的晶界扩散而成的,其特征在于,
所述基材中的金属状态的稀土类的量以原子比计为12.7%~16.0%,
在所述基材的晶界,富稀土类相在该基材的表面与距离该表面2.5mm的深度之间连续,
通过所述晶界扩散法扩散的Dy或/及Tb所存在的晶界达到距离表面2.5mm的深度,
所述富稀土类相是具有比所述基材整体的平均值高的稀土类的含有率的相。
2.根据权利要求1所述的NdFeB烧结磁铁,其特征在于,
顽磁力HcJ以kOe单位所表示的数值和最大磁能积(BH)max以MGOe所表示的数值的和为66以上,矩形比为90%以上。
CN201610370890.4A 2009-07-10 2010-07-09 NdFeB烧结磁铁 Active CN106098281B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-164276 2009-07-10
JP2009164276 2009-07-10
CN201080030500.XA CN102483979B (zh) 2009-07-10 2010-07-09 NdFeB烧结磁铁的制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080030500.XA Division CN102483979B (zh) 2009-07-10 2010-07-09 NdFeB烧结磁铁的制造方法

Publications (2)

Publication Number Publication Date
CN106098281A CN106098281A (zh) 2016-11-09
CN106098281B true CN106098281B (zh) 2019-02-22

Family

ID=43429318

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610370890.4A Active CN106098281B (zh) 2009-07-10 2010-07-09 NdFeB烧结磁铁
CN201080030500.XA Active CN102483979B (zh) 2009-07-10 2010-07-09 NdFeB烧结磁铁的制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201080030500.XA Active CN102483979B (zh) 2009-07-10 2010-07-09 NdFeB烧结磁铁的制造方法

Country Status (5)

Country Link
US (2) US9589714B2 (zh)
EP (1) EP2453448A4 (zh)
JP (2) JP5687621B2 (zh)
CN (2) CN106098281B (zh)
WO (1) WO2011004894A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328161B2 (ja) 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
US9589714B2 (en) 2009-07-10 2017-03-07 Intermetallics Co., Ltd. Sintered NdFeB magnet and method for manufacturing the same
EP2667385A4 (en) 2011-01-19 2018-04-04 Hitachi Metals, Ltd. R-t-b sintered magnet
JP5863410B2 (ja) * 2011-11-16 2016-02-16 信越化学工業株式会社 回転子及びスポーク型ipm永久磁石式回転機
WO2013100009A1 (ja) 2011-12-27 2013-07-04 インターメタリックス株式会社 NdFeB系焼結磁石
KR101485282B1 (ko) * 2011-12-27 2015-01-21 인터메탈릭스 가부시키가이샤 NdFeB계 소결 자석
CN105206372A (zh) * 2011-12-27 2015-12-30 因太金属株式会社 NdFeB系烧结磁体
US10468166B2 (en) 2011-12-27 2019-11-05 Intermetallics Co., Ltd. NdFeB system sintered magnet
KR20150002638A (ko) 2012-03-30 2015-01-07 인터메탈릭스 가부시키가이샤 NdFeB계 소결 자석
KR101446318B1 (ko) * 2012-05-22 2014-10-07 한국생산기술연구원 고기능성 복합 나노입자 및 그 제조방법
JP5708581B2 (ja) * 2012-07-09 2015-04-30 トヨタ自動車株式会社 割断形成永久磁石及びその製造方法
KR101599663B1 (ko) 2012-07-24 2016-03-03 인터메탈릭스 가부시키가이샤 NdFeB계 소결 자석의 제조 방법
JP6372088B2 (ja) * 2013-03-29 2018-08-15 大同特殊鋼株式会社 RFeB系磁石の製造方法
JP6265368B2 (ja) 2013-04-22 2018-01-24 昭和電工株式会社 R−t−b系希土類焼結磁石およびその製造方法
JP2015035455A (ja) * 2013-08-08 2015-02-19 株式会社豊田中央研究所 焼結磁石用原料合金、希土類焼結磁石およびそれらの製造方法
JP6432406B2 (ja) * 2014-03-27 2018-12-05 日立金属株式会社 R−t−b系合金粉末およびr−t−b系焼結磁石
JP2015228431A (ja) * 2014-06-02 2015-12-17 インターメタリックス株式会社 RFeB系磁石及びRFeB系磁石の製造方法
CN105469973B (zh) 2014-12-19 2017-07-18 北京中科三环高技术股份有限公司 一种r‑t‑b永磁体的制备方法
WO2016111346A1 (ja) * 2015-01-09 2016-07-14 インターメタリックス株式会社 RFeB系焼結磁石の製造方法
CN105070498B (zh) * 2015-08-28 2016-12-07 包头天和磁材技术有限责任公司 提高磁体矫顽力的方法
CN105632748B (zh) * 2015-12-25 2019-01-11 宁波韵升股份有限公司 一种提高烧结钕铁硼薄片磁体磁性能的方法
CN106205924B (zh) * 2016-07-14 2019-09-20 烟台正海磁性材料股份有限公司 一种高性能钕铁硼磁体的制备方法
CN107871602A (zh) * 2016-09-26 2018-04-03 厦门钨业股份有限公司 一种R‑Fe‑B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法
JP7167484B2 (ja) * 2018-05-17 2022-11-09 Tdk株式会社 R-t-b系希土類焼結磁石用鋳造合金薄片
CN108962582B (zh) * 2018-07-20 2020-07-07 烟台首钢磁性材料股份有限公司 一种钕铁硼磁体矫顽力提升方法
CN108831655B (zh) * 2018-07-20 2020-02-07 烟台首钢磁性材料股份有限公司 一种提高钕铁硼烧结永磁体矫顽力的方法
CN110729091B (zh) * 2019-09-24 2021-11-16 宁波金科磁业有限公司 一种钕铁硼磁体及其制备方法
CN112345571B (zh) * 2020-10-30 2023-05-23 中钢集团南京新材料研究院有限公司 一种钕铁硼磁体晶界扩散深度的评估方法
CN112712954B (zh) * 2020-12-23 2022-11-04 安徽大地熊新材料股份有限公司 烧结钕铁硼磁体的制备方法
DE102023133208A1 (de) 2022-11-29 2024-05-29 Daido Electronics Co., Ltd. Verfahren zum Herstellen eines R-Fe-B-Magneten

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076870A (zh) * 2004-12-16 2007-11-21 独立行政法人科学技术振兴机构 已晶间改质的Nd-Fe-B系磁铁和它的制造方法
WO2008139690A1 (ja) * 2007-05-01 2008-11-20 Intermetallics Co., Ltd. NdFeB系焼結磁石製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663086B2 (ja) 1985-09-27 1994-08-17 住友特殊金属株式会社 永久磁石材料及びその製造方法
JPH0742553B2 (ja) 1986-02-18 1995-05-10 住友特殊金属株式会社 永久磁石材料及びその製造方法
JPH01117303A (ja) 1987-10-30 1989-05-10 Taiyo Yuden Co Ltd 永久磁石
JP2000234151A (ja) 1998-12-15 2000-08-29 Shin Etsu Chem Co Ltd R−Fe−B系希土類永久磁石材料
CN1187152C (zh) 1999-03-03 2005-02-02 株式会社新王磁材 稀土磁铁烧结用烧结箱及用该箱烧结处理的稀土磁铁制法
JP3897724B2 (ja) 2003-03-31 2007-03-28 独立行政法人科学技術振興機構 超小型製品用の微小、高性能焼結希土類磁石の製造方法
JP4396879B2 (ja) 2003-06-06 2010-01-13 インターメタリックス株式会社 粘着層形成方法
JP2005011973A (ja) 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
WO2005098878A2 (en) 2004-04-07 2005-10-20 Showa Denko K.K. Alloy lump for r-t-b type sintered magnet, producing method thereof, and magnet
JP4879503B2 (ja) 2004-04-07 2012-02-22 昭和電工株式会社 R−t−b系焼結磁石用合金塊、その製造法および磁石
BRPI0506147B1 (pt) 2004-10-19 2020-10-13 Shin-Etsu Chemical Co., Ltd método para preparar um material de ímã permanente de terra rara
JP4543940B2 (ja) 2005-01-25 2010-09-15 Tdk株式会社 R−t−b系焼結磁石の製造方法
TWI413136B (zh) 2005-03-23 2013-10-21 Shinetsu Chemical Co 稀土族永久磁體
JP4702548B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 傾斜機能性希土類永久磁石
TWI417906B (zh) * 2005-03-23 2013-12-01 Shinetsu Chemical Co 機能分級式稀土族永久磁鐵
EP1879201B1 (en) * 2005-04-15 2016-11-30 Hitachi Metals, Ltd. Rare earth sintered magnet and process for producing the same
CN100356487C (zh) 2005-06-06 2007-12-19 浙江大学 一种烧结钕铁硼磁体的制备方法
JP4656325B2 (ja) 2005-07-22 2011-03-23 信越化学工業株式会社 希土類永久磁石、その製造方法、並びに永久磁石回転機
US8038807B2 (en) 2006-01-31 2011-10-18 Hitachi Metals, Ltd. R-Fe-B rare-earth sintered magnet and process for producing the same
JP4788427B2 (ja) * 2006-03-23 2011-10-05 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
JP4656323B2 (ja) 2006-04-14 2011-03-23 信越化学工業株式会社 希土類永久磁石材料の製造方法
JP4605396B2 (ja) 2006-04-14 2011-01-05 信越化学工業株式会社 希土類永久磁石材料の製造方法
US20070258455A1 (en) * 2006-05-08 2007-11-08 Futurewei Technologies, Inc. System for distributed architecture for multicast access control
JP2007329250A (ja) * 2006-06-07 2007-12-20 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法
KR101425828B1 (ko) 2006-08-23 2014-08-05 가부시키가이샤 알박 영구자석 및 영구자석의 제조방법
EP2071597B1 (en) 2006-09-15 2016-12-28 Intermetallics Co., Ltd. METHOD FOR PRODUCING SINTERED NdFeB MAGNET
JP4840606B2 (ja) * 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法
MY149353A (en) 2007-03-16 2013-08-30 Shinetsu Chemical Co Rare earth permanent magnet and its preparations
JP5274781B2 (ja) * 2007-03-22 2013-08-28 昭和電工株式会社 R−t−b系合金及びr−t−b系合金の製造方法、r−t−b系希土類永久磁石用微粉、r−t−b系希土類永久磁石
EP2133891B1 (en) 2007-03-30 2017-03-08 TDK Corporation Process for producing magnet
JPWO2009075351A1 (ja) * 2007-12-13 2011-04-28 昭和電工株式会社 R−t−b系合金及びr−t−b系合金の製造方法、r−t−b系希土類永久磁石用微粉、r−t−b系希土類永久磁石
JP5328161B2 (ja) 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
US9589714B2 (en) 2009-07-10 2017-03-07 Intermetallics Co., Ltd. Sintered NdFeB magnet and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076870A (zh) * 2004-12-16 2007-11-21 独立行政法人科学技术振兴机构 已晶间改质的Nd-Fe-B系磁铁和它的制造方法
WO2008139690A1 (ja) * 2007-05-01 2008-11-20 Intermetallics Co., Ltd. NdFeB系焼結磁石製造方法

Also Published As

Publication number Publication date
US20120176211A1 (en) 2012-07-12
JP2015122517A (ja) 2015-07-02
WO2011004894A1 (ja) 2011-01-13
EP2453448A4 (en) 2014-08-06
CN106098281A (zh) 2016-11-09
JPWO2011004894A1 (ja) 2012-12-20
CN102483979A (zh) 2012-05-30
EP2453448A1 (en) 2012-05-16
US9589714B2 (en) 2017-03-07
JP6005768B2 (ja) 2016-10-12
CN102483979B (zh) 2016-06-08
JP5687621B2 (ja) 2015-03-18
US20170103851A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
CN106098281B (zh) NdFeB烧结磁铁
JP6440880B2 (ja) 低bの希土類磁石
CN103295713B (zh) R-Fe-B类稀土烧结磁铁
CN103456451B (zh) 一种室温高磁能积耐腐蚀烧结钕铁硼的制备方法
CN104051101B (zh) 一种稀土永磁体及其制备方法
CN103650073B (zh) NdFeB系烧结磁体和该NdFeB系烧结磁体的制造方法
CN103903823B (zh) 一种稀土永磁材料及其制备方法
JP5553461B2 (ja) NdFeB系焼結磁石
JP2017130645A (ja) ネオジム鉄ホウ素磁石およびその調製法
CN103797549B (zh) NdFeB系烧结磁体
Weiqiang et al. Improvement of coercivity and corrosion resistance of Nd-Fe-B sintered magnets by doping aluminium nano-particles
Sun et al. Improvement of coercivity and corrosion resistance of Nd–Fe–B sintered magnets with Cu nano-particles doping
CN101901658B (zh) 晶界相改性的烧结钕铁硼稀土永磁材料及其制备方法
CN109940139A (zh) R-t-b系稀土烧结磁铁用合金和r-t-b系稀土烧结磁铁
CN106463223A (zh) RFeB系磁体及RFeB系磁体的制造方法
Jiang et al. Dy-based dual-alloy grain boundary diffusion for sintered Nd-Fe-B magnets with improved magnetic performance and corrosion resistance
JP5400256B1 (ja) NdFeB系焼結磁石
CN104103414A (zh) 一种制备高矫顽力各向异性纳米晶钕铁硼永磁体的方法
Li et al. Effect of nano-TiC dopant size on magnetic properties and corrosion resistance of hot-deformed NdFeB
Wang et al. Magnetic properties, microstructure and corrosion behavior of Nd10Y1Fe85− xNb3. 5Ti0. 5Bx (x= 14–22) and Nd10Y1Fe69Nb3. 5M0. 5B16 (M= Ti, Zr, Cr, Mo) bulk nanocrystalline magnets
KR101341344B1 (ko) 자기특성이 향상된 R-Fe-B계 소결자석 및 이의 제조방법
Sagawa et al. The status of sintered NdFeB magnets
CN115938707A (zh) 一种耐温性能优异的稀土永磁材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200330

Address after: Aichi

Patentee after: DAIDO STEEL Co.,Ltd.

Address before: Kanzichuan, zhongjinchuan, Gifu, Japan

Patentee before: INTERMETALLICS Co.,Ltd.

TR01 Transfer of patent right